Acessibilidade / Reportar erro

Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB) treating domestic wastewater

Variação de sulfato e sulfeto dissolvido sob baixas relações DQO/Sulfato em um Reator Anaeróbio de Manta de Lodo e Fluxo Ascendente (UASB) tratando esgoto sanitário

Abstracts

In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq) in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps) and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO4(2-)/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

COD/sulfate; dissolved sulfide; kinetics; sulfate reduction; UASB reactors


Nesse estudo foi avaliado a dinâmica de redução de sulfato e da geração de sulfeto dissolvido (S², HS-, H2Saq) na fase líquida de um reator UASB tratando esgoto sanitário tipicamente doméstico com baixa relação DQO/sulfato. Para isso foram coletadas amostras do afluente e efluente, além de três alturas (0,25 m, 1,25 m e 2,25 m) ao longo do reator. Durante todo experimento foi observada redução de sulfato no reator UASB, com um valor médio de 24%. Entretanto, a concentração de sulfeto dissolvido no efluente do reator não foi maior que 5,0 mg Sdiss/L. O modelo cinético de primeira ordem apresentou um bom ajuste para descrever a redução de sulfato sob diferentes relações DQO/sulfato, com o valor de K1app entre 2.94x10-5 s-1 e 1.17x10-5 s-1 com coeficiente de correlação para os dados superior a 91%. A taxa máxima observada de redução de sulfato foi de 18.0 mg SO4(2-)/L.h-1 e pequenas variações na relação DQO/sulfato promoveu uma mudança significativa tanto na concentração de sulfato como na de sulfeto dissolvido.

DQO/sulfato; sulfeto dissolvido; cinética; redução de sulfato; reator UASB


  • American Public Health Association - APHA; American Water Works Association - AWWA; Water Environment Federation - wef. Standard methods for the examination of water and wastewater 20th ed. Washington DC, 1995.
  • CHERNICHARO, C. A. L. Reatores anaeróbios Belo Horizonte: DESA/UFMG, 1997. 246p.
  • CHOI, E.; RIM, J. M. Competition and inibition of sulfate reducers and methane procucers in anaerobic treatment. Water Science & Technology, v. 23, n. 7, p. 1259-64, 1991.
  • COLLERAN, E.; FINNEGAN, S.; LENS, P. N. L. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, v. 67, n. 1, p. 29-46, 1995. http://dx.doi.org/10.1007/BF00872194
  • GLOMBITZA, F. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Management, v. 21, n. 2, p. 197-203, 2001. http://dx.doi.org/10.1016/S0956-053X(00)00061-1
  • HILTON, M. G.; ARCHER, D. B. Anaerobic digestion of a sulfate rich-molasses wastewater: inhibition of hydrogen sulfide production. Biotechnology and Bioengineering, v. 31, n. 8, p. 885-8, 1988. http://dx.doi.org/10.1002/bit.260310817
  • JONG, T.; PARRY, D. L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Research, v. 37, p. 3379-89, 2003. http://dx.doi.org/10.1016/S0043-1354(03)00165-9
  • KALYUZHNYI, S. V.; FRAGOSO, C. De LEON; MARTINEZ, J. R. Biological sulfate reduction in a UASB reactor fed with ethanol as the electron donor. Mikrobiologiya, v. 66, n. 5, p. 562-67, 1997.
  • KHAN, A. A.; GAUR, R. Z.; TYAGI, V. K.; KHURSHEED, A.; LEWB, B.; MEHROTRA, I. et al. Sustainable options of post treatment of UASB effluent treating sewage: a review. Resources, Conservation and Recycling, v. 55, n. 12, p. 1232-51, 2011. http://dx.doi.org/10.1016/j.resconrec.2011.05.017
  • LENS, P. N. L.; VISSER, A.; JANSEN, A. J. H.; HULSHOFF-POL, L. W.; LETTINGA, G. Biotechnological treatment of sulphate-rich wastewaters. Critical Reviews in Environmental Science and Technology, v. 28, n. 1, p. 41-88, 1998. http://dx.doi.org/10.1080/10643389891254160
  • LENS, P. N. L.; KUENEN, J. G. The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Science and Technology, v. 44, n. 8, p. 57-66, 2001.
  • LENS, P. N. L.; VALLEROL, M.; ESPOSITO, G.; ZANDVOORT, M. Perspectives of sulfate reducing bioreactors in environmental biotechnology. Reviews in Environmental Science and Biotechnology, v. 1, n. 4, p. 311-25, 2002. http://dx.doi.org/10.1023/A:1023207921156
  • LETTINGA, G.; HULSHOFF-POL, L. W. UASB - Process design for various types of wastewaters. Water Science and Technology, v. 24, n. 8, p. 87-107, 1991.
  • LETTINGA, G. Towards feasible and sustainable environmental protection for all. Aquatic Ecosystem Health & Management, v. 11, n. 1, p. 116-24, 2008.
  • MÉNDEZ, R.; TEN-RUMMELER, E.; HULSHOFF POL, L. W. Start up of UASB reactors treating sucrose-containing substrate with a low cod/sulfate ratio. Environmental Technology Letters, v. 10, n. 1, p. 83-90, 1989. http://dx.doi.org/10.1080/09593338909384721
  • METCALF & EDDY INC. Wastewater engineering: treatment, disposal and reuse. 4. ed. New York: McGraw-Hill Books, 2003. 1815p.
  • MOOSA, S.; NEMATI, M.; HARRISON, S. T. L. A kinetic study on anaerobic reduction of sulphate, part I: effect of sulphate concentration. Chemical Engineering Science, v. 57, p. 2773-80, 2002. http://dx.doi.org/10.1016/S0009-2509(02)00152-5
  • O'FLAHERTY, V.; COLLERAN, E. Sulfur problems in anaerobic digestion. In: International Water Association. Environmental technologies to treat sulfur pollution: principles and engineering. London, 2000. p 467-89.
  • O'REILLY, C.; COLLERAN, E. Effect of influent COD/SO42_ ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties. FEMS microbiology ecology, v. 56, n. 1, p. 141-53, 2006. http://dx.doi.org/10.1111/j.1574-6941.2006.00066.x
  • POSTGATE, J. R. The sulphate reducing bacteria 2nd ed. Cambridge: University Press, 1984.
  • PRASAD, D.; HENRY, G.; HAIK, S. Role of sulfate reducing bacteria in anaerobic treatment of landfill leachate. In: CSCE Annual Canadian Hydrotechnical Conference, 10., 1988, Vancouver. Proceedings... Vancouver: CSCE, 1988.
  • SANTOS, J. M.; SÁ, L. M.; REIS JÚNIOR, N. C.; GONÇALVES, R. F.; SIQUEIRA, R. N. Modelling hydrogen sulphide emission in a WWTP with UASB reactor followed by aerobic biofilters. Water Science and Technology, v. 54, n. 9, p. 173-80, 2006. http://dx.doi.org/10.2166/wst.2006.861
  • SHAYEGAN, J.; GHAVIPANJEH, F.; MIRJAFARI, P. The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria. Process Biochemistry, v. 40, n. 7, p. 2305-10, 2005. http://dx.doi.org/10.1016/j.procbio.2004.09.005
  • SPEECE, R. E. Anaerobic biotechnology for industrial wastewaters 1. ed. Nashville: Archae Press, 1996. 394p.
  • TSUKAMOTO, T. K.; MILLER, G. C. Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Research, v. 33, n. 6, p. 1365-70, 1999. http://dx.doi.org/10.1016/S0043-1354(98)00342-X
  • VINCKE, E.; BOON, N.; VERSTRAETE, W. Analysis of the microbial communities on corroded sewer pipes - a case study. Applied Microbiology and Biotechnology, v. 57, n. 5/6, p. 776-85, 2001. http://dx.doi.org/10.1007/s002530100826
  • VISSER, A.; GAO, Y.; LETTINGA, G. Effects of pH on methanogenesis and sulphate reduction in thermophilic (55ºC) UASB reactors. Bioresource Technology, v. 44, n. 2, 113-21, 1993. http://dx.doi.org/10.1016/0960-8524(93)90184-D
  • VISSER, A.; HULSHOFF-POL, L. W.; LETTINGA, G. Competition of methanogenic and sulfidogenic bacteria. Water Science and Technology, v. 33, n. 3, p. 99-110, 1996. http://dx.doi.org/10.1016/0273-1223(96)00324-1
  • WAYBRANT, K. R.; PTACEK, C. J.; BLOWES, D. W. Treatment of mine drainage using permeable reactive barriers: column experiments. Environmental Science and Technology, v. 36, n. 6, p. 1349-56, 2002. http://dx.doi.org/10.1021/es010751g

Publication Dates

  • Publication in this collection
    16 Sept 2014
  • Date of issue
    Mar 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com