Acessibilidade / Reportar erro

Conservação e reúso de águas usando o método Diagrama de Fontes de Água para processos em batelada: estudo de casos

Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

Resumos

O gerenciamento de recursos hídricos tem sido um fator importante para a sustentabilidade dos processos industriais, visto que há uma necessidade crescente pelo desenvolvimento de metodologias voltadas para conservação e uso racional da água. O objetivo deste trabalho foi aplicar o método Diagrama de Fontes de Água (DFA), usado na definição de metas de mínimo consumo de água, a processos que operam em regime batelada. Foram gerados e avaliados cenários de reúso de correntes obtidos pela aplicação do método a partir de dados de quantidade de água e concentração de contaminantes nas operações. Foram apresentados dois estudos de caso com o objetivo de demonstrar a redução de consumo de água e da geração de efluentes, além de custos de tratamento final e de investimento em tanques de estocagem, em relação à configuração inicial. Os cenários mostraram-se bastante promissores, com reduções que alcançam 45%, em termos de consumo hídrico e geração de efluentes, e 37%, em termos de custos de tanques, sem a necessidade de processos de regeneração. Com isso, a técnica empregada mostrou-se relevante e flexível como alternativa às ferramentas sistemáticas voltadas para a minimização do consumo de água em processos industriais, exercendo importante papel em um programa de gerenciamento de recursos hídricos.

reúso de efluentes; tanque de estocagem; síntese de redes de transferência de massa


The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD), which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

wastewater reuse; storage tank; mass exchange networks synthesis


  • ALMATÓ, M.; ESPUÑA, A.; PUIGJANER, L. Optimisation of water use in batch process industries. Computers and Chemical Engineering, Oxford, v. 23, n. 10, p. 1427-1437, 1999. http://dx.doi.org/10.1016/S0098-1354(99)00302-6
  • ALMATÓ, M.; SANMARTÍ, E.; ESPUÑA, A.; PUIGJANER, L. Rationalizing the water use in the batch process industry. Computers and Chemical Engineering, Oxford, v. 21, Supplement, S971-S976, 1997.
  • ALVA-ARGÁEZ, A.; KOKOSSIS, A. C.; SMITH, R. Wastewater minimization of industrial systems using an integrated approach. Computers and Chemical Engineering, Oxford, v. 22, Supplement, S741-S744, 1998. http://dx.doi.org/10.1016/S0098-1354(98)00138-0
  • AMIM, R. S.; HASEGAWA, F. A.; LEITE, D. C.; PESSOA, F. L. P.; ULSON DE SOUZA, A. A. Aplicação do diagrama de fonte de água em processos em batelada - definição de metas. In: WORKSHOP GESTÃO E REÚSO DE ÁGUA NA INDÚSTRIA, 3., 22-24 nov. 2007, Florianópolis. Anais... Florianópolis: FEESC, 2007. 1 CD-ROM.
  • CASTRO, P.; MATOS, H.; FERNANDES, M. C.; PEDRO NUNES, C. Improvements for mass-exchange networks design. Chemical Engineering Science, Oxford, v. 54, n. 11, p. 1649-1665, 1999. http://dx.doi.org/10.1016/S0009-2509(98)00526-0
  • CHANG, C-T.; LI, B-H. Optimal design of wastewater equalization systems in batch processes. Computers and Chemical Engineering, Oxford, v. 30, n. 5, p.797-806, 2006. http://dx.doi.org/10.1016/j.compchemeng.2005.12.003
  • CHEN, C.; LEE, J. A graphical technique for the design of water-using networks in batch processes. Chemical Engineering Science, Oxford, v. 63, n. 14, p. 3740-3754, 2008. http://dx.doi.org/10.1016/j.ces.2008.04.047
  • CHEN, C-L.; LEE, J-Y.; TANG, J-W.; CIOU, Y-J. Synthesis of water-using network with central reusable storage in batch processes. Computers and Chemical Engineering, Oxford, v. 33, n. 1, p. 267-276, 2009. http://dx.doi.org/10.1016/j.compchemeng.2008.09.013
  • DOYLE, S. J.; SMITH, R. Targeting water reuse with multiple contaminants. Process Safety and Environmental Protection, London, v. 75, n. 3, B, p. 181-189, 1997.
  • EL-HALWAGI, M. M.; MANOUSIOUTHAKIS, V. Synthesis of mass exchange networks. American Institute of Chemical Engineering Journal, New York, v. 35, n. 8, p. 1233-1244, 1989. http://dx.doi.org/10.1002/aic.690350802
  • FOO, C. Y.; MANAN, Z. A.; YUNUS, R. M.; AZIZ, R. A. Synthesis of mass exchange network for batch processes - Part I: utility targeting, Chemical Engineering Science, Oxford, v. 59, n. 5, p. 1009-1026, 2004. http://dx.doi.org/10.1016/j.ces.2003.09.043
  • FOO, C. Y.; MANAN, Z. A.; YUNUS, R. M.; AZIZ, R. A. Synthesis of mass exchange network for batch processes - Part II: minimum units target and batch network design, Chemical Engineering Science, Oxford, v. 60, n. 5, p. 1349-1362, 2005a. http://dx.doi.org/10.1016/j.ces.2004.10.008
  • FOO, D. C. Y.; MANAN, Z. A.; TAN, Y. L. Synthesis of maximum water recovery network for batch process systems, Journal of Cleaner Production, Knoxville, v. 13, n. 15, p. 1381-1394, 2005b. http://dx.doi.org/10.1016/j.jclepro.2005.04.013
  • GOMES, J. F. S.; QUEIROZ, E. M.; PESSOA, F. L. P. Design procedure for water/wastewater minimization: single contaminant. Journal of Cleaner Production, Knoxville, v. 15, n. 5, p. 474-485, 2007. http://dx.doi.org/10.1016/j.jclepro.2005.11.018
  • GOUWS, J. F.; MAJOZI, T. Usage of inherent storage for minimisation of wastewater in multipurpose batch plants. Chemical Engineering Science, Oxford, v. 64, n. 16, p. 3545-3554, 2009. http://dx.doi.org/10.1016/j.ces.2009.04.038
  • GOUWS, J. F.; MAJOZI, T.; GADALLA, M. Flexible mass transfer model for water minimization in batch plants. Chemical Engineering and Processing, New York, v. 47, n. 12, p. 2323-2335, 2008. http://dx.doi.org/10.1016/j.cep.2008.01.008
  • IMMICH, A. P. S.; GUSATTI, M.; MELLO, J. M. M.; GUELLI U.; SOUZA, S. M. A.; PESSOA, F. L. P. et al. Application of the water source diagram (WSD) procedure to water use minimization in a batch process. In: EUROPEAN CONGRESS OF CHEMICAL ENGINEERING, 6., 16-20 set. 2007, Copenhagen Proceedings... Copenhagen: EFCE, 2007. 1 CD-ROM.
  • JÖDICKE, G.; FISCHER, U.; HUNGERBÜHLER, K. Wastewater reuse: a new approach to screen for designs with minimal total costs. Computers and Chemical Engineering, Oxford, v. 25, n. 2/3, p. 203-215, 2001.
  • KIM, J. K.; SMITH, R. Automated design of discontinous water systems. Process Safety and Environmental Protection, London, v. 82, B3, p. 238-248, 2004. http://dx.doi.org/10.1205/095758204323066000
  • MAJOZI, T. Wastewater minimisation using central reusable water storage in batch plants. Computers and Chemical Engineering, Oxford, v. 29, n. 7, p. 1631-1646, 2005. http://dx.doi.org/10.1016/j.compchemeng.2005.01.003
  • MAJOZI, T.; BROUCKAERT, C. J.; BUCKLEY, C. A. A graphical technique for wastewater minimisation in batch processes. Journal of Environmental Management, New York, v. 78, n. 4, p. 317-329, 2006.
  • MAJOZI, T.; GOUWS, J. F. A mathematical optimisation approach for wastewater minimisation in multipurpose batch plants: multiple contaminants. Computers and Chemical Engineering, Oxford, v. 33, n. 11, p. 1826-1840, 2009a. http://dx.doi.org/10.1016/j.compchemeng.2009.06.008
  • MAJOZI, T.; GOUWS, J. F. Reliable method for water reuse in multicontaminant batch plants: NIS policy. Applied Mathematical Modelling, London, v. 33, n. 10, p. 3792-3800, 2009b. http://dx.doi.org/10.1016/j.apm.2008.12.005
  • MÉNDEZ, C. A.; CERDÁ, J.; GROSSMANN, I. E.; HARJUNKOSKI, I.; FAHL, M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers and Chemical Engineering, Oxford, v. 30, n. 6/7, p. 913-946, 2006.
  • OLIVER, P.; RODRÍGUEZ, R.; UDAQUIOLA, S. Water use optimization in batch process industries. Part 1: design of the water network. Journal of Cleaner Production, Knoxville, v. 16, n. 12, p. 1275-1286, 2008. http://dx.doi.org/10.1016/j.jclepro.2007.06.012
  • PUIGJANER, L.; ESPUÑA, A.; ALMATÓ, M. A software tool for helping in decision-making about water management in batch process industries. Waste Management, New York, v. 20, n. 8, p. 645-649, 2000.
  • RABIE, A. H.; EL-HALWAGI, M. M. Synthesis and scheduling of optimal batch water-recycle networks. Chinese Journal of Chemical Engineering, Beijing, v. 16, n. 3, p. 474-479, 2008.
  • SHOAIB, A. M.; ALY, S. M.; AWAD, M. E.; FOO, D. C. Y.; EL-HALWAGI, M. M. A hierarchical approach for the synthesis of batch water network. Computers and Chemical Engineering, Oxford, v. 32, n. 3, p. 530-539, 2008. http://dx.doi.org/10.1016/j.compchemeng.2007.03.015
  • TOKOS, H.; PINTARIČ, Z. N. Synthesis of batch water network for a brewery plant. Journal of Cleaner Production, Knoxville, v. 17, n. 16, p. 1465-1479, 2009. http://dx.doi.org/10.1016/j.jclepro.2009.06.009
  • WANG, Y. P.; SMITH, R. Wastewater minimisation. Chemical Engineering Science, Oxford, v. 49, n. 7, p. 981-1006, 1994a. http://dx.doi.org/10.1016/0009-2509(94)80006-5
  • WANG, Y. P.; SMITH, R. Desing of distributed effluent treatment systems. Chemical Engineering Science, Oxford, v. 49, n. 18, p. 3127-3145, 1994b. http://dx.doi.org/10.1016/0009-2509(94)E0126-B
  • WANG, Y. P.; SMITH, R. Wastewater minimization with flowrate constraints. Transactions of the Institution of Chemical Engineers, London, v. 73 (A), p. 889-904, 1995a.
  • WANG, Y. P.; SMITH, R. Time pinch analysis. Transactions of the Institution of Chemical Engineers, London, v. 73 (A), p. 905-914, 1995b.
  • ZHOU, R-J.; LI, L-J.; XIAO, W.; DONG, H-G. Simultaneous optimization of batch process schedules and water-allocation network. Computers and Chemical Engineering, Oxford, v. 33, n. 6, p. 1153-1168, 2009. http://dx.doi.org/10.1016/j.compchemeng.2008.11.008

Datas de Publicação

  • Publicação nesta coleção
    16 Set 2014
  • Data do Fascículo
    Mar 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com