Acessibilidade / Reportar erro

Evaluation of the use of Pycnoporus sanguineus fungus for phenolics and genotoxicity decay of a pharmaceutical effluent treatment

Avaliação do uso do fungo Pycnoporus sanguineus no decaimento de compostos fenólicos e genotoxicidade no tratamento de um efluente farmacêutico

Abstracts

If not properly and efficiently treated, wastes produced by the chemical industry can contaminate the environment. Using fungi able to degrade organic compounds (e.g. phenol) seems to be a prominent method to treat pharmaceutical wastewaters, in particular, the white-rot fungus. The aim of this work was to treat pharmaceutical effluent by the Pycnoporus sanguineus fungus. Three effluent samples were collected in a pharmaceutical industry. The production of enzymes such as laccase and manganese peroxidase was determined. Their production increased throughout the treatment with the P. sanguineus fungus, reaching maximum concentration of 4.48 U.mL-1 (Effluent 1), 8.16 U.mL-1 (Effluent 2), 2.8 U.mL-1 (Effluent 3) and 0.03 Abs.min-1 (Effluent 2), respectively, during 96 hours of biological treatment. Genotoxic effects of the raw and treated effluents were also investigated using the in vivo mouse bone marrow micronucleus (MN) assay. Results showed the biological treatment reduced the frequency of MN, in a dose-dependent manner, when compared to untreated sample. The decreasing of around 20% and 45% of phenolics concentration was observed throughout the treatment, confirming that laccase production can be related to the degradation of toxic compounds present in the effluent. Therefore, the biodegradation by the P. sanguineus fungus seems a promising method for the mineralization of recalcitrant compounds present in pharmaceutical effluents.

pharmaceutical effluent; biodegradation; Pycnoporus sanguineus; laccase; Manganese peroxidase


Se não for tratado de forma adequada e eficientemente, os resíduos produzidos pela indústria química podem contaminar o meio-ambiente. Utilizar fungos capazes de degradar compostos orgânicos (por exemplo, fenol), pode ser um método para tratar efluentes proeminentes de insústrias farmacêuticas, em particular, os fungos da podridão branca. O objetivo deste trabalho foi tratar um efluente farmacêutico pelo fungo Pycnoporus sanguineus. Três amostras de efluentes foram coletadas em uma indústria farmacêutica. A produção de enzimas como a lacase e manganês peroxidase foi determinado. A sua produção durante o tratamento com o fungo P. sanguineus atingiu concentrações máximas de 4,48 U.mL-1 (Efluente 1), 8,16 U.mL-1 (Efluente 2), 2,8 U.mL-1 (Efluente 3) e 0,03 Abs.min-1 (efluente 2), respectivamente, durante 96 horas de tratamento biológico. Efeitos genotóxicos dos efluentes brutos e tratados também foram investigados usando o ensaio em que foi avaliada a formação de micronúcleos (MN) na medula óssea de camundongos. Os resultados mostraram que o tratamento biológico reduziu a frequência de MN, de um modo dependente da dose, em comparação com amostras não tratadas. A diminuição de cerca de 20% e 45% da concentração de compostos fenólicos foi observada em todo o tratamento, o que confirma que a produção de lacase pode ser relacionada com a degradação de compostos tóxicos presentes no efluente. Por conseguinte, a biodegradação do fungo P. sanguineus parece um método promissor para a mineralização de compostos recalcitrantes presentes em efluentes farmacêuticos.

efluente farmacêutico; biodegradação; Pycnoporus sanguineus; lacase; manganês peroxidase


  • AMERICAN PUBLIC HEALT ASSOCIATION (APHA). Standard Methods for the Examination of Water and Wastewater. 17. ed. Washington DC, USA, 1992.
  • BARR, D. P.; AUST, S. D. Mechanisms white rot fungi use to degrade pollutants. Environmental Science & Technology, 28 (2), 1994,79-87.
  • BOYD, G. R.; PALMERI J. M., ZHANG S.; GRIMM D. A. Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in storm water canals and Bayou St. John in New Orleans, Louisiana, USA. Science of the Total Environment, Amsterdan, 333 (1-3), 137-148, 2004.
  • CHEN, H.; WANG P.; DING W. Using liquid chromatography-ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters. Chemosphere, 6, 72, 863-869, 2008.
  • DURÁN, N.; ESPOSITO, E. 1997. Lignin biodegradation and effluent treatment by ligninolytic fungi. In: I. S. De Melo, J. L. Acevedo (Eds.). Microbiologia Ambiental, CNPMA/EMBRAPA Publishers. São Paulo, Brazil, Chapter 12, pp. 269.
  • DURÁN, N.; ESPOSITO, E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28, 2000, 83-89.
  • EUGENIO, M. E.; CARBAJO, J. M.; TERRÓN, M. C.; GONZÁLEZ, A. E.; VILLAR, J. C. Bioremediation of lignosulphonates by lignin-degrading basidiomycetous fungi. Bioresources Techno logy, 99 (11), 2008, 4929-4934.
  • GARCIA, T. A.; SANTIAGO, M. F.; ULHOA, C. J. Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatografy. Applied Microbiology and Biotechology, 75 (2), 2007, 311-318.
  • GODFREY, E.; WOESSNER, W. W.; BENOTTI, M. J. Pharmaceuticals in On-Site Sewage Effluent and Ground Water, Western Montana. Groundwater, 45 (3), 2007, 263-271.
  • HIRSCH, R.; TERNES, T.; HABERER K.; KRATZ, K. L. Occurence of antibiotics in the aquatic environment. Science of the Total Environment, Amsterdan, 225, 1999, 109-118.
  • KUMARAN, P.; PARUCHURI, Y. L. Kinetics of phenol biotransformation. Water Resources Research, 31(1), 1997, 11-22.
  • KUWAHARA, M.; GLEN, J. K.; MORGAN, M. A.; GOLD, M. H. Separation and Characterization of two extracellular H2O2 dependent oxidases from ligninolytic Cultures of Phanerochaete chrysosporium. FBS Letters, 169, 1984, 247-250.
  • LINKO, S. Production of Phanerochaete chrysosporium Lignin Peroxidase. Biotechnology Advances, 10 (2), 1992, 191 -236.
  • MACGREGOR, J. T.; HEDDLE, J. A.; HITE, M., MARGOLIN, B. H.; RAMEL, C. SALAMONE, M. F., TICE, R. R., WILD, D. Guidelines for the conduct of micronucleus assay in mammalian bone marrow erythrocytes. Mutatation Research. 189, 1987, 103-112.
  • MCMULLAN., G.; MEEHAN, C.; CONNEELY, A.; KIRBY, N.; ROBINSON, T.; NIGAM, P.; BANAT I.M., MARCHANT, R.; SMYTH, W. F. Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechology, 56, 2001, 81-87.
  • MELO, P. S.; FABRIN-NETO, J. B.; MORAES, S. G.; ASSALIN, R.; DURÁN, N.; HAUN, M. Comparative toxicity of effluents processed by different treatments in V79 fibroblasts and the Algae Selenastrum capricornutum. Chemosphere, Oxford, 62, 2006, 1207-1213.
  • POINTING, S. B.; JONES, E. B. G.; VRIJMOED, L. L. P. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia, V 92, 2000, 139-144.
  • POINTING, S. B.; VRIJMOED L. L. P. Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World Journal f. Microbiology and Biotechnology, 16, 2000, 317-318.
  • ROBERTS P. H., AND THOMAS K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment, Amsterdan, 356 (1-3), 2006, 143-153.
  • RODRÍGUEZ, E.; NUERO, O.; GUILLEN, F.; MARTINEZ, A.T.; MARTINEZ, M.J.. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: The role of laccase and versatile peroxidase. Soil Biology & Biochemistry, 36 (6), 2004, 909-916.
  • SANTIAGO, M. F. Estudo de substâncias de baixa massa molar que mimetizam as fenoloxidases com aplicações em tratamento de efluentes industriais. Tese de doutorado, Universidade Estadual de Campinas, São Paulo, Brazil. 1999.
  • SAYAD, S.; AND ELLOUZ, R. roles of lignin peroxidase and manganese peroxidase from phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Applied Environmental Microbiology, 61(3), 1995, 1098-1103.
  • SZKLARZ, G. D.; ANTIBUS, R. K.; SINSABAUGH, R. L.; LINKINS, A. E. Production of phenoloxidases and peroxidases by wood-rotting fungi. Mycologia. 81 (2), 1989, 234-240.
  • TIEN, M.; KIRK, K. Lignin degrading enzyme from Phanerochaete chrysosporium: purification characterization and catalytic properties of a unique H2O2 requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America. 81, 1984, 2280-2284.
  • TROVASLET, M.; ENAUD, E.; GUIAVARC'H, Y.; CORBISIER, A. M.; VANHULLE, S. Potential of a Pycnoporus sanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme and Microbial Technology, 41 (3), 2007, 368-376.
  • WESENBERG, D.; KYRIAKIDES, I.; AGATHOS, S. N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 2003, 161-187.
  • WIRZINGER, G.; WELTJE, L.; GERCKEN, J.; SORDYL, H. Genotoxic damage in field-collected three-spined sticklebacks (Gasterosteus aculeatus L.): a suitable biomonitoring tool? Mutat. Res. 30,628(1), 2007, 19-30.

Publication Dates

  • Publication in this collection
    16 Sept 2014
  • Date of issue
    Dec 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com