Acessibilidade / Reportar erro

Effects of global climate change on chlorophyll-a concentrations in a tropical aquatic system during a cyanobacterial bloom: a microcosm study

Efeito das mudanças climáticas globais na concentração de Chlorofila a em um Sistema aquático tropical durante uma floração de cianobactéria: Um estudo em microcosmo

Abstract

Recent studies have investigated the impact of climate change on aquatic environments, and Chlorophyll-a (Chl-a) concentration is a quick and reliable variable for monitoring such changes. This study evaluated the impact of rainfall frequency as a diluting agent and the effect of increased temperature on Chl-a concentrations in eutrophic environments during a bloom of cyanobacteria. This was based on the hypothesis that the concentration of Chl-a will be higher in treatments in which the rainfall frequency is not homogeneous and that warmer temperatures predicted due to climate change should favor higher concentrations of Chl-a. The experiment was designed to investigate three factors: temperature, precipitation and time. Temperature was tested with two treatment levels (22°C and the future temperature of 25°C). Precipitation was tested with four treatments (no precipitation, a homogeneous precipitation pattern, and two types of concentrated precipitation patterns). Experiments were run for 15 days, and Chl-a concentration was measured every five days in each of the temperature and precipitation treatments. The water used in the microcosms was collected from a eutrophic lake located in Central Brazil during a bloom of filamentous cyanobacteria (Geilterinema amphibium). Chl-a levels were high ​​in all treatments. The higher temperature treatment showed increased Chl-a concentration (F=10.343; P=0.002); however, the extreme precipitation events did not significantly influence Chl-a concentrations (F=1.198; P=0.326). Therefore, the study demonstrates that future climatic conditions (projected to 2100), such as elevated temperatures, may affect the primary productivity of aquatic environments in tropical aquatic systems.

Keywords:
extreme events; Geitlerinema amphibium; primary productivity; temperature.

Resumo

Estudos recentes têm investigado o impacto das mudanças climáticas em ambientes aquáticos, além disso a Clorofila-a (Clo-a) é uma variável de rápida avaliação e confiável para o monitoramento de ambientes aquáticos. O objetivo do presente estudo foi avaliar o impacto da frequência da precipitação e do aumento da temperature na concentração de Clo-a em um ambiente aquático eutrófico durante um período de floração de cianobactéria. As hipóteses para o presente trabalho: i) A concentração de Clo-a será maior em tratamentos em que a frequencia de precipitação não é homogênea, e ii) Temperaturas mais quentes devem promover aumento na concentração de Clo-a. Foi utilizado um desenho experimental com três fatores: Precipitação, temperature e tempo. A temperature foi avaliada em dois tratamentos (22°C e a temperatura futura de 25°C). A precipitação foi avaliada em quatro tratamentos (ausência de precipitação, precipitação homogênea, e dois tipos precipitação concentrada). O experimento foi desenvolvido por 15 dias e a concentração de Clo-a foi mensurada a cada cinco dias para cada tratamento. Os níveis de Clo-a foram elevados em todos tratamentos, além disso, a concentração de Clo-a foi maior em tratamentos mais aquecidos (simulando cenário futuro) (F=10.343; P=0.002); entretanto, os eventos extremos de precipitação não demonstraram influência na concentração de Clo-a (F=1.198; P=0.326). Portanto, o presente trabalho demonstrou que as condições climáticas futuras (projetadas para 2100), como o aumento da temperatura, devem afetar a produtividade primária de ambientes aquáticos.

Palavras-chave:
eventos extremos; Geitlerinema amphibium; produtividade primária; temperatura.

1. INTRODUCTION

The study of global climate change has attracted interest from the scientific community since the 1970s (e.g., Kopec, 1971KOPEC, R. J. Global climate change and impact of a maximum sea level on coastal settlement. Journal of Geography, v. 70, p. 541-550, 1971. http://dx.doi.org/10.1 080/00221347108981908
http://dx.doi.org/10.1 080/0022134710898...
). However, it was not until the beginning of the twenty-first century that scientific publications concerning climate change increased significantly (see Nabout et al., 2012aNABOUT, J. C.; CARVALHO, P.; PRADO, U. M.; BORGES, P. P.; MACHADO, K. B.; HADDAD, K. B. et al. Trends and biases in global climate change literature. Natureza & Conservação, v. 10, p. 45-51, 2012a.). Various scenarios have been proposed concerning the negative effects of climate change on human and natural systems, including warming and ocean acidification (Christensen et al., 2006CHRISTENSEN, M. R.; GRAHAM, M. D.; VINEBROOKE, R. D.; FINDLAY, D. L.; PATERSON, M. J. ; TURNER, M. A. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology,v. 12, p. 2316-2322, 2006. http://dx.doi.org/10.1111/j.1365-2486.2006.01257.x
http://dx.doi.org/10.1111/j.1365-2486.20...
; Doney et al., 2009DONEY, S. C.; FABRY, V. J.; FEELY, R. A. KLEYPAS, J. A. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, v. 1, p. 169-192, 2009. http://dx.doi.org/10.1146/annurev.marine.010908.163834
http://dx.doi.org/10.1146/annurev.marine...
), biodiversity loss (Hoegh-Guldberg et al., 2007)HOEGH-GULDBERG, O.; MUMBY, P. J.; HOOTEN, A. J.; STENECK, R. S.; GREENFIELD, P.; GOMEZ, E. et al. Coral reefs under rapid climate change and ocean acidification. Science, v. 318, p. 1737-1742, 2007. http://dx.doi.org/10.1 126/science.1152509
http://dx.doi.org/10.1 126/science.11525...
, loss of arable land (Nabout et al., 2012bNABOUT, J. C.; CAETANO, J. M.; FERREIRA, R. B.; TEIXEIRA, I. R.; ALVES, S. M. F. Using correlative, mechanistic and hybrid niche models to predict the productivity and impact of global climate change on maize crop in Brazil. Natureza & Conservação,v. 10, p. 177-183, 2012b.), and changes to disease vector distributions (Paz, 2015PAZ, S. Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B, v. 370, p. 1-11, 2015. http://dx.doi.org/10.1098/rstb.2013.0561
http://dx.doi.org/10.1098/rstb.2013.0561...
).

In aquatic environments, the major factors impacted by increased air temperatures are changes in precipitation and wind (Nickus et al., 2010NICKUS, U.; BISHOP, K.; ERLANDSSON, M.; EVANS, C. D.; FORSIUS, M.; LAUDON, H. et al. Direct impacts of climate change on freshwater ecosystems. In: KERNAN, M.; BATTARBEE, R. W.; MOSS, B. (Ed.). Climate change impacts on freshwater ecosystems.India: Wiley-Blackwell, 2010. ; Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
). These factors can cause physical changes to the environment through stratification (Jeznach and Tobiason, 2015JEZNACH, L. C.; TOBIASON, J. E. Future climate effects on thermal stratification in the Wachusett Reservoir. Journal AWWA, v. 107, n. 4, p. E197-E209, 2015. http://dx.doi.org/10.5942/jawwa.2015.107.0039
http://dx.doi.org/10.5942/jawwa.2015.107...
) or turbidity (Meerhoff et al., 2007MEERHOFF, M.; CLEMENTE, J. M.; MELLO, F. T.; IGLESIAS, C.; PEDERSEN, A. R.; JEPPESEN, E. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology,v. 13, p. 1888-1897, 2007. http://dx.doi.org/10.1111/j.1365-2486.2007.01408.x
http://dx.doi.org/10.1111/j.1365-2486.20...
), and chemical changes such as oxygen concentration (Gordon et al., 2004GORDON, N. D.; FINLAYSON, B. L.; MCMAHON, T. A. Stream Hydrology an introduction for ecologists. 2. ed. London: John Wily & Sons, 2004. 423p. ; Jeppesen et al., 2013JEPPESEN, E.; KRONVANG, B.; JØRGENSEN, T. B.; LARSEN, S. E. ANDERSEN, H. E.; SØNDERGAARD, M. et al. Recent climate-induced changes in freshwaters in Denmark. In: GOLDMAN, C. R.; KUMAGAI, M.; ROBARTS, R. D. (Eds.). Climatic change and global warming of Inland waters: impacts and mitigation for ecosystems and societies. [S.l.]: John Wiley & Sons, 2013. p. 155-171.) or nutrient cycling (Lecerf et al., 2007LECERF, A.; RISNOVEANU, G.; POPESCU, C.; GESSNER, M. O.; CHAUVET, E. Decomposition of diverse litter mixtures in streams. Ecology, v. 88, p. 219-227, 2007. http://dx.doi.org/10.1890/0012-9658(2007)88[219:DODLMI]2.0.CO;2 ), and biological changes in the phenology of species (Daufresne et al., 2009DAUFRESNE, M.; LENGFELLNERA, K.; SOMMER, U. Global warming benefits the small in aquatic ecosystems. PNAS, v. 106, n. 31, p. 12788-12793, 2009. http://dx.doi.org/10.1073/pnas.0902080106
http://dx.doi.org/10.1073/pnas.090208010...
). Experimental approaches have been used to evaluate the effect of climate change in aquatic environments. These experiments typically focus on the effects of the increased temperature expected in future scenarios (Jeppesen et al., 2010JEPPESEN, E.; MOSS, B.; BENNION, H.; CARVALHO, L.; DE MEESTER, L. et al. Interaction of climate change and eutrophication. In: KERNAN, M.; BATTARBEE, R.; MOSS, B. (Eds.). Climate change impacts on freshwater ecosystems. Oxford: Wiley-Blackwell, 2010. p. 119-151.; Yvon-Durocher et al., 2010YVON-DUROCHER, G.; ALLEN, A. P.; MONTOYA, J. M.; TRIMMER, M.; WOODWARD, G. The temperature dependence of carbon cycle in aquatic ecosystems. Avdances in Ecological Research, v. 43, p. 267-313, 2010. http://dx.doi.org/10.1016/B978-0-12-385005-8.00007-1
http://dx.doi.org/10.1016/B978-0-12-3850...
; Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
). However, recent studies have investigated other elements affecting aquatic ecosystems as well as their combined effects, such as the interaction between warming, drying, and acidification on consumers and planktonic producers (Christensen et al., 2006CHRISTENSEN, M. R.; GRAHAM, M. D.; VINEBROOKE, R. D.; FINDLAY, D. L.; PATERSON, M. J. ; TURNER, M. A. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology,v. 12, p. 2316-2322, 2006. http://dx.doi.org/10.1111/j.1365-2486.2006.01257.x
http://dx.doi.org/10.1111/j.1365-2486.20...
), the effects of climate change on water levels compounded with stratification (Berger et al., 2010BERGER, S. A.; DIEHL, S.; STIBOR, H.; TROMMER, G E.; RUHENSTROTH, M. Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology, v. 16, p. 1954-1965, 2010. http://dx.doi.org/10.1111/j.1365-2486.2009.02134.x
http://dx.doi.org/10.1111/j.1365-2486.20...
), the effect of light and CO2 enrichment on nutrient concentrations (Andersen et al., 2005ANDERSEN, T.; PEDERSEN, O.; ANDERSEN, F. O. Nutrient concentration in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities. Freshwater Biology, v. 50, p. 1178-1189, 2005. http://dx.doi.org/10.1111/j.1365-2427.2005.01390.x
http://dx.doi.org/10.1111/j.1365-2427.20...
), and the effect of temperature and predation on phytoplankton community (He et al. 2015HE, H.; ZHU, X.; SONG, X.; JEPPESEN, E.; LIU, Z. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study. Journal of Limnology, v. 74, n. 3, p. 618-622, 2015. http://dx.doi.org/10.4 081/jlimnol.2015.1066
http://dx.doi.org/10.4 081/jlimnol.2015....
).

In addition to changes in temperature, the Intergovernmental Panel on Climate Change (IPCC, 2014INTERGOVERNMENTAL PAINEL ON CLIMATE CHANGE. Climate change: synthesis report. 2014 Available in: http://ar5-syr.ipcc.ch/topic_futurechanges.php. Access in: July 2015.
http://ar5-syr.ipcc.ch/topic_futurechang...
) predicts that tropical ecosystems will experience altered hydrological cycles with an increased frequency of extreme events such as concentrated precipitation (IPCC, 2014INTERGOVERNMENTAL PAINEL ON CLIMATE CHANGE. Climate change: synthesis report. 2014 Available in: http://ar5-syr.ipcc.ch/topic_futurechanges.php. Access in: July 2015.
http://ar5-syr.ipcc.ch/topic_futurechang...
). Extreme rainfall in some river basins can lead to increased flooding risk (Rockström et al., 2014ROCKSTRÖM, J.; BRASSEUR, G.; HOSKINS, B.; LUCHT, W.; SCHELLNHUBER, J.; KABAT, P. et al. Climate change: The necessary, the possible and the desirable Earth league climate statement on the implications for climate policy from the 5th IPCC assessment. Earth's Future, v. 2, p. 606-611, 2014. http://dx.doi.org/10.1002/2014EF000280
http://dx.doi.org/10.1002/2014EF000280...
), changes in runoff (Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
), and changes in Chl-a concentrations (Belnap et al., 2005BELNAP, J.; PHILLIPS, S. P.; MILLER, M. E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, v. 141, n.2, p. 306-316, 2005. http://dx.doi.org/10.1007/s00442-003-1438-6
http://dx.doi.org/10.1007/s00442-003-143...
). Thus, extreme rainfall events can change dilutive effects and reduce zooplankton predation, promoting an increase in Chl-a concentrations (see Dolan et al., 2000DOLAN, J. R.; GALLEGOS, C. L.; MOIGIS, A. Dilution effects on microzooplankton in dilution grazing experiments. Marine Ecology Progress Series, v. 200, p. 127-139, 2000. http://dx.doi.org/10.3354/meps200127
http://dx.doi.org/10.3354/meps200127...
for dilution effects). In addition to altered aquatic and peripheral communities, climate change can also compromise water resource quality (Codd, 2000CODD, G. A. Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control. Ecological Engineering, v. 16, p. 51-60, 2000. http://dx.doi.org/10.1016/S0925-8574(00)00089-6
http://dx.doi.org/10.1016/S0925-8574(00)...
; IPCC, 2014INTERGOVERNMENTAL PAINEL ON CLIMATE CHANGE. Climate change: synthesis report. 2014 Available in: http://ar5-syr.ipcc.ch/topic_futurechanges.php. Access in: July 2015.
http://ar5-syr.ipcc.ch/topic_futurechang...
). Certain types of climate change can cause eutrophication that stimulates the growth of cyanobacteria facilitating the concentration of toxins (Reichwaldt and Ghadouani, 2012REICHWALDT, E. S.; GHADOUANI, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, v. 46, p. 1372-1393, 2012. http://dx.doi.org/10.1016/j.watres.2011.11.052
http://dx.doi.org/10.1016/j.watres.2011....
). Thus, studies that investigate the combined effect of climate change phenomena, such as elevated temperature and precipitation, are necessary in order to understand the changing conditions of tropical aquatic environments.

Experimental studies are therefore important tools to test the effects of climate change in aquatic ecosystem (see for example Li et al., 2016LI, W.; XU, X.; FUJIBAYASHI, M.; NIU, Q.; TANAKA, N.; NISHIMURA, O. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems. Environmental Science and Pollution Research, v. 23, n. 19, p. 19847-19860, 2016. http://dx.doi.org/10.1007/s11356-016-7180-5
http://dx.doi.org/10.1007/s11356-016-718...
; 2017; Short et al., 2016SHORT, F. T.; KOSTEN, S.; MORGAN, P. A.; MALONE, S.; MOORE, G. E. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, v. 135, p. 3-17, 2016. http://dx.doi.org/10.1016/j.aquabot.2016.06.006
http://dx.doi.org/10.1016/j.aquabot.2016...
). In fact, the majority of these experimental studies have been developed in temperate regions, and thus offer little insight about the impact of climate change in tropical aquatic ecosystems (see Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
). Nonetheless, experimental and whole lakes studies have shown that climate change (e.g. extreme events and warming) can affect aquatic tropical environments by modifying their geochemistry (>; Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
), altering species composition and functional groups (e.g. Costa et al., 2015COSTA, M. R. A.; ATTAYDE, J. L.; BECKER, V. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia,v. 778, n. 1, p. 75-89, 2015. http://dx.doi.org/10.1007/s10750-015-2593-6
http://dx.doi.org/10.1007/s10750-015-259...
), or increasing cyanobacterial dominance (Kosten et al., 2012KOSTEN, S.; HUSZAR, V. L.; BÉCARES, E.; COSTA, L. S.; DONK, E.; HANSSON, L. A. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology,v. 18, n. 1, p. 118-126, 2012. http://dx.doi.org/10.1111/j.1365-2486. 2011.02488.x
http://dx.doi.org/10.1111/j.1365-2486. 2...
). In fact, toxic Cyanophyceae has occurred in tropical environments (Mowe et al., 2015aMOWE, M. A.; MITROVIC, S. M.; LIM, R. P.; FUREY, A.; YEO, D. C. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology,v. 74, n. 2, p. 205-224, 2015a. http://dx.doi.org/10.4081/jlimnol.2014.1005
http://dx.doi.org/10.4081/jlimnol.2014.1...
).

Some studies have not found any relationship between temperature change and Chl-a concentrations (see Moss et al., 2003MOSS, B.; MCKEE, D.; ATKINSON, D.; COLLINGS, S. E.; EATON, J. W.; GILL, A. B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology, v. 40, p. 782-792, 2003. http://dx.doi.org/10.1046/j.1365-2664.2003.00839.x
http://dx.doi.org/10.1046/j.1365-2664.20...
; Feuchtmayr et al., 2009FEUCHTMAYR, H.; MORAN, R.; HATTON, K.; CONNOR, L.; HEYES, T.; MOSS, B.; Harvey, I. et al. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology, v. 46, p. 713-723, 2009. http://dx.doi.org/10.1111/j.1365-2664.2009.01644.x
http://dx.doi.org/10.1111/j.1365-2664.20...
). Due to the diversity of phytoplankton species, there are many optimum temperature ranges for growth (Seip and Reynolds, 1995SEIP, K. L.; REYNOLDS, C. S. Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography, v. 40, p. 589-597, 1995. http://dx.doi.org/10.4319/lo.1995.40.3.0589
http://dx.doi.org/10.4319/lo.1995.40.3.0...
), thus elevated temperatures may not change the size of the community, but rather species composition (Moss et al., 2003MOSS, B.; MCKEE, D.; ATKINSON, D.; COLLINGS, S. E.; EATON, J. W.; GILL, A. B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology, v. 40, p. 782-792, 2003. http://dx.doi.org/10.1046/j.1365-2664.2003.00839.x
http://dx.doi.org/10.1046/j.1365-2664.20...
; Van de Bund et al., 2004VAN DE BUND, W. J.; ROMO, S.; VILLENA, M. J.; VALENTIN, M.; VAN DONK, E.; VICENTE, K. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan‐European mesocosm experiment. Freshwater Biology,v. 49, n. 12, p. 1608-1618, 2004. http://dx.doi.org/10.1111/j.1365-2427.2004.01307.x
http://dx.doi.org/10.1111/j.1365-2427.20...
). Other studies, however, have found associations between increased temperature and frequency of cyanobacterial bloom phenomena (Reynolds, 1984REYNOLDS, C. S. The ecology of freshwater phytoplankton. Cambridge: University Press, 1984.; Jeppesen et al., 2009JEPPESEN, E.; KRONVANG, B.; MEERHOFF, M.; SØNDERGAARD, M.; HANSEN, K. M.; ANDERSEN, H. E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality, v. 38, p. 1930-1941, 2009. http://dx.doi.org/10.2134/jeq2008.0113
http://dx.doi.org/10.2134/jeq2008.0113...
; Tundisi et al., 2015TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; TUNDISI, J. E. M.; BLANCO, F. P.; ABE, D. S.; CONTRI, C. L. et al. A bloom of cyanobacteria (Cylindrospermopsis raciborskii) in UHE Carlos Botelho (Lobo/Broa) reservoir: a consequence of global change? Brazilian Journal of Biolology, v. 75, n. 2, p. 507-508, 2015. http://dx.doi.org/10.1590/1519-6984.24914
http://dx.doi.org/10.1590/1519-6984.2491...
; Mowe et al., 2015bMOWE, M. A.; POROJAN, C.; ABBAS, F.; MITROVIC, S. M.; LIM, R. P.; FUREY, A. Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species. Harmful Algae, v. 50, p. 88-98, 2015b. http://dx.doi.org/10.1016/j.hal.2015.10.011
http://dx.doi.org/10.1016/j.hal.2015.10....
) and increased gross primary production (Yvon-Durocher et al., 2015YVON-DUROCHER, G.; ALLEN, A.P.; CELLAMARE, M.; DOSSENA, M.; GASTON, K. J.; LEITAO, M. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology, v. 13, n. 12, 2015. http://dx.doi.org/10.1371/journal.pbio.1002324
http://dx.doi.org/10.1371/journal.pbio.1...
).

This study evaluated the impact of rainfall frequency and increased temperature on chlorophyll-a concentrations in eutrophic environments during a bloom of cyanobacteria. This was based on the expectations that: i) the intensity of rainfall in a short period of time would increase chlorophyll-a concentrations in the treatments with the most homogeneous precipitation conditions, and ii) the warmer temperatures predicted due to climate change should favor higher concentrations of chlorophyll-a.

2. MATERIAL AND METHODS

2.1. Experimental design

The experimental design investigated three factors: temperature, precipitation, and time. There were two temperature levels (current and future) and four levels of precipitation (no precipitation, a homogeneous precipitation pattern, and two types of concentrated precipitation patterns). Experiments were run for 15 days, and Chl-a concentration was measured every five days in each temperature and precipitation treatment.

Experiments were performed in microcosms. We prepared 40 beaker microcosms, each with a total volume of 2 L. Each beaker received 1 L of water initially from an artificial-landscape with a eutrophic lake located at the Universidade Estadual de Goiás (City of Anápolis, Central Brazil). Samples were gathered from the lake during a bloom of the filamentous cyanobacteria, Geitlerinema amphibium (Figure 1 in supplementary material S1), in May 2015. Other organisms, such as other species of algae or zooplankton adhering to the mass of Geitlerinema amphibium were not removed. However, the analysis of algae species presented in this lake indicated that 99% of the total biomass was represented by G. amphibium. Thus, the Chl-a analysis used in this study was represented exclusively by this species.

Figure 1
Schematic representation of the experiment. Water from a lake was used to fill the microcosms. The microcosm P0 received no distilled water, P1 received 500 mL of distilled water on the first day and every five days following, P2 received 100 mL of distilled water daily, and P3 received 500 mL of distilled water on the fifth day and every five days following. The experiments were placed in BOD incubators, simulating current (22°C) and future (25°C) temperatures. There were 20 replicates of each treatment of temperature and 10 replicates of each treatment of precipitation. The experiment was conducted for 15 days with samples collected every five days for Chlorophyll-a measurements.

We obtained climate data from the EcoClimate database (Lima-Ribeiro et al., 2015LIMA-RIBEIRO, M. S.; VARELA, S.; GONZÁLEZ-HERNÁNDEZ, J.; OLIVEIRA, G.; DINIZ-FILHO, J. A. F.; TERRIBILE, L. C. EcoClimate: a database of climate data from multiple models for past, present, and future for Macro ecologists and Biogeographers. Biodiversity Informatics, v. 10, p. 1-21, 2015. https://doi.org/10.17161/bi.v10i0.4955
https://doi.org/10.17161/bi.v10i0.4955...
) for neotropical regions, which includes current and predicted future climate conditions under different scenarios and global circulation models. We defined temperature and precipitation values using the CCSM model (Community Climate System Model) RCP 4.5 (obtained through the EcoClimate database; Lima-Ribeiro et al., 2015LIMA-RIBEIRO, M. S.; VARELA, S.; GONZÁLEZ-HERNÁNDEZ, J.; OLIVEIRA, G.; DINIZ-FILHO, J. A. F.; TERRIBILE, L. C. EcoClimate: a database of climate data from multiple models for past, present, and future for Macro ecologists and Biogeographers. Biodiversity Informatics, v. 10, p. 1-21, 2015. https://doi.org/10.17161/bi.v10i0.4955
https://doi.org/10.17161/bi.v10i0.4955...
). The EcoClimate database has 19 climatic variables (derived from temperature and precipitation) for worldwide, containing current and future climate data. We used a climate scenario considered to have an intermediate level of greenhouse gas emissions, projected for the year 2100. This climate scenario has been used often in global climate change research (Pendergrass and Hartmann, 2012PENDERGRASS, A. G.; HARTMANN, D. L. Global-mean precipitation and black carbono in AR4 simulations. Geophysical Research Letters, v. 39, n. 1, 2012. http://dx.doi.org/10.1029/2011GL050067
http://dx.doi.org/10.1029/2011GL050067...
). The annual mean temperature for the Cerrado Biome is 23.7°C, and the future climate scenarios estimate an increase of 3°C (according to the CCSM model, available in the EcoClimate database). According CCSM model the annual rainfall for the Cerrado Biome is 1170L for the current climate scenario, and 1096L in future scenarios. Although this is only a small change in rainfall, the climate models suggest an increase of extreme events, such as, concentrated rainfall in a short period of time, and long periods of drought (see Marengo et al., 2009MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, n. 15, p. 2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863
http://dx.doi.org/10.1002/joc.1863...
). Thus, based on this expectation, we simulated the concentrated precipitation as an extreme event. For this, the experiments received the same amount of water, but the variance was different. Thus, the concentrated treatments presented higher variance. The variance was estimated based on the change of precipitation in future scenarios, according to the CCSM model.

We used the temperature and precipitation values of the region where the lake samples were collected (City of Anápolis, Central Brazil), and selected two climatic variables: annual mean temperature and the precipitation of the wettest quarter corresponding to our study period. These two variables were obtained for the current and future climate scenarios. The current temperature was set at 22 °C and the future temperature at 25°C. For precipitation, we simulated three conditions of rainfall (two concentrated and one homogeneous) and one control, according to projected future scenarios (Marengo et al., 2009MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, n. 15, p. 2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863
http://dx.doi.org/10.1002/joc.1863...
) Thus, for the same amount of precipitation we simulate extreme and homogeneous conditions.

Considering the climatic data of the study region, we developed the following experimental design. We simulated two temperature conditions in the microcosms; one treatment level corresponded to the current temperature of 22°C and the other corresponded to the future temperature of 25°C predicted according to CCSM RCP4.5, projected to 2100. To simulate the effect of different rainfall patterns, distilled water was added to the microcosms. There were three precipitation scenarios, and a control (P0) with no precipitation. In the first treatment (P1), 500 mL of distilled water was added to the microcosms every five days, beginning on the first day of the experiment, in order to simulate an extreme precipitation event. In the second treatment (P2), 100 mL of distilled water was added daily to the microcosms in order to simulate frequent rainfall. In the third treatment (P3), 500 mL of distilled water was added every five days beginning on the fifth day of the experiment. Treatments P1 and P3 simulated similar extreme events but with different start dates during the experiment (Figure 1).

We distributed the precipitation treatments in two BOD incubators with a photoperiod of 12 h/12 h set at the two different temperatures, 22°C and 25°C. The distribution of beakers in BOD incubators was determined randomly. Thus, each temperature treatment had 20 replicas, and each precipitation treatment had 10 replicas.

Before the experiment, we developed two series of pilot experiments, in which it was possible to determine the temporal interval of the experiment (degradation of chlorophyll-a occurred at more than 15 days), time among water adding, the method for adding water, time of light exposure, and other factors.

2.2. Chlorophyll-a analysis

The water from each microcosm was filtered through 47 mm glass fiber filters (Milipore 0.45 m) prior to chlorophyll-a analysis. Filters were placed in foil envelopes, stored in the dark, and kept in a refrigerator until processing. Quantitative analysis of chlorophyll-a was performed after acetone extraction according to the method in Golterman et al. (1978)GOLTERMAN, H. L.; CLYMO, R. S.; OHMSTAD, M. A. M. Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell Scientific Publication, 1978. 214 p.. Chl-a concentrations were determined once for each beaker using a volume of 190 mL.

2.3. Data analysis

The difference between treatments was determined using a factorial analysis of variance (ANOVA, P < 0.05) for repeated measures (Zar, 2010ZAR, J. H. Biostatistical Analysis. 5. ed. [S.l.]: Pearson, 2010. ). Chl-a concentration was the dependent variable, with precipitation (at 3 levels) temperature (at 2 levels) and time as factors. Time was the total number of days in the experiment. The variables were logx+1 transformed to meet the assumptions of normality and homogeneity of variances. To verify the assumptions, we used the Kolmogorov-Smirnov (KS) test for normality and the Levene homogeneity tests for homogeneity of variance.

3. RESULTS AND DISCUSSION

Chlorophyll-a concentrations presented high values in all treatments (see descriptive statistic in Table 1); moreover, the value varied between treatments. Thus, after transforming the data, the assumption of normality required for ANOVA was supported, for Chl-a on the 5thday (d= 0.18; P= 0.15), 10th day (d= 0.15; P= 0.20) and 15th day (d= 0.14; P = 0.20). The assumption of homogeneity of variance was also supported for Chl-a on the 5th day (F= 3.8; P = 0.06), 10th day (F= 1.1; P = 0.29) and 15th day (F= 0.07; P= 0.79).

Table 1
Mean and standard deviation (SD) of Chlorophyll-a concentration (µgL-1) registered in each treatment and levels in microcosm experiment.

Chl-a concentrations varied significantly with temperature (Table 2; Figure 2). Increased temperature caused a significant increase in Chl-a concentrations, but precipitation did not cause any significant difference in Chl-a concentrations (Figure 3).

Table 2
Statistical significance of the treatment effects on Chlorophyll-a concentration, considering the interaction of precipitation, temperature, and time, through repeated analysis of variance. Significant values are in bold (P < 0.05).

The interaction between time and temperature was also significant. The third week of the experiment (15 days), there was an increase in the concentration of Chl-a in treatments simulating future climate change scenarios (Figure 4). There was no significant interaction between time and precipitation. However, at elevated temperatures, time has an important role in determining concentrations of Chl-a.

We used experimentally manipulated microcosms to evaluate the effects of precipitation (i.e. rainfall) and temperature on the Chlorophyll-a concentration of a sampled phytoplankton community collected from a eutrophic environment with an ongoing cyanobacterial bloom (G. amphibium). Although previous multi-factorial studies have investigated the impacts of climate change, this is the first study to assess the combined effects of temperature and precipitation in tropical environments. We found that temperature was the factor responsible for increased Chl-a concentrations in future climate change scenarios.

Figure 2
Boxplot (mean ± 95% confidence intervals) representing the concentration of Chlorophyll-a in both simulated temperature conditions, where C is the current temperature and F the future temperature.

Figure 3
Boxplot (mean ± 95% confidence interval) representing the concentration of Chlorophyll-a in the four simulated rainfall conditions (see details of P0, P1, P2, and P3 in methods).

Figure 4
Boxplot (mean ± 95% confidence interval) representing the chlorophyll-a concentration and the interaction effect among Temperature (C is current and F is Future) and time.

In fact, both thermal and hydrological changes can have serious consequences for aquatic ecosystems (Floury et al., 2012FLOURY, M.; DELATTRE, C.; ORMEROD, S. J. SOUCHON, Y. Global versus local change effects on a large European river. Science of Total Environment, v. 441, p. 220-229, 2012. http://dx.doi.org/10.1016/j.scitotenv.2012.09.051
http://dx.doi.org/10.1016/j.scitotenv.20...
). Water temperature influences many processes in aquatic environments, including dissolved oxygen concentration (Gordon et al., 2004GORDON, N. D.; FINLAYSON, B. L.; MCMAHON, T. A. Stream Hydrology an introduction for ecologists. 2. ed. London: John Wily & Sons, 2004. 423p. ; Jeppesen et al., 2013JEPPESEN, E.; KRONVANG, B.; JØRGENSEN, T. B.; LARSEN, S. E. ANDERSEN, H. E.; SØNDERGAARD, M. et al. Recent climate-induced changes in freshwaters in Denmark. In: GOLDMAN, C. R.; KUMAGAI, M.; ROBARTS, R. D. (Eds.). Climatic change and global warming of Inland waters: impacts and mitigation for ecosystems and societies. [S.l.]: John Wiley & Sons, 2013. p. 155-171.), conductivity (Esteves et al., 2011ESTEVES, F. A.; FIGUEREDO-BARROS, M. P.; PETRUCIO, M. M. Principais cátions e ânions. In: ESTEVES, F. A. (Ed.). Fundamentos de Limnologia. 3. ed. Rio de Janeiro: Interciências, 2011. p. 299-319.), nutrient concentration (Jeppesen et al., 2009JEPPESEN, E.; KRONVANG, B.; MEERHOFF, M.; SØNDERGAARD, M.; HANSEN, K. M.; ANDERSEN, H. E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality, v. 38, p. 1930-1941, 2009. http://dx.doi.org/10.2134/jeq2008.0113
http://dx.doi.org/10.2134/jeq2008.0113...
; 2011JEPPESEN, E.; KRONVANG, B.; OLESEN, J. E.; AUDET, J.; SØNDERGAARD, M.; HOFFMANN, C. C. et al. Climate change effect on nitrogen loading from catchment in Europe: implications for nitrogen retention and ecological state of lakes and adaptations. Hydrobiologia,v. 663, p. 1-21, 2011. http://dx.doi.org/10.1007/s10750-010-0547-6
http://dx.doi.org/10.1007/s10750-010-054...
), and rates of primary productivity and decomposition (Lecerf et al., 2007LECERF, A.; RISNOVEANU, G.; POPESCU, C.; GESSNER, M. O.; CHAUVET, E. Decomposition of diverse litter mixtures in streams. Ecology, v. 88, p. 219-227, 2007. http://dx.doi.org/10.1890/0012-9658(2007)88[219:DODLMI]2.0.CO;2 ).

Primary producers in aquatic environments are primarily controlled by nutrient availability, light (Huszar et al., 2006HUSZAR, V. L. M.; CARACO, N. F.; ROLAND, F.; COLE, J. Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry, v. 79, p. 239-250, 2006. http://dx.doi.org/10.1007/978-1-4020-5517-1_11
http://dx.doi.org/10.1007/978-1-4020-551...
; Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
), and temperature (>; Roland et al., 2012ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
http://dx.doi.org/10.1590/S1519-69842012...
). Temperature changes directly affect photosynthesis because higher temperatures accelerate the enzymatic reactions during photosynthesis and result in higher rates of primary productivity (Fernandes et al., 2005FERNANDES, L. F.; LAGOS, P. D.; WOSIACK, A. C.; PACHECO, C. V.; DOMINGUES, L.; ZENDER-ALVES, L. Comunidades fitoplanctônicas em ambientes lênticos. In: ANDREOLI, C. V.; CARNEIRO, C. (Eds.). Gestão integrada de mananciais de abastecimento eutrofizados. Curitiva: Finep, 2005.). Thus, algae growth tends to be linked with temperature, being faster at higher temperatures (Fernandes et al., 2005FERNANDES, L. F.; LAGOS, P. D.; WOSIACK, A. C.; PACHECO, C. V.; DOMINGUES, L.; ZENDER-ALVES, L. Comunidades fitoplanctônicas em ambientes lênticos. In: ANDREOLI, C. V.; CARNEIRO, C. (Eds.). Gestão integrada de mananciais de abastecimento eutrofizados. Curitiva: Finep, 2005.). Many cellular processes of algae depend on this variable (Reynolds, 1984REYNOLDS, C. S. The ecology of freshwater phytoplankton. Cambridge: University Press, 1984.). Moreover, many species of cyanobacteria are favored by an increase of temperature, promoting bloom events (see Moss et al., 2011MOSS, B.; KOSTEN, S.; MEERHOFF, M.; BATTARBEE, R. W.; JEPPESEN, E.; MAZZEO, N. et al. Allied attack: climate change and eutrophication. Inland waters, v. 1, n. 2, p. 101-105, 2011.; Jeppesen et al., 2013JEPPESEN, E.; KRONVANG, B.; JØRGENSEN, T. B.; LARSEN, S. E. ANDERSEN, H. E.; SØNDERGAARD, M. et al. Recent climate-induced changes in freshwaters in Denmark. In: GOLDMAN, C. R.; KUMAGAI, M.; ROBARTS, R. D. (Eds.). Climatic change and global warming of Inland waters: impacts and mitigation for ecosystems and societies. [S.l.]: John Wiley & Sons, 2013. p. 155-171.; 2014JEPPESEN, E.; MEERHOFF, M.; DAVIDSON, T. A.; TROLLE, D.; SONDERGAARD, M.; LAURIDSEN, T. I. et al. Climate change impacts on lakes: an integrated ecological perspective based on multi-faced approach, with special focus on shallow lakes. Journal of Limnology,v. 73, p. 88-111, 2014. http://dx.doi.org/10.4081/jlimnol.2014.844
http://dx.doi.org/10.4081/jlimnol.2014.8...
)

An increase of water temperatures in the future may favor not only higher growth rates but may also increase the activity (Paerl and Huisman, 2009PAERL, H. W.; HUISMAN, J. Climate Change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Report, v. 1, p. 27-37, 2009. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1758-2229.20...
) and geographical distribution of cyanobacteria (Briand et al., 2004BRIAND, J. F.; LEBOULANGER, J. F.; HUMBERT, J. F.; BERNAND, C.; DUFOUR, P. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology, v. 40 n. 2, p. 231-238, 2004. http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x
http://dx.doi.org/10.1111/j.1529-8817.20...
; Paerl and Huisman, 2009PAERL, H. W.; HUISMAN, J. Climate Change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Report, v. 1, p. 27-37, 2009. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1758-2229.20...
). Cyanobacterial blooms will likely be more frequent in future climatic conditions (Romo et al., 2005ROMO, S.; VILLENA, M. J.; SAHUQUILLO, M.; SORIA, J. M.; GIMENEZ, M.; ALFONSO, T. et al. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology,v. 50, p. 1706-17, 2005. http://dx.doi.org/10.1111/j.1365-2427.2005.01432.x
http://dx.doi.org/10.1111/j.1365-2427.20...
; Huber et al., 2012HUBER, V.; WAGNER, C.; GERTEN, D.; ADRIAN, R. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia,v. 169, p 245-256, 2012. http://dx.doi.org/10.1007/s00442-011-2186-7
http://dx.doi.org/10.1007/s00442-011-218...
). This might be problematic because some species of cyanobacteria can produce toxic substances (Stewart et al., 2007STEWART, I.; SEAWRIGHT, A. A.; SHAW, G. R. Cyanobacterial poisoning in livestock, wild mammals and birds -- an overview. In: HUDNELL, H. K. (Ed.). Cyanobacterial harmful algal blooms: state of the science and research needs. [S.l.]: Springer, 2007.; Paerl and Huisman, 2009PAERL, H. W.; HUISMAN, J. Climate Change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Report, v. 1, p. 27-37, 2009. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1758-2229.20...
) that can directly or indirectly contaminate other aquatic organisms through the food chain (Smith et al., 2008SMITH, J. L.; BOYER, G. L.; ZIMBA, P. V. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture, v. 280, p. 5-20, 2008. http://dx.doi.org/10.1016/j.aquaculture.2008.05.007
http://dx.doi.org/10.1016/j.aquaculture....
).

These blooms can also compromise the integrity of aquatic ecosystems by promoting massive oxygen consumption by algae and bacterial respiration during decomposition (Fernandes et al., 2005FERNANDES, L. F.; LAGOS, P. D.; WOSIACK, A. C.; PACHECO, C. V.; DOMINGUES, L.; ZENDER-ALVES, L. Comunidades fitoplanctônicas em ambientes lênticos. In: ANDREOLI, C. V.; CARNEIRO, C. (Eds.). Gestão integrada de mananciais de abastecimento eutrofizados. Curitiva: Finep, 2005.). In addition, cyanobacteria may be able to raise the local water temperature through light absorption, increasing their ability to dominate aquatic ecosystems (Paerl and Huisman, 2008PAERL, H.W.; HUISMAN, J. Blooms like it hot. Science,v. 320, p. 57-58, 2008. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1758-2229.20...
).

In this study, precipitation does not affect the concentration of Chl-a; however, it was expected that concentrated rainfall can result in the dilution of nutrients and the washing away of algae blooms (Reichwaldt and Ghadouani, 2012REICHWALDT, E. S.; GHADOUANI, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, v. 46, p. 1372-1393, 2012. http://dx.doi.org/10.1016/j.watres.2011.11.052
http://dx.doi.org/10.1016/j.watres.2011....
) due to high discharge rates (Bouvy et al., 2003BOUVY, M.; NASCIMENTO, S. M.; MOLICA, R. J. R.; FERREIRA, A.; HUSZAR, V.; AZEVEDO, S. M. F. O. Limnological features in Tapacura reservoir (northeast Brazil) during a severe drought. Hydrobiologia,v. 493, n. 1-3, p. 115-130, 2003. http://dx.doi.org/10.1023/A:1025405817350
http://dx.doi.org/10.1023/A:102540581735...
). In fact, the treatments (P1, P2, P3) presented higher Chl-a concentrations than P0 (no precipitation) (see Figure 3). However, the possible nutrient dilution effect was compensated by the increase in temperature, promoting the growth of Chl-a concentrations. Moreover, in microcosm the rainfall not remove the algae bloom (because of the physical limitations of the experiment); thus, even with the precipitation the original mass of the species was allowed to remain in the experiment, not being carried away. Finally, the addition of a large amount of water may interrupt the bloom and cause a lag in the resurgence of the algae bloom (Ahn et al., 2002AHN, C. Y.; CHUNG, A. S.; OH, H. M. Rainfall, phycocyanin and N:P rations related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia, v. 474, n. 1-3, p. 117-124, 2002. http://dx.doi.org/10.1023/A:1016573225220
http://dx.doi.org/10.1023/A:101657322522...
), explaining the increase of Chl-a in some treatments during the third week of the experiment.

However, it is still a challenge to provide precise answers regarding the consequences of climate change in aquatic ecosystems because there are a variety of Atmosphere-Ocean General Circulation Models (AOGCM), as well as climate scenarios (e.g. RCP 2.6, RCP 4.5, RCP6 and RCP 8.5). Current climate projections have a high degree of uncertainty, and this impedes the study of potential future impacts of warming. Microcosm experiments are one way to overcome this problem. This type of experiment provides important information about large-scale processes while only requiring minimal time to replicate different systems and scales (Benton et al., 2007BENTON, T. G.; SOLAN, M.; TRAVIS, J. J. J.; SAIT, S. M. Microcosm experiments can inform global ecological problems. Trends and Ecology & Evolution, v. 22, n. 10, p. 516-521, 2007. http://dx.doi.org/10.1016/j.tree.2007.08.003
http://dx.doi.org/10.1016/j.tree.2007.08...
). The use of microcosms in research is also supported by the need to tightly control conditions in order to correlate community dynamics with environmental variability. Future studies should consider the indirect effects of climate change, such as runoff, that are strongly influenced by the intensity of rain. Additionally, future studies investigating water temperature effects should also evaluate the uncertainty involved in choosing different climate change scenarios.

4. CONCLUSIONS

Based on our results, we reject our first hypothesis that extreme precipitation events increase Chl-a concentrations relative to homogeneous rainfall. However, it is important to consider that in this study we evaluated the effect of precipitation on the dilution of the Chl-a. Our results supported our second hypothesis; higher temperatures favor higher Chl-a concentrations. The future temperature used in this study (RCP 4.5) is based on intermediate greenhouse gas emissions, which would cause changes in the primary productivity of eutrophic environments.

This study also adds more information to a number of recent studies that investigate the impact of climate change on aquatic environments. In addition, the use of microcosm has proven to be satisfactory. Therefore, new studies using a similar approach may be undertaken, and different factors may be explored, such as new climatic scenarios and climatic variables.

5. ACKNOWLEDGEMENTS

We thank L.C.G Vieira and F.B. Teresa for suggestions on early versions of the experimental design and manuscript. We thank the two anonymous reviewers whose suggestions helped to improve the manuscript. We thank the CNPq (Process 473730/2013-8), CAPES (Process 2036/2013) and FAPEG (Process 201210267001071) for their financial support. Meirielle Euripa Pádua de Moura and Lorraine dos Santos Rocha thank Universidade Estadual de Goiás (UEG) and CNPq, respectively, for their scholarships. João Carlos Nabout thanks CNPq (Process 309700/2013-2) for the “Produtividade em Pesquisa” Scholarship.

  • AHN, C. Y.; CHUNG, A. S.; OH, H. M. Rainfall, phycocyanin and N:P rations related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia, v. 474, n. 1-3, p. 117-124, 2002. http://dx.doi.org/10.1023/A:1016573225220
    » http://dx.doi.org/10.1023/A:1016573225220
  • ANDERSEN, T.; PEDERSEN, O.; ANDERSEN, F. O. Nutrient concentration in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities. Freshwater Biology, v. 50, p. 1178-1189, 2005. http://dx.doi.org/10.1111/j.1365-2427.2005.01390.x
    » http://dx.doi.org/10.1111/j.1365-2427.2005.01390.x
  • BELNAP, J.; PHILLIPS, S. P.; MILLER, M. E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, v. 141, n.2, p. 306-316, 2005. http://dx.doi.org/10.1007/s00442-003-1438-6
    » http://dx.doi.org/10.1007/s00442-003-1438-6
  • BENTON, T. G.; SOLAN, M.; TRAVIS, J. J. J.; SAIT, S. M. Microcosm experiments can inform global ecological problems. Trends and Ecology & Evolution, v. 22, n. 10, p. 516-521, 2007. http://dx.doi.org/10.1016/j.tree.2007.08.003
    » http://dx.doi.org/10.1016/j.tree.2007.08.003
  • BERGER, S. A.; DIEHL, S.; STIBOR, H.; TROMMER, G E.; RUHENSTROTH, M. Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology, v. 16, p. 1954-1965, 2010. http://dx.doi.org/10.1111/j.1365-2486.2009.02134.x
    » http://dx.doi.org/10.1111/j.1365-2486.2009.02134.x
  • BOUVY, M.; NASCIMENTO, S. M.; MOLICA, R. J. R.; FERREIRA, A.; HUSZAR, V.; AZEVEDO, S. M. F. O. Limnological features in Tapacura reservoir (northeast Brazil) during a severe drought. Hydrobiologia,v. 493, n. 1-3, p. 115-130, 2003. http://dx.doi.org/10.1023/A:1025405817350
    » http://dx.doi.org/10.1023/A:1025405817350
  • BRIAND, J. F.; LEBOULANGER, J. F.; HUMBERT, J. F.; BERNAND, C.; DUFOUR, P. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology, v. 40 n. 2, p. 231-238, 2004. http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x
    » http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x
  • CHRISTENSEN, M. R.; GRAHAM, M. D.; VINEBROOKE, R. D.; FINDLAY, D. L.; PATERSON, M. J. ; TURNER, M. A. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology,v. 12, p. 2316-2322, 2006. http://dx.doi.org/10.1111/j.1365-2486.2006.01257.x
    » http://dx.doi.org/10.1111/j.1365-2486.2006.01257.x
  • CODD, G. A. Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control. Ecological Engineering, v. 16, p. 51-60, 2000. http://dx.doi.org/10.1016/S0925-8574(00)00089-6
    » http://dx.doi.org/10.1016/S0925-8574(00)00089-6
  • COSTA, M. R. A.; ATTAYDE, J. L.; BECKER, V. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia,v. 778, n. 1, p. 75-89, 2015. http://dx.doi.org/10.1007/s10750-015-2593-6
    » http://dx.doi.org/10.1007/s10750-015-2593-6
  • DAUFRESNE, M.; LENGFELLNERA, K.; SOMMER, U. Global warming benefits the small in aquatic ecosystems. PNAS, v. 106, n. 31, p. 12788-12793, 2009. http://dx.doi.org/10.1073/pnas.0902080106
    » http://dx.doi.org/10.1073/pnas.0902080106
  • DOLAN, J. R.; GALLEGOS, C. L.; MOIGIS, A. Dilution effects on microzooplankton in dilution grazing experiments. Marine Ecology Progress Series, v. 200, p. 127-139, 2000. http://dx.doi.org/10.3354/meps200127
    » http://dx.doi.org/10.3354/meps200127
  • DONEY, S. C.; FABRY, V. J.; FEELY, R. A. KLEYPAS, J. A. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, v. 1, p. 169-192, 2009. http://dx.doi.org/10.1146/annurev.marine.010908.163834
    » http://dx.doi.org/10.1146/annurev.marine.010908.163834
  • ESTEVES, F. A.; FIGUEREDO-BARROS, M. P.; PETRUCIO, M. M. Principais cátions e ânions. In: ESTEVES, F. A. (Ed.). Fundamentos de Limnologia. 3. ed. Rio de Janeiro: Interciências, 2011. p. 299-319.
  • FERNANDES, L. F.; LAGOS, P. D.; WOSIACK, A. C.; PACHECO, C. V.; DOMINGUES, L.; ZENDER-ALVES, L. Comunidades fitoplanctônicas em ambientes lênticos. In: ANDREOLI, C. V.; CARNEIRO, C. (Eds.). Gestão integrada de mananciais de abastecimento eutrofizados. Curitiva: Finep, 2005.
  • FEUCHTMAYR, H.; MORAN, R.; HATTON, K.; CONNOR, L.; HEYES, T.; MOSS, B.; Harvey, I. et al. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology, v. 46, p. 713-723, 2009. http://dx.doi.org/10.1111/j.1365-2664.2009.01644.x
    » http://dx.doi.org/10.1111/j.1365-2664.2009.01644.x
  • FLOURY, M.; DELATTRE, C.; ORMEROD, S. J. SOUCHON, Y. Global versus local change effects on a large European river. Science of Total Environment, v. 441, p. 220-229, 2012. http://dx.doi.org/10.1016/j.scitotenv.2012.09.051
    » http://dx.doi.org/10.1016/j.scitotenv.2012.09.051
  • GOLTERMAN, H. L.; CLYMO, R. S.; OHMSTAD, M. A. M. Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell Scientific Publication, 1978. 214 p.
  • GORDON, N. D.; FINLAYSON, B. L.; MCMAHON, T. A. Stream Hydrology an introduction for ecologists. 2. ed. London: John Wily & Sons, 2004. 423p.
  • HE, H.; ZHU, X.; SONG, X.; JEPPESEN, E.; LIU, Z. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study. Journal of Limnology, v. 74, n. 3, p. 618-622, 2015. http://dx.doi.org/10.4 081/jlimnol.2015.1066
    » http://dx.doi.org/10.4 081/jlimnol.2015.1066
  • HOEGH-GULDBERG, O.; MUMBY, P. J.; HOOTEN, A. J.; STENECK, R. S.; GREENFIELD, P.; GOMEZ, E. et al. Coral reefs under rapid climate change and ocean acidification. Science, v. 318, p. 1737-1742, 2007. http://dx.doi.org/10.1 126/science.1152509
    » http://dx.doi.org/10.1 126/science.1152509
  • HUBER, V.; WAGNER, C.; GERTEN, D.; ADRIAN, R. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia,v. 169, p 245-256, 2012. http://dx.doi.org/10.1007/s00442-011-2186-7
    » http://dx.doi.org/10.1007/s00442-011-2186-7
  • HUSZAR, V. L. M.; CARACO, N. F.; ROLAND, F.; COLE, J. Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry, v. 79, p. 239-250, 2006. http://dx.doi.org/10.1007/978-1-4020-5517-1_11
    » http://dx.doi.org/10.1007/978-1-4020-5517-1_11
  • INTERGOVERNMENTAL PAINEL ON CLIMATE CHANGE. Climate change: synthesis report. 2014 Available in: http://ar5-syr.ipcc.ch/topic_futurechanges.php Access in: July 2015.
    » http://ar5-syr.ipcc.ch/topic_futurechanges.php
  • JEPPESEN, E.; KRONVANG, B.; JØRGENSEN, T. B.; LARSEN, S. E. ANDERSEN, H. E.; SØNDERGAARD, M. et al. Recent climate-induced changes in freshwaters in Denmark. In: GOLDMAN, C. R.; KUMAGAI, M.; ROBARTS, R. D. (Eds.). Climatic change and global warming of Inland waters: impacts and mitigation for ecosystems and societies. [S.l.]: John Wiley & Sons, 2013. p. 155-171.
  • JEPPESEN, E.; KRONVANG, B.; MEERHOFF, M.; SØNDERGAARD, M.; HANSEN, K. M.; ANDERSEN, H. E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality, v. 38, p. 1930-1941, 2009. http://dx.doi.org/10.2134/jeq2008.0113
    » http://dx.doi.org/10.2134/jeq2008.0113
  • JEPPESEN, E.; KRONVANG, B.; OLESEN, J. E.; AUDET, J.; SØNDERGAARD, M.; HOFFMANN, C. C. et al. Climate change effect on nitrogen loading from catchment in Europe: implications for nitrogen retention and ecological state of lakes and adaptations. Hydrobiologia,v. 663, p. 1-21, 2011. http://dx.doi.org/10.1007/s10750-010-0547-6
    » http://dx.doi.org/10.1007/s10750-010-0547-6
  • JEPPESEN, E.; MEERHOFF, M.; DAVIDSON, T. A.; TROLLE, D.; SONDERGAARD, M.; LAURIDSEN, T. I. et al. Climate change impacts on lakes: an integrated ecological perspective based on multi-faced approach, with special focus on shallow lakes. Journal of Limnology,v. 73, p. 88-111, 2014. http://dx.doi.org/10.4081/jlimnol.2014.844
    » http://dx.doi.org/10.4081/jlimnol.2014.844
  • JEPPESEN, E.; MOSS, B.; BENNION, H.; CARVALHO, L.; DE MEESTER, L. et al. Interaction of climate change and eutrophication. In: KERNAN, M.; BATTARBEE, R.; MOSS, B. (Eds.). Climate change impacts on freshwater ecosystems. Oxford: Wiley-Blackwell, 2010. p. 119-151.
  • JEZNACH, L. C.; TOBIASON, J. E. Future climate effects on thermal stratification in the Wachusett Reservoir. Journal AWWA, v. 107, n. 4, p. E197-E209, 2015. http://dx.doi.org/10.5942/jawwa.2015.107.0039
    » http://dx.doi.org/10.5942/jawwa.2015.107.0039
  • KOPEC, R. J. Global climate change and impact of a maximum sea level on coastal settlement. Journal of Geography, v. 70, p. 541-550, 1971. http://dx.doi.org/10.1 080/00221347108981908
    » http://dx.doi.org/10.1 080/00221347108981908
  • KOSTEN, S.; HUSZAR, V. L.; BÉCARES, E.; COSTA, L. S.; DONK, E.; HANSSON, L. A. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology,v. 18, n. 1, p. 118-126, 2012. http://dx.doi.org/10.1111/j.1365-2486. 2011.02488.x
    » http://dx.doi.org/10.1111/j.1365-2486. 2011.02488.x
  • LECERF, A.; RISNOVEANU, G.; POPESCU, C.; GESSNER, M. O.; CHAUVET, E. Decomposition of diverse litter mixtures in streams. Ecology, v. 88, p. 219-227, 2007. http://dx.doi.org/10.1890/0012-9658(2007)88[219:DODLMI]2.0.CO;2
  • LI, Z.; HE, L.; ZHANG, H.; URRUTIA‐CORDERO, P.; EKVALL, M. K.; HOLLANDER, J. et al. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global change biology, v. 23, n. 1, p. 108-116, 2017. http://dx.doi.org/10.1111/gcb.13405
    » http://dx.doi.org/10.1111/gcb.13405
  • LI, W.; XU, X.; FUJIBAYASHI, M.; NIU, Q.; TANAKA, N.; NISHIMURA, O. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems. Environmental Science and Pollution Research, v. 23, n. 19, p. 19847-19860, 2016. http://dx.doi.org/10.1007/s11356-016-7180-5
    » http://dx.doi.org/10.1007/s11356-016-7180-5
  • LIMA-RIBEIRO, M. S.; VARELA, S.; GONZÁLEZ-HERNÁNDEZ, J.; OLIVEIRA, G.; DINIZ-FILHO, J. A. F.; TERRIBILE, L. C. EcoClimate: a database of climate data from multiple models for past, present, and future for Macro ecologists and Biogeographers. Biodiversity Informatics, v. 10, p. 1-21, 2015. https://doi.org/10.17161/bi.v10i0.4955
    » https://doi.org/10.17161/bi.v10i0.4955
  • MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, n. 15, p. 2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863
    » http://dx.doi.org/10.1002/joc.1863
  • MEERHOFF, M.; CLEMENTE, J. M.; MELLO, F. T.; IGLESIAS, C.; PEDERSEN, A. R.; JEPPESEN, E. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology,v. 13, p. 1888-1897, 2007. http://dx.doi.org/10.1111/j.1365-2486.2007.01408.x
    » http://dx.doi.org/10.1111/j.1365-2486.2007.01408.x
  • MOSS, B.; KOSTEN, S.; MEERHOFF, M.; BATTARBEE, R. W.; JEPPESEN, E.; MAZZEO, N. et al. Allied attack: climate change and eutrophication. Inland waters, v. 1, n. 2, p. 101-105, 2011.
  • MOSS, B.; MCKEE, D.; ATKINSON, D.; COLLINGS, S. E.; EATON, J. W.; GILL, A. B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology, v. 40, p. 782-792, 2003. http://dx.doi.org/10.1046/j.1365-2664.2003.00839.x
    » http://dx.doi.org/10.1046/j.1365-2664.2003.00839.x
  • MOWE, M. A.; MITROVIC, S. M.; LIM, R. P.; FUREY, A.; YEO, D. C. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology,v. 74, n. 2, p. 205-224, 2015a. http://dx.doi.org/10.4081/jlimnol.2014.1005
    » http://dx.doi.org/10.4081/jlimnol.2014.1005
  • MOWE, M. A.; POROJAN, C.; ABBAS, F.; MITROVIC, S. M.; LIM, R. P.; FUREY, A. Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species. Harmful Algae, v. 50, p. 88-98, 2015b. http://dx.doi.org/10.1016/j.hal.2015.10.011
    » http://dx.doi.org/10.1016/j.hal.2015.10.011
  • NABOUT, J. C.; CARVALHO, P.; PRADO, U. M.; BORGES, P. P.; MACHADO, K. B.; HADDAD, K. B. et al. Trends and biases in global climate change literature. Natureza & Conservação, v. 10, p. 45-51, 2012a.
  • NABOUT, J. C.; CAETANO, J. M.; FERREIRA, R. B.; TEIXEIRA, I. R.; ALVES, S. M. F. Using correlative, mechanistic and hybrid niche models to predict the productivity and impact of global climate change on maize crop in Brazil. Natureza & Conservação,v. 10, p. 177-183, 2012b.
  • NICKUS, U.; BISHOP, K.; ERLANDSSON, M.; EVANS, C. D.; FORSIUS, M.; LAUDON, H. et al. Direct impacts of climate change on freshwater ecosystems. In: KERNAN, M.; BATTARBEE, R. W.; MOSS, B. (Ed.). Climate change impacts on freshwater ecosystems.India: Wiley-Blackwell, 2010.
  • PAERL, H.W.; HUISMAN, J. Blooms like it hot. Science,v. 320, p. 57-58, 2008. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
    » http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
  • PAERL, H. W.; HUISMAN, J. Climate Change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Report, v. 1, p. 27-37, 2009. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
    » http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
  • PAZ, S. Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B, v. 370, p. 1-11, 2015. http://dx.doi.org/10.1098/rstb.2013.0561
    » http://dx.doi.org/10.1098/rstb.2013.0561
  • PENDERGRASS, A. G.; HARTMANN, D. L. Global-mean precipitation and black carbono in AR4 simulations. Geophysical Research Letters, v. 39, n. 1, 2012. http://dx.doi.org/10.1029/2011GL050067
    » http://dx.doi.org/10.1029/2011GL050067
  • REICHWALDT, E. S.; GHADOUANI, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, v. 46, p. 1372-1393, 2012. http://dx.doi.org/10.1016/j.watres.2011.11.052
    » http://dx.doi.org/10.1016/j.watres.2011.11.052
  • REYNOLDS, C. S. The ecology of freshwater phytoplankton. Cambridge: University Press, 1984.
  • ROCKSTRÖM, J.; BRASSEUR, G.; HOSKINS, B.; LUCHT, W.; SCHELLNHUBER, J.; KABAT, P. et al. Climate change: The necessary, the possible and the desirable Earth league climate statement on the implications for climate policy from the 5th IPCC assessment. Earth's Future, v. 2, p. 606-611, 2014. http://dx.doi.org/10.1002/2014EF000280
    » http://dx.doi.org/10.1002/2014EF000280
  • ROLAND, F.; HUSZAR, V. L. M.; FARJALLA, V. F.; ENRICH-PRAST, A.; AMADO, A. M. et al. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, v. 72, p. 709-722, 2012. http://dx.doi.org/10.1590/S1519-69842012000400009
    » http://dx.doi.org/10.1590/S1519-69842012000400009
  • ROMO, S.; VILLENA, M. J.; SAHUQUILLO, M.; SORIA, J. M.; GIMENEZ, M.; ALFONSO, T. et al. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology,v. 50, p. 1706-17, 2005. http://dx.doi.org/10.1111/j.1365-2427.2005.01432.x
    » http://dx.doi.org/10.1111/j.1365-2427.2005.01432.x
  • SEIP, K. L.; REYNOLDS, C. S. Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography, v. 40, p. 589-597, 1995. http://dx.doi.org/10.4319/lo.1995.40.3.0589
    » http://dx.doi.org/10.4319/lo.1995.40.3.0589
  • SHORT, F. T.; KOSTEN, S.; MORGAN, P. A.; MALONE, S.; MOORE, G. E. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, v. 135, p. 3-17, 2016. http://dx.doi.org/10.1016/j.aquabot.2016.06.006
    » http://dx.doi.org/10.1016/j.aquabot.2016.06.006
  • SMITH, J. L.; BOYER, G. L.; ZIMBA, P. V. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture, v. 280, p. 5-20, 2008. http://dx.doi.org/10.1016/j.aquaculture.2008.05.007
    » http://dx.doi.org/10.1016/j.aquaculture.2008.05.007
  • STEWART, I.; SEAWRIGHT, A. A.; SHAW, G. R. Cyanobacterial poisoning in livestock, wild mammals and birds -- an overview. In: HUDNELL, H. K. (Ed.). Cyanobacterial harmful algal blooms: state of the science and research needs. [S.l.]: Springer, 2007.
  • TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; TUNDISI, J. E. M.; BLANCO, F. P.; ABE, D. S.; CONTRI, C. L. et al. A bloom of cyanobacteria (Cylindrospermopsis raciborskii) in UHE Carlos Botelho (Lobo/Broa) reservoir: a consequence of global change? Brazilian Journal of Biolology, v. 75, n. 2, p. 507-508, 2015. http://dx.doi.org/10.1590/1519-6984.24914
    » http://dx.doi.org/10.1590/1519-6984.24914
  • VAN DE BUND, W. J.; ROMO, S.; VILLENA, M. J.; VALENTIN, M.; VAN DONK, E.; VICENTE, K. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan‐European mesocosm experiment. Freshwater Biology,v. 49, n. 12, p. 1608-1618, 2004. http://dx.doi.org/10.1111/j.1365-2427.2004.01307.x
    » http://dx.doi.org/10.1111/j.1365-2427.2004.01307.x
  • YVON-DUROCHER, G.; ALLEN, A. P.; MONTOYA, J. M.; TRIMMER, M.; WOODWARD, G. The temperature dependence of carbon cycle in aquatic ecosystems. Avdances in Ecological Research, v. 43, p. 267-313, 2010. http://dx.doi.org/10.1016/B978-0-12-385005-8.00007-1
    » http://dx.doi.org/10.1016/B978-0-12-385005-8.00007-1
  • YVON-DUROCHER, G.; ALLEN, A.P.; CELLAMARE, M.; DOSSENA, M.; GASTON, K. J.; LEITAO, M. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology, v. 13, n. 12, 2015. http://dx.doi.org/10.1371/journal.pbio.1002324
    » http://dx.doi.org/10.1371/journal.pbio.1002324
  • ZAR, J. H. Biostatistical Analysis. 5. ed. [S.l.]: Pearson, 2010.

Publication Dates

  • Publication in this collection
    May 2017

History

  • Received
    11 Oct 2016
  • Accepted
    23 Feb 2017
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com