Acessibilidade / Reportar erro

Arsenic in Santa Catarina soils

Arsênio em solos de Santa Catarina

Abstract

Arsenic (As) is one of the most harmful chemical elements known to man and to the environment, mainly due its high toxicity and wide distribution; the content of this element within the soils is a genuine concern, thus making it paramount to know its natural contents in a regional context. The present study aimed to determine the natural Arsenic content in the A horizon of 31 soil profiles from the state of Santa Catarina, Brazil, which is useful in determining reference values, monitoring, remediation of contaminated areas, legal regulation and Brazilian laws. Soil samples were prepared following the USPEA 3051A SW-846 method and were previously chemically reduced from As(V) to AS(III) by using the BCR method. The determination was performed in an Inductively Coupled Plasma - Optical Emission Spectrometry - Hydride Generation (ICP-OES-HG at cold vapor). Results obtained from the soil groups reveal the materials of basaltic origins as the ones with more As content while those of sediment origins had lesser content. Evaluated soil profiles fit into the following descending order regarding their As content: Latossolos, according to EMBRAPA (Oxisols according to Soil Taxonomy) > Nitossolo (Ultisols, Oxisols (Kandic), Alfisols) > Chernossolos (---) = Cambissolo (Inceptisols) = Argissolo (Ultisols) > Neossolos (Entisols).

Keywords:
arsenic content; reference value; soils; trace element

Resumo

O arsênio (As) é listado como um dos elementos químicos mais nocivos ao homem e ao meio ambiente, devido a sua alta toxidade e por ser amplamente distribuído na crosta terrestre, destaca-se a sua preocupação dos teores deste elemento em solos, sendo de suma importância conhecer os teores naturais de As no contexto regional. O objetivo do presente estudo foi determinar o teor de arsênio no horizonte A de 31 perfis de solos do estado de Santa Catarina Brasil, podendo este trabalho auxiliar nos valores de referência, monitoramento, remediação de áreas contaminadas, regulamentos e leis brasileiras. As amostras de solos foram preparadas segundo o método USEPA 3051A SW-846 e pré-reduzidos quimicamente do As(V) para As(III) através do método BCR. A determinação foi realizada em Espectrômetro de Emissão Óptica com Plasma Acoplado Indutivamente com Geração de Hidreto. Os resultados obtidos dentre o conjunto de solos, mostram que o material de origem basáltica, foram os que apresentaram os maiores teores de As e o material de origem de sedimentos com os menores. Os perfis de solo se enquadram na decrescente ordem no quesito dos teores de As na seguinte sequência: Latossolos > Nitossolo > Chernossolos = Cambissolo = Argissolo > Neossolos.

Palavras-chave:
conteúdo de arsênio; elemento traço; solos; valor de referência

1. INTRODUCTION

Arsenic (As), a semimetal, part of Group 15 of the periodic table, is the twentieth most abundant element on Earth (Roy et al., 2015ROY, M.; GIRI, A. K.; DUTTA, S.; MUKHERJEE, P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, v. 75, p. 180-198, 2015. http://dx.doi.org/10.1016/j.envint.2014.11.010
http://dx.doi.org/10.1016/j.envint.2014....
); thus, studying and monitoring this element due to its extensive distribution over the atmosphere, hydrosphere and biosphere is an important matter. According to the World Health Organization (WHO, 2018WHO. Health impacts of chemicals arsenic. 2018. Available at: Available at: https://www.who.int/en/news-room/fact-sheets/detail/arsenic Access: 16 Aug. 2021.
https://www.who.int/en/news-room/fact-sh...
), Arsenic is one of the ten high-toxicity chemical elements, responsible for causing great concern to public health. Contamination by As of water sources, be they groundwater or surface water, is a global problem (Xu et al., 2020XU, Y.; WANG, K.; ZHOU, Q.; ZHANG, L.; QIAN, G. Effects of humus on the mobility of arsenic in tailing soil and the thiol- modification of humus. Chemosphere, v. 259, p. 127403, 2020. https://doi.org/10.1016/j.chemosphere.2020.127403
https://doi.org/10.1016/j.chemosphere.20...
; Gao et al., 2020GAO, W.; NI, W.; ZHANG, Y.; LI, Y.; SHI, T.; LI, Z. Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified / stabilized tailings using metallurgical slag-based binders. Journal of Hazardous Materials, v. 381, p. 120992, 2020. https://doi.org/10.1016/j.jhazmat.2019.120992
https://doi.org/10.1016/j.jhazmat.2019.1...
), with the natural sources of this element generated by the weathering of rocks, biological activities and volcanic emissions (Alonso et al., 2014ALONSO, D. L.; LATORRE, S.; CASTILLO, E.; BRANDÃO, P. F. B. Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, v. 186, p. 272-281, 2014. http://dx.doi.org/10.1016/j.envpol.2013.12.009
http://dx.doi.org/10.1016/j.envpol.2013....
); in natural soils, this contamination is mainly due the parent material and weathering degree (Marrugo-Negrete et al., 2017MARRUGO-NEGRETE, J.; PINEDO-HERNÁNDEZ, J.; DÍEZ, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, v. 154, p. 380-388, 2017.). On the other hand, contamination by anthropogenic sources, i.e. not natural ones, is done by production and usage of herbicides, phosphorus fertilizers, mining, industrial waste/residue and activities related to chemical preservation of timber (Chirenje et al., 2003CHIRENJE, T.; MA, L. Q.; CHEN, M.; ZILLIOUX, E. J. Comparison between background concentrations of arsenic In urban and non-urban areas of Florida. Advances in Environmental Research, v. 8, p. 137-146, 2003. http://dx.doi.org/10.1016/s1093-0191(02)00138-7
http://dx.doi.org/10.1016/s1093-0191(02)...
; Alonso et al., 2014ALONSO, D. L.; LATORRE, S.; CASTILLO, E.; BRANDÃO, P. F. B. Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, v. 186, p. 272-281, 2014. http://dx.doi.org/10.1016/j.envpol.2013.12.009
http://dx.doi.org/10.1016/j.envpol.2013....
; Roy et al., 2015ROY, M.; GIRI, A. K.; DUTTA, S.; MUKHERJEE, P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, v. 75, p. 180-198, 2015. http://dx.doi.org/10.1016/j.envint.2014.11.010
http://dx.doi.org/10.1016/j.envint.2014....
; Gong et al., 2020GONG, Y.; QU, Y.; YANG, S.; TAO, S.; LIU, Q.; CHEN, Y.; WU, Y.; MA, J. Status of arsenic accumulation in agricultural soils across China (1985-2016). Environmental Research, v. 186, p. 109525, 2020. https://doi.org/10.1016/j.envres.2020.109525
https://doi.org/10.1016/j.envres.2020.10...
). As for the toxicity degree, the inorganic As3+ form (arsine AsH3, arsenate As(OH)3, arsenate AsO(OH)3) is ten times more toxic than the As5+ form (Rosas et al., 2014ROSAS, C, J. M.; GUZMÁN, M, J. L.; HERNÁNDEZ, R, A.; GARZAGONZÁLEZ, M. T.; HINOJOSA, R, L. Arsenic accumulation in maize crop (Zea mays): A review. Science of the Total Environment, v. 488-489, p. 176-187, 2014. http://dx.doi.org/10.1016/j.scitotenv.2014.04.075
http://dx.doi.org/10.1016/j.scitotenv.20...
); both forms are carcinogenic, mutagenic and genotoxic. While in the organic methylated form, such as the case of MMA Monomethylarsonic and DMA Dimethylarsinic, organic As is a hundred times less harmful to health in comparison to its inorganic structures (WHO, 2018WHO. Health impacts of chemicals arsenic. 2018. Available at: Available at: https://www.who.int/en/news-room/fact-sheets/detail/arsenic Access: 16 Aug. 2021.
https://www.who.int/en/news-room/fact-sh...
). As a result of these factors, even in low concentrations As can promote negative effects to health (ATSDR, 2015ATSDR. Arsenic is a naturally occurring element that is widely distributed in the Earth’s crust. 2015. Available at Available at https://www.atsdr.cdc.gov/sites/toxzine/arsenic_toxzine.html#health_effects Access: 16 Aug. 2021.
https://www.atsdr.cdc.gov/sites/toxzine/...
; Mandal, 2017MANDAL, P. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, v. 3, n. 2, p. 17-22, 2017. http://dx.doi.org/10.1016/j.emcon.2017.01.004
http://dx.doi.org/10.1016/j.emcon.2017.0...
) and its accumulation, be it because of agricultural or industrial activities, is worrisome due to a possible transference of this element to wild animals or humans (Su and Yang, 2008SU, Y.; YANG, R. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. Journal of Geochemical Exploration, v. 98, p. 57-64, 2008. http://dx.doi.org/10.1016/j.gexplo.2007.12.001
http://dx.doi.org/10.1016/j.gexplo.2007....
). In Brazil, there are reports of As-contaminated waters (up to 0.36 mg L-1), soils (up to 860 mg kg-1) and sediments (up to 3.200 mg kg-1) situated in vicinity of industrial or mining areas (De Magalhães and Pfeiffer, 1995DE MAGALHÃES, V. F.; PFEIFFER, W. C. Arsenic concentration in sediments near a metallurgical plant (Sepetiba Bay, Rio de Janeiro, Brazil). Journal of Geochemical Exploration, v. 52, n. 1-2, p. 175-181, 1995.; Mirlean and Roisenberg, 2006MIRLEAN, N.; ROISENBERG, A. The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, v. 143, n. 2, p. 335-340, 2006.; Pereira et al., 2009PEREIRA, S. DE F. P.; OLIVEIRA, G. R. F.; OLIVEIRA, J. S.; SILVA, J. S.; SOUZA JUNIOR, P. M. Determinação espectrofotométrica do arsênio em solo da cidade de Santana-AP usando o método do dietilditiocarbamato de prata (SDDC) modificado. Acta Amazonica, v. 39, n. 4, p. 953-960, 2009.; Alves and Rietzler, 2015ALVES, R. H.; RIETZLER, A. C. Efeitos tóxicos de arsênio em eisenia andrei em exposição a solos do entorno de minerações de ouro. Revista Brasileira de Ciencia do Solo, v. 39, n. 3, p. 682-691, 2015.).

Soil plays an important role in the environment by acting as a natural buffer, controlling the As transport to other compartments, although with limited adsorption (retention) capacity. In this system, toxicity, mobility, solubility, availability and bioavailability in the soil depend on specific conditions such as pH, redox potential, CEC, competition with other elements in different chemical equilibria, and composition and ionic strength of the soil solution (Qiao et al., 2019QIAO, P.; YANG, S.; LEI, M.; CHEN, T.; DONG, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Elsevier, v. 664, p. 392-413, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.310
https://doi.org/10.1016/j.scitotenv.2019...
). Arsenic is a chalcophile element (Goldschmidt, 1958GOLDSCHMIDT, V. M. Geochemistry. Londres: Oxford University Press, 1958. 425 p.), therefore its mobility is regulated by its oxidation state (Tarvainen et al., 2013TARVAINEN, T.; ALBANESE, S.; BIRKE, M.; PONAVIC, M.; REIMANN, C. Arsenic in agricultural and grazing land soils of Europe. Applied Geochemistry, v. 28, p. 2-10, 2013. http://dx.doi.org/10.1016/j.apgeochem.2012.10.005
http://dx.doi.org/10.1016/j.apgeochem.20...
); it can be found in the As5+ form when under oxic conditions (Eh>200 mV; pH 5-8), and in the As3+ form under anoxic conditions (Mcbride, 1994MCBRIDE, M. B. Environmental chemistry of soils. New York: Oxford University Press, 1994. 406 p.; Singh et al., 2015SINGH, R.; SINGH, S.; PARIHAR, P.; SINGH, V. P.; PRASAD, S. M. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, v. 112, p. 247-270, 2015. http://dx.doi.org/10.1016/j.ecoenv.2014.10.009
http://dx.doi.org/10.1016/j.ecoenv.2014....
). When in the soil solution, under anaerobic conditions, it is found in the Ca3(AsO4)2, Mg3(AsO4)2 and As2O5 forms and, when under anaerobic conditions, in the As, As2S3 and As2O3 forms (Hayes and Traina, 1998HAYES, K. F.; TRAINA, S. J. Metal speciation and its significance in ecosystem health. In: HUANG, P. M. Soil chemistry and ecosystem health. Madison: Soil Science Society of America Journal, p. 45-84, 1998.). Another interesting factor is that the behavior of arsenate (AsO(OH)3) in the soil is similar to phosphate (PO₄³⁻) and vanadate (VO₄- (Mcbride, 1994MCBRIDE, M. B. Environmental chemistry of soils. New York: Oxford University Press, 1994. 406 p.; Rosas et al., 2014ROSAS, C, J. M.; GUZMÁN, M, J. L.; HERNÁNDEZ, R, A.; GARZAGONZÁLEZ, M. T.; HINOJOSA, R, L. Arsenic accumulation in maize crop (Zea mays): A review. Science of the Total Environment, v. 488-489, p. 176-187, 2014. http://dx.doi.org/10.1016/j.scitotenv.2014.04.075
http://dx.doi.org/10.1016/j.scitotenv.20...
), as it is adsorbed onto Fe and Al oxides, such as non-crystalline aluminosilicates and onto argillo silicates as well, to a lesser extent.

The first studies on natural As contents in soils were by Curi and Franzmeier (1987)CURI, N.; FRANZMEIER, D. P. Effect of Parent Rocks on Chemical and Mineralogical Properties of Some Oxisols in Brazil. Soil Science Society of America Journal, v. 51, n. 1, p. 153-158, 1987., with “Latossolos Ferríferos”, according to EMBRAPA, (Ferric Oxisols, according to Soil Taxonomy) in Minas Gerais, and Campos et al. (2007)CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; ANTUNES, A. S.; MARQUES, J. J G. S.M.; CURI, N. Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, v. 31, n.6, p. 1311-1318, 2007., with seventeen “Latossolos” (Oxisols) in Brazil. After publication of the CONAMA 420 Resolution (Conama, 2009CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.), several scientific papers (Pereira et al., 2009PEREIRA, S. DE F. P.; OLIVEIRA, G. R. F.; OLIVEIRA, J. S.; SILVA, J. S.; SOUZA JUNIOR, P. M. Determinação espectrofotométrica do arsênio em solo da cidade de Santana-AP usando o método do dietilditiocarbamato de prata (SDDC) modificado. Acta Amazonica, v. 39, n. 4, p. 953-960, 2009.; Paye et al., 2010PAYE, H. S.; MELLO, J. W. V.; ABRAHÃO, W. A. P.; FERNANDES FILHO, E. I.; DIAS, L. C. P.; CASTRO, M. L. O. et al. Valores de referência de qualidade para metais pesados em solos no estado do Espírito Santo. Revista Brasileira de Ciência do Solo, v. 34, p. 2041-2051, 2010.; Campos et al., 2013CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; MARQUES, J. J G. S. M.; CURI, N.; ARAUJO, A. S. A.; MIQULLUTI, D. J.; LOPES, C.; SPIAZZI, F. R. Teores de arsênio e cádmio em solos do bioma Cerrado. Revista Brasileira de Ciência do Solo, v. 37, n. 1, p. 281-286, 2013.; De Souza et al., 2016DE SOUZA, L. C.; CAMPOS, M. L; REICHERT, G.; MOURA, C. N. Teores de Arsênio em solos de três regiões do estado de Santa Catarina. Revista Ambiente & Agua, v. 11, n. 1, p. 445- 458, 2016.; De Menezes et al., 2020DE MENEZES, M. D.; BISPO, F. H. A.; FARIA, W. M.; GONÇALVES, M. G. M.; CURI, N.; GUIHLERME, L, R, G. Modeling arsenic content in Brazilian soils: What is relevant? Science of the Total Environment, p. 58, 2020.) were published with information on natural contents or quality reference values for Brazilian soils.

Determining natural trace element contents in the soil, having no human interference, is necessary for defining quality reference values, monitoring and remediating contaminated areas and, furthermore, contributing in understanding the magnitude of the risks to which the population is exposed to daily (Tsuji et al., 2007TSUJI, J. S.; YOST, L. J.; BARRAJ, L. M. ; SCRAFFORD, C. G.; MINK, P. J. Use of background inorganic arsenic exposures to provide perspective on risk assessment results. Regulatory Toxicology and Pharmacology, v. 48, p. 59-68, 2007. http://dx.doi.org/10.1016/j.yrtph.2007.01.004
http://dx.doi.org/10.1016/j.yrtph.2007.0...
).

Considering the above, the advanced agricultural and industrial development of Santa Catarina and its geological and pedological diversity, it is of utmost importance to determine the natural arsenic contents for the soils of the state, which is the objective of the present study.

2. MATERIAL AND METHODS

Soils used in this research were collected from the following regions in the state: western area; eastern mountains; Basaltic Slopes; Itajaí Valley; Santa Catarina Mountains; and southern Santa Catarina. Figure 1 illustrates the geographic distribution of the profiles.

Figure 1.
Map with the location of the 31 sample profiles in the Santa Catarina state.

Soil samples are from the A horizons of 31 profiles that were later described and sampled in roadside artificial gully in places under natural vegetation formations of fields or forests. The same authors who performed, described and classified the soils in this study also determined their physical and chemical attributes, described and classified in Table 1. All profiles were described in areas not subjected to anthropogenic arsenic contamination.

Samples were air-dried, had their clods broken, were homogenized and then passed through a sieve with an opening of 2.0 mm. In sequence, they were ground and homogenized in an agate mortar until forming a fine powder and finally sieved at an aperture of 0.297 mm.

Table 1.
Classes, parent material, physical and chemical attributes of evaluated soils.

The USEPA 3051A SW-846 method was employed as the extraction means. For this purpose, 1.5 g of soil was weighed and 5 mL of 37% HCl PA Merck® was added. Samples were in contact with the acid for 12h00 and then digested in the microwave (Anton PAAR Multiwave 3000®) inside Teflon tubes. As a form of control and method validation, NIST certified sample SEM 2709A (San Joaquin soil) and reference sample EMBRAPA CRM-Agro E2002a (MR-06/2013) were used, and the recovery values are displayed in Table 2.

Table 2.
As recovery percentage for SRM 2709A and CRM-Agro E2002a samples.

Soil analyses were performed in the Instrumentation Laboratory of the Department of Soils and Natural Resources from the Centre of Agroveterinary Sciences - UDESC/CAV. Determination of As contents was performed in an Inductively Coupled Plasma Optical Emission Spectrometer Hydride Generator (ICP-OES-HG at cold vapor). Prior to the determination, a chemical pre-reduction step from As(V) to As(III) by the BCR method (Varejão et al., 2009VAREJÃO, E. V. V.; BELLATO, C. R.; MELO, J. W. V.; FONTES, M. P. F. Optimization of pre-reduction conditions of As(v) in bcr extracts to quantify arsenic by HG-AAS. Revista Brasileira de Ciência do Solo, n. 33, p. 875-883, 2009.) was applied in all samples, adjusting and improving the efficiency in hydride generation. For such, a potassium iodide solution (KI 5% w/v) and ascorbic acid (5% w/v), enough to reach 0.2% v/v, was added in all samples, in the calibration standard solutions and blank samples. After resting for 12h00, As was quantified in ICP-OES-HG at cold vapor (Optima 8300 - Perkin Elmer).

All samples were digested in duplicates and the determination was performed in triplicate per sample. As content readings in the blank samples were used to calculate limits of detection (LOD) = 3 x Standard Deviation (blank samples) / slope of the calibration curve straight line; and limits of quantification (LOQ) = 3.3 x LOD. Obtained values were 0.015 mg kg-1 of LOD and LOQ of 0.050 mg kg-1.

Statistical analyses were performed by using an entirely randomized design separated for each component (Soils, Classes, Parent Material). Comparisons between Soils, Classes, and Parent Material were by employing F and Scott-Knott tests. To meet the theoretical assumptions of these tests, logarithmic transformation of the arsenic content variables was applied as suggested by the descriptive analysis of the data; however, results were presented on the original scale. All analyses were conducted with the R software (R CORE TEAM, 2016R CORE TEAM. R: A language and environment for statistical computing. Vienna, 2016. https://www.R-project.org/.
https://www.R-project.org/....
). As contents found were also subjected to correlation analysis with the following variables: clay content, silt/clay ratio, organic carbon, sum of bases (SB) and base saturation value (V%), Fe and Al contents by sulfuric attack. For all performed tests, a minimum significance level of 5% was considered.

3. RESULTS AND DISCUSSION

Basalt-derived soils averaged the highest As content (11.59 mg kg-1) while the lowest content was observed on soils derived from sandy sediments (0.82 mg kg-1) (Table 3). Higher contents in soils derived from effusive mafic rocks are related to the presence of higher arsenic contents in rock when compared to the other parent materials of evaluated soils in this study. Arsenic contents in basalt (mafic effusive) vary between 0.18 and 113 mg kg-1 (Mandal and Suzuki, 2002MANDAL, B. K.; SUZUKI, K. T. Arsenic round the world: a review. Talanta, v. 58, p. 201-235, 2002.). Arsenic is classified as chalcophile, with basalts and andesites richer in chalcophile elements while granites are poor (Goldschmidt, 1958GOLDSCHMIDT, V. M. Geochemistry. Londres: Oxford University Press, 1958. 425 p.). As3+ can replace Fe3+ in many rock-forming minerals (Reimann et al., 2009REIMANN, C.; MATSCHULLAT, J.; BIRKE, M.; SALMINEN, R. Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, v. 24, p. 1147-1167, 2009.). These As content differences in the rocks may explain the low As contents in soils derived from granite, granite-granulite and mafic granite (Table 4).

Table 3.
As mean content (mg kg-1) for soils derived from different parent material.

Table 4.
Mean As content (mg kg-1) for the main soil orders from Santa Catarina state.

The decreasing sequence of As contents was observed in the following soil Orders: Latossolos, according to EMBRAPA (Oxisols according to Soil Taxonomy) > Nitossolo (Ultisols, Oxisols (Kandic), Alfisols) > Chernossolos (---) = Cambissolo (Inceptisols) = Argissolo (Ultisols) > Neossolos (Entisols) (Table 4). The first three orders group soils derived mainly from basic and intermediate magmatic rocks. The soil “Latossolo Vermelho Distrófico retrático úmbrico” (Oxisols), derived from basalt (Serra Geral Formation) and located in Campos Novos (Table 6), had the highest As content (26.59 mg kg-1) of all 31 evaluated soils. Whereas, the “Neossolo Quartzarênico Órtico típico” (Entisols) profile located in Imbituba city, with the original material coming from sandy sediments, had the lowest As content (0.56 mg kg-1).

A natural As content of 31.7 mg kg-1 was found by Campos et al. (2007)CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; ANTUNES, A. S.; MARQUES, J. J G. S.M.; CURI, N. Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, v. 31, n.6, p. 1311-1318, 2007. for “Latossolo Vermelho Distroférrico típico” (Oxisols) derived from basic and intermediate magmatic rocks of the Serra Geral Formation, and contents of 4.5 mg kg-1 for “Latossolo Amarelo coeso típico” (Oxisols) derived from tertiary sediments. Arsenic content in “Neossolo Quartzarênico órtico típico” (Entisols) collected from the Cerrado, derived from sandstone of Aerado Formation, had 0.28 mg kg-1 (Campos et al., 2013CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; MARQUES, J. J G. S. M.; CURI, N.; ARAUJO, A. S. A.; MIQULLUTI, D. J.; LOPES, C.; SPIAZZI, F. R. Teores de arsênio e cádmio em solos do bioma Cerrado. Revista Brasileira de Ciência do Solo, v. 37, n. 1, p. 281-286, 2013.). These results corroborate the observations in this present study.

In a predictive modeling study of spatial variability using environmental covariates (contents of organic carbon, clay, sand and TiO2) representing the soil formation factors in Brazil, De Menezes et al. (2020)DE MENEZES, M. D.; BISPO, F. H. A.; FARIA, W. M.; GONÇALVES, M. G. M.; CURI, N.; GUIHLERME, L, R, G. Modeling arsenic content in Brazilian soils: What is relevant? Science of the Total Environment, p. 58, 2020. found mean As contents of 11.97±1.62 for the Santa Catarina state; however, only six profiles out of the 31 evaluated in the present study demonstrated similar contents.

Natural As contents within the soils “Latossolo Vermelho Distrófico retrático úmbrico” (Oxisols from Campos Novos) of 26.59 mg kg-1 and “Nitossolo Vermelho Eutroférrico típico” (Oxisols from Luzerna) of 17.63 mg kg-1 (Table 5) were higher than the prevention guideline value (15 mg kg-1) established by CONAMA 420 Resolution (Conama, 2009CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.), reinforcing the need for scientific studies that generate guideline values for soils from different Brazilian states. Nevertheless, an important issue is that trace elements in uncontaminated soils have less mobility than trace elements from anthropogenic contamination, because the former are bound to or are part of the structure of minerals, while those from anthropogenic sources may be more available (Botsou et al., 2016BOTSOU, F.; SUNGUR, A.; KELEPERTZIS, E.; SOYLAK, M. Insights into the chemical partitioning of trace metals in roadside and off- road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety, v. 132, p. 101-110, 2016. https://doi.org/10.1016/j.ecoenv.2016.05.032
https://doi.org/10.1016/j.ecoenv.2016.05...
). Therefore, natural contents higher than prevention values in soils do not necessarily indicate risks to living beings, due to their lesser availability.

Table 5.
As mean content for the main soil profiles in the State of SC.

Such discrepant contents as those obtained in the present study (26.59 - 0.56 mg kg-1) may indicate the need for standardizing more than one quality reference value (QRV), thus reducing the possibility of classifying natural contents as contamination or allowing soils with very low contents to be contaminated. VRQs can be split into groups with different clay and/or iron oxide contents, since this study (Table 6), as well as several others (Campos et al., 2013CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; MARQUES, J. J G. S. M.; CURI, N.; ARAUJO, A. S. A.; MIQULLUTI, D. J.; LOPES, C.; SPIAZZI, F. R. Teores de arsênio e cádmio em solos do bioma Cerrado. Revista Brasileira de Ciência do Solo, v. 37, n. 1, p. 281-286, 2013., De Menezes et al., 2020DE MENEZES, M. D.; BISPO, F. H. A.; FARIA, W. M.; GONÇALVES, M. G. M.; CURI, N.; GUIHLERME, L, R, G. Modeling arsenic content in Brazilian soils: What is relevant? Science of the Total Environment, p. 58, 2020., Almeida et al., 2020ALMEIDA, C. C. et al. Adsorption and desorption of arsenic and its immobilization in soils. Scientia Agricola, v. 78, n. 3, p. 1-11, 2020.), found positive correlation between arsenic content and those said attributes.

Table 6.
Pearson’s correlation (r) between As content and soil attributes. Values of p < 0.05 means significant correlation.

4. CONCLUSIONS

The difference in As content is due to the different genealogical formations of Santa Catarina soils. Effusive mafic rocks, as well as basic and intermediate magmatic ones, had the highest As content in comparison to the other parent materials.

Concerning soil class, different As content was found in the following descending sequence: Latossolos, according to EMBRAPA (Oxisols according to Soil Taxonomy) > Nitossolo (Ultisols, Oxisols (Kandic), Alfisols) > Chernossolos (---) = Cambissolo (Inceptisols) = Argissolo (Ultisols) > Neossolos (Entisols). Both the “Latossolo Vermelho Distrófico retrático úmbrico” (Oxisols) from Campos Novos and the “Nitossolo Vermelho Eutroférrico típico” (Oxisols) from Luzerna presented natural As contents above the prevention value established by the CONAMA 420 resolution (Conama, 2009CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.).

There was positive correlation between the clay content and iron oxide and the natural As content.

5. ACKNOWLEDGEMENTS

We would like to thank the Programa de Apoio à Pesquisa (PAP) UDESC-FAPESC for financing the study.

6. REFERENCES

  • ATSDR. Arsenic is a naturally occurring element that is widely distributed in the Earth’s crust. 2015. Available at Available at https://www.atsdr.cdc.gov/sites/toxzine/arsenic_toxzine.html#health_effects Access: 16 Aug. 2021.
    » https://www.atsdr.cdc.gov/sites/toxzine/arsenic_toxzine.html#health_effects
  • ALMEIDA, C. C. et al Adsorption and desorption of arsenic and its immobilization in soils. Scientia Agricola, v. 78, n. 3, p. 1-11, 2020.
  • ALMEIDA, J. A.; TORRENT, J.; BARRON, V. Cor de solo, formas do fósforo e adsorção de fosfatos em Latossolos desenvolvidos de basalto do extremo-sul do Brasil. Revista Brasileira de Ciência do Solo, v. 27, n. 6, p. 985-1002, 2003.
  • ALONSO, D. L.; LATORRE, S.; CASTILLO, E.; BRANDÃO, P. F. B. Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, v. 186, p. 272-281, 2014. http://dx.doi.org/10.1016/j.envpol.2013.12.009
    » http://dx.doi.org/10.1016/j.envpol.2013.12.009
  • ALVES, R. H.; RIETZLER, A. C. Efeitos tóxicos de arsênio em eisenia andrei em exposição a solos do entorno de minerações de ouro. Revista Brasileira de Ciencia do Solo, v. 39, n. 3, p. 682-691, 2015.
  • BOTSOU, F.; SUNGUR, A.; KELEPERTZIS, E.; SOYLAK, M. Insights into the chemical partitioning of trace metals in roadside and off- road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety, v. 132, p. 101-110, 2016. https://doi.org/10.1016/j.ecoenv.2016.05.032
    » https://doi.org/10.1016/j.ecoenv.2016.05.032
  • BRINGHENTI, I.; ALMEIDA, J. A. DE; HOFER, A. Mineralogia e gênese de argissolos das Serras do Tabuleiro/Itajaí, Estado de Santa Catarina. Revista Brasileira de Ciência do Solo, v. 36, n. 4, p. 1057-1072, 2012.
  • CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; ANTUNES, A. S.; MARQUES, J. J G. S.M.; CURI, N. Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, v. 31, n.6, p. 1311-1318, 2007.
  • CAMPOS, M. L.; GUILHERME, L. R. G.; LOPES, R. S.; MARQUES, J. J G. S. M.; CURI, N.; ARAUJO, A. S. A.; MIQULLUTI, D. J.; LOPES, C.; SPIAZZI, F. R. Teores de arsênio e cádmio em solos do bioma Cerrado. Revista Brasileira de Ciência do Solo, v. 37, n. 1, p. 281-286, 2013.
  • CHIRENJE, T.; MA, L. Q.; CHEN, M.; ZILLIOUX, E. J. Comparison between background concentrations of arsenic In urban and non-urban areas of Florida. Advances in Environmental Research, v. 8, p. 137-146, 2003. http://dx.doi.org/10.1016/s1093-0191(02)00138-7
    » http://dx.doi.org/10.1016/s1093-0191(02)00138-7
  • CONAMA (Brasil). Resolução nº 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial [da] União: seção 1, Brasília, DF, n. 249, p. 81-84, 30 dez. 2009.
  • CORRÊA, J. Mineralogia e gênese das principais classes de solos de encostas basálticas do estado de Santa Catarina. Lages. 2003. 141p. Dissertação (Mestrado) - Universidade do Estado de Santa Catarina, Florianópolis, 2003.
  • DA COSTA, A.; ALBUQUERQUE, J. A.; ALMEIDA, J. A.; DA COSTA, A.; LUCIANO, R. V. Pedotransfer functions to estimate retention and availability of water in soils of the state of Santa Catarina, Brazil. Revista Brasileira de Ciência do Solo, v. 37, n. 4, p. 889-910, 2013.
  • CURI, N.; FRANZMEIER, D. P. Effect of Parent Rocks on Chemical and Mineralogical Properties of Some Oxisols in Brazil. Soil Science Society of America Journal, v. 51, n. 1, p. 153-158, 1987.
  • DE MAGALHÃES, V. F.; PFEIFFER, W. C. Arsenic concentration in sediments near a metallurgical plant (Sepetiba Bay, Rio de Janeiro, Brazil). Journal of Geochemical Exploration, v. 52, n. 1-2, p. 175-181, 1995.
  • DE MENEZES, M. D.; BISPO, F. H. A.; FARIA, W. M.; GONÇALVES, M. G. M.; CURI, N.; GUIHLERME, L, R, G. Modeling arsenic content in Brazilian soils: What is relevant? Science of the Total Environment, p. 58, 2020.
  • DE SOUZA, L. C.; CAMPOS, M. L; REICHERT, G.; MOURA, C. N. Teores de Arsênio em solos de três regiões do estado de Santa Catarina. Revista Ambiente & Agua, v. 11, n. 1, p. 445- 458, 2016.
  • GAO, W.; NI, W.; ZHANG, Y.; LI, Y.; SHI, T.; LI, Z. Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified / stabilized tailings using metallurgical slag-based binders. Journal of Hazardous Materials, v. 381, p. 120992, 2020. https://doi.org/10.1016/j.jhazmat.2019.120992
    » https://doi.org/10.1016/j.jhazmat.2019.120992
  • GOLDSCHMIDT, V. M. Geochemistry. Londres: Oxford University Press, 1958. 425 p.
  • GONG, Y.; QU, Y.; YANG, S.; TAO, S.; LIU, Q.; CHEN, Y.; WU, Y.; MA, J. Status of arsenic accumulation in agricultural soils across China (1985-2016). Environmental Research, v. 186, p. 109525, 2020. https://doi.org/10.1016/j.envres.2020.109525
    » https://doi.org/10.1016/j.envres.2020.109525
  • HAYES, K. F.; TRAINA, S. J. Metal speciation and its significance in ecosystem health. In: HUANG, P. M. Soil chemistry and ecosystem health. Madison: Soil Science Society of America Journal, p. 45-84, 1998.
  • LUNARDI NETO, A.; ALMEIDA, J. A. de. Mineralogia das frações silte e argila em Argissolos com horizontes subsuperficiais escurecidos em Santa Catarina. Revista de Ciências Agroveterinárias, v. 12, n. 3, p. 282-293, 2013.
  • MANDAL, B. K.; SUZUKI, K. T. Arsenic round the world: a review. Talanta, v. 58, p. 201-235, 2002.
  • MANDAL, P. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, v. 3, n. 2, p. 17-22, 2017. http://dx.doi.org/10.1016/j.emcon.2017.01.004
    » http://dx.doi.org/10.1016/j.emcon.2017.01.004
  • MARRUGO-NEGRETE, J.; PINEDO-HERNÁNDEZ, J.; DÍEZ, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, v. 154, p. 380-388, 2017.
  • MCBRIDE, M. B. Environmental chemistry of soils. New York: Oxford University Press, 1994. 406 p.
  • MIRLEAN, N.; ROISENBERG, A. The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, v. 143, n. 2, p. 335-340, 2006.
  • PAES SOBRINHO, J. B.; ALMEIDA, J. A.; ERHART, J. Mineralogia, propriedades químicas e classificação de solos das Serras do Leste Catarinense. Revista de Ciências Agroveterinárias, v. 8, n. 1, p. 9-24, 2009.
  • PAYE, H. S.; MELLO, J. W. V.; ABRAHÃO, W. A. P.; FERNANDES FILHO, E. I.; DIAS, L. C. P.; CASTRO, M. L. O. et al Valores de referência de qualidade para metais pesados em solos no estado do Espírito Santo. Revista Brasileira de Ciência do Solo, v. 34, p. 2041-2051, 2010.
  • PEREIRA, S. DE F. P.; OLIVEIRA, G. R. F.; OLIVEIRA, J. S.; SILVA, J. S.; SOUZA JUNIOR, P. M. Determinação espectrofotométrica do arsênio em solo da cidade de Santana-AP usando o método do dietilditiocarbamato de prata (SDDC) modificado. Acta Amazonica, v. 39, n. 4, p. 953-960, 2009.
  • QIAO, P.; YANG, S.; LEI, M.; CHEN, T.; DONG, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Elsevier, v. 664, p. 392-413, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.310
    » https://doi.org/10.1016/j.scitotenv.2019.01.310
  • R CORE TEAM. R: A language and environment for statistical computing. Vienna, 2016. https://www.R-project.org/.
    » https://www.R-project.org/.
  • REIMANN, C.; MATSCHULLAT, J.; BIRKE, M.; SALMINEN, R. Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, v. 24, p. 1147-1167, 2009.
  • ROSAS, C, J. M.; GUZMÁN, M, J. L.; HERNÁNDEZ, R, A.; GARZAGONZÁLEZ, M. T.; HINOJOSA, R, L. Arsenic accumulation in maize crop (Zea mays): A review. Science of the Total Environment, v. 488-489, p. 176-187, 2014. http://dx.doi.org/10.1016/j.scitotenv.2014.04.075
    » http://dx.doi.org/10.1016/j.scitotenv.2014.04.075
  • ROY, M.; GIRI, A. K.; DUTTA, S.; MUKHERJEE, P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, v. 75, p. 180-198, 2015. http://dx.doi.org/10.1016/j.envint.2014.11.010
    » http://dx.doi.org/10.1016/j.envint.2014.11.010
  • SINGH, R.; SINGH, S.; PARIHAR, P.; SINGH, V. P.; PRASAD, S. M. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, v. 112, p. 247-270, 2015. http://dx.doi.org/10.1016/j.ecoenv.2014.10.009
    » http://dx.doi.org/10.1016/j.ecoenv.2014.10.009
  • SU, Y.; YANG, R. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. Journal of Geochemical Exploration, v. 98, p. 57-64, 2008. http://dx.doi.org/10.1016/j.gexplo.2007.12.001
    » http://dx.doi.org/10.1016/j.gexplo.2007.12.001
  • TARVAINEN, T.; ALBANESE, S.; BIRKE, M.; PONAVIC, M.; REIMANN, C. Arsenic in agricultural and grazing land soils of Europe. Applied Geochemistry, v. 28, p. 2-10, 2013. http://dx.doi.org/10.1016/j.apgeochem.2012.10.005
    » http://dx.doi.org/10.1016/j.apgeochem.2012.10.005
  • TESKE, R.; ALMEIDA, J. A.; HOFFER, A.; LUNARDI NETO, A. Caracterização química, física e morfológica de solos derivados de rochas efusivas no Planalto Sul de Santa Catarina, Brasil. Revista de Ciências Agroveterinárias, v. 12, n. 2, p. 175-186, 2013.
  • TSUJI, J. S.; YOST, L. J.; BARRAJ, L. M. ; SCRAFFORD, C. G.; MINK, P. J. Use of background inorganic arsenic exposures to provide perspective on risk assessment results. Regulatory Toxicology and Pharmacology, v. 48, p. 59-68, 2007. http://dx.doi.org/10.1016/j.yrtph.2007.01.004
    » http://dx.doi.org/10.1016/j.yrtph.2007.01.004
  • VAREJÃO, E. V. V.; BELLATO, C. R.; MELO, J. W. V.; FONTES, M. P. F. Optimization of pre-reduction conditions of As(v) in bcr extracts to quantify arsenic by HG-AAS. Revista Brasileira de Ciência do Solo, n. 33, p. 875-883, 2009.
  • XU, Y.; WANG, K.; ZHOU, Q.; ZHANG, L.; QIAN, G. Effects of humus on the mobility of arsenic in tailing soil and the thiol- modification of humus. Chemosphere, v. 259, p. 127403, 2020. https://doi.org/10.1016/j.chemosphere.2020.127403
    » https://doi.org/10.1016/j.chemosphere.2020.127403
  • WHO. Health impacts of chemicals arsenic. 2018. Available at: Available at: https://www.who.int/en/news-room/fact-sheets/detail/arsenic Access: 16 Aug. 2021.
    » https://www.who.int/en/news-room/fact-sheets/detail/arsenic

Publication Dates

  • Publication in this collection
    01 Nov 2021
  • Date of issue
    2021

History

  • Received
    08 Mar 2021
  • Accepted
    30 Aug 2021
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com