Acessibilidade / Reportar erro

Salmonella spp. in non-edible animal products: a burden on the broiler industry

Salmonella spp. em produtos animais não comestíveis: um ônus para a indústria de frangos

Abstract

The slaughter process produces carcasses, which are of greater commercial value, and by-products, which can be separated into edible or non-edible products. The latter is intended for the preparation of products not fit for human consumption, such as animal meal. The use of animal meal as feed ingredients reduces the environmental damage caused by the waste from the slaughterhouses and supplies nutritional and economic characteristics in the poultry sector. However, contamination by microorganisms such as Salmonella spp. plays an important role in the spread of the pathogen in poultry farms. This in turn negatively impacts poultry performance and can be a consumer health risk. In this report, we review the process for extracting proteinaceous waste from these by-products and the risk of contamination by Salmonella spp. in the food chain of animal products.

Keywords:
Slaughter process; Heat treatment; Microbiology; Poultry farms; Contamination; One health

Resumo

O processo de abate produz carcaças, que são de maior valor comercial, e subprodutos, que podem ser separados em comestíveis ou não comestíveis. Estes últimos destinam-se à preparação de produtos impróprios para alimentação humana, como as farinhas de origem animal. A utilização de farinhas de origem animal como ingrediente da ração reduz os danos ambientais causados ​​pelos resíduos dos frigoríficos e fornece possibilidades nutricionais e econômicas ao setor avícola. No entanto, a contaminação por microrganismos como Salmonella spp. desempenha um papel importante na disseminação do patógeno em granjas avícolas. Isso, por sua vez, impacta negativamente o desempenho das aves e pode ser um risco à saúde do consumidor. Neste relatório, revisamos o processo de extração de resíduos de proteináceos desses subprodutos e o risco de contaminação por Salmonella spp. na cadeia alimentar de produtos de origem animal.

Palavras-chave:
Abate; Tratamento térmico; Microbiologia; Avicultura; Contaminação; Saúde única

Highlights

Studies on Salmonella spp. in by-products of animal origin as a raw material of feed and ready feed for broilers contributes to the improvement of its quality, reducing the risks of disease transmission

Competent authorities and the professionals

Food Safety and factors that influence contamination in industrial food production and its impacts on one health is a necessity in the world of today

1 Introduction

Meat processing for human consumption is an officially regulated process that is supervised by veterinarians in Brazil (Brasil, 2017Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2017, March 30). Decreto nº 9.013, de 29 de março de 2017. Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). This process generated waste that is considered non-edible to humans and corresponds to about 45% of the slaughter product (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
), i.e., a large volume of by-products like meat trimmings, bones, blood, and viscera among others (Toldrá et al., 2016Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. PMid:27156911. http://dx.doi.org/10.1016/j.meatsci.2016.04.021
http://dx.doi.org/10.1016/j.meatsci.2016...
). To make this process more environmentally friendly and to cut down on waste products, waste by-products can be prepared into animal feed meals (Adhikari et al., 2018Adhikari, B. B., Chae, M., & Bressler, D. C. (2018). Utilization of slaughterhouse waste in value-added applications: Recent advances in the development of wood adhesives. Polymers, 10(2), 176. PMid:30966212. http://dx.doi.org/10.3390/polym10020176
http://dx.doi.org/10.3390/polym10020176...
; Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
; Socas-Rodríguez et al., 2021Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
http://dx.doi.org/10.1016/j.tifs.2021.05...
). Meals produced through this method involve product grinding, heat treatment, and drying (Malav et al., 2018Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
http://dx.doi.org/10.31031/APDV.2018.02....
). Thermal processing can be used to reduce microbial contamination to safe levels in order to avoid the transmission of pathogens, such as Salmonella spp. in animal meals (Steghöfer et al., 2021Steghöfer, S., Limburn, R., & Margas, E. (2021). Microbiological assessment of heat treatment of broiler mash at laboratory scale to evaluate Salmonella reduction during feed conditioning. Journal of Applied Poultry Research, 30(1), 100122. http://dx.doi.org/10.1016/j.japr.2020.100122
http://dx.doi.org/10.1016/j.japr.2020.10...
). Nevertheless, the presence of this pathogen has still been detected in some samples, indicating inadequacies with this process (Liu et al., 2018Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
http://dx.doi.org/10.3389/fpubh.2018.001...
). Infection by this bacterium affects a wide variety of hosts (Andino & Hanning, 2015Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
http://dx.doi.org/10.1155/2015/520179...
; Wemyss & Pearson, 2019Wemyss, M. A., & Pearson, J. S. (2019). Host cell death responses to non-typhoidal Salmonella infection. Frontiers in Immunology, 10, 1758. PMid:31402916. http://dx.doi.org/10.3389/fimmu.2019.01758
http://dx.doi.org/10.3389/fimmu.2019.017...
), but poultry is one of the most important reservoirs (Wessels et al., 2021Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods, 10(8), 1742. PMid:34441520. http://dx.doi.org/10.3390/foods10081742
http://dx.doi.org/10.3390/foods10081742...
). Contaminated poultry food products are capable of introducing the pathogen into the human food chain (Abebe et al., 2020Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 4674235. PMid:32684938. http://dx.doi.org/10.1155/2020/4674235
http://dx.doi.org/10.1155/2020/4674235...
), allowing a continuous cycle of dissemination through the poultry meat, eggs, and other by-products (Berchieri Júnior & Freitas Neto, 2015Berchieri Júnior, A., & Freitas Neto, O. C. (2015). Salmoneloses. In A. Berchieri Júnior, E. P. Silva, J. Di Fábio, L. Sesti & M. A. F. Zuanaze (Eds.), Doença das aves (2. ed., pp. 435-454). Campinas: Fundação APinCO de Ciência e Tecnologia Avícolas.; Foley et al., 2013Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., & Danzeisen, J. (2013). Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews, 77(4), 582-607. PMid:24296573. http://dx.doi.org/10.1128/MMBR.00015-13
http://dx.doi.org/10.1128/MMBR.00015-13...
). Poultry and poultry products contain the highest frequency of isolation of this pathogen. Hence, a small number of infected animals can lead to contamination of the entire slaughter line. Cross-contamination of equipment and utensils used in production and storage leads to contamination of meals, which can aggravate when the sanitation control measures are insufficient (Corcoran et al., 2014Corcoran, M., Morris, D., Lappe, N., O’Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507-1514. PMid:24362427. http://dx.doi.org/10.1128/AEM.03109-13
http://dx.doi.org/10.1128/AEM.03109-13...
). According to Beshiru et al. (2018)Beshiru, A., Igbinosa, I. H., & Igbinosa, E. O. (2018). Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. PLoS One, 13(9), e0204345. PMid:30235341. http://dx.doi.org/10.1371/journal.pone.0204345
http://dx.doi.org/10.1371/journal.pone.0...
, Salmonella spp. can remain adhering tobiotic or abiotic surfaces and thus hygiene measures have failed to eliminate the pathogen. Foodborne diseases stand out precisely because they take a relevant position in the context of health worldwide (Abebe et al., 2020Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 4674235. PMid:32684938. http://dx.doi.org/10.1155/2020/4674235
http://dx.doi.org/10.1155/2020/4674235...
). Even with technological development, improvements in sanitation standards, and the implementation of quality tools, the number of infections caused by this pathogen in humans and animals is still increasing (Ehuwa et al., 2021Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella, food safety and food handling practices. Foods, 10(5), 907. PMid:33919142. http://dx.doi.org/10.3390/foods10050907
http://dx.doi.org/10.3390/foods10050907...
; Ferreira et al., 2013Ferreira, L. L., Mendes, F. R., Santos, B., Andrade, M. A., & Café, M. B. (2013). Salmonelose em sanidade avícola e saúde pública. Nutritime, 10(5), 2716-2751.).

2 Food-borne disease caused by Salmonella spp.

Today, foodborne disease represents a serious public health problem due to their high frequency, mortality, and the large number of microorganisms that may be involved in a simple epidemic event (World Health Organization, 2022World Health Organization. (2022, May 19 ). Food safety. Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.who.int/news-room/fact-sheet...
). Several foodborne pathogens are known to cause disease, with bacteria being the most common (Abebe et al., 2020Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 4674235. PMid:32684938. http://dx.doi.org/10.1155/2020/4674235
http://dx.doi.org/10.1155/2020/4674235...
; Bintsis, 2017Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529-563. PMid:31294175. http://dx.doi.org/10.3934/microbiol.2017.3.529
http://dx.doi.org/10.3934/microbiol.2017...
). In the last decade, there has been a 25% decrease in foodborne diseases caused by certain pathogens such as Escherichia coli O157H7 and Campylobacter spp., However, this has not been demonstrated with Salmonella spp. which continues to be a major cause of foodborne disease worldwide (Hunter & Watkins, 2017Hunter, C., & Watkins, K. F. (2017). Infectious diseases related to travel. In I. Plumb, P. Fields & B. Bruce (Eds.), Salmonellosis, nontyphoidal (Chap. 3). Retrieved in 2019, January 22, from https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal
https://wwwnc.cdc.gov/travel/yellowbook/...
; Pal et al., 2015Pal, M., Merera, O., Abera, F., Rahman, M. T., & Hazarika, R. A. (2015). Salmonellosis: A major foodborne disease of global significance. Beverage Food World, 42(12), 21-24.; Popa & Popa, 2021Popa, G. L., & Popa, M. I. (2021). Salmonella spp. infection-a continuous threat worldwide. Germs, 11(1), 88-96. PMid:33898345. http://dx.doi.org/10.18683/germs.2021.1244
http://dx.doi.org/10.18683/germs.2021.12...
; World Health Organization, 2018World Health Organization. (2018, February 20). Salmonella (non-typhoidal). Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
https://www.who.int/news-room/fact-sheet...
). Salmonella infections stand out for their endemicity, high morbidity, and difficulty of adequate control measures. Salmonella spp. also displays high tolerance to environmental adversities, wide distribution, multi-resistance to antimicrobials, and increased adaptability (Chen et al., 2013Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatrics and Neonatology, 54(3), 147-152. PMid:23597525. http://dx.doi.org/10.1016/j.pedneo.2013.01.010
http://dx.doi.org/10.1016/j.pedneo.2013....
; Silva et al., 2014Silva, F. F. P. D., Horvath, M. B., Silveira, J. G., Pieta, L., & Tondo, E. C. (2014). Occurrence of Salmonella spp. and generic Escherichia coli on beef carcasses sampled at a brazilian slaughterhouse. Brazilian Journal of Microbiology, 45(1), 17-24. PMid:24948909. http://dx.doi.org/10.1590/S1517-83822014005000037
http://dx.doi.org/10.1590/S1517-83822014...
; Tegegne, 2019Tegegne, F. M. (2019). Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. Journal of Food Nutrition & Health, 2(1), 7-14.). There are more than 2659 serovars of this genus (Issenhuth-Jeanjean et al., 2014Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., Pinna, E., Nair, S., Fields, P. I., & Weill, F. X. (2014). Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Research in Microbiology, 165(7), 526-530. PMid:25049166. http://dx.doi.org/10.1016/j.resmic.2014.07.004
http://dx.doi.org/10.1016/j.resmic.2014....
). The serovars S. Typhimurium, S. Enteritidis, and S. Newport are the ones most commonly involved in food-borne outbreaks by Salmonella spp. in humans (Alghoribi et al., 2019Alghoribi, M. F., Doumith, M., Alrodayyan, M., Al Zayer, M., Köster, W. L., Muhanna, A., Aljohani, S. M., Balkhy, H. H., & Desin, T. S. (2019). S. Enteritidisand S. Typhimurium harboring SPI-1 and SPI-2 are the predominant serotypesassociated with human salmonellosis in Saudi Arabia. Frontiers in Cellular and Infection Microbiology, 9, 187. PMid:31214517. http://dx.doi.org/10.3389/fcimb.2019.00187
http://dx.doi.org/10.3389/fcimb.2019.001...
; Andino & Hanning, 2015Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
http://dx.doi.org/10.1155/2015/520179...
; Moffatt et al., 2016Moffatt, C. R., Musto, J., Pingault, N., Miller, M., Stafford, R., Gregory, J., Polkinghorne, B., & Kirk, M. D. (2016). Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathogens and Disease, 13(7), 379-385. PMid:27028267. http://dx.doi.org/10.1089/fpd.2015.2110
http://dx.doi.org/10.1089/fpd.2015.2110...
; Popa & Popa, 2021Popa, G. L., & Popa, M. I. (2021). Salmonella spp. infection-a continuous threat worldwide. Germs, 11(1), 88-96. PMid:33898345. http://dx.doi.org/10.18683/germs.2021.1244
http://dx.doi.org/10.18683/germs.2021.12...
). However, other serovars, such as S. Infantis, S. Alachua, S. Agona, S. Hadar, S. Heidelberg, and S. Virchow, have also been reported to cause infections in humans (Almeida et al., 2015Almeida, I. A. Z. C., Peresi, J. T. M., Alves, E. C., Marques, D. F., Teixeira, I. S. C., Lima e Silva, S. I., Pigon, S. R. F., Tiba, M. R., & Fernandes, S. A. (2015). Salmonella Alachua: Causative agent of a foodborne disease outbreak. The Brazilian Journal of Infectious Diseases, 19(3), 233-238. PMid:25661321. http://dx.doi.org/10.1016/j.bjid.2014.12.006
http://dx.doi.org/10.1016/j.bjid.2014.12...
; Dewey-Mattia et al., 2018Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E., & Crowe, S. J. (2018). Surveillance for foodborne disease outbreaks: United States, 2009-2015. Morbidity and Mortality Weekly Report. Surveillance Summaries, 67(10), 1-11. PMid:30048426. http://dx.doi.org/10.15585/mmwr.ss6710a1
http://dx.doi.org/10.15585/mmwr.ss6710a1...
; European Food Safety Authority, 2018European Food Safety Authority. European Centre for Disease Prevention and Control. (2018). Multi‐country outbreak of Salmonella Agona infections possibly linked to ready‐to‐eat food. EFSA Supporting Publication, 15(7), 1465. https://doi.org/10.2903/sp.efsa.2018.EN-1465
https://doi.org/10.2903/sp.efsa.2018.EN-...
; Hindermann et al., 2017Hindermann, D., Gopinath, G., Chase, H., Negrete, F., Althaus, D., Zurfluh, K., Tall, B. D., Stephan, R., & Nüesch-Inderbinen, M. (2017). Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Frontiers in Microbiology, 8, 1322. PMid:28751886. http://dx.doi.org/10.3389/fmicb.2017.01322
http://dx.doi.org/10.3389/fmicb.2017.013...
; Jackson et al., 2013Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerging Infectious Diseases, 19(8), 1239-1244. PMid:23876503. http://dx.doi.org/10.3201/eid1908.121511
http://dx.doi.org/10.3201/eid1908.121511...
). S. Dublin, S. Muenster, and S. Choleraesuis are the serovars most associated with lethality in humans (Andino & Hanning, 2015Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
http://dx.doi.org/10.1155/2015/520179...
). It is estimated that a variety of factors for each serovar is involved in the severity of infections by Salmonella spp. Including the host individual’s ability to limit the infection at the gastrointestinal mucosa through immune responses (Wemyss & Pearson, 2019Wemyss, M. A., & Pearson, J. S. (2019). Host cell death responses to non-typhoidal Salmonella infection. Frontiers in Immunology, 10, 1758. PMid:31402916. http://dx.doi.org/10.3389/fimmu.2019.01758
http://dx.doi.org/10.3389/fimmu.2019.017...
). After colonization and adaptation to the host, Salmonella spp. can present with asymptomatic forms that colonized the intestine (Dougan & Baker, 2014Dougan, G., & Baker, S. (2014). Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annual Review of Microbiology, 68(1), 317-336. PMid:25208300. http://dx.doi.org/10.1146/annurev-micro-091313-103739
http://dx.doi.org/10.1146/annurev-micro-...
; Gunn et al., 2014Gunn, J. S., Marshall, J. M., Baker, S., Dongol, S., Charles, R. C., & Ryan, E. T. (2014). Salmonella chronic carriage: Epidemiology, diagnosis, and gallbladder persistence. Trends in Microbiology, 22(11), 648-655. PMid:25065707. http://dx.doi.org/10.1016/j.tim.2014.06.007
http://dx.doi.org/10.1016/j.tim.2014.06....
; MacKenzie et al., 2017MacKenzie, K. D., Palmer, M. B., Köster, W. L., & White, A. P. (2017). Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species. Frontiers in Veterinary Science, 4, 138. PMid:29159172. http://dx.doi.org/10.3389/fvets.2017.00138
http://dx.doi.org/10.3389/fvets.2017.001...
) or may present clinical manifestations (Singh, 2013Singh, V. (2013). Salmonella serovars and their host specificity. Journal of Veterinary Science and Animal Husbandry, 1(3), 1-4. http://dx.doi.org/10.15744/2348-9790.1.301
http://dx.doi.org/10.15744/2348-9790.1.3...
). Salmonella´s infections present with enteric fevers caused by typhoid strains, mainly S. Typhi (typhoid fever) and S. Paratyphi A, B and C (paratyphoid fever) or infectious gastroenteritis, most often characterized by self-limiting diarrhea, and caused by a large number of non-typhoid Salmonella (Kagirita et al., 2017Kagirita, A. A., Baguma, A., Owalla, T. J., Bazira, J., & Majalija, S. (2017). Molecular characterization of Salmonella from human and animal origins in Uganda. International Journal of Bacteriology, 2017, 4604789. PMid:28634597. http://dx.doi.org/10.1155/2017/4604789
http://dx.doi.org/10.1155/2017/4604789...
; Wain et al., 2015Wain, J., Hendriksen, R. S., Mikoleit, M. L., Keddy, K. H., & Ochiai, R. L. (2015). Typhoid fever. Lancet, 385(9973), 1136-1145. PMid:25458731. http://dx.doi.org/10.1016/S0140-6736(13)62708-7
http://dx.doi.org/10.1016/S0140-6736(13)...
). Disease severity and localization depend on the serovar and virulence of the Salmonella spp. and the host's immune status (Wang et al., 2020Wang, M., Qazi, I. H., Wang, L., Zhou, G., & Han, H. (2020). Salmonella virulence and immune escape. Microorganisms, 8(3), 407. PMid:32183199. http://dx.doi.org/10.3390/microorganisms8030407
http://dx.doi.org/10.3390/microorganisms...
).

3 Epidemiology of infections caused by Salmonella spp.

Considered the most widespread zoonosis in the world, salmonellosis has a transmission cycle that involves practically all vertebrates (Hossain et al., 2021Hossain, M. J., Attia, Y., Ballah, F. M., Islam, M. S., Sobur, M. A., Islam, M. A., Ievy, S., Rahman, A., Nishiyama, A., Islam, M. S., Hassan, J., & Rahman, M. T. (2021). Zoonotic significance and antimicrobial resistance in salmonella in poultry in Bangladesh for the period of 2011–2021. Zoonotic Diseases, 1(1), 3-24. http://dx.doi.org/10.3390/zoonoticdis1010002
http://dx.doi.org/10.3390/zoonoticdis101...
). All Salmonella spp. are pathogenic to humans in some capacity (World Health Organization, 2018World Health Organization. (2018, February 20). Salmonella (non-typhoidal). Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
https://www.who.int/news-room/fact-sheet...
), although only approximately 50 of the 2659 existing serovars are regularly isolated from humans (Harvey et al., 2017Harvey, R. R., Friedman, C. R., Crim, S. M., Judd, M., Barrett, K. A., Tolar, B., Folster, J. P., Griffin, P. M., & Brown, A. C. (2017). Epidemiology of Salmonella enterica serotype Dublin infections among humans, United States, 1968–2013. Emerging Infectious Diseases, 23(9), 1493-1501. PMid:28820133. http://dx.doi.org/10.3201/eid2309.170136
http://dx.doi.org/10.3201/eid2309.170136...
). There are several factors that contribute to the emergence or increase of pathogenicity, among which the following factors stand out: the growing increase in the human population, the existence of vulnerable or more exposed population groups, the disorderly urbanization process, and the need for food production in large industrial scale (Radhakrishnan et al., 2018Radhakrishnan, A., Als, D., Mintz, E. D., Crump, J. A., Stanaway, J., Breiman, R. F., & Bhutta, Z. A. (2018). Introductory article on global burden and epidemiology of typhoid fever. The American Journal of Tropical Medicine and Hygiene, 99(Suppl. 3), 4-9. PMid:30047370. http://dx.doi.org/10.4269/ajtmh.18-0032
http://dx.doi.org/10.4269/ajtmh.18-0032...
; Rohr et al., 2019Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., Hudson, P. J., Jouanard, N., Nguyen, K. H., Ostfeld, R. S., Remais, J. V., Riveau, G., Sokolow, S. H., & Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. PMid:32219187. http://dx.doi.org/10.1038/s41893-019-0293-3
http://dx.doi.org/10.1038/s41893-019-029...
). Some serotypes are considered host-specific, although the rate of adaptability varies according to the serotype and effects on the pathogenicity of humans and animals (Andino & Hanning, 2015Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
http://dx.doi.org/10.1155/2015/520179...
; Evangelopoulou et al., 2013Evangelopoulou, G., Kritas, S., Govaris, A., & Burriel, A. R. (2013). Animal salmonelloses: A brief review of “host adaptation and host specificity” of Salmonella spp. Veterinary World, 6(10), 703-708. http://dx.doi.org/10.14202/vetworld.2013.703-708
http://dx.doi.org/10.14202/vetworld.2013...
; Singh, 2013Singh, V. (2013). Salmonella serovars and their host specificity. Journal of Veterinary Science and Animal Husbandry, 1(3), 1-4. http://dx.doi.org/10.15744/2348-9790.1.301
http://dx.doi.org/10.15744/2348-9790.1.3...
). This specificity depends on the ability of each serotype to adapt to the environment within the host. Salmonella Typhi and S. Paratyphi, which cause enteric fevers, are restricted to human hosts and are not normally pathogenic for animals (Chen et al., 2013Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatrics and Neonatology, 54(3), 147-152. PMid:23597525. http://dx.doi.org/10.1016/j.pedneo.2013.01.010
http://dx.doi.org/10.1016/j.pedneo.2013....
; Feasey et al., 2012Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S., & Gordon, M. A. (2012). Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet, 379(9835), 2489-2499. PMid:22587967. http://dx.doi.org/10.1016/S0140-6736(11)61752-2
http://dx.doi.org/10.1016/S0140-6736(11)...
). Salmonella Pullorum and Salmonella Gallinarum are responsible for bird Pullorum disease and fowl typhoid, respectively, in poultry (Xiong et al., 2018Xiong, D., Song, L., Pan, Z., & Jiao, X. (2018). Identification and discrimination of Salmonella enterica serovar gallinarum biovars pullorum and gallinarum based on a one-step multiplex PCR assay. Frontiers in Microbiology, 9, 1718. PMid:30108571. http://dx.doi.org/10.3389/fmicb.2018.01718
http://dx.doi.org/10.3389/fmicb.2018.017...
). Samonella Dublin infects cattle (Uzal et al., 2016Uzal, F. A., Plattner, B. L., & Hostettter, J. M. (2016). Jubb, Kennedy & Palmer’s pathology of domestic animals 6th ed. London: Elsevier.) and occasionally other species such as pigs, sheep, and horses (Uzzau et al., 2000Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology and Infection, 125(2), 229-255. PMid:11117946. http://dx.doi.org/10.1017/S0950268899004379
http://dx.doi.org/10.1017/S0950268899004...
). In general, serotypes that are highly adapted to animal hosts can cause mild symptoms in humans. S. Choleraesuis and S. Dublin, which infect pigs and cattle, respectively, can have severe consequences for human health (Harvey et al., 2017Harvey, R. R., Friedman, C. R., Crim, S. M., Judd, M., Barrett, K. A., Tolar, B., Folster, J. P., Griffin, P. M., & Brown, A. C. (2017). Epidemiology of Salmonella enterica serotype Dublin infections among humans, United States, 1968–2013. Emerging Infectious Diseases, 23(9), 1493-1501. PMid:28820133. http://dx.doi.org/10.3201/eid2309.170136
http://dx.doi.org/10.3201/eid2309.170136...
; Uzzau et al., 2000Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology and Infection, 125(2), 229-255. PMid:11117946. http://dx.doi.org/10.1017/S0950268899004379
http://dx.doi.org/10.1017/S0950268899004...
). However, most serovars of enteric subspecies are not host-specific and can infect several species of animals, including humans (Andino & Hanning, 2015Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
http://dx.doi.org/10.1155/2015/520179...
; Uzzau et al., 2000Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology and Infection, 125(2), 229-255. PMid:11117946. http://dx.doi.org/10.1017/S0950268899004379
http://dx.doi.org/10.1017/S0950268899004...
). The species associated with the disease are typically transmitted by a food of animal origin (Heredia & García, 2018Heredia, N., & García, S. (2018). Animals as sources of food-borne pathogens: A review. Animal Nutrition, 4(3), 250-255. PMid:30175252. http://dx.doi.org/10.1016/j.aninu.2018.04.006
http://dx.doi.org/10.1016/j.aninu.2018.0...
; World Health Organization, 2018World Health Organization. (2018, February 20). Salmonella (non-typhoidal). Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
https://www.who.int/news-room/fact-sheet...
). After elimination in animal feces, Salmonella spp. contaminates soil and water (Liu et al., 2018Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
http://dx.doi.org/10.3389/fpubh.2018.001...
). Depending on the substrate on which these organisms are found, the resistance can be very high, especially if it is rich in organic matter. For example, Salmonella can remain in fecal material for years, being able to persist up to 28 months in poultry feces, 30 months in bovine feces, 280 days in cultivated soil, and 120 days in pasture (Brasil, 2011Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. (2011). Manual técnico de diagnóstico laboratorial de Salmonella spp.: Diagnóstico laboratorial do gênero Salmonella. Brasília: Ministério da Saúde/Secretaria de Vigilância em Saúde/Fundação Oswaldo Cruz/Laboratório de Referência Nacional de Enteroinfecções Bacterianas/Instituto Adolfo Lutz.). Feces of infected animals can contaminate food and water, and most of them represent the primary source of human infection with this pathogen (Delahoy et al., 2018Delahoy, M. J., Wodnik, B., McAliley, L., Penakalapati, G., Swarthout, J., Freeman, M. C., & Levy, K. (2018). Pathogens transmitted in animal feces in low-and middle-income countries. International Journal of Hygiene and Environmental Health, 221(4), 661-676. PMid:29729998. http://dx.doi.org/10.1016/j.ijheh.2018.03.005
http://dx.doi.org/10.1016/j.ijheh.2018.0...
). Among the food involved in outbreaks of Salmonella spp. those of animal origin, such as meat (Zhou et al., 2019Zhou, M., Li, X., Hou, W., Wang, H., Paoli, G. C., & Shi, X. (2019). Incidence and characterization of salmonella isolates from raw meat products sold at small markets in Hubei province, China. Frontiers in Microbiology, 10, 2265. PMid:31636615. http://dx.doi.org/10.3389/fmicb.2019.02265
http://dx.doi.org/10.3389/fmicb.2019.022...
), milk (Castañeda-Salazar et al., 2021Castañeda-Salazar, R., Pulido-Villamarín, A. P., Ángel-Rodríguez, G. L., Zafra-Alba, C. A., & Oliver-Espinosa, O. J. (2021). Isolation and identification of Salmonella spp. in raw milk from dairy herds in Colombia. Brazilian Journal of Veterinary Research and Animal Science, 58, e172805. http://dx.doi.org/10.11606/issn.1678-4456.bjvras.2021.172805
http://dx.doi.org/10.11606/issn.1678-445...
), and eggs (Li et al., 2020Li, W., Li, H., Zheng, S., Wang, Z., Sheng, H., Shi, C., Shi, X., Niu, Q., & Yang, B. (2020). Prevalence, serotype, antibiotic susceptibility, and genotype of Salmonella in eggs from poultry farms and marketplaces in Yangling, Shaanxi province, China. Frontiers in Microbiology, 11, 1482. PMid:32903897. http://dx.doi.org/10.3389/fmicb.2020.01482
http://dx.doi.org/10.3389/fmicb.2020.014...
) are the most frequent, typically when they are consumed raw or thermally underprocessed (Ramirez-Hernandez et al., 2018Ramirez-Hernandez, A., Inestroza, B., Parks, A., Brashears, M. M., Sanchez-Plata, M. X., & Echeverry, A. (2018). Thermal inactivation of Salmonella in high-fat rendering meat products. Journal of Food Protection, 81(1), 54-58. PMid:29257727. http://dx.doi.org/10.4315/0362-028X.JFP-17-126
http://dx.doi.org/10.4315/0362-028X.JFP-...
). Additionally, undercooked eggs become contaminated due to the transovarian transmission of laying birds (New Zealand, 2015New Zealand. Ministry for Primary Industries. (2015). Horizontal transfer and growth of Salmonella enterica in chicken (Gallus gallus) eggs in New Zealand. Wellington: Ministry for Primary Industries. MPI technical paper 2015/26.) or through contamination from cracks in the eggshell (Chousalkar & Roberts, 2012Chousalkar, K. K., & Roberts, J. R. (2012). Recovery of Salmonella from eggshell wash, eggshell crush, and egg internal contents of unwashed commercial shell eggs in Australia. Poultry Science, 91(7), 1739-1741. PMid:22700522. http://dx.doi.org/10.3382/ps.2012-02144
http://dx.doi.org/10.3382/ps.2012-02144...
). Other vehicles include contaminated plant foods (Ehuwa et al., 2021Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella, food safety and food handling practices. Foods, 10(5), 907. PMid:33919142. http://dx.doi.org/10.3390/foods10050907
http://dx.doi.org/10.3390/foods10050907...
), through irrigation with fecal contaminated water (Liu et al., 2018Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
http://dx.doi.org/10.3389/fpubh.2018.001...
). Moreover, other important routes of transmission, where the agent can survive for long periods, have also been reported, and include contact with contaminated surfaces with organic matter, or with moist soil and water (Jechalke et al., 2019Jechalke, S., Schierstaedt, J., Becker, M., Flemer, B., Grosch, R., Smalla, K., & Schikora, A. (2019). Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species. Frontiers in Microbiology, 10, 967. PMid:31156568. http://dx.doi.org/10.3389/fmicb.2019.00967
http://dx.doi.org/10.3389/fmicb.2019.009...
), contaminated injection devices, and transplacental transmission (Crump et al., 2015Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A., & Parry, C. M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews, 28(4), 901-937. PMid:26180063. http://dx.doi.org/10.1128/CMR.00002-15
http://dx.doi.org/10.1128/CMR.00002-15...
). In addition, infections also can happen through direct contact with carrier animals such as pets, birds, reptiles, and some other animals (Dróżdż et al., 2021Dróżdż, M., Małaszczuk, M., Paluch, E., & Pawlak, A. (2021). Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infection Ecology & Epidemiology, 11(1), 1975530. PMid:34531964. http://dx.doi.org/10.1080/20008686.2021.1975530
http://dx.doi.org/10.1080/20008686.2021....
; Vasconcelos et al., 2018Vasconcelos, R. H., Teixeira, R. S. C., Silva, I. N. G., Lopes, E. S., & Maciel, W. C. (2018). Feral pigeons (Columba livia) as potential reservoirs of Salmonella sp. and Escherichia coli. Arquivos do Instituto Biológico, 85, e0412017. http://dx.doi.org/10.1590/1808-1657000412017
http://dx.doi.org/10.1590/1808-165700041...
). Veterinarians and animal keepers have a higher risk of contracting the disease through direct animal contact (Usmael et al., 2022Usmael, B., Abraha, B., Alemu, S., Mummed, B., Hiko, A., & Abdurehman, A. (2022). Isolation, antimicrobial susceptibility patterns, and risk factors assessment of non-typhoidal Salmonella from apparently healthy and diarrheic dogs. BMC Veterinary Research, 18(1), 37. PMid:35033077. http://dx.doi.org/10.1186/s12917-021-03135-x
http://dx.doi.org/10.1186/s12917-021-031...
). Nosocomial transmission and direct contact with infected people are less common means of infection (Lee & Greig, 2013Lee, M. B., & Greig, J. D. (2013). A review of nosocomial Salmonella outbreaks: Infection control interventions found effective. Public Health, 127(3), 199-206. PMid:23433804. http://dx.doi.org/10.1016/j.puhe.2012.12.013
http://dx.doi.org/10.1016/j.puhe.2012.12...
). Due to this wide distribution of Salmonella spp. in the environment, birds or their eggs can become infected/contaminated from different sources, either through replacement birds, hatchery, breeding environment, food processing, people, biosecurity failures, management, handling, or through feeding. Contamination can occur at any stage of the production chain, from industrial production to transportation and/or storage on the farm, up to final consumer (Finn et al., 2013Finn, S., Condell, O., McClure, P., Amézquita, A., & Fanning, S. (2013). Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Frontiers in Microbiology, 4, 331. PMid:24294212. http://dx.doi.org/10.3389/fmicb.2013.00331
http://dx.doi.org/10.3389/fmicb.2013.003...
; Ha et al., 2018Ha, J. S., Seo, K. W., Kim, Y. B., Kang, M. S., Song, C. S., & Lee, Y. J. (2018). Prevalence and characterization of Salmonella in two integrated broiler operations in Korea. Irish Veterinary Journal, 71(1), 3. PMid:29372048. http://dx.doi.org/10.1186/s13620-018-0114-4
http://dx.doi.org/10.1186/s13620-018-011...
). Regarding dissemination through contaminated by-products, it was ratified by Socas-Rodríguez et al. (2021)Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
http://dx.doi.org/10.1016/j.tifs.2021.05...
that the various raw materials of animal origin used in the formulation of feed can lead to the transmission of Salmonella spp., including S. Enteritidis, to broiler creations. Although, there was a decrease in infections by Salmonella Enteritidis (Gupta et al., 2020Gupta, A., Bansal, M., Wagle, B., Sun, X., Rath, N., Donoghue, A., & Upadhyay, A. (2020). Sodium butyrate reduces Salmonella enteritidis infection of chicken enterocytes and expression of inflammatory host genes in vitro. Frontiers in Microbiology, 11, 553670. PMid:33042060. http://dx.doi.org/10.3389/fmicb.2020.553670
http://dx.doi.org/10.3389/fmicb.2020.553...
). Costa et al. (2022)Costa, W. L. R., Santos, E. T. S. R., Leal Neto, A. F., Silva, R. A. R., Rodgers, M. S. M., Fernandes, L. M. B., & Nascimento, E. R. (2022). Salmonella spp. in non-edible animal products intended for the preparation of feed (meal) for industrial poultry feed. Research, Society and Development, 11(3), e16311326310. http://dx.doi.org/10.33448/rsd-v11i3.26310
http://dx.doi.org/10.33448/rsd-v11i3.263...
added that meat meal, one of the most used by-products in the manufacture of animal feed, is also one of those with the highest levels of contamination by Salmonella spp., implicated in the spread of the infectious agent. According to Vidyarthi et al. (2021)Vidyarthi, S., Vaddella, V., Cao, N., Kuppu, S., & Pandey, P. (2021). Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods, 3, 100010. http://dx.doi.org/10.1016/j.fufo.2020.100010
http://dx.doi.org/10.1016/j.fufo.2020.10...
, referring especially to Salmonella contamination, the processing temperatures of the by-products for animal feed eliminate most or even all bacterial contamination, however, the possibility of recontamination of these by-products after rendered is reported frequently. Thus, the authors included in their review study some additional biological safety measures required to ensure pathogen-free rendered products.

4 Poultry farming in Brazil

Broiler production has been impressive due to the dynamism and competence achieved in the last decades. World production reached the mark of 99.901 million tons of chicken meat in 2020. The United States of America (USA), followed by China and Brazil lead the world in poultry production (Associação Brasileira de Proteína Animal, 2022Associação Brasileira de Proteína Animal. (2022). Relatório anual 2022. Retrieved in 2023, April 28, from https://abpa-br.org/mercados/#relatorios
https://abpa-br.org/mercados/#relatorios...
). There is an increase in concern about animal health and welfare with an emphasis on the establishment of new quality parameters and the adoption of international control methods. Among them, Hazard Analysis and Critical Control Points (HACCP) and the creation of the Scientific Consultative Commission on Microbiology of Animal Origin Products offer a summary of the efforts put forth by government agencies and the advanced microbiological logistics academy of the Brazilian inspection system (Brasil, 1998Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (1998, February 10). Portaria n° 46, de 10 de fevereiro de 1998. Instituir o Sistema de Análise de Perigos e Pontos Críticos de Controle - APPCC a ser implantado, gradativamente, nas indústrias de produtos de origem animal sob o regime do Serviço de Inspeção Federal - SIF, de acordo com o manual genérico de procedimentos. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.; Brasil, 2013Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Comissão Científica Consultiva em Microbiologia de Produtos de Origem Animal. (2013, January 28). Portaria nº 17, de 25 de janeiro de 2013. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). These methods aim to reduce environmental contamination by pathogenic microorganisms that contribute to production losses in the poultry chain and cause public health problems, such as food-borne diseases (Oloo et al., 2017Oloo, B. O., Mahungu, S., Gogo, L., & Kah, A. (2017). Design of a HACCP plan for indigenous chicken slaughter house in Kenya. African Journal of Food, Agriculture, Nutrition and Development, 17(1), 11616-11638. http://dx.doi.org/10.18697/ajfand.77.16765
http://dx.doi.org/10.18697/ajfand.77.167...
; Rosak-Szyrocka & Abbase, 2020Rosak-Szyrocka, J., & Abbase, A. A. (2020). Quality management and safety of food in HACCP system aspect. Production Engineering Archives, 26(2), 50-53. http://dx.doi.org/10.30657/pea.2020.26.11
http://dx.doi.org/10.30657/pea.2020.26.1...
). However, meat quality intended for human consumption can undergo great influence in different stages of the production process, which ranges from handling the animal on rural property to moment of slaughter and processing (Rani et al., 2017Rani, Z. T., Hugo, A., Hugo, C. J., Vimiso, P., & Muchenje, V. (2017). Effect of post-slaughter handling during distribution on microbiological quality and safety of meat in the formal and informal sectors of South Africa: A review. South African Journal of Animal Science, 47(3), 255-267. http://dx.doi.org/10.4314/sajas.v47i3.2
http://dx.doi.org/10.4314/sajas.v47i3.2...
). The quality of poultry meat production begins with the breeding of these animals, involving data of origin, health care to which they were subjected, characteristics and conditions of transportation, and even zootechnical particularities, involving the feeding and handling awarded by them. It is worth mentioning that the microbiological quality of the meat is the most important characteristic to be controlled during the slaughter phase and handling phases. Prior to the slaughter of the broilers, it is necessary to capture, cage, transport, and unload the caged animals at the processing site, where slaughter occurs under inspection by a veterinarian. During the slaughter and processing of broilers, pathogenic microorganisms, mainly from the intestine, skin, and feathers, can cause contamination of meat and its by-products. Certain steps such as bleeding, scalding, plucking, and evisceration play a fundamental role in the microbial distribution in the chicken carcass. Such steps support the colonization of tissues by deteriorating or even pathogenic microorganisms (Prache et al., 2022Prache, S., Adamiec, C., Astruc, T., Baéza-Campone, E., Bouillot, P. E., Clinquart, A., Feidt, C., Fourat, E., Gautron, J., Girard, A., Guillier, L., Kesse-Guyot, E., Lebret, B., Lefèvre, F., Le Perchec, S., Martin, B., Mirade, P. S., Pierre, F., Raulet, M., Rémond, D., Sans, P., Souchon, I., Donnars, C., & Santé-Lhoutellier, V. (2022). Review: Quality of animal-source foods. Animal, 16(Suppl. 1), 100376. PMid:34836809. http://dx.doi.org/10.1016/j.animal.2021.100376
http://dx.doi.org/10.1016/j.animal.2021....
). Therefore, even before being conduced for slaughter, these animals are subjected to programs that aim to guarantee microbiological quality within the production chain (Rouger et al., 2017Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms, 5(3), 50. PMid:28841156. http://dx.doi.org/10.3390/microorganisms5030050
http://dx.doi.org/10.3390/microorganisms...
). The meat obtained later goes onto refrigeration, classification, packaging, and distribution (Arikan et al., 2017Arikan, M. S., Akin, A. C., Akcay, A., Aral, Y., Sariozkan, S., Cevrimli, M. B., & Polat, M. (2017). Effects of transportation distance, slaughter age, and seasonal factors on total losses in broiler chickens. Brazilian Journal of Poultry Science, 19(3), 421-428. http://dx.doi.org/10.1590/1806-9061-2016-0429
http://dx.doi.org/10.1590/1806-9061-2016...
; Baltic et al., 2019Baltic, T., Ciric, J., Lazic, I. B., Pelic, D. L., Mitrovic, R., Djordjevic, V., & Parunovic, N. (2019). Packaging as a tool to improve the shelf life of poultry meat. IOP Conference Series: Earth and Environmental Science, 333(1), 012044. http://dx.doi.org/10.1088/1755-1315/333/1/012044
http://dx.doi.org/10.1088/1755-1315/333/...
; Janocha et al., 2022Janocha, A., Milczarek, A., Pietrusiak, D., Łaski, K., & Saleh, M. (2022). Efficiency of soybean products in broiler chicken nutrition. Animals, 12(3), 294. PMid:35158618. http://dx.doi.org/10.3390/ani12030294
http://dx.doi.org/10.3390/ani12030294...
; Pareja Arcila et al., 2018Pareja Arcila, J. C., Tinoco, I. F. F., Osorio Saraz, J. A., Rocha, K. S. O., & Candido, M. G. L. (2018). Zootechnical and physiological performance of broilers in the final stage of growth subjected to different levels of heat stress. Revista Facultad Nacional de Agronomía, 71(2), 8469-8476. http://dx.doi.org/10.15446/rfna.v71n2.71927
http://dx.doi.org/10.15446/rfna.v71n2.71...
). Contamination caused during this processing promotes changes in nutritional value and in sensory properties (color, odor, flavor, and texture). In addition, contamination may cause harm to the health of those who consume it. Many farm animals harbor in their body several microorganisms known as saprophytes, that is, incapable of causing them illnesses (Moënne-Loccoz et al., 2015Moënne-Loccoz, Y., Mavingui, P., Combes, C., Normand, P., & Steinberg, C. (2015). Microorganisms and biotic interactions. In J. C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand & T. Sime-Ngando (Eds.), Environmental microbiology: Fundamentals and applications (pp. 395-444). Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-017-9118-2_11
http://dx.doi.org/10.1007/978-94-017-911...
). However, many of these microorganisms can represent an important level of pathogenicity when transmitted to humans (Balloux & van Dorp, 2017Balloux, F., & van Dorp, L. (2017). Q&A: What are pathogens, and what have they done to and for us? BMC Biology, 15(1), 91. PMid:29052511. http://dx.doi.org/10.1186/s12915-017-0433-z
http://dx.doi.org/10.1186/s12915-017-043...
). The food provided to these animals and the indiscriminate use of veterinary products can contribute to the animal origin foods contamination, such as meat, milk, and eggs, or even resistance to antimicrobials (Hassan et al., 2021Hassan, M. M., El Zowalaty, M. E., Lundkvist, Å., Järhult, J. D., Nayem, M. R. K., Tanzin, A. Z., Badsha, M. R., Khan, S. A., & Ashour, H. M. (2021). Residual antimicrobial agents in food originating from animals. Trends in Food Science & Technology, 111, 141-150. PMid:33746363. http://dx.doi.org/10.1016/j.tifs.2021.01.075
http://dx.doi.org/10.1016/j.tifs.2021.01...
; Olasoju et al., 2021Olasoju, M. I., Olasoju, T. I., Adebowale, O. O., & Adetunji, V. O. (2021). Knowledge and practice of cattle handlers on antibiotic residues in meat and milk in Kwara State, Northcentral Nigeria. PLoS One, 16(10), e0257249. PMid:34648524. http://dx.doi.org/10.1371/journal.pone.0257249
http://dx.doi.org/10.1371/journal.pone.0...
). Potentially pathogenic bacteria can be present in the meat, even when good manufacturing practices are applied followed by satisfactory hygienic-sanitary conditions during the slaughter and evisceration of animals (Elmali et al., 2015Elmali, M., Can, H. Y., & Yaman, H. (2015). Prevalence of Listeria monocytogenes in poultry meat. Food Science and Technology, 35(4), 672-675. http://dx.doi.org/10.1590/1678-457X.6808
http://dx.doi.org/10.1590/1678-457X.6808...
).

5 Control and prevention of Salmonella spp. in Brazilian industrial poultry farming

The Brazilian Poultry Health Program developed programs to control and prevent diseases focused on poultry and public health, such as Newcastle disease, salmonellosis, mycoplasmosis, and avian influenza (exotic in Brazil). This program provides procedures for the sanitary control of birds (Brasil, 1994Brasil. (1994, September 22). Portaria Ministerial nº 193 de 19 set. 1994. Institui o Programa Nacional de Sanidade Avícola no âmbito da SDA e cria o Comitê Consultivo do Programa de Sanidade Avícola. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Brazilian Normative Instruction No. 20 of October 21, 2016, establishes the monitoring of Salmonella spp. in commercial poultry farming for broilers and turkeys and in the slaughter industry for broilers and turkeys registered with the Brazilian Federal Inspection Service (Brasil, 2016Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2016, October 25). Instrução Normativa nº 20, de 21 de outubro de 2016. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). The practice of inspecting meat from slaughterhouse animals is regulated by laws that aim to meet the quality standards in meat production, with attention to animal welfare, economic impact, and public health impacts. In Brazil, these standards are determined mainly by the Regulation of Industrial and Sanitary Inspection of Animal Origin Products - RIISPOA (Brasil, 2017Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2017, March 30). Decreto nº 9.013, de 29 de março de 2017. Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). The absence of certain microorganisms such as Salmonella spp. from specific animal products is a requirement of national and international regulations (Brasil, 2022Brasil. Agência Nacional de Vigilância Sanitária. (2022, July 6). Resolução da Diretoria Colegiada - RDC nº 724, de 1º de julho de 2022. Dispõe sobre os padrões microbiológicos dos alimentos e sua aplicação. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Meat inspection regulations follow a set of steps carried out in a slaughterhouse, which can begin with the confinement of the animal to be slaughtered in order to ensure that these establishments comply with sanitary requirements before destinating the carcasses of these animals to human consumption. The main objective of meat inspection is to protect the health of consumers against threats, such as foodborne pathogens (Huneau-Salaün et al., 2015Huneau-Salaün, A., Stärk, K. D. C., Mateus, A., Lupo, C., Lindberg, A., & Bouquin-Leneveu, S. (2015). Contribution of meat inspection to the surveillance of poultry health and welfare in the European Union. Epidemiology and Infection, 143(11), 2459-2472. PMid:25521240. http://dx.doi.org/10.1017/S0950268814003379
http://dx.doi.org/10.1017/S0950268814003...
). The growth of potentially pathogenic bacteria can be inhibited by storage conditions and by proper temperature storage (Hoel et al., 2017Hoel, S., Jakobsen, A. N., & Vadstein, O. (2017). Effects of storage temperature on bacterial growth rates and community structure in fresh retail sushi. Journal of Applied Microbiology, 123(3), 698-709. PMid:28654203. http://dx.doi.org/10.1111/jam.13527
http://dx.doi.org/10.1111/jam.13527...
). The growing interest in researching bacteria of this genus in different food industry segments, both in products and in the production environment, is due to the need to meet the food identity and quality standards required by Brazilian and importing countries (Camino Feltes et al., 2017Camino Feltes, M. M., Arisseto-Bragotto, A. P., & Block, J. M. (2017). Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Quality and Safety, 1(1), 13-27. http://dx.doi.org/10.1093/fqs/fyx003
http://dx.doi.org/10.1093/fqs/fyx003...
). Salmonella spp. is among the main microorganisms that cause foodborne diseases worldwide (Bintsis, 2017Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529-563. PMid:31294175. http://dx.doi.org/10.3934/microbiol.2017.3.529
http://dx.doi.org/10.3934/microbiol.2017...
; Heredia & García, 2018Heredia, N., & García, S. (2018). Animals as sources of food-borne pathogens: A review. Animal Nutrition, 4(3), 250-255. PMid:30175252. http://dx.doi.org/10.1016/j.aninu.2018.04.006
http://dx.doi.org/10.1016/j.aninu.2018.0...
). Meat is the predominant source of contamination, with poultry involved in numerous cases of human infections (Wessels et al., 2021Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods, 10(8), 1742. PMid:34441520. http://dx.doi.org/10.3390/foods10081742
http://dx.doi.org/10.3390/foods10081742...
).

6 What is it, and how are animal origin meals made?

Slaughter, as well as other industrial meat processing, is regulated by regulations, that aims to ensure a safe product for consumer's health. Thus, slaughters have their activities supervised by veterinarians and agents from official inspection bodies (Brasil, 2020Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2020, August 19). Decreto nº 10.468, de 18 de agosto de 2020. Altera o Decreto nº 9.013, de 29 de março de 2017, que regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre o regulamento da inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Therefore, animals submitted to slaughter must be free of infections (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
; Brasil, 2020Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2020, August 19). Decreto nº 10.468, de 18 de agosto de 2020. Altera o Decreto nº 9.013, de 29 de março de 2017, que regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre o regulamento da inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Except for the meat, which is considered of greater economic value, the other parts derived from the slaughter process are considered by-products and the description may differ depending on the intended use of such products in each country (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
). In most countries, such as Brazil, these by-products are classified as edible and non-edible. Some of these by-products are also important for the medical field and are classified as pharmaceutical products and can also be used in other areas, such as in the production of biodiesel, biogas, dietary products (chitosans), natural pigments (after extraction), and cosmetics, such as collagen (Fayemi et al., 2018Fayemi, P. O., Muchenje, V., Yetim, H., & Ahhmed, A. (2018). Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutriente synergy and analgesics in organ meat. Food Research International, 104, 48-58. PMid:29433783. http://dx.doi.org/10.1016/j.foodres.2016.11.038
http://dx.doi.org/10.1016/j.foodres.2016...
; Jayathilakan et al., 2012Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of by products and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278-293. PMid:23729848. http://dx.doi.org/10.1007/s13197-011-0290-7
http://dx.doi.org/10.1007/s13197-011-029...
; Malav et al., 2018Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
http://dx.doi.org/10.31031/APDV.2018.02....
; Mathi et al., 2016Mathi, P., Kunyanga, C., Gichure, J. N., & Imungi, J. K. (2016). Utilization of beef slaughter by-products among the Kenyan pastoral communities. Food Science and Quality Management, 53, 78-83. Retrieved in 2023, April 28, from https://www.researchgate.net/publication/314364032
https://www.researchgate.net/publication...
; Okanović et al., 2009Okanović, Đ., Ristić, M., Kormanjoš, Š., Filipović, S., & Živković, B. (2009). Chemical characteristics of poultry slaughterhouse by products. Biotechnology in Animal Husbandry, 25(1-2), 143-152. http://dx.doi.org/10.2298/BAH0902143O
http://dx.doi.org/10.2298/BAH0902143O...
). Animal origin meal is defined as a non-edible by-product resulting from the processing of animal waste, not intended for human consumption, which comply with the pre-established identity and quality standard, in the sanitary, technological, and nutritional aspects (Brasil, 2008Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). The raw materials used in the production of these meals are residues from animal slaughter operations such as residues from the toilet of carcasses and offal, non-edible parts of the animals, parts condemned in post-mortem inspection, bones, fat shavings, meat boning, and meat processing residues (Malav et al., 2018Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
http://dx.doi.org/10.31031/APDV.2018.02....
). The use of animal waste, also known as animal recycling, is an activity carried out worldwide and is considered essential for the sustainability of the animal protein production chain. This avoids that the slaughterhouse waste would end up incinerated or disposed of in landfills or dumps (Associação Brasileira de Reciclagem Animal, 2018Associação Brasileira de Reciclagem Animal – ABRA. (2018). Anuário ABRA: Setor de reciclagem animal. Retrieved in 2023, April 28, from https://abra.ind.br/anuario2018/
https://abra.ind.br/anuario2018/...
). Additionally, it is important that the residues from the slaughter process of animals are returned to nature in a non-wasteful manner, without impact on the environment, and the utilization of animal by-products can alleviate the prevailing costs and scarcity of feed material (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
; Socas-Rodríguez et al., 2021Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
http://dx.doi.org/10.1016/j.tifs.2021.05...
). One way to take advantage of residues generated in the slaughter of animals is to manufacture meal from the slaughter waste by-products (Vidyarthi et al., 2021Vidyarthi, S., Vaddella, V., Cao, N., Kuppu, S., & Pandey, P. (2021). Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods, 3, 100010. http://dx.doi.org/10.1016/j.fufo.2020.100010
http://dx.doi.org/10.1016/j.fufo.2020.10...
). Thus, it is necessary to use technological resources and evaluation of the most suitable recycling and manufacturing processes to guarantee the safety of by-products intended for animal consumption (Socas-Rodríguez et al., 2021Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
http://dx.doi.org/10.1016/j.tifs.2021.05...
). The residues must be processed within a maximum of 24 hours from the harvest or slaughter, with the use of hair, bristles, hooves, horns, blood, feces, stomach contents, residues of animals slaughtered prohibited in unauthorized establishments and risk specific materials including animal waste for the processing of meat meal and/or bone or fatty products (Brasil, 2008Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). It is also prohibited to use dead animals, which must be incinerated or destined for composting (Al-Gheethi et al., 2021Al-Gheethi, A., Ma, N. L., Rupani, P. F., Sultana, N., Yaakob, M. A., Mohamed, R. M. S. R., & Soon, C. F. (2021). Biowastes of slaughterhouses and wet markets: An overview of waste management for disease prevention. Environmental Science and Pollution Research International, 1-14. In press. PMid:34585345. http://dx.doi.org/10.1007/s11356-021-16629-w
http://dx.doi.org/10.1007/s11356-021-166...
; Irfan et al., 2020Irfan, M., Mehmood, S., Mahmud, A., & Anjum, A. A. (2020). An assessment of chemical and microbiological properties of different types of poultry waste compost prepared by bin and windrow composting system. Brazilian Journal of Poultry Science, 22(4), eRBCA-2020-1278. http://dx.doi.org/10.1590/1806-9061-2020-1278
http://dx.doi.org/10.1590/1806-9061-2020...
). The production of animal origin meals is carried out through a process called rendering (Figure 1). Rendering is based on the physical and chemical transformation of the product, using different equipment and process steps (Leiva et al., 2018Leiva, A., Granados-Chinchilla, F., Redondo-Solano, M., Arrieta-González, M., Pineda-Salazar, E., & Molina, A. (2018). Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poultry Science, 97(6), 2159-2169. PMid:29562297. http://dx.doi.org/10.3382/ps/pey058
http://dx.doi.org/10.3382/ps/pey058...
). It consists of converting the non-edible animal product into three final products: solid proteinaceous, melted fat, and water (Malav et al., 2018Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
http://dx.doi.org/10.31031/APDV.2018.02....
). The process takes place through mechanical stages of grinding, mixing, pressing, decanting, and separating, where the fat is drained, pressed, or centrifuged and the solid residue is ground into meal. Then it undergoes thermal processing by cooking, evaporation, or drying, as well as chemical processing, such as solvent extraction (Malav et al., 2018Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
http://dx.doi.org/10.31031/APDV.2018.02....
). Cooking that may or may not be pressurized takes place in digesters installed in the rendering sector of slaughterhouses that reach high temperatures in the manufacturing process, approximately from 115 to 145 °C for 40 to 90 minutes depending on the type of system or composition of the product to be treated. The binomial time and temperature of thermal processing is a critical point and is a determinant of the microbiological quality of the final product (Brasil, 2008Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). The digester promotes heat treatment by heat transfer from the inner walls and the shaft to the non-edible products of animal origin to be treated. It is important that the equipment is sanitized periodically in order to avoid the appearance of internal crusts which impair the heat exchange and cause inefficiencies in the process (Ferroli et al., 2000Ferroli, P. C. M., Fiod Neto, M., Casarotto Filho, N., & Castro, J. E. E. (2000). Fábricas de subprodutos de origem animal: A importância do balanceamento das cargas dos digestores de vísceras. Production, 10(2), 5-20. http://dx.doi.org/10.1590/S0103-65132000000200001
http://dx.doi.org/10.1590/S0103-65132000...
). In Brazil, through Normative Instruction No. 34 of May 28, 2008 from the Ministry of Agriculture, Livestock and Supply, it is recommended that the binomial to be used to treat these residues cannot be lower than 133 °C, for at least 20 minutes, without interruption at a pressure (absolute) of not less than 3 (three) bar, produced by saturated steam (Brasil, 2008Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Temperatures above the recommended temperature are unnecessary and are avoided due to their negative impacts on the decrease of nutritional value and digestibility (Meeker, 2009Meeker, D. L. (2009). North American rendering: Processing high quality protein and fats for feed. Revista Brasileira de Zootecnia, 38(spe), 432-440. http://dx.doi.org/10.1590/S1516-35982009001300043
http://dx.doi.org/10.1590/S1516-35982009...
). This process gives rise to flours that are used in formulations of feed ration. The main meals of animal origin are hydrolyzed feather meal, viscera meal, bovine meat and bone meal, and blood meal (Matias et al., 2012Matias, C. D. Q., Lara, L. J. C., Baião, N. C., Cardoso, D. D. M., & Baião, R. C. (2012). Utilização de farinhas de origem animal na avicultura. Nutritime, 9(5), 1944-1964.; Mézes et al., 2015Mézes, L., Attila, N. A. G. Y., Gálya, B., & János, T. (2015). Poultry feather wastes recycling possibility as soil nutrient. Eurasian Journal of Soil Science, 4(4), 244-252. http://dx.doi.org/10.18393/ejss.2015.4.244-252
http://dx.doi.org/10.18393/ejss.2015.4.2...
). The use of meal of animal origin brings important contributions in terms of economic, health, and nutritional aspects. Utilizing meat by-products in meal reduces costs in the production of feed rations and consequently in animal production, by providing treatment and utilization of animal slaughter residues which reduces waste and recycles energy, amino acids and minerals from animal by-products (Carvalho et al., 2012Carvalho, C. M., Fernandes, E. A., Carvalho, A. P., Caires, R. M., & Fagundes, N. S. (2012). Uso de farinhas de origem animal na alimentação de frangos de corte. Revista Portuguesa de Ciências Veterinárias, 107(581-582), 69-73.; Silva et al., 2018Silva, J. M. S., Gouveia, A. B. V. S., Silva, W. J., Paulo, L. M., Santos, F. R., & Minafra, C. S. (2018). Uso de enzimas para aumentar a qualidade nutricional de farinhas de origem animal. Pubvet, 12(8), 133. http://dx.doi.org/10.31533/pubvet.v12n8a156.1-13
http://dx.doi.org/10.31533/pubvet.v12n8a...
; Okanović et al., 2009Okanović, Đ., Ristić, M., Kormanjoš, Š., Filipović, S., & Živković, B. (2009). Chemical characteristics of poultry slaughterhouse by products. Biotechnology in Animal Husbandry, 25(1-2), 143-152. http://dx.doi.org/10.2298/BAH0902143O
http://dx.doi.org/10.2298/BAH0902143O...
; Staroń et al., 2017Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. (2017). Thermal treatment of waste from the meat industry in high scale rotary kiln. International Journal of Environmental Science and Technology, 14(6), 1157-1168. http://dx.doi.org/10.1007/s13762-016-1223-9
http://dx.doi.org/10.1007/s13762-016-122...
). Brazilian breeding companies routinely use animal meal in feed for non-ruminants, poultry (Ebling et al., 2013Ebling, P. D., Ribeiro, A. M. L., Trevizan, L., Silva, I. C. M., Kessler, A. D. M., & Rubin, L. L. (2013). Effect of different dietary concentrations of amino acids on the performance of two different broiler strains. Brazilian Journal of Poultry Science, 15(4), 339-346. http://dx.doi.org/10.1590/S1516-635X2013000400008
http://dx.doi.org/10.1590/S1516-635X2013...
; Sari et al., 2016Sari, O. F., Ozdemir, S., & Celebi, A. (2016). Utilization and management of poultry slaughterhouse wastes with new methods. In Yıldız Technical University, Yıldız Technical University Department of Engineering, Istanbul Environmental Management in Industry and Trade Inc. & Galaksi Turizm (Orgs.), Eurasia 2016 Waste Management Symposium (pp. 2-4). Istanbul, Turkey: Yıldız Technical University.; Thyagarajan et al., 2013Thyagarajan, D., Barathi, M., & Sakthivadivu, R. (2013). Scope of poultry waste utilization. IOSR Journal of Agriculture and Veterinary Science, 6(5), 29-35. http://dx.doi.org/10.9790/2380-0652935
http://dx.doi.org/10.9790/2380-0652935...
), and dogs as a source of protein (Loureiro et al., 2017Loureiro, K. D. C., Haese, D., Kill, J. L., Pires, A. F., Fernandes, D. R., Colnago, G. L., Lucas, W. H., & Gama, G. O. (2017). Ingredients derived from the slaughter of bovines in dog food. Ciência Rural, 47(6), e20150778. http://dx.doi.org/10.1590/0103-8478cr20150778
http://dx.doi.org/10.1590/0103-8478cr201...
; Meeker & Meisinger, 2015Meeker, D. L., & Meisinger, J. L. (2015). Companion animals symposium: Rendered ingredients significantly influence sustainability, quality, and safety of pet food. Journal of Animal Science, 93(3), 835-847. PMid:26020862. http://dx.doi.org/10.2527/jas.2014-8524
http://dx.doi.org/10.2527/jas.2014-8524...
), macronutrients such as phosphorus, potassium, magnesium, and micronutrients such as iron, copper, zinc and manganese (Staroń et al., 2017Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. (2017). Thermal treatment of waste from the meat industry in high scale rotary kiln. International Journal of Environmental Science and Technology, 14(6), 1157-1168. http://dx.doi.org/10.1007/s13762-016-1223-9
http://dx.doi.org/10.1007/s13762-016-122...
). This is a lower cost alternative since these non-edible by-products can be an alternative to sustainable products for agriculture and industry. The use of these animal by-products, in addition to providing cost reduction, can alleviate the scarcity of raw materials for animal feed that present high competition with human consumption as well (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
).

Figure 1
Basic rendering process flowchart. (Source: adapted from Hamilton, 2004Hamilton, C. R. (2004). Real and perceived issues involving animal proteins. In Food and Agriculture Organization (Org.), Protein Sources for the Animal Feed Industry. FAO Expert Consultation and Workshop (pp. 255-276). Rome, Italy: Food and Agriculture Organization. Retrieved in 2023, April 28, from https://www.cabdirect.org/cabdirect/abstract/20043127274
https://www.cabdirect.org/cabdirect/abst...
).

7 Quality of the raw material used in the production of animal feed rations

Vidyarthi et al. (2021)Vidyarthi, S., Vaddella, V., Cao, N., Kuppu, S., & Pandey, P. (2021). Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods, 3, 100010. http://dx.doi.org/10.1016/j.fufo.2020.100010
http://dx.doi.org/10.1016/j.fufo.2020.10...
in their review reported that it is extremely important the quality of the raw material used in the preparation of feed ration. Risks may also increase during the milling process as a result of using different raw ingredients from different national and international sources, where there may be a combination of material contaminated by Salmonella spp. or free of them (Gosling et al., 2022Gosling, R., Oastler, C., Nichols, C., Jackson, G., Wales, A. D., & Davies, R. H. (2022). Investigations into Salmonella contamination in feed mills producing rations for the broiler industry in Great Britain. Veterinary Sciences, 9(7), 307. PMid:35878324. http://dx.doi.org/10.3390/vetsci9070307
http://dx.doi.org/10.3390/vetsci9070307...
). There are large amounts of harmful bacteria in raw materials in rendering plants that can survive on stainless steel surfaces of equipment and cause recontamination in a continuous process. Hence, the investigation of the presence of pathogens by drawing samples at each stage of the rendering process is essential for insight into possible cross-contamination (Liu et al., 2018Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
http://dx.doi.org/10.3389/fpubh.2018.001...
). There may be reservoirs of these strains in specific parts of the equipment in the feed mill, but these microorganisms can be spread in this environment through dust from contaminated equipment (Gosling et al., 2022Gosling, R., Oastler, C., Nichols, C., Jackson, G., Wales, A. D., & Davies, R. H. (2022). Investigations into Salmonella contamination in feed mills producing rations for the broiler industry in Great Britain. Veterinary Sciences, 9(7), 307. PMid:35878324. http://dx.doi.org/10.3390/vetsci9070307
http://dx.doi.org/10.3390/vetsci9070307...
). Even with the use of high temperatures in the treatment of the animal meals, above, including the thermoresistance of many microbiological contaminants, the product can present viable microorganisms, including Salmonella spp. (Liu et al., 2018Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
http://dx.doi.org/10.3389/fpubh.2018.001...
). For microbiological control purposes, Brazilian legislation recommends that periodic analysis of Salmonella spp. be provided in order to guarantee its absence in 25 g of the finished product (Brasil, 2008Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.). Rabelo et al. (2014)Rabelo, M. H. S., Silva, E. K., & Peres, A. D. P. (2014). Análise de modos e efeitos de falha na avaliação dos impactos ambientais provenientes do abate animal. Engenharia Sanitária e Ambiental, 19(1), 79-86. http://dx.doi.org/10.1590/S1413-41522014000100009
http://dx.doi.org/10.1590/S1413-41522014...
stated that by-products originating from meat and meat products must undergo specific processing to minimize the risks of pollution to the environment. An example with the use of the blood by-product which can be sent to the rendering sector for the production of blood meal, and then used in the preparation of animal feed rations and fertilizers, therefore ceasing to be a risk to the water ecosystem. Likewise, other slaughter by-products and effluents must be processed and treated with adequate final destination according to the validity of health and environmental laws and standards. Whether in the processing of meat products, in the various forms of use from the rendering sector, or in the release of effluents to the environment with reduced organic load (Alao et al., 2017Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
http://dx.doi.org/10.3390/su9071089...
; Rabelo et al., 2014Rabelo, M. H. S., Silva, E. K., & Peres, A. D. P. (2014). Análise de modos e efeitos de falha na avaliação dos impactos ambientais provenientes do abate animal. Engenharia Sanitária e Ambiental, 19(1), 79-86. http://dx.doi.org/10.1590/S1413-41522014000100009
http://dx.doi.org/10.1590/S1413-41522014...
; Socas-Rodríguez et al., 2021Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
http://dx.doi.org/10.1016/j.tifs.2021.05...
). Barros & Licco (2007)Barros, F. D., & Licco, E. A. (2007). A reciclagem de resíduos de origem animal: Uma questão ambiental. Revista Nacional da Carne, 31(365), 166-172. and Rebouças et al. (2010)Rebouças, A. D. S., Zanini, A., Kiperstok, A., Pepe, I. M., & Embiruçu, M. (2010). Contexto ambiental e aspectos tecnológicos das graxarias no Brasil para a inserção do pequeno produtor na indústria da carne. Revista Brasileira de Zootecnia, 39(Suppl. Spe), 499-509. http://dx.doi.org/10.1590/S1516-35982010001300054
http://dx.doi.org/10.1590/S1516-35982010...
reiterated that the rational use of by-products and meat residues from the rendering sector, in addition to presenting economic importance in the meat cost, is of fundamental importance in terms of environmental and one health concepts. Thus, if they were not used, they could contribute to the formation of conditions conducive to the attraction and accumulation of biological vectors, appearance degradation and environmental pollution. Regarding public health, the possibility of cross-contamination caused by the proximity of materials for human consumption to decomposing organic matter is considered, which could lead to the spread of diseases in the community through contaminated food.

8 Conclusion

Salmonella spp. in poultry products is a major source of foodborne disease worldwide. Thus, it is crucial that quality tools applied at an industrial level avoid contamination of food products to prevent threats to consumer health. An important step in the industrial process is the use of residues of these slaughtered animals, as it represents high nutritional and alternative value as a source of protein and reduces waste products in the environment. In this sense, these tools, especially the HACCP plan, must be implemented with an emphasis on the possibility of thermal subprocessing or post-processing contamination of animal meals used in the preparation of feed rations for animals. These tools are used worldwide, but the production conditions and the safety measure themselves are different from one country to the next. There is a need for an international methods standard, with special emphasis on the production of meals made with non-edible products of animal origin. Although much is known about the epidemiology of salmonellosis and existing measures to reduce pathogens, it is still necessary to clarify its origins in the production environment, aiming to guide prevention and control measures. In this context, it is necessary that the surveillance of pathogens of importance in foodborne diseases be continuous and more comprehensive to account for every stage of production. Salmonella spp. continues to pose a great danger and requires a comprehensive health strategy in order to effectively reduce disease burden.

Acknowledgements

We thank Paula Mischler-Kong for her assistance in reviewing the English translations.

  • Cite as: Costa, W. L. R., Santos, E. T. S. R., Rodgers, M. S. M., Fernandes, L. M. B., & Nascimento, E. R. (2023). Salmonella spp. in non-edible animal products: a burden on the broiler industry. Brazilian Journal of Food Technology, 26, e2022146. https://doi.org/10.1590/1981-6723.14622
  • Funding: None.

References

  • Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 4674235. PMid:32684938. http://dx.doi.org/10.1155/2020/4674235
    » http://dx.doi.org/10.1155/2020/4674235
  • Adhikari, B. B., Chae, M., & Bressler, D. C. (2018). Utilization of slaughterhouse waste in value-added applications: Recent advances in the development of wood adhesives. Polymers, 10(2), 176. PMid:30966212. http://dx.doi.org/10.3390/polym10020176
    » http://dx.doi.org/10.3390/polym10020176
  • Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. http://dx.doi.org/10.3390/su9071089
    » http://dx.doi.org/10.3390/su9071089
  • Al-Gheethi, A., Ma, N. L., Rupani, P. F., Sultana, N., Yaakob, M. A., Mohamed, R. M. S. R., & Soon, C. F. (2021). Biowastes of slaughterhouses and wet markets: An overview of waste management for disease prevention. Environmental Science and Pollution Research International, 1-14. In press. PMid:34585345. http://dx.doi.org/10.1007/s11356-021-16629-w
    » http://dx.doi.org/10.1007/s11356-021-16629-w
  • Alghoribi, M. F., Doumith, M., Alrodayyan, M., Al Zayer, M., Köster, W. L., Muhanna, A., Aljohani, S. M., Balkhy, H. H., & Desin, T. S. (2019). S. Enteritidisand S. Typhimurium harboring SPI-1 and SPI-2 are the predominant serotypesassociated with human salmonellosis in Saudi Arabia. Frontiers in Cellular and Infection Microbiology, 9, 187. PMid:31214517. http://dx.doi.org/10.3389/fcimb.2019.00187
    » http://dx.doi.org/10.3389/fcimb.2019.00187
  • Almeida, I. A. Z. C., Peresi, J. T. M., Alves, E. C., Marques, D. F., Teixeira, I. S. C., Lima e Silva, S. I., Pigon, S. R. F., Tiba, M. R., & Fernandes, S. A. (2015). Salmonella Alachua: Causative agent of a foodborne disease outbreak. The Brazilian Journal of Infectious Diseases, 19(3), 233-238. PMid:25661321. http://dx.doi.org/10.1016/j.bjid.2014.12.006
    » http://dx.doi.org/10.1016/j.bjid.2014.12.006
  • Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. PMid:25664339. http://dx.doi.org/10.1155/2015/520179
    » http://dx.doi.org/10.1155/2015/520179
  • Arikan, M. S., Akin, A. C., Akcay, A., Aral, Y., Sariozkan, S., Cevrimli, M. B., & Polat, M. (2017). Effects of transportation distance, slaughter age, and seasonal factors on total losses in broiler chickens. Brazilian Journal of Poultry Science, 19(3), 421-428. http://dx.doi.org/10.1590/1806-9061-2016-0429
    » http://dx.doi.org/10.1590/1806-9061-2016-0429
  • Associação Brasileira de Proteína Animal. (2022). Relatório anual 2022 Retrieved in 2023, April 28, from https://abpa-br.org/mercados/#relatorios
    » https://abpa-br.org/mercados/#relatorios
  • Associação Brasileira de Reciclagem Animal – ABRA. (2018). Anuário ABRA: Setor de reciclagem animal Retrieved in 2023, April 28, from https://abra.ind.br/anuario2018/
    » https://abra.ind.br/anuario2018/
  • Balloux, F., & van Dorp, L. (2017). Q&A: What are pathogens, and what have they done to and for us? BMC Biology, 15(1), 91. PMid:29052511. http://dx.doi.org/10.1186/s12915-017-0433-z
    » http://dx.doi.org/10.1186/s12915-017-0433-z
  • Baltic, T., Ciric, J., Lazic, I. B., Pelic, D. L., Mitrovic, R., Djordjevic, V., & Parunovic, N. (2019). Packaging as a tool to improve the shelf life of poultry meat. IOP Conference Series: Earth and Environmental Science, 333(1), 012044. http://dx.doi.org/10.1088/1755-1315/333/1/012044
    » http://dx.doi.org/10.1088/1755-1315/333/1/012044
  • Barros, F. D., & Licco, E. A. (2007). A reciclagem de resíduos de origem animal: Uma questão ambiental. Revista Nacional da Carne, 31(365), 166-172.
  • Berchieri Júnior, A., & Freitas Neto, O. C. (2015). Salmoneloses. In A. Berchieri Júnior, E. P. Silva, J. Di Fábio, L. Sesti & M. A. F. Zuanaze (Eds.), Doença das aves (2. ed., pp. 435-454). Campinas: Fundação APinCO de Ciência e Tecnologia Avícolas.
  • Beshiru, A., Igbinosa, I. H., & Igbinosa, E. O. (2018). Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. PLoS One, 13(9), e0204345. PMid:30235341. http://dx.doi.org/10.1371/journal.pone.0204345
    » http://dx.doi.org/10.1371/journal.pone.0204345
  • Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529-563. PMid:31294175. http://dx.doi.org/10.3934/microbiol.2017.3.529
    » http://dx.doi.org/10.3934/microbiol.2017.3.529
  • Brasil. (1994, September 22). Portaria Ministerial nº 193 de 19 set. 1994. Institui o Programa Nacional de Sanidade Avícola no âmbito da SDA e cria o Comitê Consultivo do Programa de Sanidade Avícola. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Agência Nacional de Vigilância Sanitária. (2022, July 6). Resolução da Diretoria Colegiada - RDC nº 724, de 1º de julho de 2022. Dispõe sobre os padrões microbiológicos dos alimentos e sua aplicação. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (1998, February 10). Portaria n° 46, de 10 de fevereiro de 1998. Instituir o Sistema de Análise de Perigos e Pontos Críticos de Controle - APPCC a ser implantado, gradativamente, nas indústrias de produtos de origem animal sob o regime do Serviço de Inspeção Federal - SIF, de acordo com o manual genérico de procedimentos. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2008, May 28). Instrução Normativa nº 34, de 28 de maio de 2008. Regulamento técnico da inspeção higiênico sanitária e tecnológica do processamento de resíduos de animais e o modelo de documento de transporte de resíduos animais. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Comissão Científica Consultiva em Microbiologia de Produtos de Origem Animal. (2013, January 28). Portaria nº 17, de 25 de janeiro de 2013. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2016, October 25). Instrução Normativa nº 20, de 21 de outubro de 2016. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2017, March 30). Decreto nº 9.013, de 29 de março de 2017. Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. (2020, August 19). Decreto nº 10.468, de 18 de agosto de 2020. Altera o Decreto nº 9.013, de 29 de março de 2017, que regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre o regulamento da inspeção industrial e sanitária de produtos de origem animal. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. (2011). Manual técnico de diagnóstico laboratorial de Salmonella spp.: Diagnóstico laboratorial do gênero Salmonella Brasília: Ministério da Saúde/Secretaria de Vigilância em Saúde/Fundação Oswaldo Cruz/Laboratório de Referência Nacional de Enteroinfecções Bacterianas/Instituto Adolfo Lutz.
  • Camino Feltes, M. M., Arisseto-Bragotto, A. P., & Block, J. M. (2017). Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Quality and Safety, 1(1), 13-27. http://dx.doi.org/10.1093/fqs/fyx003
    » http://dx.doi.org/10.1093/fqs/fyx003
  • Carvalho, C. M., Fernandes, E. A., Carvalho, A. P., Caires, R. M., & Fagundes, N. S. (2012). Uso de farinhas de origem animal na alimentação de frangos de corte. Revista Portuguesa de Ciências Veterinárias, 107(581-582), 69-73.
  • Castañeda-Salazar, R., Pulido-Villamarín, A. P., Ángel-Rodríguez, G. L., Zafra-Alba, C. A., & Oliver-Espinosa, O. J. (2021). Isolation and identification of Salmonella spp. in raw milk from dairy herds in Colombia. Brazilian Journal of Veterinary Research and Animal Science, 58, e172805. http://dx.doi.org/10.11606/issn.1678-4456.bjvras.2021.172805
    » http://dx.doi.org/10.11606/issn.1678-4456.bjvras.2021.172805
  • Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella infection: Microbiology, clinical features, and antimicrobial therapy. Pediatrics and Neonatology, 54(3), 147-152. PMid:23597525. http://dx.doi.org/10.1016/j.pedneo.2013.01.010
    » http://dx.doi.org/10.1016/j.pedneo.2013.01.010
  • Chousalkar, K. K., & Roberts, J. R. (2012). Recovery of Salmonella from eggshell wash, eggshell crush, and egg internal contents of unwashed commercial shell eggs in Australia. Poultry Science, 91(7), 1739-1741. PMid:22700522. http://dx.doi.org/10.3382/ps.2012-02144
    » http://dx.doi.org/10.3382/ps.2012-02144
  • Corcoran, M., Morris, D., Lappe, N., O’Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507-1514. PMid:24362427. http://dx.doi.org/10.1128/AEM.03109-13
    » http://dx.doi.org/10.1128/AEM.03109-13
  • Costa, W. L. R., Santos, E. T. S. R., Leal Neto, A. F., Silva, R. A. R., Rodgers, M. S. M., Fernandes, L. M. B., & Nascimento, E. R. (2022). Salmonella spp. in non-edible animal products intended for the preparation of feed (meal) for industrial poultry feed. Research, Society and Development, 11(3), e16311326310. http://dx.doi.org/10.33448/rsd-v11i3.26310
    » http://dx.doi.org/10.33448/rsd-v11i3.26310
  • Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A., & Parry, C. M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews, 28(4), 901-937. PMid:26180063. http://dx.doi.org/10.1128/CMR.00002-15
    » http://dx.doi.org/10.1128/CMR.00002-15
  • Delahoy, M. J., Wodnik, B., McAliley, L., Penakalapati, G., Swarthout, J., Freeman, M. C., & Levy, K. (2018). Pathogens transmitted in animal feces in low-and middle-income countries. International Journal of Hygiene and Environmental Health, 221(4), 661-676. PMid:29729998. http://dx.doi.org/10.1016/j.ijheh.2018.03.005
    » http://dx.doi.org/10.1016/j.ijheh.2018.03.005
  • Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E., & Crowe, S. J. (2018). Surveillance for foodborne disease outbreaks: United States, 2009-2015. Morbidity and Mortality Weekly Report. Surveillance Summaries, 67(10), 1-11. PMid:30048426. http://dx.doi.org/10.15585/mmwr.ss6710a1
    » http://dx.doi.org/10.15585/mmwr.ss6710a1
  • Dougan, G., & Baker, S. (2014). Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annual Review of Microbiology, 68(1), 317-336. PMid:25208300. http://dx.doi.org/10.1146/annurev-micro-091313-103739
    » http://dx.doi.org/10.1146/annurev-micro-091313-103739
  • Dróżdż, M., Małaszczuk, M., Paluch, E., & Pawlak, A. (2021). Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infection Ecology & Epidemiology, 11(1), 1975530. PMid:34531964. http://dx.doi.org/10.1080/20008686.2021.1975530
    » http://dx.doi.org/10.1080/20008686.2021.1975530
  • Ebling, P. D., Ribeiro, A. M. L., Trevizan, L., Silva, I. C. M., Kessler, A. D. M., & Rubin, L. L. (2013). Effect of different dietary concentrations of amino acids on the performance of two different broiler strains. Brazilian Journal of Poultry Science, 15(4), 339-346. http://dx.doi.org/10.1590/S1516-635X2013000400008
    » http://dx.doi.org/10.1590/S1516-635X2013000400008
  • Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella, food safety and food handling practices. Foods, 10(5), 907. PMid:33919142. http://dx.doi.org/10.3390/foods10050907
    » http://dx.doi.org/10.3390/foods10050907
  • Elmali, M., Can, H. Y., & Yaman, H. (2015). Prevalence of Listeria monocytogenes in poultry meat. Food Science and Technology, 35(4), 672-675. http://dx.doi.org/10.1590/1678-457X.6808
    » http://dx.doi.org/10.1590/1678-457X.6808
  • European Food Safety Authority. European Centre for Disease Prevention and Control. (2018). Multi‐country outbreak of Salmonella Agona infections possibly linked to ready‐to‐eat food. EFSA Supporting Publication, 15(7), 1465. https://doi.org/10.2903/sp.efsa.2018.EN-1465
    » https://doi.org/10.2903/sp.efsa.2018.EN-1465
  • Evangelopoulou, G., Kritas, S., Govaris, A., & Burriel, A. R. (2013). Animal salmonelloses: A brief review of “host adaptation and host specificity” of Salmonella spp. Veterinary World, 6(10), 703-708. http://dx.doi.org/10.14202/vetworld.2013.703-708
    » http://dx.doi.org/10.14202/vetworld.2013.703-708
  • Fayemi, P. O., Muchenje, V., Yetim, H., & Ahhmed, A. (2018). Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutriente synergy and analgesics in organ meat. Food Research International, 104, 48-58. PMid:29433783. http://dx.doi.org/10.1016/j.foodres.2016.11.038
    » http://dx.doi.org/10.1016/j.foodres.2016.11.038
  • Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S., & Gordon, M. A. (2012). Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet, 379(9835), 2489-2499. PMid:22587967. http://dx.doi.org/10.1016/S0140-6736(11)61752-2
    » http://dx.doi.org/10.1016/S0140-6736(11)61752-2
  • Ferreira, L. L., Mendes, F. R., Santos, B., Andrade, M. A., & Café, M. B. (2013). Salmonelose em sanidade avícola e saúde pública. Nutritime, 10(5), 2716-2751.
  • Ferroli, P. C. M., Fiod Neto, M., Casarotto Filho, N., & Castro, J. E. E. (2000). Fábricas de subprodutos de origem animal: A importância do balanceamento das cargas dos digestores de vísceras. Production, 10(2), 5-20. http://dx.doi.org/10.1590/S0103-65132000000200001
    » http://dx.doi.org/10.1590/S0103-65132000000200001
  • Finn, S., Condell, O., McClure, P., Amézquita, A., & Fanning, S. (2013). Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Frontiers in Microbiology, 4, 331. PMid:24294212. http://dx.doi.org/10.3389/fmicb.2013.00331
    » http://dx.doi.org/10.3389/fmicb.2013.00331
  • Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., & Danzeisen, J. (2013). Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews, 77(4), 582-607. PMid:24296573. http://dx.doi.org/10.1128/MMBR.00015-13
    » http://dx.doi.org/10.1128/MMBR.00015-13
  • Gosling, R., Oastler, C., Nichols, C., Jackson, G., Wales, A. D., & Davies, R. H. (2022). Investigations into Salmonella contamination in feed mills producing rations for the broiler industry in Great Britain. Veterinary Sciences, 9(7), 307. PMid:35878324. http://dx.doi.org/10.3390/vetsci9070307
    » http://dx.doi.org/10.3390/vetsci9070307
  • Gunn, J. S., Marshall, J. M., Baker, S., Dongol, S., Charles, R. C., & Ryan, E. T. (2014). Salmonella chronic carriage: Epidemiology, diagnosis, and gallbladder persistence. Trends in Microbiology, 22(11), 648-655. PMid:25065707. http://dx.doi.org/10.1016/j.tim.2014.06.007
    » http://dx.doi.org/10.1016/j.tim.2014.06.007
  • Gupta, A., Bansal, M., Wagle, B., Sun, X., Rath, N., Donoghue, A., & Upadhyay, A. (2020). Sodium butyrate reduces Salmonella enteritidis infection of chicken enterocytes and expression of inflammatory host genes in vitro. Frontiers in Microbiology, 11, 553670. PMid:33042060. http://dx.doi.org/10.3389/fmicb.2020.553670
    » http://dx.doi.org/10.3389/fmicb.2020.553670
  • Ha, J. S., Seo, K. W., Kim, Y. B., Kang, M. S., Song, C. S., & Lee, Y. J. (2018). Prevalence and characterization of Salmonella in two integrated broiler operations in Korea. Irish Veterinary Journal, 71(1), 3. PMid:29372048. http://dx.doi.org/10.1186/s13620-018-0114-4
    » http://dx.doi.org/10.1186/s13620-018-0114-4
  • Hamilton, C. R. (2004). Real and perceived issues involving animal proteins. In Food and Agriculture Organization (Org.), Protein Sources for the Animal Feed Industry. FAO Expert Consultation and Workshop (pp. 255-276). Rome, Italy: Food and Agriculture Organization. Retrieved in 2023, April 28, from https://www.cabdirect.org/cabdirect/abstract/20043127274
    » https://www.cabdirect.org/cabdirect/abstract/20043127274
  • Harvey, R. R., Friedman, C. R., Crim, S. M., Judd, M., Barrett, K. A., Tolar, B., Folster, J. P., Griffin, P. M., & Brown, A. C. (2017). Epidemiology of Salmonella enterica serotype Dublin infections among humans, United States, 1968–2013. Emerging Infectious Diseases, 23(9), 1493-1501. PMid:28820133. http://dx.doi.org/10.3201/eid2309.170136
    » http://dx.doi.org/10.3201/eid2309.170136
  • Hassan, M. M., El Zowalaty, M. E., Lundkvist, Å., Järhult, J. D., Nayem, M. R. K., Tanzin, A. Z., Badsha, M. R., Khan, S. A., & Ashour, H. M. (2021). Residual antimicrobial agents in food originating from animals. Trends in Food Science & Technology, 111, 141-150. PMid:33746363. http://dx.doi.org/10.1016/j.tifs.2021.01.075
    » http://dx.doi.org/10.1016/j.tifs.2021.01.075
  • Heredia, N., & García, S. (2018). Animals as sources of food-borne pathogens: A review. Animal Nutrition, 4(3), 250-255. PMid:30175252. http://dx.doi.org/10.1016/j.aninu.2018.04.006
    » http://dx.doi.org/10.1016/j.aninu.2018.04.006
  • Hindermann, D., Gopinath, G., Chase, H., Negrete, F., Althaus, D., Zurfluh, K., Tall, B. D., Stephan, R., & Nüesch-Inderbinen, M. (2017). Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Frontiers in Microbiology, 8, 1322. PMid:28751886. http://dx.doi.org/10.3389/fmicb.2017.01322
    » http://dx.doi.org/10.3389/fmicb.2017.01322
  • Hoel, S., Jakobsen, A. N., & Vadstein, O. (2017). Effects of storage temperature on bacterial growth rates and community structure in fresh retail sushi. Journal of Applied Microbiology, 123(3), 698-709. PMid:28654203. http://dx.doi.org/10.1111/jam.13527
    » http://dx.doi.org/10.1111/jam.13527
  • Hossain, M. J., Attia, Y., Ballah, F. M., Islam, M. S., Sobur, M. A., Islam, M. A., Ievy, S., Rahman, A., Nishiyama, A., Islam, M. S., Hassan, J., & Rahman, M. T. (2021). Zoonotic significance and antimicrobial resistance in salmonella in poultry in Bangladesh for the period of 2011–2021. Zoonotic Diseases, 1(1), 3-24. http://dx.doi.org/10.3390/zoonoticdis1010002
    » http://dx.doi.org/10.3390/zoonoticdis1010002
  • Huneau-Salaün, A., Stärk, K. D. C., Mateus, A., Lupo, C., Lindberg, A., & Bouquin-Leneveu, S. (2015). Contribution of meat inspection to the surveillance of poultry health and welfare in the European Union. Epidemiology and Infection, 143(11), 2459-2472. PMid:25521240. http://dx.doi.org/10.1017/S0950268814003379
    » http://dx.doi.org/10.1017/S0950268814003379
  • Hunter, C., & Watkins, K. F. (2017). Infectious diseases related to travel. In I. Plumb, P. Fields & B. Bruce (Eds.), Salmonellosis, nontyphoidal (Chap. 3). Retrieved in 2019, January 22, from https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal
    » https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal
  • Irfan, M., Mehmood, S., Mahmud, A., & Anjum, A. A. (2020). An assessment of chemical and microbiological properties of different types of poultry waste compost prepared by bin and windrow composting system. Brazilian Journal of Poultry Science, 22(4), eRBCA-2020-1278. http://dx.doi.org/10.1590/1806-9061-2020-1278
    » http://dx.doi.org/10.1590/1806-9061-2020-1278
  • Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., Pinna, E., Nair, S., Fields, P. I., & Weill, F. X. (2014). Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Research in Microbiology, 165(7), 526-530. PMid:25049166. http://dx.doi.org/10.1016/j.resmic.2014.07.004
    » http://dx.doi.org/10.1016/j.resmic.2014.07.004
  • Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerging Infectious Diseases, 19(8), 1239-1244. PMid:23876503. http://dx.doi.org/10.3201/eid1908.121511
    » http://dx.doi.org/10.3201/eid1908.121511
  • Janocha, A., Milczarek, A., Pietrusiak, D., Łaski, K., & Saleh, M. (2022). Efficiency of soybean products in broiler chicken nutrition. Animals, 12(3), 294. PMid:35158618. http://dx.doi.org/10.3390/ani12030294
    » http://dx.doi.org/10.3390/ani12030294
  • Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of by products and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278-293. PMid:23729848. http://dx.doi.org/10.1007/s13197-011-0290-7
    » http://dx.doi.org/10.1007/s13197-011-0290-7
  • Jechalke, S., Schierstaedt, J., Becker, M., Flemer, B., Grosch, R., Smalla, K., & Schikora, A. (2019). Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species. Frontiers in Microbiology, 10, 967. PMid:31156568. http://dx.doi.org/10.3389/fmicb.2019.00967
    » http://dx.doi.org/10.3389/fmicb.2019.00967
  • Kagirita, A. A., Baguma, A., Owalla, T. J., Bazira, J., & Majalija, S. (2017). Molecular characterization of Salmonella from human and animal origins in Uganda. International Journal of Bacteriology, 2017, 4604789. PMid:28634597. http://dx.doi.org/10.1155/2017/4604789
    » http://dx.doi.org/10.1155/2017/4604789
  • Lee, M. B., & Greig, J. D. (2013). A review of nosocomial Salmonella outbreaks: Infection control interventions found effective. Public Health, 127(3), 199-206. PMid:23433804. http://dx.doi.org/10.1016/j.puhe.2012.12.013
    » http://dx.doi.org/10.1016/j.puhe.2012.12.013
  • Leiva, A., Granados-Chinchilla, F., Redondo-Solano, M., Arrieta-González, M., Pineda-Salazar, E., & Molina, A. (2018). Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poultry Science, 97(6), 2159-2169. PMid:29562297. http://dx.doi.org/10.3382/ps/pey058
    » http://dx.doi.org/10.3382/ps/pey058
  • Li, W., Li, H., Zheng, S., Wang, Z., Sheng, H., Shi, C., Shi, X., Niu, Q., & Yang, B. (2020). Prevalence, serotype, antibiotic susceptibility, and genotype of Salmonella in eggs from poultry farms and marketplaces in Yangling, Shaanxi province, China. Frontiers in Microbiology, 11, 1482. PMid:32903897. http://dx.doi.org/10.3389/fmicb.2020.01482
    » http://dx.doi.org/10.3389/fmicb.2020.01482
  • Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159. PMid:29900166. http://dx.doi.org/10.3389/fpubh.2018.00159
    » http://dx.doi.org/10.3389/fpubh.2018.00159
  • Loureiro, K. D. C., Haese, D., Kill, J. L., Pires, A. F., Fernandes, D. R., Colnago, G. L., Lucas, W. H., & Gama, G. O. (2017). Ingredients derived from the slaughter of bovines in dog food. Ciência Rural, 47(6), e20150778. http://dx.doi.org/10.1590/0103-8478cr20150778
    » http://dx.doi.org/10.1590/0103-8478cr20150778
  • MacKenzie, K. D., Palmer, M. B., Köster, W. L., & White, A. P. (2017). Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species. Frontiers in Veterinary Science, 4, 138. PMid:29159172. http://dx.doi.org/10.3389/fvets.2017.00138
    » http://dx.doi.org/10.3389/fvets.2017.00138
  • Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughter house waste. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 171-173. http://dx.doi.org/10.31031/APDV.2018.02.000542
    » http://dx.doi.org/10.31031/APDV.2018.02.000542
  • Mathi, P., Kunyanga, C., Gichure, J. N., & Imungi, J. K. (2016). Utilization of beef slaughter by-products among the Kenyan pastoral communities. Food Science and Quality Management, 53, 78-83. Retrieved in 2023, April 28, from https://www.researchgate.net/publication/314364032
    » https://www.researchgate.net/publication/314364032
  • Matias, C. D. Q., Lara, L. J. C., Baião, N. C., Cardoso, D. D. M., & Baião, R. C. (2012). Utilização de farinhas de origem animal na avicultura. Nutritime, 9(5), 1944-1964.
  • Meeker, D. L. (2009). North American rendering: Processing high quality protein and fats for feed. Revista Brasileira de Zootecnia, 38(spe), 432-440. http://dx.doi.org/10.1590/S1516-35982009001300043
    » http://dx.doi.org/10.1590/S1516-35982009001300043
  • Meeker, D. L., & Meisinger, J. L. (2015). Companion animals symposium: Rendered ingredients significantly influence sustainability, quality, and safety of pet food. Journal of Animal Science, 93(3), 835-847. PMid:26020862. http://dx.doi.org/10.2527/jas.2014-8524
    » http://dx.doi.org/10.2527/jas.2014-8524
  • Mézes, L., Attila, N. A. G. Y., Gálya, B., & János, T. (2015). Poultry feather wastes recycling possibility as soil nutrient. Eurasian Journal of Soil Science, 4(4), 244-252. http://dx.doi.org/10.18393/ejss.2015.4.244-252
    » http://dx.doi.org/10.18393/ejss.2015.4.244-252
  • Moënne-Loccoz, Y., Mavingui, P., Combes, C., Normand, P., & Steinberg, C. (2015). Microorganisms and biotic interactions. In J. C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand & T. Sime-Ngando (Eds.), Environmental microbiology: Fundamentals and applications (pp. 395-444). Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-017-9118-2_11
    » http://dx.doi.org/10.1007/978-94-017-9118-2_11
  • Moffatt, C. R., Musto, J., Pingault, N., Miller, M., Stafford, R., Gregory, J., Polkinghorne, B., & Kirk, M. D. (2016). Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathogens and Disease, 13(7), 379-385. PMid:27028267. http://dx.doi.org/10.1089/fpd.2015.2110
    » http://dx.doi.org/10.1089/fpd.2015.2110
  • New Zealand. Ministry for Primary Industries. (2015). Horizontal transfer and growth of Salmonella enterica in chicken (Gallus gallus) eggs in New Zealand Wellington: Ministry for Primary Industries. MPI technical paper 2015/26.
  • Okanović, Đ., Ristić, M., Kormanjoš, Š., Filipović, S., & Živković, B. (2009). Chemical characteristics of poultry slaughterhouse by products. Biotechnology in Animal Husbandry, 25(1-2), 143-152. http://dx.doi.org/10.2298/BAH0902143O
    » http://dx.doi.org/10.2298/BAH0902143O
  • Olasoju, M. I., Olasoju, T. I., Adebowale, O. O., & Adetunji, V. O. (2021). Knowledge and practice of cattle handlers on antibiotic residues in meat and milk in Kwara State, Northcentral Nigeria. PLoS One, 16(10), e0257249. PMid:34648524. http://dx.doi.org/10.1371/journal.pone.0257249
    » http://dx.doi.org/10.1371/journal.pone.0257249
  • Oloo, B. O., Mahungu, S., Gogo, L., & Kah, A. (2017). Design of a HACCP plan for indigenous chicken slaughter house in Kenya. African Journal of Food, Agriculture, Nutrition and Development, 17(1), 11616-11638. http://dx.doi.org/10.18697/ajfand.77.16765
    » http://dx.doi.org/10.18697/ajfand.77.16765
  • Pal, M., Merera, O., Abera, F., Rahman, M. T., & Hazarika, R. A. (2015). Salmonellosis: A major foodborne disease of global significance. Beverage Food World, 42(12), 21-24.
  • Pareja Arcila, J. C., Tinoco, I. F. F., Osorio Saraz, J. A., Rocha, K. S. O., & Candido, M. G. L. (2018). Zootechnical and physiological performance of broilers in the final stage of growth subjected to different levels of heat stress. Revista Facultad Nacional de Agronomía, 71(2), 8469-8476. http://dx.doi.org/10.15446/rfna.v71n2.71927
    » http://dx.doi.org/10.15446/rfna.v71n2.71927
  • Popa, G. L., & Popa, M. I. (2021). Salmonella spp. infection-a continuous threat worldwide. Germs, 11(1), 88-96. PMid:33898345. http://dx.doi.org/10.18683/germs.2021.1244
    » http://dx.doi.org/10.18683/germs.2021.1244
  • Prache, S., Adamiec, C., Astruc, T., Baéza-Campone, E., Bouillot, P. E., Clinquart, A., Feidt, C., Fourat, E., Gautron, J., Girard, A., Guillier, L., Kesse-Guyot, E., Lebret, B., Lefèvre, F., Le Perchec, S., Martin, B., Mirade, P. S., Pierre, F., Raulet, M., Rémond, D., Sans, P., Souchon, I., Donnars, C., & Santé-Lhoutellier, V. (2022). Review: Quality of animal-source foods. Animal, 16(Suppl. 1), 100376. PMid:34836809. http://dx.doi.org/10.1016/j.animal.2021.100376
    » http://dx.doi.org/10.1016/j.animal.2021.100376
  • Rabelo, M. H. S., Silva, E. K., & Peres, A. D. P. (2014). Análise de modos e efeitos de falha na avaliação dos impactos ambientais provenientes do abate animal. Engenharia Sanitária e Ambiental, 19(1), 79-86. http://dx.doi.org/10.1590/S1413-41522014000100009
    » http://dx.doi.org/10.1590/S1413-41522014000100009
  • Radhakrishnan, A., Als, D., Mintz, E. D., Crump, J. A., Stanaway, J., Breiman, R. F., & Bhutta, Z. A. (2018). Introductory article on global burden and epidemiology of typhoid fever. The American Journal of Tropical Medicine and Hygiene, 99(Suppl. 3), 4-9. PMid:30047370. http://dx.doi.org/10.4269/ajtmh.18-0032
    » http://dx.doi.org/10.4269/ajtmh.18-0032
  • Ramirez-Hernandez, A., Inestroza, B., Parks, A., Brashears, M. M., Sanchez-Plata, M. X., & Echeverry, A. (2018). Thermal inactivation of Salmonella in high-fat rendering meat products. Journal of Food Protection, 81(1), 54-58. PMid:29257727. http://dx.doi.org/10.4315/0362-028X.JFP-17-126
    » http://dx.doi.org/10.4315/0362-028X.JFP-17-126
  • Rani, Z. T., Hugo, A., Hugo, C. J., Vimiso, P., & Muchenje, V. (2017). Effect of post-slaughter handling during distribution on microbiological quality and safety of meat in the formal and informal sectors of South Africa: A review. South African Journal of Animal Science, 47(3), 255-267. http://dx.doi.org/10.4314/sajas.v47i3.2
    » http://dx.doi.org/10.4314/sajas.v47i3.2
  • Rebouças, A. D. S., Zanini, A., Kiperstok, A., Pepe, I. M., & Embiruçu, M. (2010). Contexto ambiental e aspectos tecnológicos das graxarias no Brasil para a inserção do pequeno produtor na indústria da carne. Revista Brasileira de Zootecnia, 39(Suppl. Spe), 499-509. http://dx.doi.org/10.1590/S1516-35982010001300054
    » http://dx.doi.org/10.1590/S1516-35982010001300054
  • Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., Hudson, P. J., Jouanard, N., Nguyen, K. H., Ostfeld, R. S., Remais, J. V., Riveau, G., Sokolow, S. H., & Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. PMid:32219187. http://dx.doi.org/10.1038/s41893-019-0293-3
    » http://dx.doi.org/10.1038/s41893-019-0293-3
  • Rosak-Szyrocka, J., & Abbase, A. A. (2020). Quality management and safety of food in HACCP system aspect. Production Engineering Archives, 26(2), 50-53. http://dx.doi.org/10.30657/pea.2020.26.11
    » http://dx.doi.org/10.30657/pea.2020.26.11
  • Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms, 5(3), 50. PMid:28841156. http://dx.doi.org/10.3390/microorganisms5030050
    » http://dx.doi.org/10.3390/microorganisms5030050
  • Sari, O. F., Ozdemir, S., & Celebi, A. (2016). Utilization and management of poultry slaughterhouse wastes with new methods. In Yıldız Technical University, Yıldız Technical University Department of Engineering, Istanbul Environmental Management in Industry and Trade Inc. & Galaksi Turizm (Orgs.), Eurasia 2016 Waste Management Symposium (pp. 2-4). Istanbul, Turkey: Yıldız Technical University.
  • Silva, F. F. P. D., Horvath, M. B., Silveira, J. G., Pieta, L., & Tondo, E. C. (2014). Occurrence of Salmonella spp. and generic Escherichia coli on beef carcasses sampled at a brazilian slaughterhouse. Brazilian Journal of Microbiology, 45(1), 17-24. PMid:24948909. http://dx.doi.org/10.1590/S1517-83822014005000037
    » http://dx.doi.org/10.1590/S1517-83822014005000037
  • Silva, J. M. S., Gouveia, A. B. V. S., Silva, W. J., Paulo, L. M., Santos, F. R., & Minafra, C. S. (2018). Uso de enzimas para aumentar a qualidade nutricional de farinhas de origem animal. Pubvet, 12(8), 133. http://dx.doi.org/10.31533/pubvet.v12n8a156.1-13
    » http://dx.doi.org/10.31533/pubvet.v12n8a156.1-13
  • Singh, V. (2013). Salmonella serovars and their host specificity. Journal of Veterinary Science and Animal Husbandry, 1(3), 1-4. http://dx.doi.org/10.15744/2348-9790.1.301
    » http://dx.doi.org/10.15744/2348-9790.1.301
  • Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. http://dx.doi.org/10.1016/j.tifs.2021.05.002
    » http://dx.doi.org/10.1016/j.tifs.2021.05.002
  • Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. (2017). Thermal treatment of waste from the meat industry in high scale rotary kiln. International Journal of Environmental Science and Technology, 14(6), 1157-1168. http://dx.doi.org/10.1007/s13762-016-1223-9
    » http://dx.doi.org/10.1007/s13762-016-1223-9
  • Steghöfer, S., Limburn, R., & Margas, E. (2021). Microbiological assessment of heat treatment of broiler mash at laboratory scale to evaluate Salmonella reduction during feed conditioning. Journal of Applied Poultry Research, 30(1), 100122. http://dx.doi.org/10.1016/j.japr.2020.100122
    » http://dx.doi.org/10.1016/j.japr.2020.100122
  • Tegegne, F. M. (2019). Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. Journal of Food Nutrition & Health, 2(1), 7-14.
  • Thyagarajan, D., Barathi, M., & Sakthivadivu, R. (2013). Scope of poultry waste utilization. IOSR Journal of Agriculture and Veterinary Science, 6(5), 29-35. http://dx.doi.org/10.9790/2380-0652935
    » http://dx.doi.org/10.9790/2380-0652935
  • Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. PMid:27156911. http://dx.doi.org/10.1016/j.meatsci.2016.04.021
    » http://dx.doi.org/10.1016/j.meatsci.2016.04.021
  • Usmael, B., Abraha, B., Alemu, S., Mummed, B., Hiko, A., & Abdurehman, A. (2022). Isolation, antimicrobial susceptibility patterns, and risk factors assessment of non-typhoidal Salmonella from apparently healthy and diarrheic dogs. BMC Veterinary Research, 18(1), 37. PMid:35033077. http://dx.doi.org/10.1186/s12917-021-03135-x
    » http://dx.doi.org/10.1186/s12917-021-03135-x
  • Uzal, F. A., Plattner, B. L., & Hostettter, J. M. (2016). Jubb, Kennedy & Palmer’s pathology of domestic animals 6th ed. London: Elsevier.
  • Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology and Infection, 125(2), 229-255. PMid:11117946. http://dx.doi.org/10.1017/S0950268899004379
    » http://dx.doi.org/10.1017/S0950268899004379
  • Vasconcelos, R. H., Teixeira, R. S. C., Silva, I. N. G., Lopes, E. S., & Maciel, W. C. (2018). Feral pigeons (Columba livia) as potential reservoirs of Salmonella sp. and Escherichia coli. Arquivos do Instituto Biológico, 85, e0412017. http://dx.doi.org/10.1590/1808-1657000412017
    » http://dx.doi.org/10.1590/1808-1657000412017
  • Vidyarthi, S., Vaddella, V., Cao, N., Kuppu, S., & Pandey, P. (2021). Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods, 3, 100010. http://dx.doi.org/10.1016/j.fufo.2020.100010
    » http://dx.doi.org/10.1016/j.fufo.2020.100010
  • Wain, J., Hendriksen, R. S., Mikoleit, M. L., Keddy, K. H., & Ochiai, R. L. (2015). Typhoid fever. Lancet, 385(9973), 1136-1145. PMid:25458731. http://dx.doi.org/10.1016/S0140-6736(13)62708-7
    » http://dx.doi.org/10.1016/S0140-6736(13)62708-7
  • Wang, M., Qazi, I. H., Wang, L., Zhou, G., & Han, H. (2020). Salmonella virulence and immune escape. Microorganisms, 8(3), 407. PMid:32183199. http://dx.doi.org/10.3390/microorganisms8030407
    » http://dx.doi.org/10.3390/microorganisms8030407
  • Wemyss, M. A., & Pearson, J. S. (2019). Host cell death responses to non-typhoidal Salmonella infection. Frontiers in Immunology, 10, 1758. PMid:31402916. http://dx.doi.org/10.3389/fimmu.2019.01758
    » http://dx.doi.org/10.3389/fimmu.2019.01758
  • Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods, 10(8), 1742. PMid:34441520. http://dx.doi.org/10.3390/foods10081742
    » http://dx.doi.org/10.3390/foods10081742
  • World Health Organization. (2018, February 20). Salmonella (non-typhoidal) Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
    » https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
  • World Health Organization. (2022, May 19 ). Food safety Retrieved in 2023, April 28, from https://www.who.int/news-room/fact-sheets/detail/food-safety
    » https://www.who.int/news-room/fact-sheets/detail/food-safety
  • Xiong, D., Song, L., Pan, Z., & Jiao, X. (2018). Identification and discrimination of Salmonella enterica serovar gallinarum biovars pullorum and gallinarum based on a one-step multiplex PCR assay. Frontiers in Microbiology, 9, 1718. PMid:30108571. http://dx.doi.org/10.3389/fmicb.2018.01718
    » http://dx.doi.org/10.3389/fmicb.2018.01718
  • Zhou, M., Li, X., Hou, W., Wang, H., Paoli, G. C., & Shi, X. (2019). Incidence and characterization of salmonella isolates from raw meat products sold at small markets in Hubei province, China. Frontiers in Microbiology, 10, 2265. PMid:31636615. http://dx.doi.org/10.3389/fmicb.2019.02265
    » http://dx.doi.org/10.3389/fmicb.2019.02265

Edited by

Associate Editor: Felipe Alves de Almeida.

Publication Dates

  • Publication in this collection
    17 July 2023
  • Date of issue
    2023

History

  • Received
    17 Dec 2022
  • Accepted
    28 Apr 2023
Instituto de Tecnologia de Alimentos - ITAL Av. Brasil, 2880, 13070-178 Campinas - SP / Brasil, Tel 55 19 3743-1762 - Campinas - SP - Brazil
E-mail: bjftsec@ital.sp.gov.br