Acessibilidade / Reportar erro

Assessment of leaf anatomic and physiological characteristics and genetic divergence among Coffea arabica L. cultivars in the Brazilian Savanna

Avaliação de características anatômicas e fisiológicas foliares e divergência genética entre cultivares de Coffea arabica L. no Cerrado

ABSTRACT

The knowledge on cultivars is essential for parental choosing on breeding programs. This research aimed to study the genetic divergence of Coffea arabica L. cultivars from a germoplasm bank of the Embrapa Cerrados, Brazil, for leaf anatomic and physiological characteristics. A total of 23 cultivars were evaluated: Acaiá Cerrado MG1474, Araponga MG1, Catiguá MG1, Catiguá MG2, Catiguá MG3, Catiguá MG3 P4, Catiguá MG3 P5, Catiguá MG3 P7, Catiguá MG3 P9, Catiguá MG3 P23, Catiguá MG3 P51, Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 15, Catuaí Vermelho IAC 81, Catuaí Vermelho IAC 99, Caturra Vermelho MG0187, Guatenano Colis MG0207, Mundo Novo IAC 379-19, Paraíso MG1, Pau Brasil MG1, Sacramento MG1, San Ramon MG0198 and Topázio MG1190. In addition to the genetic divergence, the broad sense heritability and coefficient of genetic and environmental variation were also evaluated. All characteristics showed high coefficients of genetic variation and heritability values greater than 70 %, indicating a predominance of genetic over environmental factors, and that these are characteristics likely to obtain genetic gain. Catiguá MG1, Catiguá MG3 P51 and Topázio MG1190 stood out, with superior gas exchange characteristics. Attributes related to gas exchange were important for cultivar differentiation, demonstrating that they can be used in the early selection of Coffea arabica L. genotypes.

KEYWORDS:
Genetic breeding; coffee tree; gas exchange

RESUMO

O conhecimento das cultivares é essencial para a escolha dos pais em programas de melhoramento. Objetivou-se estudar a divergência genética de cultivares de Coffea arabica L. de um banco de germoplasma da Embrapa Cerrados, quanto às características anatômicas foliares e fisiológicas. Foram avaliadas 23 cultivares: Acaiá Cerrado MG1474, Araponga MG1, Catiguá MG1, Catiguá MG2, Catiguá MG3, Catiguá MG3 P4, Catiguá MG3 P5, Catiguá MG3 P7, Catiguá MG3 P9, Catiguá MG3 P23, Catiguá MG3 P51, Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 15, Catuaí Vermelho IAC 81, Catuaí Vermelho IAC 99, Caturra Vermelho MG0187, Guatenano Colis MG0207, Mundo Novo IAC 379-19, Paraíso MG1, Pau Brasil MG1, Sacramento MG1, San Ramon MG0198 e Topázio MG1190. Além da divergência genética, foram avaliados a herdabilidade de sentido amplo, coeficiente de variação genética e ambiental. Todas as características apresentaram altos coeficientes de variação genética e valores de herdabilidade superiores a 70 %, indicando predominância de fatores genéticos sobre ambientais, e que essas são características passíveis de se obter ganho genético. Catiguá MG1, Catiguá MG3 P51 e Topázio MG1190 se destacaram com características de trocas gasosas superiores. Atributos relacionados às trocas gasosas foram importantes para a discriminação das cultivares, o que demonstra que podem ser utilizados na seleção precoce de genótipos de Coffea arabica L.

PALAVRAS-CHAVE:
Melhoramento genético; cafeeiro; trocas gasosas

INTRODUCTION

The coffee crop has great social and economic importance in Brazil (Volsi et al. 2019VOLSI, B.; TELLES, T. S.; CARDARELLI, C. E.; CAMARA, M. R. G. da. The dynamics of coffee production in Brazil. Plos One, v. 14, n. 7, e0219742, 2019.), and its yield may be attributed to genetic breeding programs which allowed the obtention of more productive cultivars with characteristics of agronomic interest (Coltri et al. 2019COLTRI, P. P.; PINTO, H. S.; GONÇALVES, R. R. do V.; ZULLO JÚNIOR, J.; DUBREUIL, V. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, v. 5, n. 2, e01263, 2019., Purba et al. 2019PURBA, P.; SUKARTIKO, A. C.; AINURI, M. Modeling the plantation area of geographical indication product under climate change: Gayo Arabica coffee (Coffea arabica). Earth and Environmental Science, v. 365, e012021, 2019.).

In Brazil, about 20 % of Coffea species are preserved in germplasm banks, besides inter- and intraspecific hybrids used as source of genetic variability (Eira et al. 2007EIRA, M. T. S. da; FAZUOLLI, L. C.; GUERREIRO FILHO, O.; SILVAROLLA, M. B.; FERRÃO, M. A. G.; FONSECA, A. F. A.; FERRÃO, R. G.; SERA, T.; PEREIRA, A. A.; SAKIYAMA, N. S.; ZAMBOLIM, L.; CARVALHO, C. H.; PADILHA, L.; SOUZA, F. de F. Bancos de germoplasma de café no Brasil. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2007.). Research has characterized these collections and identified promising materials (Ferrão et al. 2008FERRÃO, R. G.; CRUZ, C. D.; FERREIRA, A.; CECON, P. R.; FERRÃO, M. A. G.; FONSECA, A. F. A. da; CARNEIRO, P. C. de S.; SILVA, M. F. da. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira, v. 43, n. 1, p. 61-69, 2008., Guedes et al. 2013GUEDES, J. M.; VILELA, D. J. M.; REZENDE, J. C.; SILVA, F. L.; BOTELHO, C. E.; CARVALHO, S. P. Divergência genética entre cafeeiros do germoplasma Maragogipe. Bragantia, v. 72, n. 2, p. 127-132, 2013., Giles et al. 2019GILES, J. D.; FERREIRA, A. D.; PARTELLI, F. L.; AOYAMA, E. M.; RAMALHO, J. C.; FERREIRA, A.; FALQUETO, A. Divergence and genetic parameters between Coffea sp. genotypes based in foliar morpho-anatomical traits. Scientia Horticulturae, v. 245, n. 1, p. 231-236, 2019.). In these collections, in addition to exotic accessions, there are also cultivars in current use that may be included in breeding programs with success on the enhancement of important characteristics. However, some desirable characteristics require a longer evaluation time and are still little studied. Leaf anatomy studies associated to those of coffee physiology may be an accurate alternative to assist with materials of higher agronomic interest (Queiroz-Voltan et al. 2014QUEIROZ-VOLTAN, R. B.; NARDIN, C. F.; FAZUOLLI, L. C.; BRAGHINI, M. T. Caracterização da anatomia foliar de cafeeiros Arábica em diferentes períodos sazonais. Revista Biotemas, v. 27, n. 4, p. 1-10, 2014., Viana et al. 2018VIANA, M. T. R.; GUEDES, J. M.; MAURI, J.; SILVA, E. A.; CASTANHEIRA, D. T.; GAMA, T. C. P.; GUIMARÃES, R. J. Variabilidade genética em genótipos de café resistentes à ferrugem utilizados em programas de melhoramento. Scientia Agraria Paranaensis, v. 17, n. 1, p. 80-89, 2018., Giles et al. 2019GILES, J. D.; FERREIRA, A. D.; PARTELLI, F. L.; AOYAMA, E. M.; RAMALHO, J. C.; FERREIRA, A.; FALQUETO, A. Divergence and genetic parameters between Coffea sp. genotypes based in foliar morpho-anatomical traits. Scientia Horticulturae, v. 245, n. 1, p. 231-236, 2019.).

The optimum mean annual temperatures for C. arabica range from 18 to 23 ºC under cultivation conditions (DaMatta et al. 2018DAMATTA, F. M.; AVILA, R. T.; CARDOSO, A. A.; MARTINS, S. C.; RAMALHO, J. C. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. Journal of Agricultural and Food Chemistry, v. 66, n. 21, p. 5264-5274, 2018.). The knowledge regarding cultivar potential on cultivation environments such as Cerrado (Brazilian Savanna), where the average annual temperature is 24 ºC, with a maximum of 34.2 ºC (Nascimento & Novais 2020NASCIMENTO, D. T. F.; NOVAIS, G. T. Clima do Cerrado: dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élissé, v. 9, n. 2, e922021, 2020.), is of extreme importance. Thus, the identification of genotypes better adapted to the climatic conditions of this biome may contribute to accelerate breeding programs. Therefore, this research aimed to characterize Coffea arabica L. cultivars, estimate genetic divergence regarding physiological and anatomical characteristics, and identify the most divergent ones for future hybridizations in coffee breeding programs.

MATERIAL AND METHODS

The experiments were conducted in June 2016, in Planaltina, Federal District, Brazil, where the climate is Aw, according to Köppen, the average annual rainfall is 1,600 mm, with two typical rainy and dry seasons, the average annual temperature is 22 ºC and the altitude is 1,000 m (Alvares et al. 2013ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; MORAES, J. L. G. de; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.). The soil of the area is classified as Dark Red Latosol with clay texture (Santos 2013SANTOS, H. G. dos. Sistema brasileiro de classificação de solos. 3. ed. Brasília, DF: Embrapa, 2013.).

A total of 16 Coffea arabica L. cultivars from the Embrapa Cerrados Germplasm Bank were evaluated (Acaiá Cerrado MG1474, Araponga MG1, Catiguá MG1, Catiguá MG2, Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 15, Catuaí Vermelho IAC 81, Catuaí Vermelho IAC 99, Caturra Vermelho MG0187, Guatenano Colis MG0207, Mundo Novo IAC 379-19, Paraíso MG1, Pau Brasil MG1, Sacramento MG1, San Ramon MG0198 and Topázio MG1190), as well as 7 strains from the Catigua MG3 cultivar: Catigua MG3 with no marking (NM), Catiguá MG3 P4, Catigua MG3 P5, Catigua MG3 P7, Catigua MG3 P9, Catigua MG3 P23 and Catigua MG3 P51, to which the letter P corresponds to progenies of individual plants selected in experiments conducted in Turmalina, Minas Gerais, Brazil. These were selected in order to represent productive materials used in the different producing regions of Brazil.

The experimental design was completely randomized, with six plants per replicate. Six-year-old coffee plants were planted at a spacing of 3.8 x 0.7 m, and the management practices were carried out according to technical recommendations for coffee in the region. Irrigation was performed by a central pivot system with watering shift every five days. For data collection, completely expanded leaves, from the third or fourth pair at the middle third of each genotype plagiotropic branch, were selected.

The collected leaves were conditioned according to Johansen (1940)JOHANSEN, D. A. Plant microtechnique. New York: McGraw-Hill, 1940.. The plant material was dehydrated in an alcoholic series, included in methacrylate and sectioned at about 8-mm thickness, using a rotative microtome, observing the leaf transversal sections. The obtained sections were colored with toluidine blue (O’Brien et al. 1964O’BRIEN, T. P.; FEDER, N.; MCCULLY, M. E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, v. 59, n. 1, p. 368-373, 1964.) and the slides built using Entellan resin (Merck®). Paradermal sections were obtained through epidermis impression, using the universal instant adhesive method cyanoacrylate ester (Super Bonder® Locite-Henkel, São Paulo, Brazil) (Segatto et al. 2004SEGATTO, F. B.; BISOGNIN, D. A.; BENEDETTI, M.; COSTA, L. C. da; RAMPELOTTO, M. V.; NICOLOSO, F. T. Técnica para estudo da anatomia da epiderme foliar de batata. Ciência Rural, v. 34, n. 5, p. 1597-1601, 2004.).

The slides were photographed using an optical microscope (BX 60, Olympus Optical Co Ltd, Tokyo, Japan) with a digital camera (Canon A630 - Canon Inc., Tokyo, Japan). For each replicate, nine slides containing the transversal sections (three images from the main rib, leaf limb and cuticle from the adaxial surface) and three slides from three different paradermal sections were evaluated. The images were analyzed by the UTHSCSA-Imagetool software, version 3.0 (UTHSCSA 2017UTHSCSA ImageTool. Versão 3.0 final. 2013. Available at: http://ddsdx.uthscsa.edu/dig/download.html. Access on: Mar. 10, 2021.
http://ddsdx.uthscsa.edu/dig/download.ht...
).

The analyzed characteristics on transversal sections were: adaxial cuticle thickness (µm), adaxial epidermis thickness (µm), palisade parenchyma thickness (µm), spongy parenchyma thickness (µm), abaxial epidermis thickness (µm), number of xylem vases, xylem diameter (µm) and phloem thickness between procambium and sclerenchyma (µm). For paradermal sections, the number of stomata mm-2 (stomatal density) and ratio between stomatal polar and equatorial diameter were analyzed.

The gas exchange was evaluated using a portable system for gas analysis through infrared (IRGA LI-6400XT Portable Photosynthesis System - Licor Biosciences, Lincoln, USA). The stomatal conductance (gs - mol H2O m-1 s-1), transpiratory rate (E - mmol H2O m-2 s-1), net photosynthetic rate (A - µmol CO2 m-2 s-1), water-use efficiency (WUE - µmol CO2/mol H2O) (A/E) (Zhang et al. 2001ZHANG, S.; LI, Q.; MA, K.; CHEN, L. Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday higher irradiance. Photosynthetica, v. 39, n. 3, p. 383-388, 2001.), intracellular CO2 concentration on the mesophyll under external concentration (CiCa ratio - µmol CO2) and carboxylation efficiency (CUE - µmol CO2 m-2 s-1/µmol CO2 mol-1) (A/Ci) were also analyzed. The evaluations were carried out between 8 and 11 a.m., under artificial light (1,000 µmol m-2 s-1).

The relative content of chlorophyll a, b and total were obtained using a portable chlorophyll meter ClorofiLOG (Falker Automação Agrícola, Brasil), which supplies values named Falker chlorophyll index, proportional to the chlorophyl absorbance (Barbieri Júnior et al. 2012BARBIERI JÚNIOR, E.; ROSSIELLO, R. O. P.; SILVA, R. V. M. M.; RIBEIRO, C. R.; MORENZ, M. J. F. Um novo clorofilômetro para estimar os teores de clorofila em folhas do capim Tifton 85. Ciência Rural, v. 42, n. 12, p. 2242-2245, 2012.).

The data were evaluated for normality by the Shapiro-Wilk’s test and homoscedasticity by the Bartlett test (Snedecor & Cochran 1989SNEDECOR, G. W.; COCHRAN, W. G. Statistical methods. Ames: Iowa State University Press, 1989.). Analysis of variance (Anova) was performed for each analyzed characteristic and the averages for the cultivars were compared by the Scott-Knott test at 5 % of probability. The broad-sense heritability (h2), coefficient of genetic variation (CVg), coefficient of environmental variation (CVe) and ratio between these two coefficients (CVg/CVe) were also evaluated.

For genetic divergency, a genetic distance matrix, based on the generalized Mahalanobis distance, was used. The grouping was carried out by the unweighted pair group method using arithmetic averages (UPGMA) hierarchical method from the Genes software (Cruz 2013CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, v. 35, n. 3, p. 271-276, 2013.) and the canonical variables grouping with the Candisc package from the R software (Friendly & Fox 2017FRIENDLY, M.; FOX, J. Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. 2017. Available at: https://CRAN.Rproject.org/package=candisc. Access on: May 10, 2022.
https://CRAN.Rproject.org/package=candis...
, R Core Team 2019R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019.).

RESULTS AND DISCUSSION

Heritability oscillated from 4.55 to 13.11 % for the leaf anatomic characteristics and the highest values were observed for number of xylem vases and spongy parenchyma thickness (Table 1). For the physiological characteristics, this coefficient oscillated from 2.99 to 57.58 % and the highest values were observed for stomatal conductance (Table 1).

Table 1
Estimated coefficient of genetic (CVg) and environmental (CVe) variation, and ratio between these coefficients (CVg/CVe) and broad-sense heritability (h2) for leaf anatomic and physiological characteristics in Coffea arabica L. genotypes from the Embrapa Cerrados Germplasm Bank.

(1) CUT: adaxial cuticle thickness; ABE: abaxial epidermis thickness; ADE: adaxial epidermis thickness; PP: palisade parenchyma thickness; SP: spongy parenchyma thickness; PT: phloem thickness between procambium and sclerenchyma; XVD: xylem diameter; NXV: number of xylem vases; SPDED: ratio between stomatal polar and equatorial diameters; SD: stomatal density. (2) A: net photosynthetic rate; gs: stomatal conductance; E: transpiration rate; CiCa: intracellular CO2 concentration on the mesophyll under external concentration; WUE: water-use efficiency; CUE: carboxylation efficiency; Cla: Falker chlorophyll a index; Clb: Falker chlorophyll b index; ClT: Falker total chlorophyll index.

The environmental coefficient of variation (CVe) oscillated from 2.7 % for the ratio between polar and equatorial stomatal diameter to 9.88 % for number of xylem vases. Except for the palisade parenchyma thickness, the evaluated anatomic and physiological characteristics had a coefficient ratio (CVg/CVe) over 1 (Table 1), which indicates a predominance of genetic factors over environmental ones (Ferrão et al. 2008FERRÃO, R. G.; CRUZ, C. D.; FERREIRA, A.; CECON, P. R.; FERRÃO, M. A. G.; FONSECA, A. F. A. da; CARNEIRO, P. C. de S.; SILVA, M. F. da. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira, v. 43, n. 1, p. 61-69, 2008.). These results evidence that the characteristics evaluated in this study are likely to achieve genetic progress. According to Vencovsky (1987)VENCOVSKY, R. Herança quantitativa. In: PATERNIANI, E.; VIEGAS, G. P. (ed.). Melhoramento e produção de milho. Campinas: Fundação Cargill, 1987. p. 137-214., there is a very favorable situation for obtaining gains in selection when the CVg/CVe ratio tends to or is greater than 1, since, in these cases, the genetic variation exceeds the environmental variation.

The heritability coefficient represents the reliability with which the phenotypic value represents the genotypic value; thus, characteristics with heritability greater than 70 % may be considered to have a high value (Ivoglo et al. 2008IVOGLO, M. G.; FAZUOLI, L. C.; OLIVEIRA, A. C. B. de; GALLO, P. B.; MISTRO, J. C.; SILVAROLLA, M. B.; TOMA-BRAGHINI, M. Divergência genética entre progênies de café Robusta. Bragantia, v. 67, n. 4, p. 823-831, 2008.). It was observed that most the heritability values (h2) are superior to 70 % for both the anatomic and physiological characteristics (Table 1). These results confirm the predominance of additive gene effects on all characteristics. Therefore, the direct selection would be effective for genetic breeding. The results of the present study are corroborated by Giles et al. (2019)GILES, J. D.; FERREIRA, A. D.; PARTELLI, F. L.; AOYAMA, E. M.; RAMALHO, J. C.; FERREIRA, A.; FALQUETO, A. Divergence and genetic parameters between Coffea sp. genotypes based in foliar morpho-anatomical traits. Scientia Horticulturae, v. 245, n. 1, p. 231-236, 2019., who verified a predominance of genetic components, in relation to environmental factors, on anatomic aspects of coffee leaves. On the other hand, the palisade parenchyma thickness was the only characteristic which had inferior values for heritability (Table 1), indicating a higher environmental influence for this characteristic, as observed in other studies that recorded changes in this characteristic due to environmental stimuli (Assis et al. 2019ASSIS, B. dos P.; GROSS, E.; PEREIRA, N. E.; MIELKE, M. S.; GOMES JÚNIOR, G. A. Growth response of four Conilon coffee varieties (Coffea canephora Pierre ex A. Froehner) to different shading levels. Journal of Agricultural Science, v. 11, n. 7, p. 29-41, 2019., Pérez-Molina et al. 2021PÉREZ-MOLINA, J. P.; PICOLI, E. A. de T.; OLIVEIRA, L. A.; SILVA, B. T.; SOUZA, G. A. de; RUFINO, J. L. dos S.; PEREIRA, A. A.; RIBEIRO, M. de F.; MALVICINI, G. L.; TURELLO, L.; DALESSANDRO, S. C.; SAKIYAMA, N. S.; FERREIRA, W. P. M. Treasured exceptions: association of morphoanatomical leaf traits with cup quality of Coffea arabica L. cv “Catuaí”. Food Research International, v. 141, e110118, 2021.). This is possibly a more plastic tissue, and its variations can provide optimization in the photosynthetic activity.

The Catiguá MG2 and Mundo Novo IAC 379-19 cultivars showed a greater cuticle thickness on the adaxial surface (Table 2), which can increase the radiation reflection and isolate the internal tissues (Kumar & Tieszen 1980KUMAR, D.; TIESZEN, L. L. Photosynthesis in Coffea arabica: I. Effects of light and temperature. Experimental Agriculture, v. 16, n. 1, p. 13-19, 1980., Silva et al. 2004SILVA, E. A.; DAMATTA, F. M.; DUCATTI, C.; REGAZZI, A. J.; BARROS, R. S. Seasonal changes in vegetative growth and photosynthesis in Arabica coffee trees. Field Crops Research, v. 89, n. 2-3, p. 349-357, 2004.), in addition to favoring the reduction in the transpiration rate, as observed for the genotypes in this study (Table 3). This characteristic can be extremely important in dry environments, since, although the cuticular transpiration is considered low, it represents 5 to 10 % of the transpiration rate (Ferri & Lamberti 1960FERRI, M. G.; LAMBERTI, A. Informações sobre a economia d’agua de plantas de um tabuleiro no município de Goiana (Pernambuco). Botânica, n. 17, n. 1, p. 133-145, 1960.). The result observed for Mundo Novo IAC 379-19 corroborates that of Batista et al. (2010)BATISTA, L. A.; GUIMARÃES, R. J.; PEREIRA F. J.; CARVALHO, G. R.; CASTRO, E. M. de. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, v. 41, n. 3, p. 475-481, 2010., who found a thicker cuticle in this material, indicating that this may be a characteristic of this cultivar.

Table 2
Mean values for leaf anatomical characteristics1 1 CUT: adaxial cuticle thickness; ABE: abaxial epidermis thickness; ADE: adaxial epidermis thickness; PP: palisade parenchyma thickness; SP: spongy parenchyma thickness; PT: phloem thickness between procambium and sclerenchyma; XVD: xylem diameter; NXV: number of xylem vases; SPDED: ratio between stomatal polar and equatorial diameters; SD: stomatal density. (µm) evaluated in Coffea arabica L. cultivars belonging to the Embrapa Cerrados Active Germplasm Bank.

Another plant strategy to avoid excessive transpiration is to invest in a greater thickness of leaf blade tissues, in addition to changes in stomatal location and shape (Batista et al. 2010BATISTA, L. A.; GUIMARÃES, R. J.; PEREIRA F. J.; CARVALHO, G. R.; CASTRO, E. M. de. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, v. 41, n. 3, p. 475-481, 2010., Baliza et al. 2012BALIZA, D. P.; CUNHA, R. L. da; CASTRO, E. M. de; BARBOSA, J. P. A. D.; PIRES, M. F.; GOMES, R. A. Trocas gasosas e características estruturais adaptativas de cafeeiros cultivados em diferentes níveis de radiação. Coffee Science, v. 7, n. 3, p. 250-258, 2012., Queiroz-Voltan et al. al. 2014). In this study, the cultivars Acaiá Cerrado MG 1474, Catiguá MG2, Catiguá MG3 P9, Catuaí Amarelo IAC 62, Paraíso MG1 and Sacramento MG1, which presented low transpiration rates (E) (Table 3), showed higher values for adaxial and abaxial epidermis thickness and a higher ratio between polar and equatorial stomatal diameter (Table 2). Higher values for this ratio indicate that the stomata take an ellipsoidal shape which reduces transpiration (Batista et al. 2010BATISTA, L. A.; GUIMARÃES, R. J.; PEREIRA F. J.; CARVALHO, G. R.; CASTRO, E. M. de. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, v. 41, n. 3, p. 475-481, 2010.), since it favors the opening and closing dynamics, making the CO2 assimilation more efficient (Durand et al. 2019DURAND, M.; BRENDEL, O.; BURÉ, C.; THIEC, L. T. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytologist, v. 222, n. 4, p. 1789-1802, 2019.). Moreover, the adequate stomatal transpiration control in plants sustains a better water status (DaMatta et al. 2018DAMATTA, F. M.; AVILA, R. T.; CARDOSO, A. A.; MARTINS, S. C.; RAMALHO, J. C. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. Journal of Agricultural and Food Chemistry, v. 66, n. 21, p. 5264-5274, 2018.).

Table 3
Mean values of the evaluated physiological characteristics1 1 A: net photosynthetic rate (µmol CO2 m-2 s-1); gs: stomatal conductance (mmol H2O m-2 s-1); E: transpiration rate (mmol m-2 s-1); CiCa: intracellular CO2 concentration on the mesophyll under external concentration (μmol CO2); WUE: water-use efficiency (A/E); CUE: carboxylation efficiency; Cla: Falker chlorophyll a index; Clb: Falker chlorophyll b index; ClT: Falker total chlorophyll index. in Coffea arabica L. cultivars belonging to the Embrapa Cerrados Active Germplasm Bank.

In environments with high temperatures and radiation, the increase in the spongy parenchyma thickness is an adaptation that favors the accumulation and storage of the CO2 necessary for photosynthesis (Terashima et al. 2011TERASHIMA, I.; HANBA, Y. T.; TOLEN, D.; NIINEMETS, U. Leaf functional anatomy in relation to photosynthesis. Plant Physiology, v. 155, n. 1, p. 108-116, 2011., Baliza et al. 2012BALIZA, D. P.; CUNHA, R. L. da; CASTRO, E. M. de; BARBOSA, J. P. A. D.; PIRES, M. F.; GOMES, R. A. Trocas gasosas e características estruturais adaptativas de cafeeiros cultivados em diferentes níveis de radiação. Coffee Science, v. 7, n. 3, p. 250-258, 2012., Ribeiro et al. 2012RIBEIRO, M. de N. O.; CARVALHO, S. P. de; PEREIRA, F. J.; CASTRO, E. M. de. Anatomia foliar de mandioca em função do potencial para tolerância a diferentes condições ambientais. Revista Ciência Agronômica, v. 43, n. 2, p. 354-361, 2012., Castanheira et al. 2016CASTANHEIRA, D. T.; REZENDE, T. T.; BALIZA, D. P.; GUEDES, J. M.; CARVALHO, S. P. de; GUIMARÃES, R. J.; VIANA, M. T. R. Potencial de utilização de características anatômicas e fisiológicas na seleção de progênies de cafeeiro. Coffee Science, v. 11, n. 3, p. 375-386, 2016.). For the spongy parenchyma thickness, higher mean values were found for the cultivars Araponga MG1, Catiguá MG3 P4, Catiguá MG3 P5, Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 15, Catuaí Vermelho IAC 99, Guatenano Colis MG0207, Pau Brasil MG1 and Sacramento MG1 (Table 2).

Araponga MG1, Catiguá MG3 P23, Catuaí Vermelho IAC 15, Catuaí Vermelho IAC 81 and Catuaí Vermelho IAC 99 differed from the others, as they were in the group with the highest values for characteristics such as phloem thickness and number of xylem vessels associated with the highest stomatal density, according to the Scott-Knott test (Table 3). Higher stomatal densities favor the CO2 absorption; however, during this process, the plant loses water through transpiration (Nóia Júnior et al. 2020NÓIA JÚNIOR, R. D.; AMARAL, G. C.; PEZZOPANE, J. E. M.; FONSECA, M. D. S.; SILVA, A. P. C. da; XAVIER, T. M. T. Ecophysiological acclimatization to cyclic water stress in Eucalyptus. Journal of Forestry Research, v. 31, n. 3, p. 797-806, 2020.). The water loss in the form of steam generates a tension force, causing the plant to absorb water from the soil. The increase in the frequency of xylem vessels observed in these genotypes (Table 3) favors the hydraulic conductance and prevents embolism (Oliveira et al. 2018OLIVEIRA, I.; MEYER, A.; AFONSO, S.; GONÇALVES, B. Compared leaf anatomy and water relations of commercial and traditional Prunus dulcis (Mill.) cultivars under rain-fed conditions. Scientia Horticulturae, v. 229, n. 1, p. 226-232, 2018., Yao et al. 2020YAO, G.-Q.; NIE, Z. F.; TURNER, N. C.; LI, F. M.; GAO, T. P.; FANG, X.-F.; SCOFFONI, C. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytologist, v. 229, n. 1, p. 230-244, 2020.).

Regarding gas exchange, Catiguá MG1, Topázio MG1190, Catiguá MG3 P5, Catiguá MG3 P51 and Pau Brasil MG1 showed a higher stomatal conductance (gs) associated with a higher net photosynthetic rate (A), when compared to the values of the general average of the cultivars (Table 3). A higher stomatal conductance can increase the substomatic CO2 concentration necessary for photosynthesis (Melo et al. 2009MELO, A. S. de; SILVA JÚNIOR, C. D. da; FERNANDES, P. D.; SOBRAL, L. F.; BRITO, M. E. B.; DANTAS, J. D. M. Alterações das características fisiológicas da bananeira sob condições de fertirrigação. Ciência Rural, v. 39, n. 3, p. 733-741, 2009.). In addition, Catiguá MG1, Mundo Novo IAC 379-19 and Topázio MG1190 showed higher water-use efficiency values. This is a desired attribute, as plants with this characteristic are more efficient in maintaining carbon assimilation during the photosynthetic process, while controlling transpiration (Ferreira et al. 2012FERREIRA, M. J.; GONÇALVES, J. F. de C.; FERRAZ, J. B. S. Crescimento e eficiência do uso da água de plantas jovens de castanheira da Amazônia em área degradada e submetida à adubação. Ciência Florestal, v. 22, n. 2, p. 393-401, 2012.).

Chlorophyll is the main pigment related to photosynthesis, and its content may vary among genotypes of the same species (Lee 1988LEE, D. W. Simulating forest shade to study the development ecology of tropical plants: juvenile growth in three vines in India. Journal of Tropical Ecology, v. 4, n. 3, p. 281-292, 1988., Streit et al. 2005STREIT, N. M.; CANTERLE, L. P.; CANTO, M. W. do; HECKTHEUER, L. H. H. As clorofilas. Ciência Rural, v. 35, n. 3, p. 748-755, 2005.). In this study, higher levels of chlorophyll a, b and total were observed for the Catuaí Vermelho IAC 81 and Mundo Novo IAC 379-19 cultivars, in relation to the others. On the other hand, Catuaí Amarelo IAC 62 and Caturra Vermelho MG0187 showed higher levels of chlorophyll b and total, in relation to the average of the other genotypes (Table 3).

In Figure 1, it is possible to observe the graphic dispersion of cultivars on a bidimensional plan, according to the first and second canonical variables, which represents 71.7 % of the total data variation, with formation of three groups.

Figure 1
Dispersion of 23 Coffea arabica L. cultivars from the Embrapa Cerrados Germplasm Bank, in relation to the first canonical variables (CV1 and CV2). AC: Acaiá Cerrado MG1174; A: Araponga MG1; MG1: Catiguá MG1; MG2: Catiguá MG2; P4: Catiguá MG3 P4; P5: Catiguá MG3 P5; P7: Catiguá MG3 P7; P9: Catiguá MG3 P9; P23: Catiguá MG3 P23; P51: Catiguá MG3 P51; NM: Catiguá MG3 NM; C62: Catuaí Amarelo IAC 62; C15: Catuaí Vermelho IAC 15; C81: Catuaí Vermelho IAC 81; C99: Catuaí Vermelho IAC 99; C: Caturra Vermelho MG0187; G: Guatenano Colis MG0207; MN: Mundo Novo IAC 379-19; P: Paraíso MG1; PB: Pau Brasil MG1; S: Sacramento MG1; SR: San Ramon MG0198; T: Topázio MG1190.

Table 4 presents the correlation between the evaluated characteristics and the first two canonical variables. The contribution of characteristics to cultivar differentiation is evidenced by the highest absolute values in the canonical variables 1 and 2.

Table 4
Correlation between the evaluated characteristics and the first two canonical variables (CV1 and CV2), determined in Coffea arabica L. cultivars from the Embrapa Cerrados Germplasm Bank.

(1) CUT: adaxial cuticle thickness; ABE: abaxial epidermis thickness; ADE: adaxial epidermis thickness; PP: palisade parenchyma thickness; SP: spongy parenchyma thickness; PT: phloem thickness between procambium and sclerenchyma; XVD: xylem diameter; NXV: number of xylem vases; SPDED: ratio between stomatal polar and equatorial diameters; SD: stomatal density; A: net photosynthetic rate; gs: stomatal conductance; E: transpiration rate; CiCa: CO2 intracellular concentration on the mesophyll under external concentration; WUE: water-use efficiency; CUE: carboxylation efficiency; Cla: Falker chlorophyll a index; Clb: Falker chlorophyll b index; ClT: Falker total chlorophyll index.

For the canonical variable 1 (CV1), the characteristics that most contributed to the cultivar variability were stomatal conductance, net photosynthetic rate and intracellular CO2 concentration on the mesophyll under external concentration. For the canonical variable 2 (CV2), the highest correlation was observed for the characteristics chlorophyll a, b and total index (Table 4).

By observing the ranking of canonical variable scores, it was possible to identify cultivars with higher values, representing the first two canonical variables. For the first one, which corresponds to 55.40 % of the data variation, Catiguá MG3 P51, Catiguá MG1, Catiguá MG3 P5, Pau Brasil MG1 and Topázio MG1190 stood out, with higher values for stomatal conductance, net photosynthetic rate and intercellular CO2 concentration (Figure 1; Table 4). Higher stomatal conductance scores can favor the necessary substomatal CO2 assimilation for photosynthesis (Thioune et al. 2020THIOUNE, E. H.; STRICKLER, S.; GALLAGHER, T.; CHARPAGNE, A.; DECOMBES, P.; OSBORNE, B.; MCCARTHY, J. Temperature impacts the response of Coffea canephora to decreasing soil water availability. Tropical Plant Biology, v. 13, n. 1, p. 236-250, 2020.). According to the canonical variable analysis, a positive correlation between these characteristics and the photosynthesis ratio was observed (Table 4). Viana et al. (2021)VIANA, M. T. R.; AZEVEDO, H. P. A. de; PEREIRA, F. A. C.; CARVALHO, M. A. F.; GUIMARÃES, R. J. Coffee genotypes morphophysiological adaptation under coffee leaf rust biotic stress. Coffee Science, v. 16, e161949, 2021. reported that stomatal conductance is important for differentiating coffee genotypes submitted to biotic stress. Besides, higher values of water-use efficiency were observed for Catiguá MG1 and Topázio MG1190 (Table 3), a desirable attribute. Plants with this characteristic are more efficient to keep carbon assimilation during the photosynthetic process, controlling transpiration at the same time (Ferreira et al. 2012FERREIRA, M. J.; GONÇALVES, J. F. de C.; FERRAZ, J. B. S. Crescimento e eficiência do uso da água de plantas jovens de castanheira da Amazônia em área degradada e submetida à adubação. Ciência Florestal, v. 22, n. 2, p. 393-401, 2012.).

For the second canonical variable, higher chlorophyll b and total indexes were observed for Catuaí Vermelho IAC 81, Mundo Novo IAC 379-19, Topázio MG1190, Catuaí Amarelo IAC 62 and Catiguá MG1 (Tables 3 and 4; Figure 1). Chlorophyll is the main pigment related to photosynthesis, and its content may vary among the genotypes of a species (Lee 1988LEE, D. W. Simulating forest shade to study the development ecology of tropical plants: juvenile growth in three vines in India. Journal of Tropical Ecology, v. 4, n. 3, p. 281-292, 1988., Streit et al. 2005STREIT, N. M.; CANTERLE, L. P.; CANTO, M. W. do; HECKTHEUER, L. H. H. As clorofilas. Ciência Rural, v. 35, n. 3, p. 748-755, 2005.). These pigments are essential for light absorption. Chlorophyll b absorbs light on a different spectrum from chlorophyll a and is present only on antenna complexes, where it participates in the light energy transference inside the complex and from the complex to the photosystem; lower contents of this pigment can decrease the stability of some proteins in this complex (Streit et al. 2005STREIT, N. M.; CANTERLE, L. P.; CANTO, M. W. do; HECKTHEUER, L. H. H. As clorofilas. Ciência Rural, v. 35, n. 3, p. 748-755, 2005., Voitsekhovskaja & Tyutereva 2015VOITSEKHOVSKAJA, O. V.; TYUTEREVA, E. V. Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology, v. 189, n. 1, p. 51-64, 2015.).

For Catuaí Amarelo IAC 62 and Catiguá MG1, higher scores for adaxial cuticle thickness were observed (Table 2). An increase in this layer may result in a higher radiation reflection and isolate internal tissues (Kumar & Tieszen 1980KUMAR, D.; TIESZEN, L. L. Photosynthesis in Coffea arabica: I. Effects of light and temperature. Experimental Agriculture, v. 16, n. 1, p. 13-19, 1980., Silva et al. 2004SILVA, E. A.; DAMATTA, F. M.; DUCATTI, C.; REGAZZI, A. J.; BARROS, R. S. Seasonal changes in vegetative growth and photosynthesis in Arabica coffee trees. Field Crops Research, v. 89, n. 2-3, p. 349-357, 2004.).

Among the evaluated cultivars, Topázio MG1190, Catiguá MG1 and Catiguá MG3 P51 stood out according to scores from the first and second canonical variables (Figures 2A and 2B). In addition, these cultivars have leaf anatomical characteristics related to adaptations to dry seasons, as isolating and protecting tissues increase. Thus, it is suggested that these cultivars have a higher capacity for physiological adaptation to the environmental conditions applied to this research and may be indicated for this region.

According to the UPGMA analysis, three distinct groups were formed when a dissimilarity of 198 was established (Figure 2). The grouping corroborated the canonical variable analysis, confirming the genotype differentiation. The first group consisted of Topázio MG1190, Catiguá MG3 P5, Pau Brasil MG1, Catiguá MG1 and Catiguá MG3 P51; the second of Catuaí Amarelo IAC 62, Caturra Vermelho MG0187, Catuaí Vermelho IAC 81 and Mundo Novo IAC 379-19; and the third of the remaining fourteen analyzed cultivars. These results show the variability among the strains of the Catiguá group, once they stood out in a distinct group for the evaluated characteristics (Figure 3).

Figure 2
CV1 (A) and CV2 (B) scores for 23 Coffea arabica L. cultivars from the Embrapa Cerrados Germplasm Bank, regarding anatomic and physiological characteristics.

Figure 3
Dendrogram of 23 Coffea arabica cultivars by the unweighted pair group method using arithmetic averages (UPGMA) obtained from the generalized Mahalanobis distance.

The genetic diversity of commercial coffee is low due to the fact that it is self-pollinating (Ortega-Ortega et al. 2019ORTEGA-ORTEGA, J.; RAMÍREZ-ORTEGA, F. A.; RUIZ-MEDRANO, R.; XOCONOSTLE-CÁZARES, B. Analysis of genome size of sixteen Coffea arabica cultivars using flow cytometry. HortScience, v. 54, n. 6, p. 998-1004, 2019.). However, based on the results for more specific characteristics in the present study, a great genetic diversity was observed among the cultivars. The results demonstrated the predominance of genetic factors over environmental ones, and identified a high heritability among the evaluated characteristics. This information may help researchers in the early selection of Coffea arabica L. Thus, in practical terms, coffee breeding may benefit from that information. Breeders could direct divergent crossings aiming to increase the genetic variability in a breeding program which looks for materials better adapted to regions with severe dry seasons, low relative humidity and subjected to water deficit. In addition, our results may assist in the recommendation of cultivars to environments with these climatic conditions.

CONCLUSIONS

  1. The analyzed Coffea arabica L. cultivars show differences between anatomic and physiological characteristics, indicating different adaptation strategies to the climatic conditions of the Brazilian central plateau Cerrado (Brazilian Savanna);

  2. The Catiguá MG1, Catiguá MG3 P51 and Topázio MG1190 cultivars stood out, being the most suitable for hybridization in coffee genetic breeding programs;

  3. Stomatal conductance, net photosynthetic rate, intracellular CO2 concentration on the mesophyll under external concentration and Falker index of chlorophyll a, b and total are the most important characteristics for cultivar differentiation.

ACKNOWLEDGMENTS

This research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), Instituto Nacional de Ciência e Tecnologia do Café (INCT- Café), Coffee Sector/UFLa and Consórcio Pesquisa Café. The authors would like to thank Dr. Antônio Nazareno Guimarães Mendes for the assistance and for providing the expertise that greatly helped in the research.

REFERENCES

  • ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; MORAES, J. L. G. de; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.
  • ASSIS, B. dos P.; GROSS, E.; PEREIRA, N. E.; MIELKE, M. S.; GOMES JÚNIOR, G. A. Growth response of four Conilon coffee varieties (Coffea canephora Pierre ex A. Froehner) to different shading levels. Journal of Agricultural Science, v. 11, n. 7, p. 29-41, 2019.
  • BALIZA, D. P.; CUNHA, R. L. da; CASTRO, E. M. de; BARBOSA, J. P. A. D.; PIRES, M. F.; GOMES, R. A. Trocas gasosas e características estruturais adaptativas de cafeeiros cultivados em diferentes níveis de radiação. Coffee Science, v. 7, n. 3, p. 250-258, 2012.
  • BARBIERI JÚNIOR, E.; ROSSIELLO, R. O. P.; SILVA, R. V. M. M.; RIBEIRO, C. R.; MORENZ, M. J. F. Um novo clorofilômetro para estimar os teores de clorofila em folhas do capim Tifton 85. Ciência Rural, v. 42, n. 12, p. 2242-2245, 2012.
  • BATISTA, L. A.; GUIMARÃES, R. J.; PEREIRA F. J.; CARVALHO, G. R.; CASTRO, E. M. de. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, v. 41, n. 3, p. 475-481, 2010.
  • CASTANHEIRA, D. T.; REZENDE, T. T.; BALIZA, D. P.; GUEDES, J. M.; CARVALHO, S. P. de; GUIMARÃES, R. J.; VIANA, M. T. R. Potencial de utilização de características anatômicas e fisiológicas na seleção de progênies de cafeeiro. Coffee Science, v. 11, n. 3, p. 375-386, 2016.
  • COLTRI, P. P.; PINTO, H. S.; GONÇALVES, R. R. do V.; ZULLO JÚNIOR, J.; DUBREUIL, V. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, v. 5, n. 2, e01263, 2019.
  • CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, v. 35, n. 3, p. 271-276, 2013.
  • DAMATTA, F. M.; AVILA, R. T.; CARDOSO, A. A.; MARTINS, S. C.; RAMALHO, J. C. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. Journal of Agricultural and Food Chemistry, v. 66, n. 21, p. 5264-5274, 2018.
  • DURAND, M.; BRENDEL, O.; BURÉ, C.; THIEC, L. T. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytologist, v. 222, n. 4, p. 1789-1802, 2019.
  • EIRA, M. T. S. da; FAZUOLLI, L. C.; GUERREIRO FILHO, O.; SILVAROLLA, M. B.; FERRÃO, M. A. G.; FONSECA, A. F. A.; FERRÃO, R. G.; SERA, T.; PEREIRA, A. A.; SAKIYAMA, N. S.; ZAMBOLIM, L.; CARVALHO, C. H.; PADILHA, L.; SOUZA, F. de F. Bancos de germoplasma de café no Brasil Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2007.
  • FERRÃO, R. G.; CRUZ, C. D.; FERREIRA, A.; CECON, P. R.; FERRÃO, M. A. G.; FONSECA, A. F. A. da; CARNEIRO, P. C. de S.; SILVA, M. F. da. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira, v. 43, n. 1, p. 61-69, 2008.
  • FERREIRA, M. J.; GONÇALVES, J. F. de C.; FERRAZ, J. B. S. Crescimento e eficiência do uso da água de plantas jovens de castanheira da Amazônia em área degradada e submetida à adubação. Ciência Florestal, v. 22, n. 2, p. 393-401, 2012.
  • FERRI, M. G.; LAMBERTI, A. Informações sobre a economia d’agua de plantas de um tabuleiro no município de Goiana (Pernambuco). Botânica, n. 17, n. 1, p. 133-145, 1960.
  • FRIENDLY, M.; FOX, J. Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. 2017. Available at: https://CRAN.Rproject.org/package=candisc Access on: May 10, 2022.
    » https://CRAN.Rproject.org/package=candisc
  • GILES, J. D.; FERREIRA, A. D.; PARTELLI, F. L.; AOYAMA, E. M.; RAMALHO, J. C.; FERREIRA, A.; FALQUETO, A. Divergence and genetic parameters between Coffea sp. genotypes based in foliar morpho-anatomical traits. Scientia Horticulturae, v. 245, n. 1, p. 231-236, 2019.
  • GUEDES, J. M.; VILELA, D. J. M.; REZENDE, J. C.; SILVA, F. L.; BOTELHO, C. E.; CARVALHO, S. P. Divergência genética entre cafeeiros do germoplasma Maragogipe. Bragantia, v. 72, n. 2, p. 127-132, 2013.
  • IVOGLO, M. G.; FAZUOLI, L. C.; OLIVEIRA, A. C. B. de; GALLO, P. B.; MISTRO, J. C.; SILVAROLLA, M. B.; TOMA-BRAGHINI, M. Divergência genética entre progênies de café Robusta. Bragantia, v. 67, n. 4, p. 823-831, 2008.
  • JOHANSEN, D. A. Plant microtechnique New York: McGraw-Hill, 1940.
  • KUMAR, D.; TIESZEN, L. L. Photosynthesis in Coffea arabica: I. Effects of light and temperature. Experimental Agriculture, v. 16, n. 1, p. 13-19, 1980.
  • LEE, D. W. Simulating forest shade to study the development ecology of tropical plants: juvenile growth in three vines in India. Journal of Tropical Ecology, v. 4, n. 3, p. 281-292, 1988.
  • MELO, A. S. de; SILVA JÚNIOR, C. D. da; FERNANDES, P. D.; SOBRAL, L. F.; BRITO, M. E. B.; DANTAS, J. D. M. Alterações das características fisiológicas da bananeira sob condições de fertirrigação. Ciência Rural, v. 39, n. 3, p. 733-741, 2009.
  • NASCIMENTO, D. T. F.; NOVAIS, G. T. Clima do Cerrado: dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élissé, v. 9, n. 2, e922021, 2020.
  • NÓIA JÚNIOR, R. D.; AMARAL, G. C.; PEZZOPANE, J. E. M.; FONSECA, M. D. S.; SILVA, A. P. C. da; XAVIER, T. M. T. Ecophysiological acclimatization to cyclic water stress in Eucalyptus. Journal of Forestry Research, v. 31, n. 3, p. 797-806, 2020.
  • O’BRIEN, T. P.; FEDER, N.; MCCULLY, M. E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, v. 59, n. 1, p. 368-373, 1964.
  • OLIVEIRA, I.; MEYER, A.; AFONSO, S.; GONÇALVES, B. Compared leaf anatomy and water relations of commercial and traditional Prunus dulcis (Mill.) cultivars under rain-fed conditions. Scientia Horticulturae, v. 229, n. 1, p. 226-232, 2018.
  • ORTEGA-ORTEGA, J.; RAMÍREZ-ORTEGA, F. A.; RUIZ-MEDRANO, R.; XOCONOSTLE-CÁZARES, B. Analysis of genome size of sixteen Coffea arabica cultivars using flow cytometry. HortScience, v. 54, n. 6, p. 998-1004, 2019.
  • PÉREZ-MOLINA, J. P.; PICOLI, E. A. de T.; OLIVEIRA, L. A.; SILVA, B. T.; SOUZA, G. A. de; RUFINO, J. L. dos S.; PEREIRA, A. A.; RIBEIRO, M. de F.; MALVICINI, G. L.; TURELLO, L.; DALESSANDRO, S. C.; SAKIYAMA, N. S.; FERREIRA, W. P. M. Treasured exceptions: association of morphoanatomical leaf traits with cup quality of Coffea arabica L. cv “Catuaí”. Food Research International, v. 141, e110118, 2021.
  • PURBA, P.; SUKARTIKO, A. C.; AINURI, M. Modeling the plantation area of geographical indication product under climate change: Gayo Arabica coffee (Coffea arabica). Earth and Environmental Science, v. 365, e012021, 2019.
  • QUEIROZ-VOLTAN, R. B.; NARDIN, C. F.; FAZUOLLI, L. C.; BRAGHINI, M. T. Caracterização da anatomia foliar de cafeeiros Arábica em diferentes períodos sazonais. Revista Biotemas, v. 27, n. 4, p. 1-10, 2014.
  • R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019.
  • RIBEIRO, M. de N. O.; CARVALHO, S. P. de; PEREIRA, F. J.; CASTRO, E. M. de. Anatomia foliar de mandioca em função do potencial para tolerância a diferentes condições ambientais. Revista Ciência Agronômica, v. 43, n. 2, p. 354-361, 2012.
  • SANTOS, H. G. dos. Sistema brasileiro de classificação de solos 3. ed. Brasília, DF: Embrapa, 2013.
  • SEGATTO, F. B.; BISOGNIN, D. A.; BENEDETTI, M.; COSTA, L. C. da; RAMPELOTTO, M. V.; NICOLOSO, F. T. Técnica para estudo da anatomia da epiderme foliar de batata. Ciência Rural, v. 34, n. 5, p. 1597-1601, 2004.
  • SILVA, E. A.; DAMATTA, F. M.; DUCATTI, C.; REGAZZI, A. J.; BARROS, R. S. Seasonal changes in vegetative growth and photosynthesis in Arabica coffee trees. Field Crops Research, v. 89, n. 2-3, p. 349-357, 2004.
  • SNEDECOR, G. W.; COCHRAN, W. G. Statistical methods Ames: Iowa State University Press, 1989.
  • STREIT, N. M.; CANTERLE, L. P.; CANTO, M. W. do; HECKTHEUER, L. H. H. As clorofilas. Ciência Rural, v. 35, n. 3, p. 748-755, 2005.
  • TERASHIMA, I.; HANBA, Y. T.; TOLEN, D.; NIINEMETS, U. Leaf functional anatomy in relation to photosynthesis. Plant Physiology, v. 155, n. 1, p. 108-116, 2011.
  • THIOUNE, E. H.; STRICKLER, S.; GALLAGHER, T.; CHARPAGNE, A.; DECOMBES, P.; OSBORNE, B.; MCCARTHY, J. Temperature impacts the response of Coffea canephora to decreasing soil water availability. Tropical Plant Biology, v. 13, n. 1, p. 236-250, 2020.
  • UTHSCSA ImageTool. Versão 3.0 final. 2013. Available at: http://ddsdx.uthscsa.edu/dig/download.html Access on: Mar. 10, 2021.
    » http://ddsdx.uthscsa.edu/dig/download.html
  • VENCOVSKY, R. Herança quantitativa. In: PATERNIANI, E.; VIEGAS, G. P. (ed.). Melhoramento e produção de milho Campinas: Fundação Cargill, 1987. p. 137-214.
  • VIANA, M. T. R.; AZEVEDO, H. P. A. de; PEREIRA, F. A. C.; CARVALHO, M. A. F.; GUIMARÃES, R. J. Coffee genotypes morphophysiological adaptation under coffee leaf rust biotic stress. Coffee Science, v. 16, e161949, 2021.
  • VIANA, M. T. R.; GUEDES, J. M.; MAURI, J.; SILVA, E. A.; CASTANHEIRA, D. T.; GAMA, T. C. P.; GUIMARÃES, R. J. Variabilidade genética em genótipos de café resistentes à ferrugem utilizados em programas de melhoramento. Scientia Agraria Paranaensis, v. 17, n. 1, p. 80-89, 2018.
  • VOITSEKHOVSKAJA, O. V.; TYUTEREVA, E. V. Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology, v. 189, n. 1, p. 51-64, 2015.
  • VOLSI, B.; TELLES, T. S.; CARDARELLI, C. E.; CAMARA, M. R. G. da. The dynamics of coffee production in Brazil. Plos One, v. 14, n. 7, e0219742, 2019.
  • YAO, G.-Q.; NIE, Z. F.; TURNER, N. C.; LI, F. M.; GAO, T. P.; FANG, X.-F.; SCOFFONI, C. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytologist, v. 229, n. 1, p. 230-244, 2020.
  • ZHANG, S.; LI, Q.; MA, K.; CHEN, L. Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday higher irradiance. Photosynthetica, v. 39, n. 3, p. 383-388, 2001.

Publication Dates

  • Publication in this collection
    16 Jan 2023
  • Date of issue
    2022

History

  • Received
    01 July 2022
  • Accepted
    17 Oct 2022
  • Published
    06 Dec 2022
Escola de Agronomia/UFG Caixa Postal 131 - Campus II, 74001-970 Goiânia-GO / Brasil, 55 62 3521-1552 - Goiânia - GO - Brazil
E-mail: revistapat.agro@ufg.br