Acessibilidade / Reportar erro

SCC and conventional concrete on site: property assessment

Caracterização das propriedades do betão em elementos produzidos com BAC e betão convencional

Abstracts

The present paper deals with comparing properties of hardened SCC cast during first full-scale tests in a precast factory and similar conventional concrete currently used in the same factory. The main goal was to evaluate viability of replacing the C45/55 conventional concrete, in use at the precast factory, by a SCC of the same class of resistance and maintaining the constituent materials. A wide number of specimens (cubes, cylinders, prisms) and full size precast elements were cast with both SCC and conventional vibrated concrete to enable comparing different properties of both types of hardened concrete. In order to implement SCC in this precast factory, suitability of actual current processes involved in production, mixing, transport and placing had to be evaluated. SCC exhibited improved mechanical behavior, higher resistance to fluid ingress and a more uniform strength along the full-size element due to a combination of proper mixdesign together with controlled mixing and placing on site.

Self-compacting concrete (SCC); conventional concrete; precast industry; mechanical properties; durability


O presente artigo apresenta uma comparação das propriedades do betão endurecido em elementos produzidos com betão auto-compactável (BAC) e betão convencional durante ensaios à escala real levados a cabo numa fábrica de pré-fabricação. O principal objectivo deste estudo consistiu em avaliar a viabilidade da substituição do betão convencional C45/55, em uso na fábrica de pré-fabricação, por um BAC da mesma classe de resistência e mantendo os mesmos materiais constituintes. Durante os ensaios à escala real foram betonados diversos provetes (cubos, cilindros e prismas) e elementos pré-fabricados com ambos os tipos de betões destinados à caracterização do betão endurecido. Tendo em vista a aplicação do BAC nesta fábrica de pré-fabricação avaliou-se ainda a adequabilidade dos processos correntes envolvidos na produção, amassadura e transporte do betão. O BAC apresentou um comportamento mecânico melhorado, maior resistência ao ingresso de fluídos e uma distribuição mais uniforme da resistência ao longo dos elementos pré-fabricados, o que resultou da combinação de uma composição adequada com o controle dos processos de amassadura e colocação do betão.

Betão auto-compactável (BAC); betão convencional; indústria de pré-fabricação; propriedades mecânicas; durabilidade


SCC and conventional concrete on site: property assessment

Caracterização das propriedades do betão em elementos produzidos com BAC e betão convencional

S. NunesI; H. FigueirasII; J. Sousa coutinhoIII; J. FigueirasIV

ILABEST, Faculty of Civil Engineering, Porto University, snunes@fe.up.pt, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Fax (+351) 225081835

IILABEST, Faculty of Civil Engineering, Porto University, helena.figueiras@fe.up.pt, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

IIILABEST, Faculty of Civil Engineering, Porto University, jcouti@fe.up.pt, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

IVLABEST, Faculty of Civil Engineering, Porto University, jafig@fe.up.pt, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

ABSTRACT

The present paper deals with comparing properties of hardened SCC cast during first full-scale tests in a precast factory and similar conventional concrete currently used in the same factory. The main goal was to evaluate viability of replacing the C45/55 conventional concrete, in use at the precast factory, by a SCC of the same class of resistance and maintaining the constituent materials. A wide number of specimens (cubes, cylinders, prisms) and full size precast elements were cast with both SCC and conventional vibrated concrete to enable comparing different properties of both types of hardened concrete. In order to implement SCC in this precast factory, suitability of actual current processes involved in production, mixing, transport and placing had to be evaluated. SCC exhibited improved mechanical behavior, higher resistance to fluid ingress and a more uniform strength along the full-size element due to a combination of proper mixdesign together with controlled mixing and placing on site.

Keywords: Self-compacting concrete (SCC); conventional concrete; precast industry; mechanical properties; durability.

RESUMO

O presente artigo apresenta uma comparação das propriedades do betão endurecido em elementos produzidos com betão auto-compactável (BAC) e betão convencional durante ensaios à escala real levados a cabo numa fábrica de pré-fabricação. O principal objectivo deste estudo consistiu em avaliar a viabilidade da substituição do betão convencional C45/55, em uso na fábrica de pré-fabricação, por um BAC da mesma classe de resistência e mantendo os mesmos materiais constituintes. Durante os ensaios à escala real foram betonados diversos provetes (cubos, cilindros e prismas) e elementos pré-fabricados com ambos os tipos de betões destinados à caracterização do betão endurecido. Tendo em vista a aplicação do BAC nesta fábrica de pré-fabricação avaliou-se ainda a adequabilidade dos processos correntes envolvidos na produção, amassadura e transporte do betão. O BAC apresentou um comportamento mecânico melhorado, maior resistência ao ingresso de fluídos e uma distribuição mais uniforme da resistência ao longo dos elementos pré-fabricados, o que resultou da combinação de uma composição adequada com o controle dos processos de amassadura e colocação do betão.

Palavras-chave: Betão auto-compactável (BAC); betão convencional; indústria de pré-fabricação; propriedades mecânicas; durabilidade

Texto completo disponivel apenas em PDF.

Full text avaliable only in PDF.

REFERENCES

[01] Skarendhal A. The present - The future. In: Wallevik O, Nielsson I, editors. Proceedings of the 3rd International RILEM Symposium. Reykjavik, Iceland. 2003. p. 6-14.

[02] Repette W. Self-compacting concrete - A Labor cost evaluation when used to replace traditional concrete in building construction. In: De Schutter G., Boel V., editors. Proceedings of the 5th International RILEM Symposium. Ghent, Belgium. 2007. p. 1001-1006.

[03] EFNARC. The European Guidelines for Selfcompacting Concrete. www.efnarc.org. 15-06-2005 11:00.

[04] Japan Society of Civil Engineers. Recommendation for Construction of Self-Compacting Concrete. Proceedings of the International Workshop on Self-compacting Concrete. Kochi, Japan. 1998. p. 417-437.

[05] Walraven J. Self-compacting concrete: Challenge for designer and researcher. In: Shah SP, editor. Proceedings of The Second North American Conference on the Design and use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-compacting Concrete. Chicago, United States of America. 2005. p. 431-445.

[06] Nunes S. Experimental study and numerical modelling of self-compacting concrete. In: Walraven J., Blaauwendraad J., Scarpas T., Snidjer B., editors. Proceedings of The 5th International PhD Symposium in Civil Engineering. Delft, The Netherlands. 2004. p. 857-865.

[07] Nunes S., Oliveira P. M., Coutinho, J. S., Figueiras J. Interaction diagrams to assess SCC mortars for different cement types. Construction and Building Materials 2009; 23: 1401-1412.

[08] Nunes S., Figueiras H., Coutinho J. S., Figueiras J. Relatório de Execução Material, 4º Semestre de Actividades, Consórcio BACPOR. 2005. (in Portuguese)

[09] Cussigh F., A set of European standards for SCC. In: De Schutter G., Boel V., editors. Proceedings of the 5th International RILEM Symposium on Selfcompacting Concrete. Ghent, Belgium. 2007. p. 1041-1047.

[10] Nunes S., Figueiras H., Coutinho J. S., Figueiras J. SCC implementation in the Portuguese industry. In: Shah SP, editor. Proceedings of The Second North American Conference on the Design and use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-compacting Concrete. Chicago, United States of America. 2005. p. 1165-1171.

[11] Nunes S., Figueiras H., Oliveira P. M., Coutinho J. S., Figueiras J. A methodology to assess robustness of SCC mixtures. Cement & Concrete research 2006; 36:2115-2122.

[12] Mansur M. A., ASCE M., Islam M. M. Interpretation of concrete strength for non-standard specimens. Journal of Materials in Civil Engineering 2002; 151-155.

[13] Neville AM. Properties of concrete. England: Longman, 1998.

[14] Coutinho J. S. The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement & Concrete composites 2003; 25:51-59.

[15] RILEM TC116-PCD. Permeability of concrete as a criterion of its durability, C: Determination of the capillary absorption of water of hardened concrete. Materials and Structures 1999; 32:178-179.

[16] Sonebi M., Bartos P. J. M., Zhu W., Gibbs J. Tamini A. Final Report of Task4: Properties of Hardened Concrete, Rational production and Improved Working Environment Trough Using Self Compacting Concrete. Brite Euram Project BRPR-CT96-0366, http://scc.ce.luth.se, 15-08-2001 10:30.

[17] ASTM C 1202. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. American Society for Testing Materials. 1997.

[18] NT BUILD 492. Concrete, mortar and cement-based materials: Chloride migration coefficient from nonsteady- state migration experiments. NORDTEST. 1999.

[19] Especificação LNEC E 463. BETÃO. Determinação do coeficiente de difusão dos cloretos por ensaio de migração em regime não estacionário. 2004.

[20] Klug Y., Holschemacher K. Comparison of the hardened properties of self compacting and normal vibrated concrete. In: Wallevik O and Nielsson I, editors. Proceedings of the 3rd International RILEM Symposium. Reykjavik, Iceland. 2003. p. 596-605.

[21] Domone P. A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites 2007; 29(1): 1-12.

[22] Valcuende M., Parra C. Bond behaviour of reinforcement in self-compacting concretes. Construction and Building Materials 2009; 23: 162-170.

[23] Zhu W., Quinn J., Bartos P. M. J. Transport properties and durability of self-compacting concrete. In: Ozawa K., Ouchi M., editors. Proceedings of the 2nd International RILEM Symposium Self-compacting Concrete. Tokyo, Japan. 2001. p. 451-458.

Received 26/11/2007

Accepted 27/02/2009

Available Online 03/04/2009

  • [01] Skarendhal A. The present - The future. In: Wallevik O, Nielsson I, editors. Proceedings of the 3rd International RILEM Symposium. Reykjavik, Iceland. 2003. p. 6-14.
  • [02] Repette W. Self-compacting concrete - A Labor cost evaluation when used to replace traditional concrete in building construction. In: De Schutter G., Boel V., editors. Proceedings of the 5th International RILEM Symposium. Ghent, Belgium. 2007. p. 1001-1006.
  • [03] EFNARC. The European Guidelines for Selfcompacting Concrete. www.efnarc.org 15-06-2005 11:00.
  • [04] Japan Society of Civil Engineers. Recommendation for Construction of Self-Compacting Concrete. Proceedings of the International Workshop on Self-compacting Concrete. Kochi, Japan. 1998. p. 417-437.
  • [05] Walraven J. Self-compacting concrete: Challenge for designer and researcher. In: Shah SP, editor. Proceedings of The Second North American Conference on the Design and use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-compacting Concrete. Chicago, United States of America. 2005. p. 431-445.
  • [06] Nunes S. Experimental study and numerical modelling of self-compacting concrete. In: Walraven J., Blaauwendraad J., Scarpas T., Snidjer B., editors. Proceedings of The 5th International PhD Symposium in Civil Engineering. Delft, The Netherlands. 2004. p. 857-865.
  • [07] Nunes S., Oliveira P. M., Coutinho, J. S., Figueiras J. Interaction diagrams to assess SCC mortars for different cement types. Construction and Building Materials 2009; 23: 1401-1412.
  • [08] Nunes S., Figueiras H., Coutinho J. S., Figueiras J. Relatório de Execução Material, 4º Semestre de Actividades, Consórcio BACPOR. 2005. (in Portuguese)
  • [09] Cussigh F., A set of European standards for SCC. In: De Schutter G., Boel V., editors. Proceedings of the 5th International RILEM Symposium on Selfcompacting Concrete. Ghent, Belgium. 2007. p. 1041-1047.
  • [10] Nunes S., Figueiras H., Coutinho J. S., Figueiras J. SCC implementation in the Portuguese industry. In: Shah SP, editor. Proceedings of The Second North American Conference on the Design and use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-compacting Concrete. Chicago, United States of America. 2005. p. 1165-1171.
  • [11] Nunes S., Figueiras H., Oliveira P. M., Coutinho J. S., Figueiras J. A methodology to assess robustness of SCC mixtures. Cement & Concrete research 2006; 36:2115-2122.
  • [12] Mansur M. A., ASCE M., Islam M. M. Interpretation of concrete strength for non-standard specimens. Journal of Materials in Civil Engineering 2002; 151-155.
  • [13] Neville AM. Properties of concrete. England: Longman, 1998.
  • [14] Coutinho J. S. The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement & Concrete composites 2003; 25:51-59.
  • [15] RILEM TC116-PCD. Permeability of concrete as a criterion of its durability, C: Determination of the capillary absorption of water of hardened concrete. Materials and Structures 1999; 32:178-179.
  • [16] Sonebi M., Bartos P. J. M., Zhu W., Gibbs J. Tamini A. Final Report of Task4: Properties of Hardened Concrete, Rational production and Improved Working Environment Trough Using Self Compacting Concrete. Brite Euram Project BRPR-CT96-0366, http://scc.ce.luth.se, 15-08-2001 10:30.
  • [18] NT BUILD 492. Concrete, mortar and cement-based materials: Chloride migration coefficient from nonsteady- state migration experiments. NORDTEST. 1999.
  • [19] Especificação LNEC E 463. BETÃO. Determinação do coeficiente de difusão dos cloretos por ensaio de migração em regime não estacionário. 2004.
  • [20] Klug Y., Holschemacher K. Comparison of the hardened properties of self compacting and normal vibrated concrete. In: Wallevik O and Nielsson I, editors. Proceedings of the 3rd International RILEM Symposium. Reykjavik, Iceland. 2003. p. 596-605.
  • [21] Domone P. A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites 2007; 29(1): 1-12.
  • [22] Valcuende M., Parra C. Bond behaviour of reinforcement in self-compacting concretes. Construction and Building Materials 2009; 23: 162-170.
  • [23] Zhu W., Quinn J., Bartos P. M. J. Transport properties and durability of self-compacting concrete. In: Ozawa K., Ouchi M., editors. Proceedings of the 2nd International RILEM Symposium Self-compacting Concrete. Tokyo, Japan. 2001. p. 451-458.

Publication Dates

  • Publication in this collection
    18 Sept 2014
  • Date of issue
    Mar 2009

History

  • Received
    26 Nov 2007
  • Accepted
    27 Feb 2009
IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br