SciELO - Scientific Electronic Library Online

 
vol.23 issue1Geohelminth contamination of public areas and epidemiological risk factors in Curitiba, BrazilNematode infection among ruminants in monsoon climate (Ban-Lahanam, Lao PDR) and its role as food-borne zoonosis author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

  • text new page (beta)
  • English (pdf)
  • Article in xml format
  • How to cite this article
  • SciELO Analytics
  • Curriculum ScienTI
  • Automatic translation

Indicators

Related links

Share


Revista Brasileira de Parasitologia Veterinária

Print version ISSN 0103-846XOn-line version ISSN 1984-2961

Rev. Bras. Parasitol. Vet. vol.23 no.1 Jaboticabal Jan./Mar. 2014

https://doi.org/10.1590/S1984-29612014010 

Original Article

Molecular and morphological characterization of Contracaecum pelagicum (Nematoda) parasitizing Spheniscus magellanicus (Chordata) from Brazilian waters

Caracterização molecular e morfológica de Contracaecum pelagicum (Nematoda) parasito de Spheniscus magellanicus(Chordata) em águas brasileiras

Juliana Novo Borges1  2 

Helena Lúcia Carneiro Santos1 

Martha Lima Brandão3 

Everton Gustavo Nunes dos Santos1  3 

Daniele Ferreira de Miranda1 

Daniel de Almeida Balthazar4 

José Luis Luque5 

Cláudia Portes Santos1  * 

1Laboratório de Avaliação e Promoção da Saúde Ambiental – LAPSA, Instituto Oswaldo Cruz – IOC, Rio de Janeiro, RJ, Brasil

2Curso de Pós-graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz – IOC, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil

3Curso de Pós-graduação em Parasitologia Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil

4Fundação Jardim Zoológico da Cidade do Rio de Janeiro, RJ, Brasil

5Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil


ABSTRACT

Three new sequences of Mitochondrial cytochrome c-oxidase subunit 2 (mtDNA cox-2) from C. pelagicum parasite of Spheniscus magellanicus, the Magelanicus penguin, were determined from Brazilian waters. The sequences presented 99 and 98% of similarity with C. pelagicum sequences from Argentina, deposited on GenBank for the same genetic region and with a strong statistical support inferred from the phylogenetic tree. The morphological and ultrastructural studies that were carried out confirmed the genetic analysis.

Key words: Anisakidae; penguin; Rio de Janeiro

RESUMO

Foram determinadas três novas sequências da região do Citocromo c-oxidase da subunidade II do DNA mitocondrial (cox-2 mtDNA) de Contracaecum pelagicum, parasito de Spheniscus magellanicus, pinguim Magalhães, de águas brasileiras. As sequências apresentaram 99 e 98% de similaridade com sequências de C. pelagicum da Argentina depositadas no GenBank da mesma região genética com forte suporte estatístico inferido pela arvore filogenética. Estudos morfológicos e ultraestruturais realizados confirmaram a identidade genética.

Palavras-Chave: Anisakidae; pinguim; Rio de Janeiro

Introduction

Adult Contracaecum pelagicum, Johnston and Mawson, 1942, is an Anisakidae nematode known for parasitizing marine mammals and piscivorous birds. The Contracaecum sp. larvae can be found in several invertebrates and in fish that act as intermediate hosts (ANDERSON, 2000).

The species was first described from albatrosses from Australia and, since then the species was reported in South America from Thalassarche melanophris(=Diomedea melanophris (Temminck, 1828), the South American penguin, Spheniscus magellanicus (Forster, 1781), Spheniscus humboldti Meyen, 1834 and Sula leucogasterBoddaert, 1783 (LENT; FREITAS, 1948; SANTOS, 1984; MANN, 1992; SILVA et al., 2005; GARBIN et al., 2007; GONZÁLEZ-ACUÑA et al., 2008; EDERLI et al., 2009; DIAZ et al., 2010; PRADO et al., 2011; YÁÑEZ et al., 2012; REZENDE et al., 2013; CAMPOS et al., 2013).

Few genetic studies of C. pelagicum were performed by Mattiucci et al. (2008) and Garbin et al. (2011, 2013)from the intermediate host, the anchovy Engraulis anchoita Hubbs and Marini, 1935, and from the definitive hosts S. magellanicus and Phalacrocorax atriceps King PP, 1828 from Argentina. However, there are no molecular data of Contracaecum species recovered from penguins found in the Brazilian coast.

Magellan penguins are opportunistic feeders and, in the southern hemisphere during winter time, they may travel along the currents foraging for prey far apart from their original area, the Antarctica and Argentinean coast, reaching the Brazilian southeast and northeast coasts (SERAFINI et al., 2010). In the Brazilian coast, the Magellan penguins are commonly found ill or dead, stranded on the coast (GARCÍA BORBOROGLU et al., 2010). This paper deals with the morphological study and Mitochondrial cytochrome c-oxidase subunit 2 (mtDNA cox-2) sequence analysis of C. pelagicum, obtained from penguins found in Rio de Janeiro, Brazil.

Materials and Methods

The gastrointestinal tract of two Magelanic penguins was donated by Riozoo foundation at Rio de Janeiro, in December of 2012 and transported in 70% alcohol to the laboratory. One penguin found stranded on the beach was transported to the Laboratory of Parasitology of the Universidade Federal Rural do Rio de Janeiro for examination. A total of 12 adult nematodes (three males and nine females) were collected in the intestine of the penguins, and five were cut into three pieces: the anterior and posterior parts were mounted in glycerine jelly for morphological identification, and the middle parts were prepared for genetic studies. Measurements are given in micrometers (µm) unless otherwise stated, and the means are stated in parentheses. Specimens are deposited in the Helminthological collection of the Instituto Oswaldo Cruz (CHIOC), Rio de Janeiro, Brazil (n. 35913).

Some specimens were prepared for scanning electron microscopy by dehydrating through a graded ethanol series. The specimens were then transferred to 50:50 100% ethanol: hexamethyldisilazane, followed by a change of 100% hexamethyldisilazane and air dried overnight. Mounted specimens were sputter–coated with gold and examined using a Jeol JSM-6791F microscope at an accelerating voltage of 15kV.

Genomic DNA was extracted using a ChargeSwitch gDNA Mini Tissue Kit (Invitrogen, Carlsbad, CA, USA) and in order to amplify gene fragments of Contracaecum; the primers 211F/210R for mtDNA cox-2 (NADLER; HUDSPETH, 2000) were used in PCR reactions following Borges et al. (2012). Amplified PCR products were purified with Wizard® SV gel and PCR clean up system kit (Promega, Madison, USA), and sequenced using the same primer set. DNA cycle-sequencing reactions were performed using BigDye v.3.1 chemistry (Applied Biosystems, Foster City, CA, USA) in the ABI Prism 3100 sequence analyzer. Sequences were edited in DNASTAR SeqMan (DNASTAR, Inc., Madison, WI) and compared for similarities with sequences from GenBank, using BLAST 2.0 (“Basic Local Alignment Search Tool”) (ALTSCHUL et al., 1990) (Table 1). Alignments were performed by CLUSTAL W algorithm (THOMPSON et al., 1994), and the probability of substitutions plus phylogenetic trees were inferred by using the MEGA 5.0 software (TAMURA et al., 2011). The Hasegawa-Kishino-Yano model (HKY) was selected using the jModelTest program (POSADA, 2008), and the Maximum Likelihood method was used to construct trees (FELSENSTEIN, 1981) that were resampled by 1000 bootstrap replicates.

Table 1. List of species from Genbank, used for comparison in phylogenetic analysis and alignments. 

Species GenBank accession number Reference
Contracaecum pelagicum EF122210 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum pelagicum EF535568 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum pelagicum EF535569 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum multipapillatum AF179910 Nadler and Hudspeth 2000 J. Parasitol. 86 (2): 380-393
Contracaecum micropapillatum EU852350 Mattiucci et al. 2010 Syst. Parasitol. 75 (3): 207-224
Contracaecum microcepahulum EF513519 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum chubutensis HQ328504 Garbin et al. 2011 J. Parasitol. 97 (3): 476-492
Contracaecum septentrionale EF513513 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum rudolphii EF122201 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Contracaecum rudolphii EF513502 Mattiucci et al. 2008 Syst. Parasitol. 69 (2): 101-121
Sulcascaris sulcata HQ328505 Garbin et al. 2011 J. Parasitol. 97 (3): 476-492

Results

Contracaecum pelagicum was identified based on measurements and morphological observations by light and scanning electron microscopy, in addition to a genetic analysis.

Body 40-45 mm long, 0.97-1.16 wide. Anterior region with one dorsal and two ventrolateral lips. Interlabia present. Nerve ring 0.49-0.50 and deirids 0.92-1.00 from anterior end. Oesophagus 2.43-3.82. Ventricular appendix 0.85. Intestinal cecum 1.90-2.69. Right spicule 4.10-4.33 and left 4.00-4.13. Precloacal papillae 23-25 and post-cloacal papillae 7. Cloaca/end of body 0.20-0.24.

Body 46-62 (58) mm long and width 1.20-1.50 (1.31). Anterior region with one dorsal and two ventrolateral lips. Interlabia present. Nerve ring 0.48-0.70 (0.60) and deirids 0.71-1.14 (0.91). Oesophagus 3.40-4.15 (4.11). Ventricular appendix 0-70-0.79 (0.74). Intestinal cecum 2.70-3.05 (2.88). Cloaca/end of body 0.45-0.47 (0.43). Vulva 10.80-15.85 (13.32). Egg 0.07 × 0.07. The ultrastructure shows a cephalic collar with cuticle edges directed forward, three long lips (two ventrolateral and one dorsal) intercalated by three triangular interlabia (Figures 1a, b). The morphological analysis confirmed the identification of C. pelagicum.

Figure 1. Scanning electron microscopy of Contracaecum pelagicum from Spheniscus magellanicus. a, b - Detail of anterior end, with conspicuous head collar, lips and interlabia. c - Male caudal end with detail of the pre and post-cloacal papillae, cloaca and spicule tip. d - General view of posterior end of male with distribution of pre and post-cloacal papillae. 

Five samples were used for genetic studies, but only three sequences suitable for analysis were obtained and deposited on GenBank under the accession numbers KC435447, KC435448 and KC435449. These sequences, one with 472 and two with 536 bp, aligned with C. pelagicum reference sequence, accession number EF535568 from GenBank with 99% of similarity; with C. pelagicum accession numbers EF122210 and EF535569, presented 98% of similarity. The sequences were AT rich with frequencies of 71.1%, 58.8% and 63.8% in first, second and third positions of codons, respectively. Only transitions were observed in relation to other C. pelagicum, with a greater rate of T/C substitutions (Table 2). The majority of substitutions occurred in the first position of codons in potentially silent sites. The phylogenetic tree, constructed with the sequences from these studies and the Contracaecum reference sequences from birds, showed strong statistical support for the C. pelagicum branch (Figure 2).

Figure 2. Maximum likelihood reconstruction among Contracaecum pelagicum sequences obtained in this study (E06, E23, E07) and sequences of Contracaecum species from fish eating birds obtained on GenBank, with tree inferred from mtDNA cox-2 data. The numbers on the tree branches represent the percentage of bootstrap resampling. Sulcascaris sulcata was used as an out group. 

Table 2. Maximum composite likelihood estimate of the pattern of nucleotide substitution among Contracaecum pelagicum. The table shows the probability of substitution from one base (row) to another (column). Transitional substitutions are shown in bold and transversional substitutions are shown in italics. 

% A T C G
A - 0.05 0.02 16.21
T 0.03 - 15.49 0.03
C 0.03 51.9 - 0.03
G 16.15 0.05 0.02 -

% - percentage.

Discussion

The measurements are in accordance with the data from literature, although the parasites found are much larger than previous descriptions from the same host (SANTOS, 1984; GARBIN et al., 2007). Other morphological features such as number of papillae, length and shape of spicules in males, were similar to the ones previously described for C. pelagicum (LENT; FREITAS, 1948; SANTOS, 1984; FAGERHOLM et al., 1996; GARBIN et al., 2007), thus confirming the morphological diagnosis.

The mtDNA cox-2 fragments showed little variation among sites of C. pelagicum. The intraspecific variability of 1-2% found is in accordance with literature data for Nematodes (THOMAS; WILSON, 1991; GARBIN et al., 2013). In the last 20 years, genetic analysis has been used as an important tool in the identification of sibling species, as well as larval stages of Contracaecum (NASCETTI et al., 1993; ORECCHIA et al., 1994; MATTIUCCI et al., 2002; LI et al., 2005; GARBIN et al., 2013). The small intraspecific variation and the greater interspecific variation found in this study, show how the mtDNA cox- 2 region can be a valuable tool for the identification of species in the genus.

The AT rich composition found has already been reported in literature for Nematode mtDNA cox-2 region (THOMAS; WILSON, 1991; NADLER; HUDSPETH, 2000; JEX et al., 2008). Mattiucci et al. (2008) and Garbin et al. (2013) found values of AT bases frequencies that were very similar to the ones found in this C. pelagicumstudy.

The conducted phylogenetic analysis showed a close relationship between C. pelagicum specimens and C. bioccai, which formed a strong statistically supported branch. This close relationship between the two species has been already reported in other studies (GARBIN et al., 2013).

Although there were already C. pelagicum sequences deposited on GenBank, the addition of new data is important to strengthen the reliability of GenBank as a tool for rapid species' identification, and a database for genetic studies. The new sequences deposited on GenBank provide new data for further studies of these parasites that may well be present in marine fishes along the Brazilian coast.

Conclusion

This is the first genetic characterization of Contracaecum pelagicum from Spheniscus magellanicus penguins in Brazil.

Acknowledgements

The authors are indebted to RioZoo foundation for the donation of parasites. The study was financially supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa no Rio de Janeiro (FAPERJ-BIOTA), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) -PROEP, Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES PROCAD-NF, Parasitologia Básica) and Fundação Oswaldo Cruz.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-410. PMid:2231712. [ Links ]

Anderson RC. Nematode parasites of vertebrates: Their development and transmission. Wallingford: CABI Publishing; 2000. 672 p. http://dx.doi.org/10.1079/9780851994215.0000Links ]

Borges JN, Cunha LFG, Santos HLC, Monteiro-Neto C, Santos CP. Morphological and Molecular Diagnosis of Anisakid Nematode Larvae from Cutlassfish (Trichiurus lepturus) off the Coast of Rio de Janeiro, Brazil. PLoS One 2012; 7(7): e40447. PMid:22792329 PMCid:PMC3392247. http://dx.doi.org/10.1371/journal.pone.0040447Links ]

Campos SDE, Pereira BBN, Siciliano S, Costa CHC, Almosny NRP, Brener B. Contracaecum pelagicum and C. plagiaticium (Nematoda: Anisakidae) infection in Magellanic penguins (Sphenisciformes: Spheniscidae) on the coast of Rio de Janeiro State. Pesq Vet Bras 2013; 33(1): 89-93. http://dx.doi.org/10.1590/S0100-736X2013000100016Links ]

Diaz JI, Cremonte F, Navone GT. Helminths of the Magellanic Penguin, Spheniscus magellanicus (Sphenisciformes), During the Breeding Season in Patagonian Coast, Chubut, Argentina. Comp Parasitol 2010; 77(2): 172-177. http://dx.doi.org/10.1654/4441.1Links ]

Ederli NB, Oliveira FCR, Monteiro CM, Silveira LS, Rodrigues MLA. Ocorrência de Contracaecum pelagicum Johnston and Mawson, 1942 (Nematoda, Anisakidae) em pinguim-de-magalhães (Spheniscus magellanicus Forster, 1781) (Aves, Spheniscidae) no litoral do Espírito Santo. Arq Bras Med Vet Zootec 2009; 61(4): 1006-1008. http://dx.doi.org/10.1590/S0102-09352009000400034Links ]

Fagerholm HP, Overstreet RM, Humphery-Smith I. Contracaecum magnipapillatum (Nematoda, Ascaridoidea): Resurrection and pathogenic effects of a common parasite from the proventriculus of Anous minutus from the Great Barrier Reef, with a note on C. variegatum. Helminthologia 1996; 33 (4): 195-207. [ Links ]

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17(6): 368-376. PMid:7288891. http://dx.doi.org/10.1007/BF01734359Links ]

Garbin L, Mattiucci S, Paoletti M, González-Acuña D, Nascetti G. Genetic and morphological evidences for the existence of a new species of Contracaecum (Nematoda: Anisakidae) parasite of Phalacrocorax brasilianus (Gmelin) from Chile and its genetic relationships with congeners from fish-eating birds. J Parasitol 2011 97(3): 476-492. PMid:21506861. http://dx.doi.org/10.1645/GE-2450.1Links ]

Garbin L, Mattiucci S, Paoletti M, Diaz JI, Nascetti G, Navone GT. Molecular identification and larval morphological description of Contracaecum pelagicum (Nematoda: Anisakidae) from the Anchovy Engraulis anchoita (Engraulidae) and fish-eating birds from the Argentine North Patagonian Sea. Parasitol Int 2013; 62(3): 309-319. PMid:23500719. http://dx.doi.org/10.1016/j.parint.2013.03.001Links ]

Garbin L, Navone GT, Diaz JI, Cremonte F. Further study of Contracaecum pelagicum (Nematoda: Anisakidae) in Spheniscus magellanicus (Aves: Spheniscidae) from Argentinean coasts. J Parasitol 2007; 93(1): 143-150. PMid:17436954. http://dx.doi.org/10.1645/GE-875R1.1Links ]

García Borboroglu P, Boersma PD, Ruoppolo V, Pinho-Da-Silva-Filho R, Corrado-Adornes A, Conte-Sena D, et al. Magellanic penguin mortality in 2008 along the SW Atlantic coast. Mar Pollut Bull 2010; 60(10): 1652-1657. PMid:20674946. http://dx.doi.org/10.1016/j.marpolbul.2010.07.006Links ]

González-Acuña D, Kinsella JM, Lara J, Valenzuela-Dellarossa G. Parásitos gastrointestinales en pingüino de Humboldt (Spheniscus humboldti) y pingüino de Magallanes (Spheniscus magellanicus) en las costas del centro y centro sur de Chile. Parasitol Latinoam 2008; 63: 58-63. [ Links ]

Jex AR, Waeschenbach A, Littlewood DTJ, Hu M, Gasser RB. The mitochondrial Genome of Toxocara canis. PLoS Negl Trop Dis 2008; 2(8): e273. PMid: 18682828 PMCid:PMC2483351. http://dx.doi.org/10.1371/journal.pntd.0000273Links ]

Lent H, Freitas JFT. Uma coleção de nematódeos, parasitos de vertebrados, do Museu de História Natural de Montevideo. Mem Inst Oswaldo Cruz 1948; 46(1): 1-71. http://dx.doi.org/10.1590/S0074-02761948000100001Links ]

Li AX, D'Amelio S, Paggi L, He F, Gasser RB, Lun Z, et al. Genetic evidence for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) and the validity of Contracaecum septentrionale (Kreis, 1955) (Nematoda: Anisakidae). Parasitol Res 2005; 96(6): 361-366. PMid:15928905. http://dx.doi.org/10.1007/s00436-005-1366-yLinks ]

Mann A. Fauna parasitaria en el pingüino de Humboldt (Spheniscus humboldti), en la zona central de Chile. Santiago: Memoria Fac. Cs Veterinarias y Pecuarias, U. Chile; 1992. 67 p. [ Links ]

Mattiucci S, Paoletti M, Solorzano AC, Nascetti G. Contracaecum gibsoni n. sp. and C. overstreeti n. sp. (Nematoda: Anisakidae) from the Dalmatian pelican Pelecanus crispus (L.) in Greek waters: genetic and morphological evidence. Syst Parasitol 2010 Mar; 75(3): 207-24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20157795. [ Links ]

Mattiucci S, Paoletti M, Olivero-Verbel J, Baldiris R, Arroyo-Salgado B, Garbin L, et al. Contracaecum bioccai n. sp. from the brown pelican Pelecanus occidentalis (L.) in Colombia (Nematoda: Anisakidae): morphology, molecular evidence and its genetic relationship with congeners from fish-eating birds. Syst Parasitol 2008; 69(2): 101-121. PMid:18038198. http://dx.doi.org/10.1007/s11230-007-9116-4Links ]

Mattiucci S, Turchetto M, Brigantini F, Nascetti G. On the occurrence of the sibling species of Contracaecum rudolphii complex (Nematoda: Anisakidae) in cormorants (Phalacrocorax carbo sinensis) from Venetian and Caorle lagoons: Genetic markers and ecological studies. Parassitologia 2002; 44 (Suppl 1): 105. [ Links ]

Nadler AS, Hudspeth DSS. Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol 2000; 10(2): 221-236. PMid:9878233. http://dx.doi.org/10.1006/mpev.1998.0514Links ]

Nascetti G, Cianchi R, Mattiucci S, D'Amelio S, Orecchia P, Paggi L et al. Three sibling species within Contracaecum osculatum (Nematoda, Ascaridida, Ascaridoidea) from the Atlantic Arctic-boreal region: Reproductive isolation and host preferences. Int J Parasitol 1993; 23(1): 105-120. http://dx.doi.org/10.1016/0020-7519(93)90103-6Links ]

Orecchia P, Mattiucci S, D'Amelio S, Paggi L, Plotz J, Cianchi R, et al. Two new members in the Contracaecum osculatum complex (Nematoda, Ascaridoidea) from the Antarctic. Int J Parasitol 1994; 24(3): 367-377. http://dx.doi.org/10.1016/0020-7519(94)90084-1Links ]

Santos CP. Um nematódeo parasito do pinguim Spheniscus magellanicus (Forster) (Ascaridoidea, Anisakidae). Mem Inst Oswaldo Cruz 1984; 79(2): 233-237. PMid:6543564. http://dx.doi.org/10.1590/S0074-02761984000200010Links ]

Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008; 25(7): 1253-1256. PMid:18397919. http://dx.doi.org/10.1093/molbev/msn083Links ]

Prado MIBM, Santos-Lopes AR, Silva RJ. Helminthfauna of Magellanic penguin (Spheniscus magellanicus Foster 1781) proceeding from Ilha Comprida, south coast, state of São Paulo, Brazil. Neotrop Helminthol 2011; 5(1): 50-55. [ Links ]

Rezende GC, Baldassin P, Gallo H, Silva RJ. Ecological aspects of helminth fauna of Magellanic penguins, Spheniscus magellanicus (aves: Spheniscidae), from the Northern Coast of the State of São Paulo, Brazil. Braz J Biol 2013; 73(1): 61-66. PMid:23644789. http://dx.doi.org/10.1590/S1519-69842013000100008Links ]

Serafini PP, Gomes ALM, Maranho A, Fernandes A, Mader A, Altiere BL, et al. Projeto Nacional de Monitoramento de Pinguim-de-Magalhães (Spheniscus magellanicus). Brasília: CEMAVE (ICMBio); 2010. 36 p. Available from: http://intranet.cemave.net/downloads/projeto_pinguins/cartilha_projeto_nacional_pinguins_miolo.pdf. [ Links ]

Silva RJ, Raso TF, Faria PJ, Campos FP. Occurrence of Contracaecum pelagicum Johnston and Mawson 1942 (Nematoda, Anisakidae) in Sula leucogaster Boddaert, 1783 (Pelecaniformes, Sulidae). Arq Bras Med Vet Zootec 2005; 57(4): 565-567. http://dx.doi.org/10.1590/S0102-09352005000400023Links ]

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28(10): 2731-2739. PMid:21546353 PMCid:PMC3203626. http://dx.doi.org/10.1093/molbev/msr121Links ]

Thomas, WK, Wilson, AC. Mode and tempo of molecular evolution in the nematode Caenorhabditis: Cytochrome oxidase II and calmodulin sequences. Genetics 1991; 128(2): 269-279. PMid:1649066. [ Links ]

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22(22): 4673-4680. PMid:7984417 PMCid:PMC308517. http://dx.doi.org/10.1093/nar/22.22.4673Links ]

Yáñez F, Fernández Í, Campos VV, Mansilla M, Valenzuela A, González H, et al. First pathological report of parasitic gastric ulceration in Humboldt penguin (Spheniscus humboldti) along the coast of south-central Chile. Lat Am J Aquat Res 2012; 40(2): 448-452. http://dx.doi.org/10.3856/vol40-issue2-fulltext-20Links ]

Received: October 15, 2013; Accepted: February 5, 2014

*Corresponding author: Cláudia Portes Santos, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, BR 465, Km 7, CEP 23890-000, Seropédica, RJ, Brasil, e-mail: cpsantos@ioc.fiocruz.br

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.