Acessibilidade / Reportar erro

Cross-sectional survey for Toxoplasma gondii infection in humans in Fernando de Noronha island, Brazil

Estudo transversal da infecção por Toxoplasma gondii em humanos da Ilha de Fernando de Noronha, Brasil

Abstract

Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is zoonotic disease and is one of the most important foodborne parasitic diseases globally. The prevalence in humans is highly variable, being influenced by cultural habits, socioeconomic, and environmental conditions. The objective of this study was to estimate the prevalence of T. gondii infection in humans on the archipelago of Fernando de Noronha, Pernambuco State, Brazil, and to identify the risk factors associated with this infection. The seroprevalence of immunoglobulin G anti-T. gondii antibodies was 50.4% (172/341, 95% CI: 45.2%–55.7%). Factors associated with the infection were consumption of well water or rainwater (odds ratio [OR]: 2.43, p=0.020) and consumption of game meat (OR: 1.80, p=0.026). This is the first study to provide epidemiological information of T. gondii infection among the residents of the Island of Fernando de Noronha, revealing a considerable antibody seroprevalence in this population. This study provides information for the adoption of prevention and control measures in island environments.

Keywords:
Insular environment; Seroepidemiology; Toxoplasmosis

Resumo

A toxoplasmose, causada pelo protozoário Toxoplasma gondii, é uma zoonose e uma das doenças parasitárias transmitidas por alimentos mais importantes em todo o mundo. A prevalência em humanos é altamente variável, sendo influenciada por hábitos culturais, condições socioeconômicas e ambientais. O objetivo deste estudo foi estimar a prevalência de infecção por T. gondii em humanos, no arquipélago de Fernando de Noronha, Pernambuco, Brasil, e identificar os fatores de risco associados a essa infecção nesse contexto insular. A soroprevalência de anticorpos IgG anti-T. gondii nos ilhéus foi de 50,4% (172/341, 95% CI: 45,2%–55,7%). Os fatores associados à infecção encontrados foram o consumo de água do poço ou de água da chuva (Odds ratio [OR]: 2,43, p=0,020) e consumo de carne de caça (OR: 1,80, p=0,026). Este é o primeiro estudo a fornecer informações epidemiológicas da infecção por T. gondii entre os moradores da Ilha de Fernando de Noronha, revelando uma considerável soroprevalência de anticorpos nessa população. Este estudo fornece informações para subsidiar a adoção de medidas de prevenção e controle em ambientes insulares.

Palavras-chave:
Ambiente insular; Soroepidemiologia; Toxoplasmose

Introduction

Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is an important zoonotic disease that causes severe problems in humans, including reproductive, ophthalmic (Tenter et al., 2000Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30(12–13): 1217-1258. http://dx.doi.org/10.1016/S0020-7519(00)00124-7. PMid:11113252.
http://dx.doi.org/10.1016/S0020-7519(00)...
; Montoya & Liesenfeld, 2004Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363(9425): 1965-1976. http://dx.doi.org/10.1016/S0140-6736(04)16412-X. PMid:15194258.
http://dx.doi.org/10.1016/S0140-6736(04)...
), neurological changes (Dubey et al., 2012Dubey JP, Lago EG, Gennari SM, Su C, Jones JL. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology 2012; 139(11): 1375-1424. http://dx.doi.org/10.1017/S0031182012000765. PMid:22776427.
http://dx.doi.org/10.1017/S0031182012000...
) and behavioral disorders (Flegr et al., 2014Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis – A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries. PLoS One 2014; 9(3): e90203. http://dx.doi.org/10.1371/journal.pone.0090203. PMid:24662942.
http://dx.doi.org/10.1371/journal.pone.0...
). The overall range of seroprevalence was determined to be 0.5-87.7%, with an average global seroprevalence rate of 25.7% (95% CI: 25.6-25.8%) (Molan et al., 2019Molan A, Nosaka K, Hunter M, Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop Biomed 2019; 36(4): 898-925. PMid:33597463.), which is attributed to several factors such as dietary habits, age (Dubey et al., 2012Dubey JP, Lago EG, Gennari SM, Su C, Jones JL. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology 2012; 139(11): 1375-1424. http://dx.doi.org/10.1017/S0031182012000765. PMid:22776427.
http://dx.doi.org/10.1017/S0031182012000...
), and sanitary conditions (Mareze et al., 2019Mareze M, Benitez AN, Brandão APD, Pinto-Ferreira F, Miura AC, Martins FDC, et al. Socioeconomic vulnerability associated to Toxoplasma gondii exposure in southern Brazil. PLoS One 2019; 14(2): e0212375. http://dx.doi.org/10.1371/journal.pone.0212375. PMid:30763391.
http://dx.doi.org/10.1371/journal.pone.0...
). However, these data are mainly from studies conducted in continental regions, epidemiological data in insular environments, particularly in Brazil, are scarce.

The Fernando de Noronha Archipelago, belonging to the state of Pernambuco, comprises 21 islands and islets of volcanic origin located 350 km off the coast of the Brazilian northeast in the South Atlantic. The main island that names the Archipelago has one of the highest densities of cats described in island environments worldwide (Dias et al., 2017Dias RA, Abrahão CR, Micheletti T, Mangini PR, de Oliveira Gasparotto VP, de Jesus Pena HF, et al. Prospects for domestic and feral cat management on an inhabited tropical island. Biol Invasions 2017; 19(8): 2339-2353. http://dx.doi.org/10.1007/s10530-017-1446-9.
http://dx.doi.org/10.1007/s10530-017-144...
). Magalhães et al. (2016aMagalhães FJ, da Silva JG, Ribeiro-Andrade M, Pinheiro JW, Aparecido Mota R. High prevalence of toxoplasmosis in free-range chicken of the Fernando de Noronha Archipelago, Brazil. Acta Trop 2016a; 159: 58-61. http://dx.doi.org/10.1016/j.actatropica.2016.03.034. PMid:27032879.
http://dx.doi.org/10.1016/j.actatropica....
, bMagalhães FJR, Ribeiro-Andrade M, Alcântara AM, Pinheiro JW Jr, Sena MJ, Porto WJN, et al. Risk factors for Toxoplasma gondii infection in sheep and cattle from Fernando de Noronha Island, Brazil. Rev Bras Parasitol Vet 2016b; 25(4): 511-515. http://dx.doi.org/10.1590/s1984-29612016051. PMid:27580399.
http://dx.doi.org/10.1590/s1984-29612016...
; 2017Magalhães FJR, Ribeiro-Andrade M, Souza FM, Lima Filho CDF, Biondo AW, Vidotto O, et al. Seroprevalence and spatial distribution of Toxoplasma gondii infection in cats, dogs, pigs and equines of the Fernando de Noronha Island, Brazil. Parasitol Int 2017; 66(2): 43-46. http://dx.doi.org/10.1016/j.parint.2016.11.014. PMid:27894907.
http://dx.doi.org/10.1016/j.parint.2016....
) has previously assessed infection by this coccidian in companion and production animals raised on Fernando de Noronha Island and found high seropositivity prevalence in sheep (85.0%; 204/240), pet cats (71.26%; 248/348), feral cats (54.74%; 150/247), and especially free-range chickens (88.4%; 380/430), which may indicate a high rate of environmental contamination by oocysts of the protozoan since chickens act as sentinels (Magalhães et al., 2016aMagalhães FJ, da Silva JG, Ribeiro-Andrade M, Pinheiro JW, Aparecido Mota R. High prevalence of toxoplasmosis in free-range chicken of the Fernando de Noronha Archipelago, Brazil. Acta Trop 2016a; 159: 58-61. http://dx.doi.org/10.1016/j.actatropica.2016.03.034. PMid:27032879.
http://dx.doi.org/10.1016/j.actatropica....
; Dubey et al., 2010Dubey JP, Rajendran C, Costa DGC, Ferreira LR, Kwok OCH, Qu D, et al. New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. J Parasitol 2010; 96(4): 709-712. http://dx.doi.org/10.1645/GE-2425.1. PMid:20486738.
http://dx.doi.org/10.1645/GE-2425.1...
). Moreover, isolates of T. gondii have been obtained from animals from the island and molecularly characterized (Melo et al., 2016Melo RPB, Almeida JC, Lima DCV, Pedrosa CM, Magalhães FJR, Alcântara AM, et al. Atypical Toxoplasma gondii genotype in feral cats from the Fernando de Noronha Island, northeastern Brazil. Vet Parasitol 2016; 224: 92-95. http://dx.doi.org/10.1016/j.vetpar.2016.05.023. PMid:27270396.
http://dx.doi.org/10.1016/j.vetpar.2016....
; Silva et al., 2017Silva JCR, Ferreira F, Dias RA, Ajzenberg D, Marvulo MFV, Magalhães FJR, et al. Cat-rodent Toxoplasma gondii Type II-variant circulation and limited genetic diversity on the Island of Fernando de Noronha, Brazil. Parasit Vectors 2017; 10(1): 220. http://dx.doi.org/10.1186/s13071-017-2150-4. PMid:28468666.
http://dx.doi.org/10.1186/s13071-017-215...
; Lima et al., 2019Lima DCV, Melo RPB, Almeida JC, Magalhães FJM, Ribeiro-Andrade M, Pedrosa CM, et al. Toxoplasma gondii in invasive animals on the Island of Fernando de Noronha in Brazil: molecular characterization and mouse virulence studies of new genotypes. Comp Immunol Microbiol Infect Dis 2019; 67: 101347. http://dx.doi.org/10.1016/j.cimid.2019.101347. PMid:31546127.
http://dx.doi.org/10.1016/j.cimid.2019.1...
), indicating that there are a variety of genotypes of the protozoan in the insular environment.

Due to the absence of studies related to the epidemiology of T. gondii in the human population in the archipelago of Fernando de Noronha, the objective of this study was to determine the prevalence and risk factors associated with infection in individuals living on this island.

Material and Methods

Ethical aspects

The study strictly followed the ethical principles in research with humans, and was approved by the Research Ethics Committee of Universidade de Pernambuco (n. 19344819.4.0000.5207).

Study area

The study area was the Fernando de Noronha Archipelago (Figure 1), which comprises 21 islands and islets and has an area of 17,017 km2 and an estimated population of 3,061 (IBGE, 2019Instituto Brasileiro de Geografia e Estatística – IBGE. Censo demográfico. Estimativas da população residente [online]. Rio de Janeiro: IBGE; 2019 [cited 2019 July 20]. Available from: http://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama
http://cidades.ibge.gov.br/brasil/pe/fer...
). It has tropical climate comprising two seasons, one dry (August–January) and another rainy (February–July), with an average annual temperature of 26–27ºC (IBAMA, 1990Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA. Plano de Manejo do Parque Nacional Marinho de Fernando de Noronha. Brasília: IBAMA; 1990, 253 p.).

Figure 1
Map of the archipelago of Fernando de Noronha, Pernambuco, Brazil.

Sampling

This study was a cross-sectional epidemiological study. In order to determine the representative sample size, we applied the calculation for finite populations considering an estimated population of 3,061 individuals residing on the island of Fernando de Noronha in 2019, according to the Brazilian Institute of Geography and Statistics. Furthermore, an expected prevalence of T. gondii infection of 50% was assumed given the non-existence of previous data at a confidence interval (CI) of at least 95% with a statistical error of 5% (Thrusfield, 2007Thrusfield M. Veterinary epidemiology. 3rd ed. Oxford: Blackwell Science; 2007.). This calculation resulted in a sample of 341 individuals.

The inclusion criteria for the study included both male and female individuals who were residents of the island for at least 6 months and were older than two years of age. Non-residents (tourists) of the island were excluded from the study. Participants were informed about the research objectives, and those who agreed to participate in the study received and signed a copy of the Informed Consent Form (ICF), according to Resolution No. 466/12 of the National Health Council (Brasil, 2012Brasil. Ministério da Saúde – MS. Resolução CNS nº 466, de 12 de dezembro de 2012. Diário Oficial da República Federativa do Brasil [online], Brasília, 2012 [cited 2019 Oct 2019]. Available from: http://conselho.saude.gov.br/resolucoes/2012/Reso466.pdf
http://conselho.saude.gov.br/resolucoes/...
).

Collection of blood samples

Approximately 5 mL blood samples were harvested using clot separator gel tubes (BD Vacutainer®, USA) with disposable syringes and needles, the samples were kept at room temperature (25ºC) until the visible retraction of the clot. The samples were centrifuged at 1500 xg for 5 min, and serum aliquots were obtained and placed in microtubes, identified, and stored at -20ºC until further processing.

Serological analysis

Serum samples were evaluated by the indirect fluorescent antibody test (IFAT) to detect the presence of immunoglobulin G (IgG) anti-T. gondii antibodies according to the method proposed by Camargo (1964)Camargo ME. Improved technique of indirect immunofluorescence for serologicaldiagnosis of toxoplasmosis. Rev Inst Med Trop Sao Paulo 1964; 6: 117-118. PMid:14177810.. A cut-off point of 16 was adopted (Dubey, 2010Dubey JP. Toxoplasmosis of animals and humans. 2nd ed. Boca Raton, Flórida: CRC Press; 2010.), and known positive and negative controls were included in all reactions. T. gondii tachyzoites from strain ME49 were used as antigens in slide preparation.

The sera were diluted in phosphate buffered solution (PBS, pH 7.2) at room temperature and were placed in slide wells and incubated at 37°C for 30 min in a moist chamber. The slides were washed three times for 10 min in PBS, followed by incubation (37ºC for 30 min in a moist chamber) with IgG monoclonal anti-human conjugated to fluorescein isothiocyanate (Sigma Chemical®, USA), diluted 1:100 in PBS containing 0.05% Evans Blue (Sigma Chemical®, USA). The slides were washed again, dried in an oven, and covered with buffered glycerol and coverslips. Finally, the slides were examined using an epifluorescence microscope (Axio Vert.A1 Zeiss, 40× objective) by double blind reading by two independent and previously trained individuals. If the results differed, a third individual performed a final reading.

Descriptive statistical analysis was used to calculate the absolute and relative frequencies of the results obtained in the serology.

Analysis of risk factors

Pre-structured questionnaires were applied to assess the risk factors associated with T. gondii infection comprising objective questions that addressed demographic information (age, address, and schooling) and the hygienic sanitary habits and dietary habits of individuals associated with the epidemiology of toxoplasmosis. The questionnaires were administered by staff trained for this purpose.

In order to identify the risk factors associated with T. gondii infection in humans on the island of Fernando de Noronha, a univariate analysis was initially conducted by Fisher’s exact test, adopting a confidence interval [CI] of 95%. Variables with p<0.25 were used for reassessment in logistic regression models. Calculations were performed using Epi Info 7.2.3.0 (Centers for Disease Control and Prevention (CDC), with significance set at p<0.05.

Results

The prevalence of IgG anti-T. gondii antibodies in humans living on the island of Fernando de Noronha was 50.4% (172/341, 95% CI: 45.2%–55.7%). The sample studied was mostly composed of females 56.8% (194/341) aged 21–40 years 54,6% (106/194) and had studied up to high school 47,9% (93/194).

The univariate analysis of T. gondii infection in residents of the Island of Fernando de Noronha is shown in Table 1. The analysis of risk factors revealed that individuals who consumed well water or rainwater were about 2.43-fold more likely to be infected (p=0.020) compared to those who drank bottled or tap water. Individuals who consumed game meat had 1.80-fold increased likelihood of infection by T. gondii (p=0.026).

Table 1
Univariate analysis of infection by T. gondii in individuals residing on the island of Fernando de Noronha, Pernambuco, Brazil.

Discussion

This is the first epidemiological study of T. gondii infection in humans on the island of Fernando de Noronha. The seroprevalence of antibodies found in human on this island (50.4%) differs from the prevalence rates found in other insular environments in different regions of the world: Islands of Jeju (ELISA: 13.2%) (Hong et al., 2011Hong SJ, Chong CK, Lee K, Kim TS, Hong YP, Ahn HJ, et al. Maintained seroprevalence of toxoplasmosis among the residents of Jeju Island, Korea. Korean J Parasitol 2011; 49(3): 309-311. http://dx.doi.org/10.3347/kjp.2011.49.3.309. PMid:22072835.
http://dx.doi.org/10.3347/kjp.2011.49.3....
) and Gangwha-gun (ELISA: 25.8%) (Yang et al., 2012Yang Z, Cho PY, Ahn SK, Ahn HJ, Kim TS, Chong CK, et al. A surge in the seroprevalence of toxoplasmosis among the residents of islands in Gangwha-Gun, Incheon, Korea. Korean J Parasitol 2012; 50(3): 191-197. http://dx.doi.org/10.3347/kjp.2012.50.3.191. PMid:22949745.
http://dx.doi.org/10.3347/kjp.2012.50.3....
), both in South Korea, Island of Cebu, in the Philippines (Latex Agglutination Test - LAT: 26.4%) (Ybañez et al., 2019Ybañez RHD, Busmeon CGR, Viernes ARG, Langbid JZ, Nuevarez JP, Ybañez AP, et al. Endemicity of Toxoplasma infection and its associated risk factors in Cebu, Philippines. PLoS One 2019; 14(6): e0217989. http://dx.doi.org/10.1371/journal.pone.0217989. PMid:31188858.
http://dx.doi.org/10.1371/journal.pone.0...
) Island of Sri Lanka (ELISA: 29.9%) (Iddawela et al., 2017Iddawela D, Vithana SMP, Ratnayake C. Seroprevalence of toxoplasmosis and risk factors of Toxoplasma gondii infection among pregnant women in Sri Lanka: A cross sectional study. BMC Public Health 2017; 17(1): 930. http://dx.doi.org/10.1186/s12889-017-4941-0. PMid:29202747.
http://dx.doi.org/10.1186/s12889-017-494...
), Island of Pulau Pangkor, Malaysia (ELISA: 59.7%) (Ahmad et al., 2014Ahmad AF, Ngui R, Muhammad Aidil R, Lim YA, Rohela M. Current status of parasitic infections among Pangkor Island community in Peninsular Malaysia. Trop Biomed 2014; 31(4): 836-843. PMid:25776610.), Island of São Tomé and Príncipe, in West Africa (LAT: 63.1%) (Fan et al., 2012Fan CK, Lee LW, Liao CW, Huang YC, Lee YL, Chang YT, et al. Toxoplasma gondii infection: relationship between seroprevalence and risk factors among primary schoolchildren in the capital areas of Democratic Republic of São Tomé and Príncipe, West Africa. Parasit Vectors 2012; 5(1): 141. http://dx.doi.org/10.1186/1756-3305-5-141. PMid:22794195.
http://dx.doi.org/10.1186/1756-3305-5-14...
), Island of Granada (ELISA: 57%) (Asthana et al., 2006Asthana SP, Macpherson CNL, Weiss SH, Stephens R, Denny TN, Sharma RN, et al. Seroprevalence of Toxoplasma gondii in Pregnant Women and Cats in Grenada, West Indies. J Parasitol 2006; 92(3): 644-645. http://dx.doi.org/10.1645/GE-762R.1. PMid:16884013.
http://dx.doi.org/10.1645/GE-762R.1...
), and 10 island countries (Modified Agglutination Test - MAT: 39.8%) (Dubey et al., 2016Dubey JP, Verma SK, Villena I, Aubert D, Geers R, Su C, et al. Toxoplasmosis in the Caribbean islands: literature review, seroprevalence in pregnant women in ten countries, isolation of viable Toxoplasma gondii from dogs from St. Kitts, West Indies with report of new T. gondii genetic types. Parasitol Res 2016; 115(4): 1627-1634. http://dx.doi.org/10.1007/s00436-015-4900-6. PMid:26762861.
http://dx.doi.org/10.1007/s00436-015-490...
), located in the Caribbean, San Carlos Island, Venezuela (Indirect Haemagglutination Assay- IHA, 49.8%) (Chacín-Bonilla et al., 2003Chacín-Bonilla L, Sánchez-Chávez Y, Estévez J, Larreal Y, Molero E. Prevalence of human toxoplasmosis in San Carlos island, Venezuela. INCI 2003; 28(8): 457-462.).

Importantly, due to the wide dissemination of T. gondii, the seroprevalence in humans varies significantly across different regions of the world whether continental or insular. In Brazil, the prevalence of infection by this coccidium in humans is particularly high, and can reach more than 90% in some regions (Flegr et al., 2014Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis – A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries. PLoS One 2014; 9(3): e90203. http://dx.doi.org/10.1371/journal.pone.0090203. PMid:24662942.
http://dx.doi.org/10.1371/journal.pone.0...
). In addition to the environmental characteristics, cultural and biological factors also influence rates of T. gondii infection, and the serological test chosen is influenced by its sensitivity and specificity (Dubey et al., 2010Dubey JP, Rajendran C, Costa DGC, Ferreira LR, Kwok OCH, Qu D, et al. New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. J Parasitol 2010; 96(4): 709-712. http://dx.doi.org/10.1645/GE-2425.1. PMid:20486738.
http://dx.doi.org/10.1645/GE-2425.1...
; Morais et al., 2016Morais RAPB, Freire ABC, Barbosa DRL, Silva LCT, Pinheiro AF, Costa SS, et al. Surto de toxoplasmose aguda no Município de Ponta de Pedras, Arquipélago do Marajó, Estado do Pará, Brasil : características clínicas, laboratoriais e epidemiológicas. Rev Pan-Amaz Saude 2016; 55(91): 143-152. http://dx.doi.org/10.5123/S2176-62232016000500016.
http://dx.doi.org/10.5123/S2176-62232016...
). In an attempt to understand the reasons for the variations in the prevalence even in geographically close areas, it is important to investigate the risk factors associated with this infection.

The analysis of risk factors identified the consumption of well water or rainwater (OR=2.43) and consumption of game meat (OR=1.80) as being associated with increased likelihood of T. gondii infection.

The storage conditions of well water or rainwater are usually precarious and may be accessible to animals, for example cats that are able shed T. gondii oocysts into the environment. Taking into account the high density of cats on the island of Fernando de Noronha, the large number of oocysts eliminated in the feces of cats can be disseminated to storage tanks by rainwater and can even contaminate surface water and thereby serve as an important source of infection in the population, particularly when water intended for consumption is not filtered or boiled (Flegr et al., 2014Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis – A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries. PLoS One 2014; 9(3): e90203. http://dx.doi.org/10.1371/journal.pone.0090203. PMid:24662942.
http://dx.doi.org/10.1371/journal.pone.0...
; Dias et al., 2017Dias RA, Abrahão CR, Micheletti T, Mangini PR, de Oliveira Gasparotto VP, de Jesus Pena HF, et al. Prospects for domestic and feral cat management on an inhabited tropical island. Biol Invasions 2017; 19(8): 2339-2353. http://dx.doi.org/10.1007/s10530-017-1446-9.
http://dx.doi.org/10.1007/s10530-017-144...
; Robert-Gangneux & Dardé, 2012Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012; 25(2): 264-296. http://dx.doi.org/10.1128/CMR.05013-11. PMid:22491772.
http://dx.doi.org/10.1128/CMR.05013-11...
). This finding can be related to data from the Island of San Carlos in Venezuela, which raised the problem of islet infection from water contaminated by oocysts due to the close proximity of the cats to their homes, and consequently the water source of their inhabitants (Chacín-Bonilla et al., 2003Chacín-Bonilla L, Sánchez-Chávez Y, Estévez J, Larreal Y, Molero E. Prevalence of human toxoplasmosis in San Carlos island, Venezuela. INCI 2003; 28(8): 457-462.). Oocysts are resistant forms of the parasite and can remain viable for up to 54 months in cold water (Dubey, 1998Dubey JP. Toxoplasma gondii oocyst survival under defined temperatures. J Parasitol 1998; 84(4): 862-865. http://dx.doi.org/10.2307/3284606. PMid:9714227.
http://dx.doi.org/10.2307/3284606...
). In Brazil, outbreaks of toxoplasmosis and serological surveys have demonstrated the importance of untreated, filtered or boiled water as the main source of infection in humans, as noted in major outbreaks in Rio de Janeiro (Bahia-Oliveira et al., 2003Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CCF, Oréfice F, Addiss DG. Highly endemic, waterborne toxoplasmosis in North Rio de Janeiro State, Brazil. Emerg Infect Dis 2003; 9(1): 55-62. http://dx.doi.org/10.3201/eid0901.020160. PMid:12533282.
http://dx.doi.org/10.3201/eid0901.020160...
), Paraná (De Moura et al., 2006De Moura L, Bahia-Oliveira LMG, Wada MY, Jones JL, Tuboi SH, Carmo EH, et al. Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 2006; 12(2): 326-329. http://dx.doi.org/10.3201/eid1202.041115. PMid:16494765.
http://dx.doi.org/10.3201/eid1202.041115...
), Pará (Carmo et al., 2010Carmo EL, Póvoa MM, Monteiro NS, Marinho RR, Nascimento JM, Freitas SN, et al. Outbreak of human toxoplasmosis in the District of Monte Dourado, Municipality of Almeirim, Pará State, Brazil. Rev Pan-Amaz Saúde 2010; 1(1): 61-66. http://dx.doi.org/10.5123/S2176-62232010000100009.
http://dx.doi.org/10.5123/S2176-62232010...
) and Rio Grande do Sul (Rio Grande do Sul, 2018Rio Grande do Sul. Governo do Estado. Centro Estadual de Vigilância em Saúde. Alerta epidemiológico. Investigação de surto de toxoplasmose em Santa Maria-RS [online]. Porto Alegre: Secreatria da Saúde; 2018. Boletim de Investigação de Surto da Toxoplasmose em Santa Maria/RS [cited 2019 Oct 19]. Available from: https://saude.rs.gov.br/upload/arquivos/carga20180752/25125245-09144313-09-05-18-alerta-toxoplamose.pdf
https://saude.rs.gov.br/upload/arquivos/...
).

Game hunting for subsistence is a common activity in island environments as a way to meet the protein needs of the population (Yang et al., 2012Yang Z, Cho PY, Ahn SK, Ahn HJ, Kim TS, Chong CK, et al. A surge in the seroprevalence of toxoplasmosis among the residents of islands in Gangwha-Gun, Incheon, Korea. Korean J Parasitol 2012; 50(3): 191-197. http://dx.doi.org/10.3347/kjp.2012.50.3.191. PMid:22949745.
http://dx.doi.org/10.3347/kjp.2012.50.3....
). Hunting and consumption of animals such as the rock cavy (Kerodon rupestres) and the tegu lizard (Salvator merianae) is common among the residents of the Island of Fernando de Noronha. A study carried out on the Island of Fernando de Noronha reported 58.3% positivity for anti-T. gondii antibodies in rock cavies (Lima et al., 2019Lima DCV, Melo RPB, Almeida JC, Magalhães FJM, Ribeiro-Andrade M, Pedrosa CM, et al. Toxoplasma gondii in invasive animals on the Island of Fernando de Noronha in Brazil: molecular characterization and mouse virulence studies of new genotypes. Comp Immunol Microbiol Infect Dis 2019; 67: 101347. http://dx.doi.org/10.1016/j.cimid.2019.101347. PMid:31546127.
http://dx.doi.org/10.1016/j.cimid.2019.1...
). The high prevalence of antibodies in rock cavies indicates that the consumption of this animal could be a potential source of T. gondii infection among the inhabitants of the island. Previous studies conducted on the island of Fernando de Noronha showed high T. gondii seropositivity in livestock (Costa et al., 2012Costa DGC, Marvulo MFV, Silva JSA, Santana SC, Magalhães FJR, Filho CDFL, et al. Seroprevalence of Toxoplasma gondii in domestic and wild animals from the Fernando de Noronha, Brazil. J Parasitol 2012; 98(3): 679-680. http://dx.doi.org/10.1645/GE-2910.1. PMid:22150091.
http://dx.doi.org/10.1645/GE-2910.1...
; Magalhães et al., 2016aMagalhães FJ, da Silva JG, Ribeiro-Andrade M, Pinheiro JW, Aparecido Mota R. High prevalence of toxoplasmosis in free-range chicken of the Fernando de Noronha Archipelago, Brazil. Acta Trop 2016a; 159: 58-61. http://dx.doi.org/10.1016/j.actatropica.2016.03.034. PMid:27032879.
http://dx.doi.org/10.1016/j.actatropica....
,bMagalhães FJR, Ribeiro-Andrade M, Alcântara AM, Pinheiro JW Jr, Sena MJ, Porto WJN, et al. Risk factors for Toxoplasma gondii infection in sheep and cattle from Fernando de Noronha Island, Brazil. Rev Bras Parasitol Vet 2016b; 25(4): 511-515. http://dx.doi.org/10.1590/s1984-29612016051. PMid:27580399.
http://dx.doi.org/10.1590/s1984-29612016...
; 2017Magalhães FJR, Ribeiro-Andrade M, Souza FM, Lima Filho CDF, Biondo AW, Vidotto O, et al. Seroprevalence and spatial distribution of Toxoplasma gondii infection in cats, dogs, pigs and equines of the Fernando de Noronha Island, Brazil. Parasitol Int 2017; 66(2): 43-46. http://dx.doi.org/10.1016/j.parint.2016.11.014. PMid:27894907.
http://dx.doi.org/10.1016/j.parint.2016....
). Although it does not represent the main source of meat in the island, these animals are a part of the diet and when infected by T. gondii can contribute to its transmission. Despite the fact that the ingestion of raw and/or rare meat was not identified as a significant risk factor for T. gondii infection in our study, it is important to highlight that there were higher frequencies of infection between individuals who consumed rare meat (53.1%) or those who the meat during preparation/cooking (55.2%).

With respect to gender, the study sample comprised mainly women (56.8%), the majority being of reproductive age, and 49.5% presenting negative serology for T. gondii. This suggests that there is a significant number of women susceptible to primary infection, which is worse if it occurs during the gestational period, as transplacental transmission can occur, which may pose a risk to the fetus (Walcher et al., 2016Walcher DL, Comparsi B, Pedroso D. Gestational toxoplasmosis: a review. Rev Bras Anál Clín 2016; 49(4): 323-327. http://dx.doi.org/10.21877/2448-3877.201600273.
http://dx.doi.org/10.21877/2448-3877.201...
).

The univariate analysis showed a significant association between increasing age and seropositivity for T. gondii. This result corroborates with other studies, which found that increasing positivity is directly related to age, probably because older individuals have a greater chance of contact with the agent than do younger individuals (Ybañez et al., 2019Ybañez RHD, Busmeon CGR, Viernes ARG, Langbid JZ, Nuevarez JP, Ybañez AP, et al. Endemicity of Toxoplasma infection and its associated risk factors in Cebu, Philippines. PLoS One 2019; 14(6): e0217989. http://dx.doi.org/10.1371/journal.pone.0217989. PMid:31188858.
http://dx.doi.org/10.1371/journal.pone.0...
; Chacín-Bonilla et al., 2003Chacín-Bonilla L, Sánchez-Chávez Y, Estévez J, Larreal Y, Molero E. Prevalence of human toxoplasmosis in San Carlos island, Venezuela. INCI 2003; 28(8): 457-462.; Carmo et al., 2010Carmo EL, Póvoa MM, Monteiro NS, Marinho RR, Nascimento JM, Freitas SN, et al. Outbreak of human toxoplasmosis in the District of Monte Dourado, Municipality of Almeirim, Pará State, Brazil. Rev Pan-Amaz Saúde 2010; 1(1): 61-66. http://dx.doi.org/10.5123/S2176-62232010000100009.
http://dx.doi.org/10.5123/S2176-62232010...
; Gebremedhin et al., 2013Gebremedhin EZ, Abebe AH, Tessema TS, Tullu KD, Medhin G, Vitale M, et al. Seroepidemiology of Toxoplasma gondii infection in women of child-bearing age in central Ethiopia. BMC Infect Dis 2013; 13(1): 101. http://dx.doi.org/10.1186/1471-2334-13-101. PMid:23442946.
http://dx.doi.org/10.1186/1471-2334-13-1...
; Aloise et al., 2018Aloise DA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GAS, Silva RB, et al. Seroprevalence and risk factors for human toxoplasmosis in northeastern Brazil. J Trop Pathol 2018; 46(4): 307-320. http://dx.doi.org/10.5216/rpt.v46i4.51013.
http://dx.doi.org/10.5216/rpt.v46i4.5101...
), but the rate of infection with age can also vary according to the environment and socioeconomic level (Bahia-Oliveira et al., 2003Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CCF, Oréfice F, Addiss DG. Highly endemic, waterborne toxoplasmosis in North Rio de Janeiro State, Brazil. Emerg Infect Dis 2003; 9(1): 55-62. http://dx.doi.org/10.3201/eid0901.020160. PMid:12533282.
http://dx.doi.org/10.3201/eid0901.020160...
; Mareze et al., 2019Mareze M, Benitez AN, Brandão APD, Pinto-Ferreira F, Miura AC, Martins FDC, et al. Socioeconomic vulnerability associated to Toxoplasma gondii exposure in southern Brazil. PLoS One 2019; 14(2): e0212375. http://dx.doi.org/10.1371/journal.pone.0212375. PMid:30763391.
http://dx.doi.org/10.1371/journal.pone.0...
).

With respect to schooling, a higher prevalence of infection was observed in individuals with elementary schooling (68.5%). Previous studies have reported that the higher the schooling, the higher the information on preventive care for toxoplasmosis that reduces the risk of infection (Mareze et al., 2019Mareze M, Benitez AN, Brandão APD, Pinto-Ferreira F, Miura AC, Martins FDC, et al. Socioeconomic vulnerability associated to Toxoplasma gondii exposure in southern Brazil. PLoS One 2019; 14(2): e0212375. http://dx.doi.org/10.1371/journal.pone.0212375. PMid:30763391.
http://dx.doi.org/10.1371/journal.pone.0...
; Aloise et al., 2018Aloise DA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GAS, Silva RB, et al. Seroprevalence and risk factors for human toxoplasmosis in northeastern Brazil. J Trop Pathol 2018; 46(4): 307-320. http://dx.doi.org/10.5216/rpt.v46i4.51013.
http://dx.doi.org/10.5216/rpt.v46i4.5101...
; Inagaki et al., 2014Inagaki AD, Cardoso NP, Lopes RJ, Alves JA, Mesquita JR, de Araújo KC, et al. Análise espacial da prevalência de toxoplasmose em gestantes de Aracaju, Sergipe, Brasil. Rev Bras Ginecol Obstet 2014; 36(12): 535-540. http://dx.doi.org/10.1590/So100-720320140005086. PMid:25466811.
http://dx.doi.org/10.1590/So100-72032014...
; Avelar et al., 2017Avelar MV, Martinez VO, Moura DL, Barros IA, Primo AADS, Duarte AO, et al. Association between seroprevalence of IgG anti-Toxoplasma gondii and risk factors for infection among pregnant women in climério de oliveira maternity, Salvador, Bahia, Brazil. Rev Inst Med Trop São Paulo 2017; 59(0): 1-5. http://dx.doi.org/10.1590/s1678-9946201759090. PMid:29267598.
http://dx.doi.org/10.1590/s1678-99462017...
, 2018Avelar JB, Silva MGD, Rezende HHA, Storchilo HR, Amaral WND, Xavier IR, et al. Epidemiological factors associated with Toxoplasma gondii infection in postpartum women treated in the public healthcare system of Goiânia, state of Goiás, Brazil. Rev Soc Bras Med Trop 2018; 51(1): 57-62. http://dx.doi.org/10.1590/0037-8682-0112-2017. PMid:29513843.
http://dx.doi.org/10.1590/0037-8682-0112...
), which reiterates the importance of education and health promotion to prevention of this disease.

It is important to note that prevalence studies are limited in establishing a true cause and effect relationship, since in these types of studies, there is generally no evidence of a temporal relationship because exposure and outcome are assessed simultaneously, without longitudinal data.

Conclusion

This is the first study to provide epidemiological information of T. gondii infection among the residents of the Island of Fernando de Noronha, revealing a considerable antibody seroprevalence in this population. The risk factors identified in this study suggest that the population should be advised not to consume wild animals from the island, and as well as promote the use of quality water. Appropriate treatment methods for well water or rainwater, for example, filtration or boil, should be a priority for health authorities.

Acknowledgements

The author would like to thank the Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial suport (APQ-0531-5.05/14).

  • § Equal contributions.
  • How to cite: Carvalho MC, Ribeiro-Andrade M, Melo RPB, Guedes DM, Pinheiro Junior JW, Cavalcanti EFTSF, et al. Cross-sectional survey for Toxoplasma gondii infection in humans in Fernando de Noronha island, Brazil. Braz J Vet Parasitol 2021; 30(3): e005121. https://doi.org/10.1590/S1984-29612021062

References

  • Ahmad AF, Ngui R, Muhammad Aidil R, Lim YA, Rohela M. Current status of parasitic infections among Pangkor Island community in Peninsular Malaysia. Trop Biomed 2014; 31(4): 836-843. PMid:25776610.
  • Aloise DA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GAS, Silva RB, et al. Seroprevalence and risk factors for human toxoplasmosis in northeastern Brazil. J Trop Pathol 2018; 46(4): 307-320. http://dx.doi.org/10.5216/rpt.v46i4.51013
    » http://dx.doi.org/10.5216/rpt.v46i4.51013
  • Asthana SP, Macpherson CNL, Weiss SH, Stephens R, Denny TN, Sharma RN, et al. Seroprevalence of Toxoplasma gondii in Pregnant Women and Cats in Grenada, West Indies. J Parasitol 2006; 92(3): 644-645. http://dx.doi.org/10.1645/GE-762R.1 PMid:16884013.
    » http://dx.doi.org/10.1645/GE-762R.1
  • Avelar JB, Silva MGD, Rezende HHA, Storchilo HR, Amaral WND, Xavier IR, et al. Epidemiological factors associated with Toxoplasma gondii infection in postpartum women treated in the public healthcare system of Goiânia, state of Goiás, Brazil. Rev Soc Bras Med Trop 2018; 51(1): 57-62. http://dx.doi.org/10.1590/0037-8682-0112-2017 PMid:29513843.
    » http://dx.doi.org/10.1590/0037-8682-0112-2017
  • Avelar MV, Martinez VO, Moura DL, Barros IA, Primo AADS, Duarte AO, et al. Association between seroprevalence of IgG anti-Toxoplasma gondii and risk factors for infection among pregnant women in climério de oliveira maternity, Salvador, Bahia, Brazil. Rev Inst Med Trop São Paulo 2017; 59(0): 1-5. http://dx.doi.org/10.1590/s1678-9946201759090 PMid:29267598.
    » http://dx.doi.org/10.1590/s1678-9946201759090
  • Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CCF, Oréfice F, Addiss DG. Highly endemic, waterborne toxoplasmosis in North Rio de Janeiro State, Brazil. Emerg Infect Dis 2003; 9(1): 55-62. http://dx.doi.org/10.3201/eid0901.020160 PMid:12533282.
    » http://dx.doi.org/10.3201/eid0901.020160
  • Brasil. Ministério da Saúde – MS. Resolução CNS nº 466, de 12 de dezembro de 2012. Diário Oficial da República Federativa do Brasil [online], Brasília, 2012 [cited 2019 Oct 2019]. Available from: http://conselho.saude.gov.br/resolucoes/2012/Reso466.pdf
    » http://conselho.saude.gov.br/resolucoes/2012/Reso466.pdf
  • Camargo ME. Improved technique of indirect immunofluorescence for serologicaldiagnosis of toxoplasmosis. Rev Inst Med Trop Sao Paulo 1964; 6: 117-118. PMid:14177810.
  • Carmo EL, Póvoa MM, Monteiro NS, Marinho RR, Nascimento JM, Freitas SN, et al. Outbreak of human toxoplasmosis in the District of Monte Dourado, Municipality of Almeirim, Pará State, Brazil. Rev Pan-Amaz Saúde 2010; 1(1): 61-66. http://dx.doi.org/10.5123/S2176-62232010000100009
    » http://dx.doi.org/10.5123/S2176-62232010000100009
  • Chacín-Bonilla L, Sánchez-Chávez Y, Estévez J, Larreal Y, Molero E. Prevalence of human toxoplasmosis in San Carlos island, Venezuela. INCI 2003; 28(8): 457-462.
  • Costa DGC, Marvulo MFV, Silva JSA, Santana SC, Magalhães FJR, Filho CDFL, et al. Seroprevalence of Toxoplasma gondii in domestic and wild animals from the Fernando de Noronha, Brazil. J Parasitol 2012; 98(3): 679-680. http://dx.doi.org/10.1645/GE-2910.1 PMid:22150091.
    » http://dx.doi.org/10.1645/GE-2910.1
  • De Moura L, Bahia-Oliveira LMG, Wada MY, Jones JL, Tuboi SH, Carmo EH, et al. Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 2006; 12(2): 326-329. http://dx.doi.org/10.3201/eid1202.041115 PMid:16494765.
    » http://dx.doi.org/10.3201/eid1202.041115
  • Dias RA, Abrahão CR, Micheletti T, Mangini PR, de Oliveira Gasparotto VP, de Jesus Pena HF, et al. Prospects for domestic and feral cat management on an inhabited tropical island. Biol Invasions 2017; 19(8): 2339-2353. http://dx.doi.org/10.1007/s10530-017-1446-9
    » http://dx.doi.org/10.1007/s10530-017-1446-9
  • Dubey JP, Lago EG, Gennari SM, Su C, Jones JL. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology 2012; 139(11): 1375-1424. http://dx.doi.org/10.1017/S0031182012000765 PMid:22776427.
    » http://dx.doi.org/10.1017/S0031182012000765
  • Dubey JP, Rajendran C, Costa DGC, Ferreira LR, Kwok OCH, Qu D, et al. New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. J Parasitol 2010; 96(4): 709-712. http://dx.doi.org/10.1645/GE-2425.1 PMid:20486738.
    » http://dx.doi.org/10.1645/GE-2425.1
  • Dubey JP, Verma SK, Villena I, Aubert D, Geers R, Su C, et al. Toxoplasmosis in the Caribbean islands: literature review, seroprevalence in pregnant women in ten countries, isolation of viable Toxoplasma gondii from dogs from St. Kitts, West Indies with report of new T. gondii genetic types. Parasitol Res 2016; 115(4): 1627-1634. http://dx.doi.org/10.1007/s00436-015-4900-6 PMid:26762861.
    » http://dx.doi.org/10.1007/s00436-015-4900-6
  • Dubey JP. Toxoplasma gondii oocyst survival under defined temperatures. J Parasitol 1998; 84(4): 862-865. http://dx.doi.org/10.2307/3284606 PMid:9714227.
    » http://dx.doi.org/10.2307/3284606
  • Dubey JP. Toxoplasmosis of animals and humans 2nd ed. Boca Raton, Flórida: CRC Press; 2010.
  • Fan CK, Lee LW, Liao CW, Huang YC, Lee YL, Chang YT, et al. Toxoplasma gondii infection: relationship between seroprevalence and risk factors among primary schoolchildren in the capital areas of Democratic Republic of São Tomé and Príncipe, West Africa. Parasit Vectors 2012; 5(1): 141. http://dx.doi.org/10.1186/1756-3305-5-141 PMid:22794195.
    » http://dx.doi.org/10.1186/1756-3305-5-141
  • Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis – A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries. PLoS One 2014; 9(3): e90203. http://dx.doi.org/10.1371/journal.pone.0090203 PMid:24662942.
    » http://dx.doi.org/10.1371/journal.pone.0090203
  • Gebremedhin EZ, Abebe AH, Tessema TS, Tullu KD, Medhin G, Vitale M, et al. Seroepidemiology of Toxoplasma gondii infection in women of child-bearing age in central Ethiopia. BMC Infect Dis 2013; 13(1): 101. http://dx.doi.org/10.1186/1471-2334-13-101 PMid:23442946.
    » http://dx.doi.org/10.1186/1471-2334-13-101
  • Hong SJ, Chong CK, Lee K, Kim TS, Hong YP, Ahn HJ, et al. Maintained seroprevalence of toxoplasmosis among the residents of Jeju Island, Korea. Korean J Parasitol 2011; 49(3): 309-311. http://dx.doi.org/10.3347/kjp.2011.49.3.309 PMid:22072835.
    » http://dx.doi.org/10.3347/kjp.2011.49.3.309
  • Iddawela D, Vithana SMP, Ratnayake C. Seroprevalence of toxoplasmosis and risk factors of Toxoplasma gondii infection among pregnant women in Sri Lanka: A cross sectional study. BMC Public Health 2017; 17(1): 930. http://dx.doi.org/10.1186/s12889-017-4941-0 PMid:29202747.
    » http://dx.doi.org/10.1186/s12889-017-4941-0
  • Inagaki AD, Cardoso NP, Lopes RJ, Alves JA, Mesquita JR, de Araújo KC, et al. Análise espacial da prevalência de toxoplasmose em gestantes de Aracaju, Sergipe, Brasil. Rev Bras Ginecol Obstet 2014; 36(12): 535-540. http://dx.doi.org/10.1590/So100-720320140005086 PMid:25466811.
    » http://dx.doi.org/10.1590/So100-720320140005086
  • Instituto Brasileiro de Geografia e Estatística – IBGE. Censo demográfico. Estimativas da população residente [online]. Rio de Janeiro: IBGE; 2019 [cited 2019 July 20]. Available from: http://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama
    » http://cidades.ibge.gov.br/brasil/pe/fernando-de-noronha/panorama
  • Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA. Plano de Manejo do Parque Nacional Marinho de Fernando de Noronha Brasília: IBAMA; 1990, 253 p.
  • Lima DCV, Melo RPB, Almeida JC, Magalhães FJM, Ribeiro-Andrade M, Pedrosa CM, et al. Toxoplasma gondii in invasive animals on the Island of Fernando de Noronha in Brazil: molecular characterization and mouse virulence studies of new genotypes. Comp Immunol Microbiol Infect Dis 2019; 67: 101347. http://dx.doi.org/10.1016/j.cimid.2019.101347 PMid:31546127.
    » http://dx.doi.org/10.1016/j.cimid.2019.101347
  • Magalhães FJ, da Silva JG, Ribeiro-Andrade M, Pinheiro JW, Aparecido Mota R. High prevalence of toxoplasmosis in free-range chicken of the Fernando de Noronha Archipelago, Brazil. Acta Trop 2016a; 159: 58-61. http://dx.doi.org/10.1016/j.actatropica.2016.03.034 PMid:27032879.
    » http://dx.doi.org/10.1016/j.actatropica.2016.03.034
  • Magalhães FJR, Ribeiro-Andrade M, Alcântara AM, Pinheiro JW Jr, Sena MJ, Porto WJN, et al. Risk factors for Toxoplasma gondii infection in sheep and cattle from Fernando de Noronha Island, Brazil. Rev Bras Parasitol Vet 2016b; 25(4): 511-515. http://dx.doi.org/10.1590/s1984-29612016051 PMid:27580399.
    » http://dx.doi.org/10.1590/s1984-29612016051
  • Magalhães FJR, Ribeiro-Andrade M, Souza FM, Lima Filho CDF, Biondo AW, Vidotto O, et al. Seroprevalence and spatial distribution of Toxoplasma gondii infection in cats, dogs, pigs and equines of the Fernando de Noronha Island, Brazil. Parasitol Int 2017; 66(2): 43-46. http://dx.doi.org/10.1016/j.parint.2016.11.014 PMid:27894907.
    » http://dx.doi.org/10.1016/j.parint.2016.11.014
  • Mareze M, Benitez AN, Brandão APD, Pinto-Ferreira F, Miura AC, Martins FDC, et al. Socioeconomic vulnerability associated to Toxoplasma gondii exposure in southern Brazil. PLoS One 2019; 14(2): e0212375. http://dx.doi.org/10.1371/journal.pone.0212375 PMid:30763391.
    » http://dx.doi.org/10.1371/journal.pone.0212375
  • Melo RPB, Almeida JC, Lima DCV, Pedrosa CM, Magalhães FJR, Alcântara AM, et al. Atypical Toxoplasma gondii genotype in feral cats from the Fernando de Noronha Island, northeastern Brazil. Vet Parasitol 2016; 224: 92-95. http://dx.doi.org/10.1016/j.vetpar.2016.05.023 PMid:27270396.
    » http://dx.doi.org/10.1016/j.vetpar.2016.05.023
  • Molan A, Nosaka K, Hunter M, Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop Biomed 2019; 36(4): 898-925. PMid:33597463.
  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363(9425): 1965-1976. http://dx.doi.org/10.1016/S0140-6736(04)16412-X PMid:15194258.
    » http://dx.doi.org/10.1016/S0140-6736(04)16412-X
  • Morais RAPB, Freire ABC, Barbosa DRL, Silva LCT, Pinheiro AF, Costa SS, et al. Surto de toxoplasmose aguda no Município de Ponta de Pedras, Arquipélago do Marajó, Estado do Pará, Brasil : características clínicas, laboratoriais e epidemiológicas. Rev Pan-Amaz Saude 2016; 55(91): 143-152. http://dx.doi.org/10.5123/S2176-62232016000500016
    » http://dx.doi.org/10.5123/S2176-62232016000500016
  • Rio Grande do Sul. Governo do Estado. Centro Estadual de Vigilância em Saúde. Alerta epidemiológico. Investigação de surto de toxoplasmose em Santa Maria-RS [online]. Porto Alegre: Secreatria da Saúde; 2018. Boletim de Investigação de Surto da Toxoplasmose em Santa Maria/RS [cited 2019 Oct 19]. Available from: https://saude.rs.gov.br/upload/arquivos/carga20180752/25125245-09144313-09-05-18-alerta-toxoplamose.pdf
    » https://saude.rs.gov.br/upload/arquivos/carga20180752/25125245-09144313-09-05-18-alerta-toxoplamose.pdf
  • Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012; 25(2): 264-296. http://dx.doi.org/10.1128/CMR.05013-11 PMid:22491772.
    » http://dx.doi.org/10.1128/CMR.05013-11
  • Silva JCR, Ferreira F, Dias RA, Ajzenberg D, Marvulo MFV, Magalhães FJR, et al. Cat-rodent Toxoplasma gondii Type II-variant circulation and limited genetic diversity on the Island of Fernando de Noronha, Brazil. Parasit Vectors 2017; 10(1): 220. http://dx.doi.org/10.1186/s13071-017-2150-4 PMid:28468666.
    » http://dx.doi.org/10.1186/s13071-017-2150-4
  • Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30(12–13): 1217-1258. http://dx.doi.org/10.1016/S0020-7519(00)00124-7 PMid:11113252.
    » http://dx.doi.org/10.1016/S0020-7519(00)00124-7
  • Thrusfield M. Veterinary epidemiology 3rd ed. Oxford: Blackwell Science; 2007.
  • Walcher DL, Comparsi B, Pedroso D. Gestational toxoplasmosis: a review. Rev Bras Anál Clín 2016; 49(4): 323-327. http://dx.doi.org/10.21877/2448-3877.201600273
    » http://dx.doi.org/10.21877/2448-3877.201600273
  • Yang Z, Cho PY, Ahn SK, Ahn HJ, Kim TS, Chong CK, et al. A surge in the seroprevalence of toxoplasmosis among the residents of islands in Gangwha-Gun, Incheon, Korea. Korean J Parasitol 2012; 50(3): 191-197. http://dx.doi.org/10.3347/kjp.2012.50.3.191 PMid:22949745.
    » http://dx.doi.org/10.3347/kjp.2012.50.3.191
  • Ybañez RHD, Busmeon CGR, Viernes ARG, Langbid JZ, Nuevarez JP, Ybañez AP, et al. Endemicity of Toxoplasma infection and its associated risk factors in Cebu, Philippines. PLoS One 2019; 14(6): e0217989. http://dx.doi.org/10.1371/journal.pone.0217989 PMid:31188858.
    » http://dx.doi.org/10.1371/journal.pone.0217989

Publication Dates

  • Publication in this collection
    09 July 2021
  • Date of issue
    2021

History

  • Received
    20 Mar 2021
  • Accepted
    07 June 2021
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br