Acessibilidade / Reportar erro

Community and infracommunities of metazoan parasites in Hemiodus unimaculatus (Hemiodontidae) from Jari River basin, a tributary of Amazon River (Brazil)

Comunidade e infracomunidades de parasitos metazoários em Hemiodus unimaculatus (Hemiodontidae) da bacia do Rio Jari, um tributário do Rio Amazonas (Brasil)

Abstract

Parasites are an important part of biodiversity, and knowledge of species and their relationship with their hosts helps in monitoring an ecosystem over time. The aim of this study was to investigate the fauna of metazoan parasites in Hemiodus unimaculatus from the Jari River, in the eastern Amazon region, northern Brazil. Of the fish examined, 96.7% were parasitized by one or more species, and a total of 336 parasites such as Dactylogyridae gen. sp.1, Dactylogyridae gen. sp.2, Dactylogyridae gen. sp.3, Dactylogyridae gen. sp.4, Gyrodactilydae gen. sp., Urocleidoides sp.1, Urocleidoides sp.2, Urocleidoides sp.3, metacercariae of Digenea gen. sp., Procamallanus (Spirocamallanus) inopinatus, Contracaecum sp., Neoechinorhynchus sp. and Acarina gen. sp. The parasite community showed low Brillouin diversity (0.58 ± 0.29), low evenness (0.44 ± 0.21) and low species richness (7.40 ± 3.83). There was a predominance of ectoparasites, mainly monogeneans and digeneans. The parasites showed an aggregate dispersion, except for P. (S.) inopinatus, which had a random dispersion. The size of the hosts had no effect on diversity, species richness and abundance of parasites, but other factors structured the parasite community. This is the first study on the parasite community and infracommunities in H. unimaculatus.

Keywords:
Aggregation; Amazon; freshwater fish; parasites

Resumo

O objetivo deste estudo foi investigar a fauna de parasitos metazoários em Hemiodus unimaculatus do Rio Jari, na Amazônia oriental brasileira. Dos peixes examinados, 96,7% estavam parasitados por uma ou mais espécies, e um total de 336 parasitos, como Dactylogyridae gen. sp.1, Dactylogyridae gen. sp.2, Dactylogyridae gen. sp.3, Dactylogyridae gen. sp.4, Gyrodactilydae gen. sp., Urocleidoides sp.1, Urocleidoides sp.2, Urocleidoides sp.3, metacercárias de Digenea gen. sp., Procamallanus (Spirocamallanus) inopinatus, Contracaecum sp., Neoechinorhyncus sp. e Acarina gen. sp. A comunidade de parasitos apresentou baixa diversidade de Brillouin (0,58 ± 0,29), baixa equitabilidade (0,44 ± 0,21) e baixa riqueza de espécies (7,40 ± 3,83). Houve predominância de ectoparasitos, principalmente monogeneas e digeneas. Os parasitos apresentaram dispersão agregada, exceto P. (S.) inopinatus, que teve uma dispersão aleatória. O tamanho dos hospedeiros não teve efeito sobre a diversidade, riqueza de espécies e abundância de parasitos, mas outros fatores estruturaram a comunidade de parasitos. Este é o primeiro estudo sobre a comunidade e infracomunidades de parasitos em H. unimaculatus.

Palavras-chave:
Agregação; Amazônia; peixe de água doce; parasitos

Introduction

The Amazon River system is home to the greatest aquatic diversity on the planet, as this large Neotropical basin has a considerable volume of water and unique environmental characteristics, in addition to several tributaries of various sizes throughout several countries of South America (Soares et al., 2008Soares MGM, Costa ELD, Siqueira-Souza FK, Anjos HDBD, Yamamoto KC, Freitas CEDC. Peixes de lagos do médio Rio Solimões. Manaus: Instituto I-piatam; 2008.; Val, 2019Val AL. Fishes of the Amazon: diversity and beyond. An Acad Bras Cienc 2019; 91(Suppl 3): e20190260. http://dx.doi.org/10.1590/0001-3765201920190260. PMid:31166477.
http://dx.doi.org/10.1590/0001-376520192...
). This large hydrographic basin that forms rivers, lakes, streams and floodplains of different sizes and shapes, has different environments with different types of water (white, black and clear) with various properties and with different levels of oxygen and pH (Val, 2019Val AL. Fishes of the Amazon: diversity and beyond. An Acad Bras Cienc 2019; 91(Suppl 3): e20190260. http://dx.doi.org/10.1590/0001-3765201920190260. PMid:31166477.
http://dx.doi.org/10.1590/0001-376520192...
), such as the Jari River (Abreu & Cunha, 2016Abreu CHM, Cunha AC. Qualidade da água e índice trófico em rio de ecossistema tropical sob impacto ambiental. Eng Sanit Ambient 2016; 22(1): 45-56. http://dx.doi.org/10.1590/s1413-41522016144803.
http://dx.doi.org/10.1590/s1413-41522016...
).

The Jari River has clear waters with low amounts of suspended material, oligotrophic, predominantly acidic pH, and is influenced by daily tides from the Amazon River to the stretch near the city of Laranjal do Jari (Abreu & Cunha, 2016Abreu CHM, Cunha AC. Qualidade da água e índice trófico em rio de ecossistema tropical sob impacto ambiental. Eng Sanit Ambient 2016; 22(1): 45-56. http://dx.doi.org/10.1590/s1413-41522016144803.
http://dx.doi.org/10.1590/s1413-41522016...
; EPE, 2011Empresa de Pesquisa Energética – EPE. Bacia hidrográfica do Rio Jari - PA/AP: estudo de inventário hidrelétrico. Rio de Janeiro: EPE; 2011. Relatório final: Avaliação Integrada ambiental.). It is estimated that the average flow of the Jari River in the period of greatest precipitation is around 3,500 m3/s, while in the dry period it reaches only 30 m3/s (Cunha et al., 2010Cunha ACD, Souza EBD, Cunha HFA. Rede de meteorologia e recursos hídricos do Estado do Amapá (REMETAP): Principais resultados. Tempo, clima e recursos hídricos: resultados do Projeto REMETAP no Estado do Amapá. Macapá, Amapá, Brasil: IEPA; 2010.; Abreu & Cunha, 2015Abreu CHM, Cunha AC. Qualidade da água em ecossistemas aquáticos tropicais sob impactos ambientais no Baixo Rio Jari-AP: revisão Descritiva. Biota Amazôn 2015; 5(2): 119-131. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v5n2p119-131.
http://dx.doi.org/10.18561/2179-5746/bio...
). The most prominent floodplain forests in this basin are the igapó, and the marginal vegetation is important to maintain fauna, serving as shelter, and as a food source (EPE, 2011Empresa de Pesquisa Energética – EPE. Bacia hidrográfica do Rio Jari - PA/AP: estudo de inventário hidrelétrico. Rio de Janeiro: EPE; 2011. Relatório final: Avaliação Integrada ambiental.).

Hemiodus unimaculatus (Bloch, 1794), a Characiformes of the family Hemiodontidae, is distributed in hydrographic basins of Suriname, French Guiana, Peru, and in Brazil it occurs in the basins of the Amazon, Ucayali, Japurá, Negro, Solimões-Amazonas, Madeira, Trombetas, Tapajós, Xingu, Tocantins and Oiapoque (Martins et al., 2017Martins JC, Cintra IHA, Sarpedonti V. Seletividade da rede malhadeira na captura de Hemiodus unimaculatus no baixo Rio Tocantins, Amazônia, Brasil. Bol Inst Pesca 2017; 43(2): 274-282. http://dx.doi.org/10.20950/1678-2305.2017v43n2p274.
http://dx.doi.org/10.20950/1678-2305.201...
; Queiroz et al., 2013Queiroz LJD, Torrente-Vilara G, Ohara WM, Pires THDS, Zuanon J, Doria CRDC. Peixes do Rio Madeira. Santo Antônio Energia; 2013.; Soares et al., 2008Soares MGM, Costa ELD, Siqueira-Souza FK, Anjos HDBD, Yamamoto KC, Freitas CEDC. Peixes de lagos do médio Rio Solimões. Manaus: Instituto I-piatam; 2008.; Vasconcelos & Tavares-Dias, 2016Vasconcelos HCG, Tavares-Dias M. Host-parasite interaction between crustaceans of six fish species from the Brazilian Amazon. Acta Sci Biol Sci 2016; 38(1): 113-123. http://dx.doi.org/10.4025/actascibiolsci.v38i1.29601.
http://dx.doi.org/10.4025/actascibiolsci...
). This Hemiodontidae inhabits beaches, lagoons, lakes and rivers with white, clear and black waters, being able to be captured mainly in flooded forests. It is a benthopelagic and migratory fish, with omnivorous feeding habits, feeding on detritus, periphyton, silt, filamentous algae, aquatic macrophytes, seeds, flowers, fruits, microcrustaceans and, occasionally, small invertebrates and insect larvae of Diptera, Heteroptera and Ephemeroptera (Cintra et al., 2013Cintra IHA, Rocha JC, Nakayama L, Martins JC, Silva KCA. A pesca de Hemiodus unimaculatus (Bloch, 1794) na área de influência da usina hidrelétrica de Tucuruí, Pará, Brasil. Actapesca 2013; 1(1): 1-12. http://dx.doi.org/10.2312/Actafish.2013.1.1.1-12.
http://dx.doi.org/10.2312/Actafish.2013....
; Queiroz et al., 2013Queiroz LJD, Torrente-Vilara G, Ohara WM, Pires THDS, Zuanon J, Doria CRDC. Peixes do Rio Madeira. Santo Antônio Energia; 2013.; Santos et al., 2004Santos GM, Merona B, Juras AA, Jégu M. Peixes do baixo Rio Tocantins: 20 anos depois da Usina Hidrelétrica Tucuruí. Brasília: Eletronorte; 2004.; Silva et al., 2008Silva CC, Ferreira EJG, Deus CP. Dieta de cinco espécies de Hemiodontidae (Teleostei, Characiformes) na área de influência do reservatório de Balbina, rio Uatumã, Amazonas, Brasil. Iheringia Ser Zool 2008; 98(4): 465-468. http://dx.doi.org/10.1590/S0073-47212008000400008.
http://dx.doi.org/10.1590/S0073-47212008...
; Soares et al., 2008Soares MGM, Costa ELD, Siqueira-Souza FK, Anjos HDBD, Yamamoto KC, Freitas CEDC. Peixes de lagos do médio Rio Solimões. Manaus: Instituto I-piatam; 2008., Marinho et al., 2021Marinho TEB, Prado GS, Melo S. Dieta de Auchenipterus nuchalis e Hemiodus unimaculatus no reservatório da hidrelétrica Curuá-una, Santarém-PA. Biota Amazôn 2021; 11(1): 6-10. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p6-10.
http://dx.doi.org/10.18561/2179-5746/bio...
).

Several studies have shown the importance of knowing the diversity of parasites in several wild fish species in the Amazon region (Hoshino & Tavares-Dias, 2019Hoshino EM, Tavares-Dias M. Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a Characid fish inhabiting the Brazilian Amazon. Acta Parasitol 2019; 64(3): 479-488. http://dx.doi.org/10.2478/s11686-019-00057-5. PMid:31020493.
http://dx.doi.org/10.2478/s11686-019-000...
; Neves et al., 2016Neves LR, Braga ECR, Tavares-Dias M. Diversity of parasites in Curimata incompta (Curimatidae), a host from Amazon River system in Brazil. J Parasit Dis 2016; 40(4): 1296-1300. http://dx.doi.org/10.1007/s12639-015-0674-0. PMid:27876934.
http://dx.doi.org/10.1007/s12639-015-067...
; Neves & Tavares-Dias, 2019Neves LR, Tavares-Dias M. Low levels of crustacean parasite infestation in fish species from the Matapi River in the state of Amapá, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 493-498. http://dx.doi.org/10.1590/s1984-29612019006. PMid:31188939.
http://dx.doi.org/10.1590/s1984-29612019...
; Oliveira et al., 2017Oliveira MSB, Gonçalves RA, Ferreira DO, Pinheiro DA, Neves LR, Dias MKR, et al. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Stud Neotrop Fauna Environ 2017; 52(2): 146-156. http://dx.doi.org/10.1080/01650521.2017.1312776.
http://dx.doi.org/10.1080/01650521.2017....
; Tavares-Dias et al., 2013Tavares-Dias M, Neves LR, Pinheiro D, Oliveira MS, Marinho RGB. Parasites in Curimata cyprinoides (Characiformes: Curimatidae) from eastern Amazon, Brazil. Acta Sci Biol Sci 2013; 35(4): 595-601. http://dx.doi.org/10.4025/actascibiolsci.v35i4.19649.
http://dx.doi.org/10.4025/actascibiolsci...
; Vasconcelos & Tavares-Dias, 2016Vasconcelos HCG, Tavares-Dias M. Host-parasite interaction between crustaceans of six fish species from the Brazilian Amazon. Acta Sci Biol Sci 2016; 38(1): 113-123. http://dx.doi.org/10.4025/actascibiolsci.v38i1.29601.
http://dx.doi.org/10.4025/actascibiolsci...
). Parasites are part of biodiversity and have been little studied (Scholz & Choudhury, 2014Scholz T, Choudhury A. Parasites of freshwater fishes in North America: why so neglected? J Parasitol 2014; 100(1): 26-45. http://dx.doi.org/10.1645/13-394.1. PMid:24147814.
http://dx.doi.org/10.1645/13-394.1...
; Pérez-Ponce de León & Aguilar-Aguilar, 2019Pérez-Ponce de León G, Aguilar-Aguilar R. Helminth community structure of some freshwater fishes of the cuatro ciénegas basin: patterns and processes. In: Álvarez F, Ojeda M, editors. Animal diversity and biogeography of the Cuatro Ciénegas Basin. Cham: Springer International Publishing; 2019. p. 11-27. http://dx.doi.org/10.1007/978-3-030-11262-2_2.
http://dx.doi.org/10.1007/978-3-030-1126...
). These small organisms play an important role in the biota, as they are able to control the population growth of their hosts and thus, keep the ecosystem in balance (Cardoso et al., 2017Cardoso ACF, Oliveira MSB, Neves LR, Tavares-Dias M. Metazoan fauna parasitizing Peckoltia braueri and Pterygoplichthys pardalis (Loricariidae) catfishes from the northeastern Brazilian Amazon. Acta Amaz 2017; 47(2): 147-154. http://dx.doi.org/10.1590/1809-4392201603232.
http://dx.doi.org/10.1590/1809-439220160...
; Luque & Poulin, 2007Luque JL, Poulin R. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 2007; 134(Pt 6 ): 865-878. http://dx.doi.org/10.1017/S0031182007002272. PMid:17291392.
http://dx.doi.org/10.1017/S0031182007002...
). Furthermore, knowing the species of parasites and understanding their relationships with their hosts aids in monitoring an ecosystem over time (Pérez-Ponce de León, 2014Pérez-Ponce de León G. Los helmintos parásitos de peces como bioindicadores de la salud de los ecosistemas. In: González Zuarth CA, Vallarino A, Pérez Jiménez JC, Low Pfeng AM, editors. Bioindicadores: Guardianes de nuestro futuro Ambiental. Mexico: El Colegio de la Frontera Sur; Instituto Nacional de Ecología (ECOSUR) y Cambio Climático (INEEC); 2014. p. 253-272.).

For H. unimaculatus only two parasite species were recorded: Ergasilus turucuyus (Malta & Varella, 1996) (Copepoda) and Excorallana berbicensis (Boone, 1918) (Isopoda) (Vasconcelos & Tavares-Dias, 2016Vasconcelos HCG, Tavares-Dias M. Host-parasite interaction between crustaceans of six fish species from the Brazilian Amazon. Acta Sci Biol Sci 2016; 38(1): 113-123. http://dx.doi.org/10.4025/actascibiolsci.v38i1.29601.
http://dx.doi.org/10.4025/actascibiolsci...
). Furthermore, few studies have been carried out with other species of Hemiodus (Table 1). In Brazil, in Hemiodus semitaeniatus (Kner, 1858) two species of Monogenea were reported in Hemiodus microlepis (Kner, 1858), a species of Digenea was reported and in Hemiodus orthonops (Eigenmann & Kennedy 1903) and the occurrence of a Nematoda was reported (Table 1).

Table 1
List of species of metazoan parasites reported for Hemiodus spp.

In wild fish populations, the study and understanding of the community structure and infracommunity of parasites can provide support for the use of this knowledge in parasitic ecology (Neves et al., 2016Neves LR, Braga ECR, Tavares-Dias M. Diversity of parasites in Curimata incompta (Curimatidae), a host from Amazon River system in Brazil. J Parasit Dis 2016; 40(4): 1296-1300. http://dx.doi.org/10.1007/s12639-015-0674-0. PMid:27876934.
http://dx.doi.org/10.1007/s12639-015-067...
; Oliveira et al., 2017Oliveira MSB, Gonçalves RA, Ferreira DO, Pinheiro DA, Neves LR, Dias MKR, et al. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Stud Neotrop Fauna Environ 2017; 52(2): 146-156. http://dx.doi.org/10.1080/01650521.2017.1312776.
http://dx.doi.org/10.1080/01650521.2017....
; Neves & Tavares-Dias, 2019Neves LR, Tavares-Dias M. Low levels of crustacean parasite infestation in fish species from the Matapi River in the state of Amapá, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 493-498. http://dx.doi.org/10.1590/s1984-29612019006. PMid:31188939.
http://dx.doi.org/10.1590/s1984-29612019...
). Thus, the aim of this study was to investigate the community and infracommunities of metazoan parasites in H. unimaculatus from the Jari River basin, in the State of Amapá, in the Brazilian Amazon.

Materials and Methods

Collection of fish specimens

From May to November 2019, 30 specimens of H. unimaculatus (19.0 ± 1.2 cm and 137.0 ± 21.0 g) were collected for parasitological analysis in the lower Jari River, in the Jarilândia District in the municipality of Vitória do Jari, Amapá state (Figure 1). The fish were collected with gill nets with 25 mm and 30 mm mesh (ICMBio: 23276-1) and transported to the Aquaculture and Fisheries Laboratory of Embrapa Amapá (Macapá) for analysis.

Figure 1
Location of the sampling of Hemiodus unimaculatus in the Jari River, a tributary of the Amazon River in the state of Amapá (Brazil).

This study was approved by the Ethics Committee for the Use of Animals at Embrapa Amapá (Protocol No. 014/2018 – CEUA/CPAFAP).

Collection and analysis procedures of the parasites

Each fish was euthanized using the medullary section method before obtaining the weight (g) and standard length (cm). Then, each fish was necropsied for parasitological analysis. The mouth, gills, operculum and fins were examined for the presence of ectoparasites, while the viscera and gastrointestinal tract for the presence of endoparasites. The parasites were collected, fixed, preserved and prepared for identification. Monogeneans were clarified in Hoyer medium to visualize the sclerotized structures. Nematodes were diaphanized in phenol to visualize the organs. Trematodes and acanthocephalans were stained with Langeron's alcoholic Carmin and diaphanized to visualize the internal structures (Eiras et al., 2006Eiras JC, Takemoto RM, Pavanelli GC. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Maringá: EDUEM; 2006.)

Analysis of the data

The ecological terms used here followed the recommendations of Bush et al. (1997)Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227. PMid:9267395.
http://dx.doi.org/10.2307/3284227...
. The Brillouin index (HB), evenness (E), Berger-Parker dominance index (d), species richness (Magurran, 2004Magurran AE. Measuring biological diversity. Oxford, USA: Blackwell Science; 2004.) and dominance frequency, i.e., percentage of infracommunities in which a given parasite species is numerically dominant (Rohde et al., 1995Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 1995; 25(8): 945-970. http://dx.doi.org/10.1016/0020-7519(95)00015-T. PMid:8550295.
http://dx.doi.org/10.1016/0020-7519(95)0...
) were calculated to assess the component community of parasites using the software Diversity (Pisces Conservation Ltd, UK). The Poulin dispersion index (ID) and discrepancy index (D) were calculated using the Quantitative Parasitology 3.0 software to detect the distribution pattern of parasite infracommunities (Rózsa et al., 2000Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol 2000; 86(2): 228-232. http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2. PMid:10780537.
http://dx.doi.org/10.1645/0022-3395(2000...
) for species with a prevalence of >10%. The significance of the ID for each parasite infracommunity was tested using the d-statistic test (Ludwig & Reynolds, 1988Ludwig JA, Reynolds JF. Statistical ecology: a primer on methods and computing. New York: Wiley; 1988.).

Spearman's correlation coefficient (rs) was used to determine possible correlations of abundance, Brillouin diversity and species richness of parasites with host length and body weight (Zar, 2010Zar JH. Biostatistical analysis. New York: Prentice-Hall; 2010.).

Results

Communities and infracommunities of parasites

Of the examined H. unimaculatus (n = 30), 96.7% were parasitized by one or more species of monogenean parasites (Dactylogyridae gen. sp.1, Dactylogyridae gen. sp.2, Dactylogyridae gen. sp.3, Dactylogyridae gen. sp.3, Dactylogyridae gen. sp.4, Urocleidoides sp.1, Urocleidoides sp.2, Urocleidoides sp.3 and Gyrodactylidae gen. sp.), digeneans, nematodes, acanthocephalans and mites. There was a dominance of monogenean, digenea and acanthocephalan species (Table 2).

Table 2
Metazoan parasites in Hemiodus unimaculatus of the Jari River, a tributary of the Amazon River in the state of Amapá (Brazil).

The component community was predominantly composed of ectoparasites. There was low diversity, low evenness and low species richness (Table 3). The parasites showed aggregated dispersion, except for Procamallanus (Spirocamallanus) inopinatus (Travassos, Artigas & Pereira, 1928) (Table 4).

Table 3
Component community of the metazoan parasites in Hemiodus unimaculatus of the Jari River, a tributary of the Amazon River in the state of Amapá (Brazil).
Table 4
Dispersion index (ID), d-statistic (d) and discrepancy index (D) for the infracommunity of parasites in Hemiodus unimaculatus of the Jari River, a tributary of the Amazon River in the state of Amapá (Brazil).

Brillouin diversity (rs = -0.337, p = 0.194) and species richness of the parasites did not correlate with host length (rs = -0.424, p = 0.099). The abundance of monogeneans showed no correlation with the length (rs = -0.192, p = 0.469) and weight (rs = 0.037, p = 0.905) of the hosts. The abundance of Digenea gen. sp. showed no correlation with the length (rs = 0.0679, p = 0.797) and weight (rs = -0.273, p = 0.491) of the hosts. The abundance of Neoechinorhynchus n. sp. there was no correlation with the length (rs = -0.072, p = 0.780) and weight (rs = 0.259, p = 0.545) of the hosts. The abundance of P. (S.) inopinatus did not correlate with the length (rs = -0.336, 0.198) and weight (rs = 0.198, 0.198) of the hosts.

There was a predominance of hosts parasitized by 9 to 11 species of parasites (Figure 2).

Figure 2
Species richness of the metazoan parasites in Hemiodus unimaculatus of the Jari River, a tributary of the Amazon River in the state of Amapá (Brazil).

Discussion

In host fish, the diversity and community of parasites is constituted by a set of species present in the environment. Feeding habits are important in the acquisition of endoparasites, while the host habitat, behavior and swimming ability of the parasites are important in the infestation by ectoparasites (Guidelli et al., 2003Guidelli GM, Isaac A, Takemoto RM, Pavanelli GC. Endoparasite infracommunities of Hemisorubim platyrhynchos (Valenciennes, 1840) (Pisces: Pimelodidae) of the Baía River, upper Paraná River floodplain, Brazil: specific composition and ecological aspects. Braz J Biol 2003; 63(2): 261-268. http://dx.doi.org/10.1590/S1519-69842003000200011. PMid:14509848.
http://dx.doi.org/10.1590/S1519-69842003...
; Oliveira et al., 2017Oliveira MSB, Gonçalves RA, Ferreira DO, Pinheiro DA, Neves LR, Dias MKR, et al. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Stud Neotrop Fauna Environ 2017; 52(2): 146-156. http://dx.doi.org/10.1080/01650521.2017.1312776.
http://dx.doi.org/10.1080/01650521.2017....
; Gonçalves et al., 2018Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
). The community of metazoan parasites of H. unimaculatus from the Jari River was composed of eight species of monogeneans, one digenean, two nematodes, one acanthocephalan and one Acarina. There was low diversity, low evenness and low species richness and predominance of ectoparasites. Other species of monogeneans, digeneans and nematodes have been reported for Hemiodus spp. (Table 1). However, this is the first study of the parasite community in H. unimaculatus, so all parasite species found here are new records for this hemiodontid.

Fish can be parasitized by different species, which may be dispersed differently in hosts (Guidelli et al., 2003Guidelli GM, Isaac A, Takemoto RM, Pavanelli GC. Endoparasite infracommunities of Hemisorubim platyrhynchos (Valenciennes, 1840) (Pisces: Pimelodidae) of the Baía River, upper Paraná River floodplain, Brazil: specific composition and ecological aspects. Braz J Biol 2003; 63(2): 261-268. http://dx.doi.org/10.1590/S1519-69842003000200011. PMid:14509848.
http://dx.doi.org/10.1590/S1519-69842003...
; Moller, 2006Moller AP. Parasitism and the regulation oh host populations. In: Thomas F, Renaud F, Guégan JF, editors. Parasitism and ecosystems. New York: Oxford University Press; 2006. p. 4-53.; Gonçalves et al., 2018Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
). Aggregate dispersion pattern of parasites is mainly related to its strategy and direct reproduction, heterogeneity of hosts regarding susceptibility to parasites and the differentiated immune system, so that this aggregation pattern stabilizes the dynamics of the parasite-host relationship, controlling the parasitized fish population (Moller, 2006Moller AP. Parasitism and the regulation oh host populations. In: Thomas F, Renaud F, Guégan JF, editors. Parasitism and ecosystems. New York: Oxford University Press; 2006. p. 4-53.). In H. unimaculatus from the Jari River, the parasites showed an aggregated dispersion, a typical pattern in different parasitic species in fish (Rohde et al., 1995Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 1995; 25(8): 945-970. http://dx.doi.org/10.1016/0020-7519(95)00015-T. PMid:8550295.
http://dx.doi.org/10.1016/0020-7519(95)0...
; Guidelli et al., 2003Guidelli GM, Isaac A, Takemoto RM, Pavanelli GC. Endoparasite infracommunities of Hemisorubim platyrhynchos (Valenciennes, 1840) (Pisces: Pimelodidae) of the Baía River, upper Paraná River floodplain, Brazil: specific composition and ecological aspects. Braz J Biol 2003; 63(2): 261-268. http://dx.doi.org/10.1590/S1519-69842003000200011. PMid:14509848.
http://dx.doi.org/10.1590/S1519-69842003...
; Tavares-Dias et al., 2013Tavares-Dias M, Neves LR, Pinheiro D, Oliveira MS, Marinho RGB. Parasites in Curimata cyprinoides (Characiformes: Curimatidae) from eastern Amazon, Brazil. Acta Sci Biol Sci 2013; 35(4): 595-601. http://dx.doi.org/10.4025/actascibiolsci.v35i4.19649.
http://dx.doi.org/10.4025/actascibiolsci...
; Gonçalves et al., 2018Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
). However, infection by P. (S.) inopinatus showed random dispersion, a pattern that is reported for nematode species of fish parasites due to its pathogenicity (Gonçalves et al., 2018Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
; Neves et al., 2020Neves LR, Silva LMA, Florentino AC, Tavares-Dias M. Distribution patterns of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) and its interactions with freshwater fish in Brazil. Rev Bras Parasitol Vet 2020; 29(4): e012820. http://dx.doi.org/10.1590/s1984-29612020092. PMid:33295383.
http://dx.doi.org/10.1590/s1984-29612020...
). Gaines et al. (2012)Gaines APL, Lozano LES, Viana GM, Monteiro PC, Araújo CSO. Tissue changes in the gut of Arapaima gigas (Schinz, 1822), infected by the nematode Spirocamallanus inopinatus (Travassos, 1929). Neotrop Helminthol 2012; 6(2): 147-157. reported that P. (S.) inopinatus is pathogenic, causing severe histopathological changes in the intestine of Arapaima gigas (Schinz, 1822).

In the Neotropical region, dactylogyrid monogeneans are a group of ectoparasites that make up the parasitic fauna of host fish (Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.). Of the eight species of monogeneans found in this study, seven were Dactylogyridae. However, in H. unimaculatus no species has been described (Table 1). H. semitaeniatus showed Cleidodiscus microcirrus (Price & Schlueter, 1967) and Monocleithrium lavergneae (Price & McMahon, 1966) have been reported. In the gills of H. unimaculatus from Jari River there was a high prevalence of monogeneans (Dactylogyridae gen. sp.1, Dactylogyridae gen. sp.2, Dactylogyridae gen. sp.3, Dactylogyridae gen. sp.4, Urocleidoides sp.1, Urocleidoides sp.1, Urocleidoides sp.2, Urocleidoides sp.3 and Gyrodactilydae gen. sp.), however, there was low mean intensity and mean abundance.

In fish from Brazil, P. (S.) inopinatus are found in the adult stage, with prevalence ranging from low to moderate, low intensity and low abundance (Neves et al., 2020Neves LR, Silva LMA, Florentino AC, Tavares-Dias M. Distribution patterns of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) and its interactions with freshwater fish in Brazil. Rev Bras Parasitol Vet 2020; 29(4): e012820. http://dx.doi.org/10.1590/s1984-29612020092. PMid:33295383.
http://dx.doi.org/10.1590/s1984-29612020...
), similar to that shown in the present study with H. unimaculatus. This level of parasitism can be attributed to the fact that this nematode has a complex life cycle, with transmission through prey-predator interactions (Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.; Neves et al., 2020Neves LR, Silva LMA, Florentino AC, Tavares-Dias M. Distribution patterns of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) and its interactions with freshwater fish in Brazil. Rev Bras Parasitol Vet 2020; 29(4): e012820. http://dx.doi.org/10.1590/s1984-29612020092. PMid:33295383.
http://dx.doi.org/10.1590/s1984-29612020...
). Thus, the presence of copepods (intermediate hosts), containing infective stages of P. (S.) inopinatus in the environment, determines the levels of its infection in fish populations, which are definitive hosts (Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.; Oliveira et al., 2017Oliveira MSB, Gonçalves RA, Ferreira DO, Pinheiro DA, Neves LR, Dias MKR, et al. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Stud Neotrop Fauna Environ 2017; 52(2): 146-156. http://dx.doi.org/10.1080/01650521.2017.1312776.
http://dx.doi.org/10.1080/01650521.2017....
). To date, no nematode has been known to parasitize H. unimaculatus (Table 1). In addition, in H. unimaculatus from the Jari River there was also low infection of Contracaecum sp. larvae, a common nematode in fish from Brazil, which are second intermediate hosts, or paratenic, microcrustaceans are the first intermediate hosts and piscivorous birds are the definitive hosts (Pinheiro et al., 2019Pinheiro RHS, Furtado AP, Santos JN, Giese EG. Contracaecum larvae: morphological and morphometric retrospective analysis, biogeography and zoonotic risk in the amazon. Rev Bras Parasitol Vet 2019; 28(1): 12-32. http://dx.doi.org/10.1590/s1984-29612019002. PMid:30892463.
http://dx.doi.org/10.1590/s1984-29612019...
).

Digenean metacercariae were found with high prevalence in the gills of H. unimaculatus of Jari River, but with low average intensity and low average abundance. This indicates that this fish plays the role of an intermediate host for this ectoparasite. With a complex life cycle, many digeneans have piscivorous birds as definitive hosts (Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.; Morley, 2012Morley NJ. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia 2012; 691(1): 7-19. http://dx.doi.org/10.1007/s10750-012-1029-9.
http://dx.doi.org/10.1007/s10750-012-102...
). No species of digenea are known to infect H. unimaculatus. However, Rondotrema microvitellarium (Thatcher, 1999) has been reported to parasitize H. microlepis from Amazon (Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.).

Acanthocephalans of the Neoechinorhynchus genus are obligate endoparasites with a complex life cycle and use microcrustaceans, usually an ostracod, as a primary intermediate host, while fish can be paratenic, secondary intermediate or definitive hosts (Kennedy, 2006Kennedy CR. Ecology of the Acanthocephala. Cambridge: Cambridge University Press; 2006. http://dx.doi.org/10.1017/CBO9780511541902.
http://dx.doi.org/10.1017/CBO97805115419...
; Thatcher, 2006Thatcher VE. Amazon fish parasites. Sofia: Pensoft Publishers; 2006.; Melo et al., 2015Melo FTV, Costa PAFB, Giese EG, Gardner SL, Santos JN. A description of Neoechinorhynchus (Neoechinorhynchus) veropesoi n. sp. (Acanthocephala: Neoechinorhynchidae) from the intestine of the silver croaker fish Plagioscion squamosissimus (Heckel, 1840) (Osteichthyes: Sciaenidae) off the east coast of Brazil. J Helminthol 2015; 89(1): 34-41. http://dx.doi.org/10.1017/S0022149X13000564. PMid:26262594.
http://dx.doi.org/10.1017/S0022149X13000...
). To date, no acanthocephalan species has been reported for Hemiodus species (Table 1). In H. unimaculatus, there was moderate prevalence and low abundance of Neoechinorhynchus sp. These low levels of Neoechinorhynchus n. sp. in H. unimaculatus may be due to its omnivorous habit, which includes the intermediate host in its diet (Silva et al., 2008Silva CC, Ferreira EJG, Deus CP. Dieta de cinco espécies de Hemiodontidae (Teleostei, Characiformes) na área de influência do reservatório de Balbina, rio Uatumã, Amazonas, Brasil. Iheringia Ser Zool 2008; 98(4): 465-468. http://dx.doi.org/10.1590/S0073-47212008000400008.
http://dx.doi.org/10.1590/S0073-47212008...
; Marinho et al., 2021Marinho TEB, Prado GS, Melo S. Dieta de Auchenipterus nuchalis e Hemiodus unimaculatus no reservatório da hidrelétrica Curuá-una, Santarém-PA. Biota Amazôn 2021; 11(1): 6-10. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p6-10.
http://dx.doi.org/10.18561/2179-5746/bio...
).

Few studies have observed fish as hosts for mites, and few species have been described. These Acarina can generally be found in the gills, integument and digestive tract (Lizama et al., 2013Lizama MAP, Monkolski JG, Carniel MK, Costa APL. Mollusca, Hirudinea, Pentastomida e Acari parasitos de peixes. In: Pavanelli GC, Takemoto RM, Eiras JC, organizadores. Parasitologia de peixes de água doce do Brasil. Maringá: EDUEM; 2013. p. 399-435.), and high infections can cause severe damage to these hosts (Heckmann, 2003Heckmann R. Other ectoparasites infesting fish; copepods, branchiurans, isopods, mites and bivalves. Aquacult Mag 2003; 29(6): 20-31.). In the gills of H. unimaculatus from the Jari River, infection by mites was low, which may have been accidental. Gonçalves et al. (2018)Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
also reported low mite infestation in the gills of Colossoma macropomum (Cuvier, 1818) from the Jari River. More studies need to be carried out to understand the diversity of these parasites in neotropical fish.

In conclusion, the metazoan parasite community of H. unimaculatus from the Jari River presented low diversity, low richness, low intensity and low abundance. Hemiodus unimaculatus in the Jari River is an intermediate and definitive host. This first study on the community and infracommunity of metazoan parasites in H. unimaculatus showed that host size had no effect on the diversity, species richness and abundance of parasites, since their diet was a factor that influenced their parasite community.

Acknowledgements

M. Tavares-Dias received the research fellowship (# 303013/2015-0) of the National Counsel of Scientific and Technological Development (CNPq, Brasil).

References

  • Abreu CHM, Cunha AC. Qualidade da água e índice trófico em rio de ecossistema tropical sob impacto ambiental. Eng Sanit Ambient 2016; 22(1): 45-56. http://dx.doi.org/10.1590/s1413-41522016144803
    » http://dx.doi.org/10.1590/s1413-41522016144803
  • Abreu CHM, Cunha AC. Qualidade da água em ecossistemas aquáticos tropicais sob impactos ambientais no Baixo Rio Jari-AP: revisão Descritiva. Biota Amazôn 2015; 5(2): 119-131. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v5n2p119-131
    » http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v5n2p119-131
  • Agarwal N, Kritsky DC. Neotropical Monogenoidea. 33. Three new species of Ancistrohaptor n. g. (Dactylogyridae, Ancyrocephalinae) on Triportheus spp. (Teleostei, Characidae) from Brazil, with checklists of ancyrocephalines recorded from neotropical characiform fishes. Syst Parasitol 1998; 39(1): 59-69. http://dx.doi.org/10.1023/A:1005896323016
    » http://dx.doi.org/10.1023/A:1005896323016
  • Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227 PMid:9267395.
    » http://dx.doi.org/10.2307/3284227
  • Cardoso ACF, Oliveira MSB, Neves LR, Tavares-Dias M. Metazoan fauna parasitizing Peckoltia braueri and Pterygoplichthys pardalis (Loricariidae) catfishes from the northeastern Brazilian Amazon. Acta Amaz 2017; 47(2): 147-154. http://dx.doi.org/10.1590/1809-4392201603232
    » http://dx.doi.org/10.1590/1809-4392201603232
  • Cintra IHA, Rocha JC, Nakayama L, Martins JC, Silva KCA. A pesca de Hemiodus unimaculatus (Bloch, 1794) na área de influência da usina hidrelétrica de Tucuruí, Pará, Brasil. Actapesca 2013; 1(1): 1-12. http://dx.doi.org/10.2312/Actafish.2013.1.1.1-12
    » http://dx.doi.org/10.2312/Actafish.2013.1.1.1-12
  • Cunha ACD, Souza EBD, Cunha HFA. Rede de meteorologia e recursos hídricos do Estado do Amapá (REMETAP): Principais resultados. Tempo, clima e recursos hídricos: resultados do Projeto REMETAP no Estado do Amapá Macapá, Amapá, Brasil: IEPA; 2010.
  • Eiras JC, Takemoto RM, Pavanelli GC. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes Maringá: EDUEM; 2006.
  • Empresa de Pesquisa Energética – EPE. Bacia hidrográfica do Rio Jari - PA/AP: estudo de inventário hidrelétrico Rio de Janeiro: EPE; 2011. Relatório final: Avaliação Integrada ambiental.
  • Gaines APL, Lozano LES, Viana GM, Monteiro PC, Araújo CSO. Tissue changes in the gut of Arapaima gigas (Schinz, 1822), infected by the nematode Spirocamallanus inopinatus (Travassos, 1929). Neotrop Helminthol 2012; 6(2): 147-157.
  • Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazonas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371
    » http://dx.doi.org/10.1590/1809-4392201704371
  • Guidelli GM, Isaac A, Takemoto RM, Pavanelli GC. Endoparasite infracommunities of Hemisorubim platyrhynchos (Valenciennes, 1840) (Pisces: Pimelodidae) of the Baía River, upper Paraná River floodplain, Brazil: specific composition and ecological aspects. Braz J Biol 2003; 63(2): 261-268. http://dx.doi.org/10.1590/S1519-69842003000200011 PMid:14509848.
    » http://dx.doi.org/10.1590/S1519-69842003000200011
  • Heckmann R. Other ectoparasites infesting fish; copepods, branchiurans, isopods, mites and bivalves. Aquacult Mag 2003; 29(6): 20-31.
  • Hoshino EM, Tavares-Dias M. Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a Characid fish inhabiting the Brazilian Amazon. Acta Parasitol 2019; 64(3): 479-488. http://dx.doi.org/10.2478/s11686-019-00057-5 PMid:31020493.
    » http://dx.doi.org/10.2478/s11686-019-00057-5
  • Kennedy CR. Ecology of the Acanthocephala Cambridge: Cambridge University Press; 2006. http://dx.doi.org/10.1017/CBO9780511541902
    » http://dx.doi.org/10.1017/CBO9780511541902
  • Lizama MAP, Monkolski JG, Carniel MK, Costa APL. Mollusca, Hirudinea, Pentastomida e Acari parasitos de peixes. In: Pavanelli GC, Takemoto RM, Eiras JC, organizadores. Parasitologia de peixes de água doce do Brasil Maringá: EDUEM; 2013. p. 399-435.
  • Ludwig JA, Reynolds JF. Statistical ecology: a primer on methods and computing New York: Wiley; 1988.
  • Luque JL, Aguiar JC, Vieira FM, Gibson DI, Santos CP. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011; 3082(1): 1-88. http://dx.doi.org/10.11646/zootaxa.3082.1.1
    » http://dx.doi.org/10.11646/zootaxa.3082.1.1
  • Luque JL, Poulin R. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 2007; 134(Pt 6 ): 865-878. http://dx.doi.org/10.1017/S0031182007002272 PMid:17291392.
    » http://dx.doi.org/10.1017/S0031182007002272
  • Magurran AE. Measuring biological diversity Oxford, USA: Blackwell Science; 2004.
  • Marinho TEB, Prado GS, Melo S. Dieta de Auchenipterus nuchalis e Hemiodus unimaculatus no reservatório da hidrelétrica Curuá-una, Santarém-PA. Biota Amazôn 2021; 11(1): 6-10. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p6-10
    » http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p6-10
  • Martins JC, Cintra IHA, Sarpedonti V. Seletividade da rede malhadeira na captura de Hemiodus unimaculatus no baixo Rio Tocantins, Amazônia, Brasil. Bol Inst Pesca 2017; 43(2): 274-282. http://dx.doi.org/10.20950/1678-2305.2017v43n2p274
    » http://dx.doi.org/10.20950/1678-2305.2017v43n2p274
  • Melo FTV, Costa PAFB, Giese EG, Gardner SL, Santos JN. A description of Neoechinorhynchus (Neoechinorhynchus) veropesoi n. sp. (Acanthocephala: Neoechinorhynchidae) from the intestine of the silver croaker fish Plagioscion squamosissimus (Heckel, 1840) (Osteichthyes: Sciaenidae) off the east coast of Brazil. J Helminthol 2015; 89(1): 34-41. http://dx.doi.org/10.1017/S0022149X13000564 PMid:26262594.
    » http://dx.doi.org/10.1017/S0022149X13000564
  • Moller AP. Parasitism and the regulation oh host populations. In: Thomas F, Renaud F, Guégan JF, editors. Parasitism and ecosystems New York: Oxford University Press; 2006. p. 4-53.
  • Morley NJ. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia 2012; 691(1): 7-19. http://dx.doi.org/10.1007/s10750-012-1029-9
    » http://dx.doi.org/10.1007/s10750-012-1029-9
  • Neves LR, Braga ECR, Tavares-Dias M. Diversity of parasites in Curimata incompta (Curimatidae), a host from Amazon River system in Brazil. J Parasit Dis 2016; 40(4): 1296-1300. http://dx.doi.org/10.1007/s12639-015-0674-0 PMid:27876934.
    » http://dx.doi.org/10.1007/s12639-015-0674-0
  • Neves LR, Silva LMA, Florentino AC, Tavares-Dias M. Distribution patterns of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) and its interactions with freshwater fish in Brazil. Rev Bras Parasitol Vet 2020; 29(4): e012820. http://dx.doi.org/10.1590/s1984-29612020092 PMid:33295383.
    » http://dx.doi.org/10.1590/s1984-29612020092
  • Neves LR, Tavares-Dias M. Low levels of crustacean parasite infestation in fish species from the Matapi River in the state of Amapá, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 493-498. http://dx.doi.org/10.1590/s1984-29612019006 PMid:31188939.
    » http://dx.doi.org/10.1590/s1984-29612019006
  • Oliveira MSB, Gonçalves RA, Ferreira DO, Pinheiro DA, Neves LR, Dias MKR, et al. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Stud Neotrop Fauna Environ 2017; 52(2): 146-156. http://dx.doi.org/10.1080/01650521.2017.1312776
    » http://dx.doi.org/10.1080/01650521.2017.1312776
  • Pérez-Ponce de León G, Aguilar-Aguilar R. Helminth community structure of some freshwater fishes of the cuatro ciénegas basin: patterns and processes. In: Álvarez F, Ojeda M, editors. Animal diversity and biogeography of the Cuatro Ciénegas Basin Cham: Springer International Publishing; 2019. p. 11-27. http://dx.doi.org/10.1007/978-3-030-11262-2_2
    » http://dx.doi.org/10.1007/978-3-030-11262-2_2
  • Pérez-Ponce de León G. Los helmintos parásitos de peces como bioindicadores de la salud de los ecosistemas. In: González Zuarth CA, Vallarino A, Pérez Jiménez JC, Low Pfeng AM, editors. Bioindicadores: Guardianes de nuestro futuro Ambiental Mexico: El Colegio de la Frontera Sur; Instituto Nacional de Ecología (ECOSUR) y Cambio Climático (INEEC); 2014. p. 253-272.
  • Pinheiro RHS, Furtado AP, Santos JN, Giese EG. Contracaecum larvae: morphological and morphometric retrospective analysis, biogeography and zoonotic risk in the amazon. Rev Bras Parasitol Vet 2019; 28(1): 12-32. http://dx.doi.org/10.1590/s1984-29612019002 PMid:30892463.
    » http://dx.doi.org/10.1590/s1984-29612019002
  • Queiroz LJD, Torrente-Vilara G, Ohara WM, Pires THDS, Zuanon J, Doria CRDC. Peixes do Rio Madeira Santo Antônio Energia; 2013.
  • Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 1995; 25(8): 945-970. http://dx.doi.org/10.1016/0020-7519(95)00015-T PMid:8550295.
    » http://dx.doi.org/10.1016/0020-7519(95)00015-T
  • Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol 2000; 86(2): 228-232. http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2 PMid:10780537.
    » http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2
  • Santos GM, Merona B, Juras AA, Jégu M. Peixes do baixo Rio Tocantins: 20 anos depois da Usina Hidrelétrica Tucuruí Brasília: Eletronorte; 2004.
  • Scholz T, Choudhury A. Parasites of freshwater fishes in North America: why so neglected? J Parasitol 2014; 100(1): 26-45. http://dx.doi.org/10.1645/13-394.1 PMid:24147814.
    » http://dx.doi.org/10.1645/13-394.1
  • Silva CC, Ferreira EJG, Deus CP. Dieta de cinco espécies de Hemiodontidae (Teleostei, Characiformes) na área de influência do reservatório de Balbina, rio Uatumã, Amazonas, Brasil. Iheringia Ser Zool 2008; 98(4): 465-468. http://dx.doi.org/10.1590/S0073-47212008000400008
    » http://dx.doi.org/10.1590/S0073-47212008000400008
  • Soares MGM, Costa ELD, Siqueira-Souza FK, Anjos HDBD, Yamamoto KC, Freitas CEDC. Peixes de lagos do médio Rio Solimões Manaus: Instituto I-piatam; 2008.
  • Tavares-Dias M, Neves LR, Pinheiro D, Oliveira MS, Marinho RGB. Parasites in Curimata cyprinoides (Characiformes: Curimatidae) from eastern Amazon, Brazil. Acta Sci Biol Sci 2013; 35(4): 595-601. http://dx.doi.org/10.4025/actascibiolsci.v35i4.19649
    » http://dx.doi.org/10.4025/actascibiolsci.v35i4.19649
  • Thatcher VE. Amazon fish parasites Sofia: Pensoft Publishers; 2006.
  • Val AL. Fishes of the Amazon: diversity and beyond. An Acad Bras Cienc 2019; 91(Suppl 3): e20190260. http://dx.doi.org/10.1590/0001-3765201920190260 PMid:31166477.
    » http://dx.doi.org/10.1590/0001-3765201920190260
  • Vasconcelos HCG, Tavares-Dias M. Host-parasite interaction between crustaceans of six fish species from the Brazilian Amazon. Acta Sci Biol Sci 2016; 38(1): 113-123. http://dx.doi.org/10.4025/actascibiolsci.v38i1.29601
    » http://dx.doi.org/10.4025/actascibiolsci.v38i1.29601
  • Zar JH. Biostatistical analysis New York: Prentice-Hall; 2010.

Publication Dates

  • Publication in this collection
    01 Dec 2021
  • Date of issue
    2021

History

  • Received
    23 Sept 2021
  • Accepted
    29 Oct 2021
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br