Acessibilidade / Reportar erro

Diversity of helminths with zoonotic potential and molecular characterization of Toxocara canis infecting domestic dogs from locations of Amazon and Atlantic Forest Brazilian biomes

Diversidade de helmintos com potencial zoonótico e caracterização molecular de Toxocara canis infectando cães domésticos de localidades dos biomas brasileiros Amazônia e Mata Atlântica

Abstract

The coproparasitological examination of dogs (n=278) from two Brazilian biomes (Amazon [AZ] and Atlantic Forest [AF]) by centrifugal flotation demonstrated positivity values of 54.2% (AF) and 48.5% (AZ). The most prevalent parasites in AF were hookworms (81.0% - 47/58), Toxocara sp. (17.3% - 10/58) and Trichuris vulpis (12.1% - 7/58); while in AZ they were hookworms (86.7% - 72/83), Toxocara sp. (18.1% - 15/83), Dipylidium caninum (13.3% - 11/83) and T. vulpis (10.8% - 9/83). PCR was performed using the partial mitochondrial genes cytochrome c oxidase subunit 1 (pcox1) and NADH dehydrogenase 1 (pnad1) in 25 fecal samples positive for Toxocara sp. eggs and found one sample positive for pcox1 and six positives for pnad1. The sequencing of these samples was unsuccessful due to the difficulties inherent in copro-PCR+sequencing. The sequencing of 14 samples of T. canis adult helminths retrieved 11 sequences of 414 bp for pcox1 and nine sequences of 358 bp for pnad1. The phylogenetic trees of these sequences confirmed the species T. canis. Intraspecific genetic variation was only observed for pnad1. This is the second study involving molecular analysis of T. canis in dogs from Brazil and adds new information through the use of pnad1.

Keywords:
Zoonotic helminths; Toxocara canis; molecular characterization; mitochondrial genes; domestic dogs; Brazil

Resumo

O exame coproparasitológico de cães (n=278) de dois biomas brasileiros (Amazônia [AZ] e Mata Atlântica [MA]) por centrífugo-flutuação demonstrou valores de positividade de 54,2% (MA) e 48,5% (AZ). Os parasitos mais prevalentes na MA foram ancilostomídeos (81,0% - 47/58), Toxocara sp. (17,3% - 10/58) e Trichuris vulpis (12,1% - 7/58); enquanto na AZ foram ancilostomídeos (86,7% - 72/83), Toxocara sp. (18,1% - 15/83), Dipylidium caninum (13,3% - 11/83) e T. vulpis (10,8% - 9/83). A PCR foi realizada, utilizando-se os genes mitocondriais parciais da subunidade 1 do citocromo c oxidase (pcox1); e NADH desidrogenase 1 (pnad1) em 25 amostras fecais positivas para ovos de Toxocara sp. com uma amostra positiva para pcox1 e seis positivas para pnad1. O sequenciamento dessas amostras não teve sucesso, devido às dificuldades inerentes ao copro-PCR+sequenciamento. O sequenciamento de 14 amostras de helmintos adultos T. canis recuperou 11 sequências de 414 pb para pcox1 e nove sequências de 358 pb para pnad1. As árvores filogenéticas dessas sequências confirmaram a espécie T. canis. A variação genética intraespecífica foi observada apenas para pnad1. Este é o segundo estudo envolvendo análise molecular de T. canis, em cães do Brasil, e agrega novas informações com o uso do pnad1.

Palavras-chave:
Helmintos zoonóticos; Toxocara canis; caracterização molecular; genes mitocondriais; cães domésticos; Brasil

Introduction

Since antiquity, dogs have been bred for companionship, hunting, protection, herding, and more recently in therapy programmes to provide support to human health (Dantas-Torres & Otranto, 2014Dantas-Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 2014; 7(1): 22. http://dx.doi.org/10.1186/1756-3305-7-22. PMid:24423244.
http://dx.doi.org/10.1186/1756-3305-7-22...
; Sato et al., 2017Sato MO, Sato M, Yoonuan T, Pongvongsa T, Sanguankiat S, Kounnavong S, et al. The role of domestic dogs in the transmission of zoonotic helminthes in a rural area of Mekong river basin. Acta Parasitol 2017; 62(2): 393-400. http://dx.doi.org/10.1515/ap-2017-0047. PMid:28426425.
http://dx.doi.org/10.1515/ap-2017-0047...
). However, this close relationship with humans has favored the transmission of several pathogens with zoonotic potential (Dantas-Torres & Otranto, 2014Dantas-Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 2014; 7(1): 22. http://dx.doi.org/10.1186/1756-3305-7-22. PMid:24423244.
http://dx.doi.org/10.1186/1756-3305-7-22...
).

The gastrointestinal helminths most frequently fund infecting dogs are hookworms, Toxocara canis (Werner, 1782) Stiles in Stiles & Hassall, 1905, Trichuris vulpis (Froelich, 1789) Smith, 1908, Dipylidium caninum (Linnaeus, 1758) and Echinococcus spp. Rudolphi, 1801 (Neves et al., 2017Neves LB, Teixeira PE, Silva S, de Oliveira FB, Garcia DD, de Almeida FB, et al. First molecular identification of Echinococcus vogeli and Echinococcus granulosus (sensu stricto) G1 revealed in feces of domestic dogs (Canis familiaris) from Acre, Brazil. Parasit Vectors 2017; 10(1): 28. http://dx.doi.org/10.1186/s13071-016-1952-0. PMid:28088247.
http://dx.doi.org/10.1186/s13071-016-195...
; Oliveira-Arbex et al., 2017Oliveira-Arbex AP, David EB, Oliveira-Sequeira TCG, Katagiri S, Coradi ST, Guimarães S. Molecular identification of Ancylostoma species from dogs and an assessment of zoonotic risk in low-income households, São Paulo State, Brazil. J Helminthol 2017; 91(1): 14-19. http://dx.doi.org/10.1017/S0022149X15001145. PMid:26752269.
http://dx.doi.org/10.1017/S0022149X15001...
; Ramos et al.; 2020Ramos NV, Silva MLE, Barreto MS, Barros LA, Mendes-de-Almeida F. Endoparasites of household and shelter cats in the city of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e012819. http://dx.doi.org/10.1590/s1984-29612019110. PMid:32294719.
http://dx.doi.org/10.1590/s1984-29612019...
; Silva et al., 2020Silva GS, Ferreira FC, Romera DM, Soares VE, Bonuti MR. Larva migrans in Votuporanga, São Paulo, Brazil: where does the danger hide? Rev Bras Parasitol Vet 2020; 29(3): e004920. http://dx.doi.org/10.1590/s1984-29612020075. PMid:33027423.
http://dx.doi.org/10.1590/s1984-29612020...
; Lima et al., 2021Lima ND, Raimundo DC, Souza VAF, Aguiar JM. Occurrence of gastrointestinal parasites in dogs and cats domiciliated in Santos, SP, Brazil. Rev Bras Parasitol Vet 2021; 30(4): e011721. http://dx.doi.org/10.1590/s1984-29612021080.
http://dx.doi.org/10.1590/s1984-29612021...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
; Ugalde et al., 2023Ugalde JM, Sakamoto CAM, Cunha NC, Barros LA. Parasitological diagnosis of fecal samples from domestic dogs from the municipality of Niterói, Rio de Janeiro, Brazil. Arq Bras Med Vet Zootec 2023; 75(1): 35-40. http://dx.doi.org/10.1590/1678-4162-12732.
http://dx.doi.org/10.1590/1678-4162-1273...
). These parasites are associated with symptoms such as enteritis, diarrhea, vomiting, weight loss and anemia, among others, negatively affecting the development of dogs (Traversa, 2011Traversa D. Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like Trichuris vulpis? Parasit Vectors 2011; 4(1): 32. http://dx.doi.org/10.1186/1756-3305-4-32. PMid:21385441.
http://dx.doi.org/10.1186/1756-3305-4-32...
).

The species Toxocara canis is the second most prevalent parasite in dogs, in addition to being the etiological agent of human toxocariasis. In endemic regions, the presence of T. canis and the disorders caused in dogs are indirect indications of the occurrence of this disease in humans (Sharma et al., 2015Sharma R, Singh BB, Gill JPS. Larva migrans in India: veterinary and public health perspectives. J Parasit Dis 2015; 39(4): 604-612. http://dx.doi.org/10.1007/s12639-013-0402-6. PMid:26688621.
http://dx.doi.org/10.1007/s12639-013-040...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
).

The coproparasitological findings in domestic dogs can be considered good indicators of environmental contamination, especially around the home, making it a low-cost tool for surveillance and control of zoonoses in the context of One Health (Delai et al., 2021Delai RR, Freitas AR, Kmetiuk LB, Merigueti YFFB, Ferreira IB, Lescano SAZ, et al. One Health approach on human seroprevalence of anti-Toxocara antibodies, Toxocara spp. eggs in dogs and sand samples between seashore mainland and island areas of southern Brazil. One Health 2021; 13: 100353. http://dx.doi.org/10.1016/j.onehlt.2021.100353. PMid:34888410.
http://dx.doi.org/10.1016/j.onehlt.2021....
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
).

The use of molecular techniques and automated sequencing for Toxocara species has been described mainly through the analysis of the internal transcribed spacer region (ITS) (Jacobs et al., 1997Jacobs DE, Zhu X, Gasser RB, Chilton NB. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Trop 1997; 68(2): 191-200. http://dx.doi.org/10.1016/S0001-706X(97)00093-4. PMid:9386794.
http://dx.doi.org/10.1016/S0001-706X(97)...
) and mitochondrial genes (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
). However, there are few genetic characterization studies of Toxocara spp. and molecular data and phylogenetic analysis on isolates from Brazil are scarce (Mikaeili et al., 2015Mikaeili F, Mirhendi H, Mohebali M, Hosseini M, Sharbatkhori M, Zarei Z, et al. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran. J Helminthol 2015; 89(4): 496-501. http://dx.doi.org/10.1017/S0022149X14000133. PMid:24717402.
http://dx.doi.org/10.1017/S0022149X14000...
; Dantas-Torres, 2020Dantas-Torres F. Toxocara prevalence in dogs and cats in Brazil. Adv Parasitol 2020; 109: 715-741. http://dx.doi.org/10.1016/bs.apar.2020.01.028. PMid:32381224.
http://dx.doi.org/10.1016/bs.apar.2020.0...
).

Therefore, the objective of this work was to investigate the occurrence of helminths with zoonotic potential in domestic dogs from two different Brazilian regions and to carry out a molecular analysis of Toxocara sp. In these areas, this analysis can elucidate the role of domestic dogs in the transmission of helminthic zoonoses, since dogs can be sources of infection and sentinels of these infections (Salb et al., 2008Salb AL, Barkema HW, Elkin BT, Thompson RCA, Whiteside DP, Black SR, et al. Dogs as sources and sentinels of parasites in humans and wildlife, northern Canada. Emerg Infect Dis 2008; 14(1): 60-63. http://dx.doi.org/10.3201/eid1401.071113. PMid:18258078.
http://dx.doi.org/10.3201/eid1401.071113...
).

Materials and Methods

Study areas

The survey was conducted in three different states of Brazil (Acre, Minas Gerais e Rio de Janeiro) in various expeditions carried out by the Laboratório de Referência Nacional em Hidatidose (LRNH-LPIP-IOC/Fiocruz) between 2014 and 2020. In the state of Acre, rural properties in settlements inside the Amazon Forest environment from five municipalities (Rio Branco, Bujari, Xapuri, Epitaciolândia, and Sena Madureira) were visited for sample collection. In the Conceição dos Ouros, Minas Gerais, the study location was farms near Atlantic Forest fragments. The study area in Rio de Janeiro (municipality of Rio de Janeiro) was the houses settled inside the Maciço da Pedra Branca/Parque Estadual da Pedra Branca, an Atlantic Forest biome conservation unit.

All the residences where the sample collection was done are inserted or near the forest environment of the Amazon (AZ) or Atlantic Forest (AF) biomes.

Samples collection

A total of 278 fecal samples were collected from domestic dogs that interacted with the forest environment of the AZ (Acre, n=171) or AF (Minas Gerais [n=40] and Rio de Janeiro [n=67]) biomes. The dogs investigated were raised freely, having access to the both wild and peridomestic environment. Therefore, the owners did not have information about the dogs’ age. However, the vast majority were adults.

Adult Toxocara sp. worms were obtained from 12 abandoned dogs captured and housed at the Centro de Controle de Zoonoses Paulo Dacorso Filho (CCZ) and the Centro de Medicina Veterinária Jorge Vaitsman (CJV), both in the city of Rio de Janeiro, in 1993. After natural death, the dogs were necropsied for a previous study (Rodrigues-Silva et al. 1999Rodrigues-Silva R, Lanfredi RM, Vicente JJ, Pinto R, Gomes DC. On the rugose area and caudal papillae distribution in Dirofilaria immitis (Leidy, 1856) Railliet & Henry, 1911, by scanning electron microscopy. Parasitol Res 1999; 85(10): 867-869. http://dx.doi.org/10.1007/s004360050648. PMid:10494817.
http://dx.doi.org/10.1007/s004360050648...
) and the recovered helminths that were not of interest for that study (such as Toxocara sp.) were stored frozen (-20°C) in the LRNH.

Coproparasitological examination

The fecal samples were fixed in 10% formalin and analyzed by the centrifuge-flotation method (Faust et al., 1938Faust EC, D’Antoni JS, Odom V, Miller MJ, Peres C, Sawitz W, et al. A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces I. Preliminary communication. Am J Trop Med Hyg 1938; 18(2): 169-183. http://dx.doi.org/10.4269/ajtmh.1938.s1-18.169.
http://dx.doi.org/10.4269/ajtmh.1938.s1-...
), mounted between slide and coverslip and observed by light microscopy to detect helminth eggs at 100x magnification. The eggs found were identified by their morphology. Replicates of the fecal samples fixed in 70% ethyl alcohol (when available) positive in the microscopy for Toxocara sp. were subjected to an egg concentration process by the improved flotation method using modified Breza solution (specific gravity = 1.4) (Széll et al., 2014Széll Z, Sréter-Lancz Z, Sréter T. Evaluation of faecal flotation methods followed by species-specific PCR for detection of Echinococcus multilocularis in the definitive hosts. Acta Parasitol 2014; 59(2): 331-336. http://dx.doi.org/10.2478/s11686-014-0248-9. PMid:24827107.
http://dx.doi.org/10.2478/s11686-014-024...
). Subsequently, these eggs were recovered from flotation according to the protocol established by Öge et al. (2019)Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008. PMid:31662682.
http://dx.doi.org/10.2478/helm-2019-0008...
, stored in 2 mL tubes and subjected to DNA extraction.

Statistical analysis

The 95% confidence intervals (CI) for the proportions of the relative frequencies obtained from the coproparasitological examination were calculated using the software Excel 2019 (Microsoft Corporation, USA).

DNA extraction

The Toxocara sp. eggs from fecal samples were subjected to DNA extraction using the QIAmp DNA Stool Mini Kit (Qiagen, Germany) with the modifications described by (Öge et al., 2019Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008. PMid:31662682.
http://dx.doi.org/10.2478/helm-2019-0008...
), and the DNA of the adult helminths was extracted using the QIAamp DNA Mini Kit (Qiagen, Germany) following the manufacturer’s instructions.

PCR for pcox1 and pnad1 genes

The DNA samples were subjected to amplification of the partial region of the mitochondrial genes cytochrome c oxidase subunit I (pcox1) and NADH dehydrogenase 1 (pnad1) using the following primers: forward JB3 (5'-TTTTTTTGGGCATCCTGAGGTTTAT-3') and reverse JB4.5 (5'-TAAAGAAAGAACATAATGAAAATG-3'), used to amplify a pcox1 sequence of ≅ 450 bp (Bowles et al., 1992Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 1992; 54(2): 165-173. http://dx.doi.org/10.1016/0166-6851(92)90109-W. PMid:1435857.
http://dx.doi.org/10.1016/0166-6851(92)9...
); and forward ND1F (5'-TTCTTATGAGATTGCTTTT-3') and reverse ND1R (5'-TATCATAACGAAAACGAGG-3'), for amplification of ≅ 370 bp pnad1 sequence (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
). All reactions were performed in a final volume of 25 µL containing 5-10 ng of template DNA, 10 mM Tris-HCL (pH 8.4), 50 mM KCL, 4 mM MgCl2, 200 µM of each dNTP, 50 pmol of each primer and 2 U Taq DNA polymerase (Invitrogen, USA). The thermal cycler parameters were initial denaturation at 94 °C for 5 min, 35 cycles of 94 °C for 30 s (denaturation), 50 °C for 30 s (annealing), and 72 °C for 30 s (extension), followed by a final extension step at 72 °C for 5 min (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
). PCR products were electrophoresed on 1% agarose gel in 1X TBE, stained with GelRed (Biotium, USA) and visualized with a UV transilluminator.

Sequencing and phylogenetic analyses

PCR products were purified using Illustra GFX PCR DNA and the Gel Band Purification Kit (GE Healthcare, USA), following the manufacturer's instructions. Both DNA strands were sequenced using the same PCR primers and the PrimTM ABI BigDye Terminator Cycle sequencing kit (Applied Biosystems, USA), according to the manufacturer’s protocol. Sanger sequencing of amplicons was performed with an automated DNA sequencer (ABI 3730 analyzer from Applied Biosystems, USA). Primer sequences were removed and a consensus sequence from the forward and reverse strands was assigned with SeqMan v. 7.1 (DNASTAR, Madison, USA) and then compared with the sequences available in the GenBank (NCBI, USA), with the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2.
http://dx.doi.org/10.1016/S0022-2836(05)...
).

Phylogenetic analyses were carried out with the MEGA v11.0 software (Tamura et al., 2021Tamura K, Stecher G, Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38(7): 3022-3027. http://dx.doi.org/10.1093/molbev/msab120. PMid:33892491.
http://dx.doi.org/10.1093/molbev/msab120...
) based on alignment obtained from ClustalW of nineteen 414-bp sequences for pcox1 (11 generated in this study and 8 retrieved from the GenBank) and twenty 358-bp sequences for pnad1. The phylogenetic tree was constructed using the neighbor-joining method (Saitou & Nei, 1987Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406-425. http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454. PMid:3447015.
http://dx.doi.org/10.1093/oxfordjournals...
) with the Kimura 2-parameter model of nucleotide substitution associated with gamma distribution (shape parameter = 1) (Kimura, 1980Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16(2): 111-120. http://dx.doi.org/10.1007/BF01731581. PMid:7463489.
http://dx.doi.org/10.1007/BF01731581...
). Bootstrap analysis of 1000 replicates was applied (Felsenstein, 1985Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39(4): 783-791. http://dx.doi.org/10.2307/2408678. PMid:28561359.
http://dx.doi.org/10.2307/2408678...
). All ambiguous positions were removed from each sequence pair (pairwise deletion option). The sequences used in the analysis were retrieved from the GenBank database and the accession numbers are shown in the trees (Figures 1 and 2). The Ancylostoma caninum (NC_012309) sequence was used as outgroup.

Figure 1
Photomicrographs of helminth eggs found in the parasitological examination domestic of dogs’ feces from the Atlantic Forest and Amazon biomes. (A) egg of hookworm; (B) egg of Toxocara sp.; (C) eggs of hookworm (right) and Toxocara sp. (left); (D) egg of Trichuris vulpis; (E) ovigerous capsule of Dipylidium caninum; (F) egg of capillarid (G) egg of Rodentolepis nana; and (H) egg of taenid.
Figure 2
Prevalence of helminths in positive samples distributed according to the biome of origin.

Results and Discussion

Coproparasitological examination of domestic dogs

Of the 278 fecal samples, 107 came from AF, with positivity for gastrointestinal helminths of 54.2% (58/107; CI: 44.8 – 63.7), and 171 came from AZ, with positivity of 48.5% (83/171; CI: 41.1 – 56.0). The occurrence for each helminth, both in single (monoparasitism) and mixed (polyparasitism) infections, is detailed in Table 1.

Table 1
Frequency of helminth eggs diagnosed in fecal samples of domestic dogs from the Amazon and Atlantic Forest biomes.

Of the helminth eggs found (Figure 1), the most frequent in AF were hookworms (81.0%; 47/58; CI: 70.9 – 91.1), Toxocara sp. (17.3%; 10/58; CI: 7.5 – 27.0) and Trichuris vulpis (12.1%; 7/58; CI: 3.7 – 20.1) (Figure 2). Regarding AZ, the prevalence levels were hookworms (86.7%; 72/83; CI: 79.5 – 94.0), Toxocara sp. (18.1%; 15/83; CI: 9.8 – 26.4), Dipylidium caninum (13.3%; 11/83; CI: 6.0 – 20.5) and T. vulpis (10.8%; 9/83; CI: 4.2 – 17.5) (Figure 2).

In both regions, the most prevalent helminths were hookworms, followed by Toxocara sp. (Figure 2). This prevalence levels have been reported in several previous studies in Brazil (Oliveira-Arbex et al., 2017Oliveira-Arbex AP, David EB, Oliveira-Sequeira TCG, Katagiri S, Coradi ST, Guimarães S. Molecular identification of Ancylostoma species from dogs and an assessment of zoonotic risk in low-income households, São Paulo State, Brazil. J Helminthol 2017; 91(1): 14-19. http://dx.doi.org/10.1017/S0022149X15001145. PMid:26752269.
http://dx.doi.org/10.1017/S0022149X15001...
; Ramos et al.; 2020Ramos NV, Silva MLE, Barreto MS, Barros LA, Mendes-de-Almeida F. Endoparasites of household and shelter cats in the city of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e012819. http://dx.doi.org/10.1590/s1984-29612019110. PMid:32294719.
http://dx.doi.org/10.1590/s1984-29612019...
; Silva et al., 2020Silva GS, Ferreira FC, Romera DM, Soares VE, Bonuti MR. Larva migrans in Votuporanga, São Paulo, Brazil: where does the danger hide? Rev Bras Parasitol Vet 2020; 29(3): e004920. http://dx.doi.org/10.1590/s1984-29612020075. PMid:33027423.
http://dx.doi.org/10.1590/s1984-29612020...
; Lima et al., 2021Lima ND, Raimundo DC, Souza VAF, Aguiar JM. Occurrence of gastrointestinal parasites in dogs and cats domiciliated in Santos, SP, Brazil. Rev Bras Parasitol Vet 2021; 30(4): e011721. http://dx.doi.org/10.1590/s1984-29612021080.
http://dx.doi.org/10.1590/s1984-29612021...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
; Ugalde et al., 2023Ugalde JM, Sakamoto CAM, Cunha NC, Barros LA. Parasitological diagnosis of fecal samples from domestic dogs from the municipality of Niterói, Rio de Janeiro, Brazil. Arq Bras Med Vet Zootec 2023; 75(1): 35-40. http://dx.doi.org/10.1590/1678-4162-12732.
http://dx.doi.org/10.1590/1678-4162-1273...
) and other countries, such as Mexico (Torres-Chablé et al., 2015Torres-Chablé OM, García-Herrera RA, Hernández-Hernández M, Peralta-Torres JA, Ojeda-Robertos NF, Blitvich BJ, et al. Prevalence of gastrointestinal parasites in domestic dogs in Tabasco, southeastern Mexico. Rev Bras Parasitol Vet 2015; 24(4): 432-437. http://dx.doi.org/10.1590/S1984-29612015077. PMid:26648011.
http://dx.doi.org/10.1590/S1984-29612015...
), Algeria (Ziam et al., 2022Ziam H, Kelanemer R, Belala R, Medrouh B, Khater HF, Djerbal M, et al. Prevalence and risk factors associated with gastrointestinal parasites of pet dogs in North-Central Algeria. Comp Immunol Microbiol Infect Dis 2022; 86: 101817. http://dx.doi.org/10.1016/j.cimid.2022.101817. PMid:35490504.
http://dx.doi.org/10.1016/j.cimid.2022.1...
), Nepal (Sukupayo & Tamang, 2023Sukupayo PR, Tamang S. Prevalence of zoonotic gastrointestinal helminth parasite among dogs in Suryabinayak, Nepal. Vet Med Int 2023; 2023: 3624593. http://dx.doi.org/10.1155/2023/3624593. PMid:37287959.
http://dx.doi.org/10.1155/2023/3624593...
), Morocco (Idrissi et al., 2022Idrissi H, Khatat SEH, Duchateau L, Kachani M, Daminet S, El Asatey S, et al. Prevalence, risk factors and zoonotic potential of intestinal parasites in dogs from four locations in Morocco. Vet Parasitol Reg Stud Rep 2022; 34: 100775. http://dx.doi.org/10.1016/j.vprsr.2022.100775. PMid:36041810.
http://dx.doi.org/10.1016/j.vprsr.2022.1...
) and Ecuador (Calvopina et al., 2023Calvopina M, Cabezas-Moreno M, Cisneros-Vásquez E, Paredes-Betancourt I, Bastidas-Caldes C. Diversity and prevalence of gastrointestinal helminths of free-roaming dogs on coastal beaches in Ecuador: potential for zoonotic transmission. Vet Parasitol Reg Stud Reports 2023; 40: 100859. http://dx.doi.org/10.1016/j.vprsr.2023.100859. PMid:37068862.
http://dx.doi.org/10.1016/j.vprsr.2023.1...
). Since most of the dogs investigated are adults, this data aligns with the literature, as infections by hookworms are the most common in adult dogs (over one year old) (Ferreira et al., 2016Ferreira JIGS, Pena HFJ, Azevedo SS, Labruna MB, Gennari SM. Occurrences of gastrointestinal parasites in fecal samples from domestic dogs in São Paulo, SP, Brazil. Rev Bras Parasitol Vet 2016; 25(4): 435-440. http://dx.doi.org/10.1590/s1984-29612016081. PMid:27925072.
http://dx.doi.org/10.1590/s1984-29612016...
; Lima et al., 2021Lima ND, Raimundo DC, Souza VAF, Aguiar JM. Occurrence of gastrointestinal parasites in dogs and cats domiciliated in Santos, SP, Brazil. Rev Bras Parasitol Vet 2021; 30(4): e011721. http://dx.doi.org/10.1590/s1984-29612021080.
http://dx.doi.org/10.1590/s1984-29612021...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
), and Toxocara sp. is a parasite more often found infecting puppies, although the infection can occur at any age (Villeneuve et al., 2015Villeneuve A, Polley L, Jenkins E, Schurer J, Gilleard J, Kutz S, et al. Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces. Parasit Vectors 2015; 8(1): 281. http://dx.doi.org/10.1186/s13071-015-0870-x. PMid:26013283.
http://dx.doi.org/10.1186/s13071-015-087...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
).

Although it has no known zoonotic potential, the nematode T. vulpis is among the most prevalent helminth parasites of domestic dogs with significant frequencies (Figure 2). The notable prevalence of this parasite in dogs is found in other similar studies (Silva et al., 2022Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940.
http://dx.doi.org/10.1590/1678-5150-pvb-...
; Souza et al., 2023Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004. PMid:36651423.
http://dx.doi.org/10.1590/s1984-29612023...
; Ugalde et al., 2023Ugalde JM, Sakamoto CAM, Cunha NC, Barros LA. Parasitological diagnosis of fecal samples from domestic dogs from the municipality of Niterói, Rio de Janeiro, Brazil. Arq Bras Med Vet Zootec 2023; 75(1): 35-40. http://dx.doi.org/10.1590/1678-4162-12732.
http://dx.doi.org/10.1590/1678-4162-1273...
).

The results also demonstrate the presence of Rodentolepis nana (Siebold, 1852), capillarids and Ascaris spp., but these parasites are not commonly found infecting domestic dogs (Woodland, 1924Woodland WNF. On the life-cycle of Hymenolepis fraterna (H. nana var. fraterna Stiles) of the white mouse. Parasitology 1924; 16(1): 69-83. http://dx.doi.org/10.1017/S0031182000019892.
http://dx.doi.org/10.1017/S0031182000019...
), which may explain the low prevalence found.

R. nana eggs were also found in studies involving the feces of wild carnivores (wolves and foxes), and the authors suggested that the finding may have been due to the ingestion of infected rodents or even eggs laid in the environment by definitive hosts (Elmore et al., 2013Elmore SA, Lalonde LF, Samelius G, Alisauskas RT, Gajadhar AA, Jenkins EJ. Endoparasites in the feces of arctic foxes in a terrestrial ecosystem in Canada. Int J Parasitol Parasites Wildl 2013; 2: 90-96. http://dx.doi.org/10.1016/j.ijppaw.2013.02.005. PMid:24533320.
http://dx.doi.org/10.1016/j.ijppaw.2013....
; van Kesteren et al., 2015van Kesteren F, Piggott KJ, Bengui T, Kubri SB, Mastin A, Sillero-Zubiri C, et al. Helminth parasites in the endangered Ethiopian wolf, Canis simensis. J Helminthol 2015; 89(4): 487-495. http://dx.doi.org/10.1017/S0022149X14000534. PMid:25007150.
http://dx.doi.org/10.1017/S0022149X14000...
).

Oliveira et al. (2022)Oliveira FB, Correia TPD, Neves LB, Teixeira PEF, Moreira JC, Souza LS, et al. Spurious infection by Calodium hepaticum (Bancroft, 1983) Moravec, 1982 and intestinal parasites in forest reserve dwellers in Western Brazilian Amazon. Rev Inst Med Trop S Paulo 2022; 64: e2. https://doi.org/10.1590/S1678-9946202264002.
https://doi.org/10.1590/S1678-9946202264...
demonstrated humans being act as carriers of capillarid eggs (spurious infection) in the same locations in the Amazon region analyzed here. Likewise, the capillarid eggs reported may have been ingested through the consumption of the viscera of parasitized predated/hunted rodents, as Neves et al. (2017)Neves LB, Teixeira PE, Silva S, de Oliveira FB, Garcia DD, de Almeida FB, et al. First molecular identification of Echinococcus vogeli and Echinococcus granulosus (sensu stricto) G1 revealed in feces of domestic dogs (Canis familiaris) from Acre, Brazil. Parasit Vectors 2017; 10(1): 28. http://dx.doi.org/10.1186/s13071-016-1952-0. PMid:28088247.
http://dx.doi.org/10.1186/s13071-016-195...
report dogs from the same areas in the state of Acre being fed with this type of material.

The low prevalence of taenid eggs in canine fecal samples has also been reported in other studies (Yamamoto et al., 2006Yamamoto N, Morishima Y, Kon M, Yamaguchi M, Tanno S, Koyama M, et al. The first reported case of a dog infected with Echinococcus multilocularis in Saitama prefecture, Japan. Jpn J Infect Dis 2006; 59(5): 351-352. PMid:17060711.; Sager et al., 2006Sager H, Moret CS, Grimm F, Deplazes P, Doherr MG, Gottstein B. Coprological study on intestinal helminths in Swiss dogs: temporal aspects of anthelminthic treatment. Parasitol Res 2006; 98(4): 333-338. http://dx.doi.org/10.1007/s00436-005-0093-8. PMid:16374614.
http://dx.doi.org/10.1007/s00436-005-009...
; Antolová et al., 2009Antolová D, Reiterová K, Miterpáková M, Dinkel A, Dubinský P. The first finding of Echinococcus multilocularis in dogs in Slovakia: an emerging risk for spreading of infection. Zoonoses Public Health 2009; 56(2): 53-58. http://dx.doi.org/10.1111/j.1863-2378.2008.01154.x. PMid:18721227.
http://dx.doi.org/10.1111/j.1863-2378.20...
; Neves et al., 2017Neves LB, Teixeira PE, Silva S, de Oliveira FB, Garcia DD, de Almeida FB, et al. First molecular identification of Echinococcus vogeli and Echinococcus granulosus (sensu stricto) G1 revealed in feces of domestic dogs (Canis familiaris) from Acre, Brazil. Parasit Vectors 2017; 10(1): 28. http://dx.doi.org/10.1186/s13071-016-1952-0. PMid:28088247.
http://dx.doi.org/10.1186/s13071-016-195...
). Although the parasitological analysis does not allow distinguishing the species, numerous works of analysis of dog feces that found taenid eggs identified as Echinococcus sp. in other countries (Yu et al., 2008Yu SH, Wang H, Wu XH, Ma X, Liu PY, Liu YF, et al. Cystic and alveolar echinococcosis: an epidemiological survey in a Tibetan population in southeast Qinghai, China. Jpn J Infect Dis 2008; 61(3): 242-246. http://dx.doi.org/10.7883/yoken.JJID.2008.242. PMid:18503183.
http://dx.doi.org/10.7883/yoken.JJID.200...
; Dyachenko et al., 2008Dyachenko V, Pantchev N, Gawlowska S, Vrhovec MG, Bauer C. Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Vet Parasitol 2008; 157(3-4): 244-253. http://dx.doi.org/10.1016/j.vetpar.2008.07.030. PMid:18819752.
http://dx.doi.org/10.1016/j.vetpar.2008....
; Bružinskaitė et al., 2009Bružinskaitė R, Šarkūnas M, Torgerson PR, Mathis A, Deplazes P. Echinococcosis in pigs and intestinal infection with Echinococcus spp. in dogs in southwestern Lithuania. Vet Parasitol 2009; 160(3-4): 237-241. http://dx.doi.org/10.1016/j.vetpar.2008.11.011. PMid:19111990.
http://dx.doi.org/10.1016/j.vetpar.2008....
; Nagy et al., 2011Nagy A, Ziadinov I, Schweiger A, Schnyder M, Deplazes P. Hair coat contamination with zoonotic helminth eggs of farm and pet dogs and foxes. Berl Munch Tierarztl Wochenschr 2011; 124(11-12): 503-511. PMid:22191172.) and in Brazil (Neves et al., 2017Neves LB, Teixeira PE, Silva S, de Oliveira FB, Garcia DD, de Almeida FB, et al. First molecular identification of Echinococcus vogeli and Echinococcus granulosus (sensu stricto) G1 revealed in feces of domestic dogs (Canis familiaris) from Acre, Brazil. Parasit Vectors 2017; 10(1): 28. http://dx.doi.org/10.1186/s13071-016-1952-0. PMid:28088247.
http://dx.doi.org/10.1186/s13071-016-195...
).

When observing the frequency of helminths in the biomes (Figure 2), it is possible to notice an apparent homogeneity since the difference between biomes for each parasite is small (around 10% maximum) and the CI values coincide. This may be associated with the historical connection bridges between these two biomes. Biogeography studies of small mammals demonstrate this flow of animals during evolutionary history, which probably resulted in the overlap of taxa in these biomes (Costa, 2003Costa LP. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 2003; 30(1): 71-86. http://dx.doi.org/10.1046/j.1365-2699.2003.00792.x.
http://dx.doi.org/10.1046/j.1365-2699.20...
). Silva et al. (2022)Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940.
http://dx.doi.org/10.1590/1678-5150-pvb-...
also reported a relatively high prevalence (7.7%) of D. caninum infecting dogs living in the Atlantic Forest biome compared to other parasitological survey studies. It is known that helminth eggs can survive for long periods in moist and shaded soil (Silva et al., 2022Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940.
http://dx.doi.org/10.1590/1678-5150-pvb-...
). However, more studies are needed to understand the factors that lead to this prevalence in forest areas and the phylogeography of these taxa in Brazil.

Coproparasitological surveys in dogs are extremely important in the context of One Health. In Brazil, studies of this nature are concentrated in the Southeast region (Dantas-Torres, 2020Dantas-Torres F. Toxocara prevalence in dogs and cats in Brazil. Adv Parasitol 2020; 109: 715-741. http://dx.doi.org/10.1016/bs.apar.2020.01.028. PMid:32381224.
http://dx.doi.org/10.1016/bs.apar.2020.0...
), making it difficult to truly understand the distribution of these parasites in a country of continental proportions such as Brazil (Dantas-Torres & Otranto, 2014Dantas-Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 2014; 7(1): 22. http://dx.doi.org/10.1186/1756-3305-7-22. PMid:24423244.
http://dx.doi.org/10.1186/1756-3305-7-22...
). Data are even scarcer in the case of rural dogs with access to forest areas, which can act as sources of infection in humans and other wild animals (Curi et al, 2017Curi NHA, Paschoal AMO, Massara RL, Santos HA, Guimarães MP, Passamani M, et al. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health. Braz J Biol 2017; 77(2): 388-395. http://dx.doi.org/10.1590/1519-6984.19515. PMid:27533731.
http://dx.doi.org/10.1590/1519-6984.1951...
; Silva et al., 2022Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940.
http://dx.doi.org/10.1590/1678-5150-pvb-...
). In this regard, this study ratifies the circulation of these parasites in Brazil’s North region, more specifically in the state of Acre. Additionally, a recent study brought important information about the risk of emergence of zoonoses in Brazil, finding Acre to be the state with the highest risk factor according to the analyzed variables (distance from the city, richness of mammals, natural vegetation cover and deforestation, among other factors) (Winck et al., 2022Winck GR, Raimundo RLG, Fernandes-Ferreira H, Bueno MG, D’Andrea PS, Rocha FL, et al. Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. Sci Adv 2022; 8(26): eabo5774. http://dx.doi.org/10.1126/sciadv.abo5774. PMid:35767624.
http://dx.doi.org/10.1126/sciadv.abo5774...
), highlighting the attention needed for this state.

The prevalence of gastrointestinal parasites in dogs reported here, mainly hookworms and Toxocara sp., is in line with the findings of other studies that have demonstrated the need for a surveillance program in Brazil, along the lines of One Health concept, for the prevention of zoonotic diseases transmitted by dogs that circulate between domestic and wild areas, in order to avoid possible spillover events (Dantas-Torres & Otranto, 2014Dantas-Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 2014; 7(1): 22. http://dx.doi.org/10.1186/1756-3305-7-22. PMid:24423244.
http://dx.doi.org/10.1186/1756-3305-7-22...
; Curi et al., 2017Curi NHA, Paschoal AMO, Massara RL, Santos HA, Guimarães MP, Passamani M, et al. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health. Braz J Biol 2017; 77(2): 388-395. http://dx.doi.org/10.1590/1519-6984.19515. PMid:27533731.
http://dx.doi.org/10.1590/1519-6984.1951...
; Silva et al., 2022Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940.
http://dx.doi.org/10.1590/1678-5150-pvb-...
; Winck et al., 2022Winck GR, Raimundo RLG, Fernandes-Ferreira H, Bueno MG, D’Andrea PS, Rocha FL, et al. Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. Sci Adv 2022; 8(26): eabo5774. http://dx.doi.org/10.1126/sciadv.abo5774. PMid:35767624.
http://dx.doi.org/10.1126/sciadv.abo5774...
).

PCR and Toxocara sp. sequencing

Twenty-five fecal samples were positive for the presence of eggs compatible with Toxocara sp. After submitting these samples to PCR, one amplified the target fragment of ≅ 450 bp of the pcox1 gene while six 6 amplified the target fragment of ≅ 370 bp of pnad1. However, attempts at sequencing the fecal samples were unsuccessful. In a study carried out in Turkey, the authors reported the same low effectiveness of PCR in identifying Toxocara sp. eggs compared to sedimentation/flotation techniques (5/21, or 23.8%) (Öge et al., 2019Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008. PMid:31662682.
http://dx.doi.org/10.2478/helm-2019-0008...
), values close to those of this study (7/25, or 28%). The effectiveness of PCR in identifying eggs in feces is directly related to the number of eggs available, making it difficult to use as a routine diagnostic tool for canine ascarid infections, given the low egg concentration (Öge et al., 2019Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008. PMid:31662682.
http://dx.doi.org/10.2478/helm-2019-0008...
). Another possible factor is the resistance of ascarid eggshells due to their lipid composition (ascaroside), which covers the inner surface of the chitinous layer (Venkatesan et al., 2022Venkatesan T, Panda R, Kumari A, Nehra AK, Ram H, Pateer DP, et al. Genetic and population diversity of Toxocara cati (Schrank, 1788) Brumpt, 1927, on the basis of the internal transcribed spacer (ITS) region. Parasitol Res 2022; 121(12): 3477-3493. http://dx.doi.org/10.1007/s00436-022-07671-9. PMid:36222955.
http://dx.doi.org/10.1007/s00436-022-076...
).

Of the 14 adult helminth isolates that were positive by PCR, 11 sequences of 414-bp for the pcox1 gene were sequenced (OR004956-OR004966), while 9 sequences of 358-bp were obtained for the pnad1 gene (OR088860-OR088868). The sequences for pcox1 showed no variation in size or nucleotide composition and the A+T contents were 62%. Among the pnad1 sequences, the only one that showed nucleotide differences was the isolate H.A.13 (OR088868) at positions 35, 186, 286 and 322 (totaling 4 bp). The nucleotide composition of A+T for pnad1 ranged from 64.2 to 64.8%. Values close to A+T contents for mitochondrial (mtDNA) genes have been reported in other studies, and the results are compatible for nematodes (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
; Chen et al., 2022Chen SY, Qiu QG, Mo HL, Gong TF, Li F, He JL, et al. Molecular identification and phylogenetic analysis of Ascarids in wild animals. Front Vet Sci 2022; 9: 891672. http://dx.doi.org/10.3389/fvets.2022.891672. PMid:35573413.
http://dx.doi.org/10.3389/fvets.2022.891...
).

Phylogenetic analysis

The phylogenetic trees (Figures 3, 4) demonstrated the formation of a well-supported clade between the newly generated sequences and the GenBank reference sequences for T. canis from different countries, confirming the species of the adult specimens from dogs of Rio de Janeiro, Brazil. The genetic distance (p-distance) between the T. canis samples in the study for pcox1 and the sequence from Australia (EU730761) was zero, in a sample that showed 100% homology by BLAST. Compared with the sequences used in the pcox1 tree (Figure 3), there was a variation of 0.01 for the sample from Japan (AP017701) and 0.03 for the samples from China (NC010690). The p-distance values related to other species of the genus Toxocara used in the construction of the pcox1 tree were approximately 0.14 (Toxocara cati), 0.12 (Toxocara malaysiensis), and 0.11 (Toxocara vitulorum), while for Toxascaris leonina, another ascarid prevalent in canids, it was 1.80.

Figure 3
Phylogenetic relationship based on 414-pb of pcox1 sequences of Toxocara canis isolates. Only bootstrap values above 60 are shown. The scale bar indicates the number of base substitutions per site: 0.02. The GenBank accession numbers from the sequences used are between parentheses and samples from this study are marked with a black circle.
Figure 4
Phylogenetic relationship based on 360-pb of pnad1 sequences of Toxocara canis isolates. Only bootstrap values above 60 are shown. The scale bar indicates the number of base substitutions per site: 0.02. The GenBank accession numbers from the sequences used are between parentheses and samples from this study are marked with a black circle.

For the pnad1 tree (Figure 4), the p-distance values between studied sequences ranged from zero to 0.013. With the exception of isolate H.A.13 (OR088868), p-distance values of the pnad1 sequences compared with other countries was 0.009 for Netherlands (AJ920386), 0.003-0.011 for Iran (KC293920 and MK913430), 0.006-0.014 for Australia (AJ920383 and EU730761) and 0.012 for Nigeria (MN635720). The H.A.13 (OR088868) had p-distance values between 0.011 and 0.020 with all other T. canis samples used in the phylogenetic reconstruction. In general, the variations between the species of the genus were 0.137-0.211 for pnad1.

Intraspecific genetic variations for T. canis using mtDNA genes have been reported with values close to 1.3% in several studies (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
; Mikaeili et al., 2015Mikaeili F, Mirhendi H, Mohebali M, Hosseini M, Sharbatkhori M, Zarei Z, et al. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran. J Helminthol 2015; 89(4): 496-501. http://dx.doi.org/10.1017/S0022149X14000133. PMid:24717402.
http://dx.doi.org/10.1017/S0022149X14000...
; Fava et al., 2020Fava NMN, Cury MC, Santos HA, Takeuchi-Storm N, Strube C, Zhu XQ, et al. Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Vet Parasitol 2020; 282: 109133. http://dx.doi.org/10.1016/j.vetpar.2020.109133. PMid:32460110.
http://dx.doi.org/10.1016/j.vetpar.2020....
). Similar to our results, Mikaeili et al. (2015)Mikaeili F, Mirhendi H, Mohebali M, Hosseini M, Sharbatkhori M, Zarei Z, et al. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran. J Helminthol 2015; 89(4): 496-501. http://dx.doi.org/10.1017/S0022149X14000133. PMid:24717402.
http://dx.doi.org/10.1017/S0022149X14000...
found slightly higher values with the use of the pnad1 gene compared to pcox1 (0-1.3% and 0-1.7%, respectively). In contrast, results by Li et al. (2008)Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
demonstrated the opposite, with greater nucleotide differences for pcox1.

In the present study, the genetic characterization was performed focusing on mtDNA, more specifically on the pcox1 and pnad1 genes. Mitochondrial markers have proven to be a useful tool for the investigation of the phylogeny of different helminths, including toxocarids (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
; Mikaeili et al., 2015Mikaeili F, Mirhendi H, Mohebali M, Hosseini M, Sharbatkhori M, Zarei Z, et al. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran. J Helminthol 2015; 89(4): 496-501. http://dx.doi.org/10.1017/S0022149X14000133. PMid:24717402.
http://dx.doi.org/10.1017/S0022149X14000...
; Öge et al., 2019Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008. PMid:31662682.
http://dx.doi.org/10.2478/helm-2019-0008...
; Fava et al., 2020Fava NMN, Cury MC, Santos HA, Takeuchi-Storm N, Strube C, Zhu XQ, et al. Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Vet Parasitol 2020; 282: 109133. http://dx.doi.org/10.1016/j.vetpar.2020.109133. PMid:32460110.
http://dx.doi.org/10.1016/j.vetpar.2020....
). They have been used in recent studies to solve nematode systemic problems (Deng et al., 2022Deng YP, Suleman, Zhang XL, Li R, Li LY, Fu YT, et al. Aonchotheca (Nematoda: Capillariidae) is validated as a separated genus from Capillaria by both mitochondrial and nuclear ribosomal DNA. Parasit Vectors 2022; 15(1): 493. http://dx.doi.org/10.1186/s13071-022-05609-9. PMid:36585724.
http://dx.doi.org/10.1186/s13071-022-056...
; Nisa et al., 2022Nisa RU, Tantray AY, Shah AA. Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114(2): 110295. http://dx.doi.org/10.1016/j.ygeno.2022.110295. PMid:35134496.
http://dx.doi.org/10.1016/j.ygeno.2022.1...
). In addition to the mitochondrial genes used here, the use of markers for mitochondrially encoded ATP synthase membrane subunit 6 (ATP 6) (Wickramasinghe et al., 2009Wickramasinghe S, Yatawara L, Rajapakse RPVJ, Agatsuma T. Toxocara canis and Toxocara vitulorum: molecular characterization, discrimination, and phylogenetic analysis based on mitochondrial (ATP synthase subunit 6 and 12S) and nuclear ribosomal (ITS-2 and 28S) genes. Parasitol Res 2009; 104(6): 1425-1430. http://dx.doi.org/10.1007/s00436-009-1345-9. PMid:19221796.
http://dx.doi.org/10.1007/s00436-009-134...
), NADH dehydrogenase subunit 4 (nad4) (Li et al., 2008Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752. PMid:18546167.
http://dx.doi.org/10.1002/elps.200700752...
) and ITS (Jacobs et al., 1997Jacobs DE, Zhu X, Gasser RB, Chilton NB. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Trop 1997; 68(2): 191-200. http://dx.doi.org/10.1016/S0001-706X(97)00093-4. PMid:9386794.
http://dx.doi.org/10.1016/S0001-706X(97)...
) genes have also been reportedly successful in the discrimination of species and phylogenetic analysis of the genus Toxocara.

To the best of our knowledge, there is only one study (Fava et al., 2020Fava NMN, Cury MC, Santos HA, Takeuchi-Storm N, Strube C, Zhu XQ, et al. Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Vet Parasitol 2020; 282: 109133. http://dx.doi.org/10.1016/j.vetpar.2020.109133. PMid:32460110.
http://dx.doi.org/10.1016/j.vetpar.2020....
) that molecularly analyzed T. canis isolates from Brazilian dogs, and the researchers used only the partial pcox1 gene. Thus, our study is the second to carry out molecular characterization of T. canis isolates from Brazil, and adds information through the use of pnad1 in combination of pcox1, contributing molecular data in a scenario of scarcity.

In conclusion, different taxa of parasites with zoonotic potential with high prevalence were found in samples of feces from dogs from the states of Acre, Minas Gerais and Rio de Janeiro, alerting to the risk of human infection. It is evident that dogs play a fundamental role as a sentinel in the epidemiological dynamics of these zoonoses, thus requiring attention in prevention and control efforts, especially in rural/forest regions. To obtain a better understanding of T. canis in Brazil through knowledge of the parasite-host dynamics and the genetic diversity between populations, it is necessary to study more isolates from different geographic regions.

Acknowledgements

The authors thank Paulo Teixeira, Isabel Bonna and Júnior Costa for helping in the sample collection. Financial support was received from the Coordenação de Vigilância em Saúde e Laboratórios de Referência (CVSLR-Fiocruz-RJ). TPDC was supported by a grant from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (E-26/202.552/2022).

  • How to cite: Dias-Correia TP, Neves LB, Bittencourt-Oliveira F, Giglio GCB, Pereira TC, Almeida FB, et al. Diversity of helminths with zoonotic potential and molecular characterization of Toxocara canis infecting domestic dogs from locations of Amazon and Atlantic Forest Brazilian biomes. Braz J Vet Parasitol 2023; 32(4): e012723. https://doi.org/10.1590/S1984-29612023078

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2
    » http://dx.doi.org/10.1016/S0022-2836(05)80360-2
  • Antolová D, Reiterová K, Miterpáková M, Dinkel A, Dubinský P. The first finding of Echinococcus multilocularis in dogs in Slovakia: an emerging risk for spreading of infection. Zoonoses Public Health 2009; 56(2): 53-58. http://dx.doi.org/10.1111/j.1863-2378.2008.01154.x PMid:18721227.
    » http://dx.doi.org/10.1111/j.1863-2378.2008.01154.x
  • Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 1992; 54(2): 165-173. http://dx.doi.org/10.1016/0166-6851(92)90109-W PMid:1435857.
    » http://dx.doi.org/10.1016/0166-6851(92)90109-W
  • Bružinskaitė R, Šarkūnas M, Torgerson PR, Mathis A, Deplazes P. Echinococcosis in pigs and intestinal infection with Echinococcus spp. in dogs in southwestern Lithuania. Vet Parasitol 2009; 160(3-4): 237-241. http://dx.doi.org/10.1016/j.vetpar.2008.11.011 PMid:19111990.
    » http://dx.doi.org/10.1016/j.vetpar.2008.11.011
  • Calvopina M, Cabezas-Moreno M, Cisneros-Vásquez E, Paredes-Betancourt I, Bastidas-Caldes C. Diversity and prevalence of gastrointestinal helminths of free-roaming dogs on coastal beaches in Ecuador: potential for zoonotic transmission. Vet Parasitol Reg Stud Reports 2023; 40: 100859. http://dx.doi.org/10.1016/j.vprsr.2023.100859 PMid:37068862.
    » http://dx.doi.org/10.1016/j.vprsr.2023.100859
  • Chen SY, Qiu QG, Mo HL, Gong TF, Li F, He JL, et al. Molecular identification and phylogenetic analysis of Ascarids in wild animals. Front Vet Sci 2022; 9: 891672. http://dx.doi.org/10.3389/fvets.2022.891672 PMid:35573413.
    » http://dx.doi.org/10.3389/fvets.2022.891672
  • Costa LP. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 2003; 30(1): 71-86. http://dx.doi.org/10.1046/j.1365-2699.2003.00792.x
    » http://dx.doi.org/10.1046/j.1365-2699.2003.00792.x
  • Curi NHA, Paschoal AMO, Massara RL, Santos HA, Guimarães MP, Passamani M, et al. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health. Braz J Biol 2017; 77(2): 388-395. http://dx.doi.org/10.1590/1519-6984.19515 PMid:27533731.
    » http://dx.doi.org/10.1590/1519-6984.19515
  • Dantas-Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasit Vectors 2014; 7(1): 22. http://dx.doi.org/10.1186/1756-3305-7-22 PMid:24423244.
    » http://dx.doi.org/10.1186/1756-3305-7-22
  • Dantas-Torres F. Toxocara prevalence in dogs and cats in Brazil. Adv Parasitol 2020; 109: 715-741. http://dx.doi.org/10.1016/bs.apar.2020.01.028 PMid:32381224.
    » http://dx.doi.org/10.1016/bs.apar.2020.01.028
  • Delai RR, Freitas AR, Kmetiuk LB, Merigueti YFFB, Ferreira IB, Lescano SAZ, et al. One Health approach on human seroprevalence of anti-Toxocara antibodies, Toxocara spp. eggs in dogs and sand samples between seashore mainland and island areas of southern Brazil. One Health 2021; 13: 100353. http://dx.doi.org/10.1016/j.onehlt.2021.100353 PMid:34888410.
    » http://dx.doi.org/10.1016/j.onehlt.2021.100353
  • Deng YP, Suleman, Zhang XL, Li R, Li LY, Fu YT, et al. Aonchotheca (Nematoda: Capillariidae) is validated as a separated genus from Capillaria by both mitochondrial and nuclear ribosomal DNA. Parasit Vectors 2022; 15(1): 493. http://dx.doi.org/10.1186/s13071-022-05609-9 PMid:36585724.
    » http://dx.doi.org/10.1186/s13071-022-05609-9
  • Dyachenko V, Pantchev N, Gawlowska S, Vrhovec MG, Bauer C. Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Vet Parasitol 2008; 157(3-4): 244-253. http://dx.doi.org/10.1016/j.vetpar.2008.07.030 PMid:18819752.
    » http://dx.doi.org/10.1016/j.vetpar.2008.07.030
  • Elmore SA, Lalonde LF, Samelius G, Alisauskas RT, Gajadhar AA, Jenkins EJ. Endoparasites in the feces of arctic foxes in a terrestrial ecosystem in Canada. Int J Parasitol Parasites Wildl 2013; 2: 90-96. http://dx.doi.org/10.1016/j.ijppaw.2013.02.005 PMid:24533320.
    » http://dx.doi.org/10.1016/j.ijppaw.2013.02.005
  • Faust EC, D’Antoni JS, Odom V, Miller MJ, Peres C, Sawitz W, et al. A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces I. Preliminary communication. Am J Trop Med Hyg 1938; 18(2): 169-183. http://dx.doi.org/10.4269/ajtmh.1938.s1-18.169
    » http://dx.doi.org/10.4269/ajtmh.1938.s1-18.169
  • Fava NMN, Cury MC, Santos HA, Takeuchi-Storm N, Strube C, Zhu XQ, et al. Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Vet Parasitol 2020; 282: 109133. http://dx.doi.org/10.1016/j.vetpar.2020.109133 PMid:32460110.
    » http://dx.doi.org/10.1016/j.vetpar.2020.109133
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39(4): 783-791. http://dx.doi.org/10.2307/2408678 PMid:28561359.
    » http://dx.doi.org/10.2307/2408678
  • Ferreira JIGS, Pena HFJ, Azevedo SS, Labruna MB, Gennari SM. Occurrences of gastrointestinal parasites in fecal samples from domestic dogs in São Paulo, SP, Brazil. Rev Bras Parasitol Vet 2016; 25(4): 435-440. http://dx.doi.org/10.1590/s1984-29612016081 PMid:27925072.
    » http://dx.doi.org/10.1590/s1984-29612016081
  • Idrissi H, Khatat SEH, Duchateau L, Kachani M, Daminet S, El Asatey S, et al. Prevalence, risk factors and zoonotic potential of intestinal parasites in dogs from four locations in Morocco. Vet Parasitol Reg Stud Rep 2022; 34: 100775. http://dx.doi.org/10.1016/j.vprsr.2022.100775 PMid:36041810.
    » http://dx.doi.org/10.1016/j.vprsr.2022.100775
  • Jacobs DE, Zhu X, Gasser RB, Chilton NB. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat. Acta Trop 1997; 68(2): 191-200. http://dx.doi.org/10.1016/S0001-706X(97)00093-4 PMid:9386794.
    » http://dx.doi.org/10.1016/S0001-706X(97)00093-4
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16(2): 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489.
    » http://dx.doi.org/10.1007/BF01731581
  • Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29(13): 2912-2917. http://dx.doi.org/10.1002/elps.200700752 PMid:18546167.
    » http://dx.doi.org/10.1002/elps.200700752
  • Lima ND, Raimundo DC, Souza VAF, Aguiar JM. Occurrence of gastrointestinal parasites in dogs and cats domiciliated in Santos, SP, Brazil. Rev Bras Parasitol Vet 2021; 30(4): e011721. http://dx.doi.org/10.1590/s1984-29612021080
    » http://dx.doi.org/10.1590/s1984-29612021080
  • Mikaeili F, Mirhendi H, Mohebali M, Hosseini M, Sharbatkhori M, Zarei Z, et al. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran. J Helminthol 2015; 89(4): 496-501. http://dx.doi.org/10.1017/S0022149X14000133 PMid:24717402.
    » http://dx.doi.org/10.1017/S0022149X14000133
  • Nagy A, Ziadinov I, Schweiger A, Schnyder M, Deplazes P. Hair coat contamination with zoonotic helminth eggs of farm and pet dogs and foxes. Berl Munch Tierarztl Wochenschr 2011; 124(11-12): 503-511. PMid:22191172.
  • Neves LB, Teixeira PE, Silva S, de Oliveira FB, Garcia DD, de Almeida FB, et al. First molecular identification of Echinococcus vogeli and Echinococcus granulosus (sensu stricto) G1 revealed in feces of domestic dogs (Canis familiaris) from Acre, Brazil. Parasit Vectors 2017; 10(1): 28. http://dx.doi.org/10.1186/s13071-016-1952-0 PMid:28088247.
    » http://dx.doi.org/10.1186/s13071-016-1952-0
  • Nisa RU, Tantray AY, Shah AA. Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114(2): 110295. http://dx.doi.org/10.1016/j.ygeno.2022.110295 PMid:35134496.
    » http://dx.doi.org/10.1016/j.ygeno.2022.110295
  • Öge H, Öge S, Özbakiş-Beceriklisoy G. Detection and identification of Toxocara canis in infected dogs using PCR. Helminthologia 2019; 56(2): 118-123. http://dx.doi.org/10.2478/helm-2019-0008 PMid:31662682.
    » http://dx.doi.org/10.2478/helm-2019-0008
  • Oliveira FB, Correia TPD, Neves LB, Teixeira PEF, Moreira JC, Souza LS, et al. Spurious infection by Calodium hepaticum (Bancroft, 1983) Moravec, 1982 and intestinal parasites in forest reserve dwellers in Western Brazilian Amazon. Rev Inst Med Trop S Paulo 2022; 64: e2. https://doi.org/10.1590/S1678-9946202264002
    » https://doi.org/10.1590/S1678-9946202264002
  • Oliveira-Arbex AP, David EB, Oliveira-Sequeira TCG, Katagiri S, Coradi ST, Guimarães S. Molecular identification of Ancylostoma species from dogs and an assessment of zoonotic risk in low-income households, São Paulo State, Brazil. J Helminthol 2017; 91(1): 14-19. http://dx.doi.org/10.1017/S0022149X15001145 PMid:26752269.
    » http://dx.doi.org/10.1017/S0022149X15001145
  • Ramos NV, Silva MLE, Barreto MS, Barros LA, Mendes-de-Almeida F. Endoparasites of household and shelter cats in the city of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e012819. http://dx.doi.org/10.1590/s1984-29612019110 PMid:32294719.
    » http://dx.doi.org/10.1590/s1984-29612019110
  • Rodrigues-Silva R, Lanfredi RM, Vicente JJ, Pinto R, Gomes DC. On the rugose area and caudal papillae distribution in Dirofilaria immitis (Leidy, 1856) Railliet & Henry, 1911, by scanning electron microscopy. Parasitol Res 1999; 85(10): 867-869. http://dx.doi.org/10.1007/s004360050648 PMid:10494817.
    » http://dx.doi.org/10.1007/s004360050648
  • Sager H, Moret CS, Grimm F, Deplazes P, Doherr MG, Gottstein B. Coprological study on intestinal helminths in Swiss dogs: temporal aspects of anthelminthic treatment. Parasitol Res 2006; 98(4): 333-338. http://dx.doi.org/10.1007/s00436-005-0093-8 PMid:16374614.
    » http://dx.doi.org/10.1007/s00436-005-0093-8
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406-425. http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454 PMid:3447015.
    » http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454
  • Salb AL, Barkema HW, Elkin BT, Thompson RCA, Whiteside DP, Black SR, et al. Dogs as sources and sentinels of parasites in humans and wildlife, northern Canada. Emerg Infect Dis 2008; 14(1): 60-63. http://dx.doi.org/10.3201/eid1401.071113 PMid:18258078.
    » http://dx.doi.org/10.3201/eid1401.071113
  • Sato MO, Sato M, Yoonuan T, Pongvongsa T, Sanguankiat S, Kounnavong S, et al. The role of domestic dogs in the transmission of zoonotic helminthes in a rural area of Mekong river basin. Acta Parasitol 2017; 62(2): 393-400. http://dx.doi.org/10.1515/ap-2017-0047 PMid:28426425.
    » http://dx.doi.org/10.1515/ap-2017-0047
  • Sharma R, Singh BB, Gill JPS. Larva migrans in India: veterinary and public health perspectives. J Parasit Dis 2015; 39(4): 604-612. http://dx.doi.org/10.1007/s12639-013-0402-6 PMid:26688621.
    » http://dx.doi.org/10.1007/s12639-013-0402-6
  • Silva GS, Ferreira FC, Romera DM, Soares VE, Bonuti MR. Larva migrans in Votuporanga, São Paulo, Brazil: where does the danger hide? Rev Bras Parasitol Vet 2020; 29(3): e004920. http://dx.doi.org/10.1590/s1984-29612020075 PMid:33027423.
    » http://dx.doi.org/10.1590/s1984-29612020075
  • Silva SKSM, Cassano CR, Sousa SD, Campos-Júnior DA, Catenacci LS. The importance of the dog (Canis lupus familiaris) in cocoa farms as carriers of helminths potentially transmissible to humans and wildlife in the Southern Bahia, Brazil. Pesq Vet Bras 2022; 42: e06940. http://dx.doi.org/10.1590/1678-5150-pvb-6940
    » http://dx.doi.org/10.1590/1678-5150-pvb-6940
  • Souza CTV, Dorr AP, Silva VLB, Silva FL, Silva EB, Ramos DGS, et al. Occurrence of gastrointestinal parasites in dogs from Cuiabá, Mato Grosso. Rev Bras Parasitol Vet 2023; 32(1): e012422. http://dx.doi.org/10.1590/s1984-29612023004 PMid:36651423.
    » http://dx.doi.org/10.1590/s1984-29612023004
  • Sukupayo PR, Tamang S. Prevalence of zoonotic gastrointestinal helminth parasite among dogs in Suryabinayak, Nepal. Vet Med Int 2023; 2023: 3624593. http://dx.doi.org/10.1155/2023/3624593 PMid:37287959.
    » http://dx.doi.org/10.1155/2023/3624593
  • Széll Z, Sréter-Lancz Z, Sréter T. Evaluation of faecal flotation methods followed by species-specific PCR for detection of Echinococcus multilocularis in the definitive hosts. Acta Parasitol 2014; 59(2): 331-336. http://dx.doi.org/10.2478/s11686-014-0248-9 PMid:24827107.
    » http://dx.doi.org/10.2478/s11686-014-0248-9
  • Tamura K, Stecher G, Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38(7): 3022-3027. http://dx.doi.org/10.1093/molbev/msab120 PMid:33892491.
    » http://dx.doi.org/10.1093/molbev/msab120
  • Torres-Chablé OM, García-Herrera RA, Hernández-Hernández M, Peralta-Torres JA, Ojeda-Robertos NF, Blitvich BJ, et al. Prevalence of gastrointestinal parasites in domestic dogs in Tabasco, southeastern Mexico. Rev Bras Parasitol Vet 2015; 24(4): 432-437. http://dx.doi.org/10.1590/S1984-29612015077 PMid:26648011.
    » http://dx.doi.org/10.1590/S1984-29612015077
  • Traversa D. Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like Trichuris vulpis? Parasit Vectors 2011; 4(1): 32. http://dx.doi.org/10.1186/1756-3305-4-32 PMid:21385441.
    » http://dx.doi.org/10.1186/1756-3305-4-32
  • Ugalde JM, Sakamoto CAM, Cunha NC, Barros LA. Parasitological diagnosis of fecal samples from domestic dogs from the municipality of Niterói, Rio de Janeiro, Brazil. Arq Bras Med Vet Zootec 2023; 75(1): 35-40. http://dx.doi.org/10.1590/1678-4162-12732
    » http://dx.doi.org/10.1590/1678-4162-12732
  • van Kesteren F, Piggott KJ, Bengui T, Kubri SB, Mastin A, Sillero-Zubiri C, et al. Helminth parasites in the endangered Ethiopian wolf, Canis simensis. J Helminthol 2015; 89(4): 487-495. http://dx.doi.org/10.1017/S0022149X14000534 PMid:25007150.
    » http://dx.doi.org/10.1017/S0022149X14000534
  • Venkatesan T, Panda R, Kumari A, Nehra AK, Ram H, Pateer DP, et al. Genetic and population diversity of Toxocara cati (Schrank, 1788) Brumpt, 1927, on the basis of the internal transcribed spacer (ITS) region. Parasitol Res 2022; 121(12): 3477-3493. http://dx.doi.org/10.1007/s00436-022-07671-9 PMid:36222955.
    » http://dx.doi.org/10.1007/s00436-022-07671-9
  • Villeneuve A, Polley L, Jenkins E, Schurer J, Gilleard J, Kutz S, et al. Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces. Parasit Vectors 2015; 8(1): 281. http://dx.doi.org/10.1186/s13071-015-0870-x PMid:26013283.
    » http://dx.doi.org/10.1186/s13071-015-0870-x
  • Wickramasinghe S, Yatawara L, Rajapakse RPVJ, Agatsuma T. Toxocara canis and Toxocara vitulorum: molecular characterization, discrimination, and phylogenetic analysis based on mitochondrial (ATP synthase subunit 6 and 12S) and nuclear ribosomal (ITS-2 and 28S) genes. Parasitol Res 2009; 104(6): 1425-1430. http://dx.doi.org/10.1007/s00436-009-1345-9 PMid:19221796.
    » http://dx.doi.org/10.1007/s00436-009-1345-9
  • Winck GR, Raimundo RLG, Fernandes-Ferreira H, Bueno MG, D’Andrea PS, Rocha FL, et al. Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. Sci Adv 2022; 8(26): eabo5774. http://dx.doi.org/10.1126/sciadv.abo5774 PMid:35767624.
    » http://dx.doi.org/10.1126/sciadv.abo5774
  • Woodland WNF. On the life-cycle of Hymenolepis fraterna (H. nana var. fraterna Stiles) of the white mouse. Parasitology 1924; 16(1): 69-83. http://dx.doi.org/10.1017/S0031182000019892
    » http://dx.doi.org/10.1017/S0031182000019892
  • Yamamoto N, Morishima Y, Kon M, Yamaguchi M, Tanno S, Koyama M, et al. The first reported case of a dog infected with Echinococcus multilocularis in Saitama prefecture, Japan. Jpn J Infect Dis 2006; 59(5): 351-352. PMid:17060711.
  • Yu SH, Wang H, Wu XH, Ma X, Liu PY, Liu YF, et al. Cystic and alveolar echinococcosis: an epidemiological survey in a Tibetan population in southeast Qinghai, China. Jpn J Infect Dis 2008; 61(3): 242-246. http://dx.doi.org/10.7883/yoken.JJID.2008.242 PMid:18503183.
    » http://dx.doi.org/10.7883/yoken.JJID.2008.242
  • Ziam H, Kelanemer R, Belala R, Medrouh B, Khater HF, Djerbal M, et al. Prevalence and risk factors associated with gastrointestinal parasites of pet dogs in North-Central Algeria. Comp Immunol Microbiol Infect Dis 2022; 86: 101817. http://dx.doi.org/10.1016/j.cimid.2022.101817 PMid:35490504.
    » http://dx.doi.org/10.1016/j.cimid.2022.101817

Publication Dates

  • Publication in this collection
    04 Dec 2023
  • Date of issue
    2023

History

  • Received
    10 Aug 2023
  • Accepted
    27 Oct 2023
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br