Acessibilidade / Reportar erro

Bioactive compounds from the parasitic plant Arceuthobium vaginatum inhibit Haemonchus contortus egg hatching

Compostos bioativos da planta parasita Arceuthobium vaginatum inibem a eclosão dos ovos de Haemonchus contortus

Abstract

The aim of this study was to assess the in vitro ovicidal activity of an ethyl acetate extract from Arceuthobium vaginatum (EtOAc-E) and their subfractions (AvR5-AvR14) against Haemonchus contortus using the egg hatching inhibition (EHI) test. The EtOAc-E and subfractions were tested at 0.12-2.00 and at 0.015-2.0 mg/mL, respectively. Distilled water and methanol (2%) were used as negative controls and Thiabendazole (0.10 mg/mL) as a positive control. Treatments with a dependent effect on concentration were subjected to regression analysis to determine the effective concentrations (EC50 and EC90). The major secondary compounds present in the extract and subfractions were identified by high performance liquid chromatography (HPLC). The EtOAc-E and AvR9 exhibited the best ovicidal effect recording 97.5 and 100% of EHI at 0.25 mg/mL, respectively. The EtOAc-E and AvR9 displayed an EC50= 0.12 and 0.08 mg/mL, respectively. The HPLC analysis in the EtOAc-E and bioactive fractions indicated the presence of a polyphenol, glycosylated flavanones, quercetin glucoside, cinnamates, coumarin, cinnamic acid derivative, ferulic acid, coumarate, naringenin, protocatechuic acid and naringin. Results demonstrated that A. vaginatum extract and fraction is able to inhibit the egg hatch process of H. contortus and could be a viable option for the control of small ruminant haemonchosis.

Keywords:
Arceuthobium; anthelmintic activity; polyphenols; Haemonchus; organic extract

Resumo

O objetivo deste estudo foi avaliar a atividade ovicida in vitro de um extrato de acetato de etila de Arceuthobium vaginatum (EtOAc-E) e suas subfrações (AvR5-AvR14) contra Haemonchus contortus, utilizando-se o teste de inibição da eclosão de ovos (EHI). O extrato foi testado em 0.12-2.00 mg/mL, e as subfrações foram testadas em 0.15-2.0 mg/mL. Água destilada e metanol (2%) foram utilizados como controles negativos e Tiabendazol (0.10 mg/mL) como controle positivo. Os tratamentos com efeito concentração dependente foram submetidos à análise de regressão para determinação das concentrações efetivas (CE50 e CE90). Os principais compostos secundários, presentes no extrato e nas subfrações, foram identificados por cromatografia líquida de alta eficiência (HPLC). EtOAc-E e subfração AvR9 exibiram o melhor efeito ovicida, registrando-se 97.5 e 100% do EHI a 0.25 mg/mL, respectivamente. O EtOAc-E e AvR9 apresentaram CE50= 0,12 e 0,08 mg/mL, respectivamente. A análise por HPLC nas frações EtOAc-E e bioativas indicou a presença de um polifenol, flavanonas glicosiladas, glicosídeo de quercetina, cinamatos, cumarina, derivado de ácido cinâmico, ácido ferúlico, cumarato, naringenina, ácido protocatecuico e naringina. Os resultados demonstraram que extrato e frações de A. vaginatum são capazes de inibir o processo de eclosão dos ovos de H. contortus, podendo ser uma opção viável para o controle da hemoncose em pequenos ruminantes.

Palavras-chave:
Arceuthobium; atividade anti-helmíntica; polifenóis; Haemonchus; extrato orgânico

Introduction

Small ruminant nematodiasis is one of the major diseases that affecting the productivity of farms under grazing conditions causing economic losses (Zajac & Garza, 2020Zajac AM, Garza J. Biology, epidemiology, and control of gastrointestinal nematodes of small ruminants. Vet Clin North Am Food Anim Pract 2020; 36(1): 73-87. http://dx.doi.org/10.1016/j.cvfa.2019.12.005. PMid:32029190.
http://dx.doi.org/10.1016/j.cvfa.2019.12...
). Haemonchus contortus is a gastrointestinal nematode (GIN) considered one of the most pathogenic parasites due to its hematophagous habit and its high prevalence in sheep and goats (Kuiseu et al., 2021Kuiseu J, Zinsou FTA, Olounlade PA, Alowanou GG, Adenile AD, Dansou CC, et al. Prevalence, effects and alternative control methods of Haemonchus contortus in small ruminants: a review. J Vet Med Anim Health 2021; 13(2): 84-97. http://dx.doi.org/10.5897/JVMAH2020.0868.
http://dx.doi.org/10.5897/JVMAH2020.0868...
). The main approach for controlling the GIN including H. contortus is through chemical drugs and their irrational use has trigged an anthelmintic resistance problem worldwide (Herrera-Manzanilla et al., 2017Herrera-Manzanilla FA, Ojeda-Robertos NF, González-Garduño R, Cámara-Sarmiento R, Torres-Acosta JFJ. Gastrointestinal nematode populations with multiple anthelmintic resistance in sheep farms from the hot humid tropics of Mexico. Vet Parasitol Reg Stud Rep 2017; 9: 29-33. http://dx.doi.org/10.1016/j.vprsr.2017.04.007. PMid:31014838.
http://dx.doi.org/10.1016/j.vprsr.2017.0...
; Baudinette et al., 2022Baudinette E, O’Handley R, Trengove C. Anthelmintic resistance of gastrointestinal nematodes in goats: a systematic review and meta-analysis. Vet Parasitol 2022; 312: 109809. http://dx.doi.org/10.1016/j.vetpar.2022.109809. PMid:36395622.
http://dx.doi.org/10.1016/j.vetpar.2022....
). In this sense, several research works using the integral management for control of GIN like grazing rotation, selection of animals resistant to GIN (Colvin et al., 2021Colvin AF, Reeve I, Thompson LJ, Kahn LP, Besier RB, Walkden-Brown SW. Benchmarking Australian sheep parasite control: changes in gastrointestinal nematode control practices reported from surveys between 2003 and 2019. Vet Parasitol Reg Stud Rep 2021; 26: 100653. http://dx.doi.org/10.1016/j.vprsr.2021.100653. PMid:34879963.
http://dx.doi.org/10.1016/j.vprsr.2021.1...
), use of diets rich in protein and energy (Can-Celis et al., 2022Can-Celis A, Torres-Acosta JFJ, Mancilla-Montelongo MG, González-Pech PG, Ramos-Bruno E, Sandoval-Castro CA, et al. Effect of three feeding levels on the pathogenesis and establishment of Haemonchus contortus in parasite-naïve Pelibuey hair sheep lambs during their first infection. Vet Parasitol 2022; 311: 109811. http://dx.doi.org/10.1016/j.vetpar.2022.109811. PMid:36240521.
http://dx.doi.org/10.1016/j.vetpar.2022....
), biological control using nematophagous fungi (Mendoza-de Gives et al., 2022Mendoza-de Gives P, Braga RF, Araújo JV. Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocontrol Sci Technol 2022; 32(7): 777-793. http://dx.doi.org/10.1080/09583157.2022.2028725.
http://dx.doi.org/10.1080/09583157.2022....
) and plant extracts with high content of secondary metabolites have been proposed (Jayawardene et al., 2021Jayawardene KLTD, Palombo EA, Boag PR. Natural products are a promising source for anthelmintic drug discovery. Biomolecules 2021; 11(10): 1457. http://dx.doi.org/10.3390/biom11101457. PMid:34680090.
http://dx.doi.org/10.3390/biom11101457...
). A number of in vitro studies with extracts of several family plants have demonstrated an important anthelmintic effect on GIN including to H. contortus (Alowanou et al., 2019Alowanou GG, Olounladé PA, Akouèdegni GC, Faihun AML, Koudandé DO, Hounzangbé-Adoté S. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants. Parasitol Res 2019; 118(4): 1215-1223. http://dx.doi.org/10.1007/s00436-019-06262-5. PMid:30848351.
http://dx.doi.org/10.1007/s00436-019-062...
; Davuluri et al., 2020Davuluri T, Chennuru S, Pathipati M, Krovvidi S, Rao GS. In vitro anthelmintic activity of three tropical plant extracts on Haemonchus contortus. Acta Parasitol 2020; 65(1): 11-18. http://dx.doi.org/10.2478/s11686-019-00116-x. PMid:31552583.
http://dx.doi.org/10.2478/s11686-019-001...
; López-Rodríguez et al., 2022López-Rodríguez G, Rivero-Perez N, Olmedo-Juárez A, Valladares-Carranza B, Rosenfeld-Miranda C, Hori-Oshima S, et al. Efecto del extracto hidroalcohólico de hojas de Leucaena leucocephala sobre la eclosión de Haemonchus contortus in vitro. Abanico Vet 2022; 12: e2021-e2054. http://dx.doi.org/10.21929/abavet2022.8.
http://dx.doi.org/10.21929/abavet2022.8...
). Arceuthobium vaginatum (Santalaceae) is a parasitic plant, which is widespread in Mexican and Canadian pine trees (Hawksworth et al., 2002Hawksworth FG, Wiens D, Muir JA, Shamoun SF, DeWald LE, Collazo IV. Mistletoes of North American conifers: general technical report of the Rocky Mountain Research Station: GTR-98 [USDA]. Ogden, UT: U.S. Department of Agriculture, Forest Service; 2002.; Queijeiro-Bolaños et al., 2013Queijeiro-Bolaños ME, Cano-Santana Z, Castellanos-Vargas I. Does disturbance determines the prevalence of dwarf mistletoe (Arceuthobium, Santalales: Viscaceae) in Central Mexico? Rev Chil Hist Nat 2013; 86(2): 181-190. http://dx.doi.org/10.4067/S0716-078X2013000200007.
http://dx.doi.org/10.4067/S0716-078X2013...
). There are some practices for controlling this parasitic plant such as chemical control and the pruning (Sotero-García et al., 2018Sotero-García AI, Arteaga-Reyes TT, Martínez-Campos AR, Galicia L. Efecto de las podas sobre Arceuthobium spp. en bosques densos y semidensos de Pinus hartwegii (Lindl.). Madera Bosques 2018; 24(2): 1-9. http://dx.doi.org/10.21829/myb.2018.2421582.
http://dx.doi.org/10.21829/myb.2018.2421...
). Some farmers located in the Flora and Fauna Protection Area of “Nevado de Toluca”, Mexico use this plant as an unconventional feed for sheep (Hernández Luna et al., 2017Hernández Luna GB, Endara Agramont AR, González Ronquillo M. MartínezHernández J, Vilmar Kozloski G, Estrada Flores JG. La utilización de muérdago enano (Arceuthobium globosum) como forraje en la alimentación de rumiantes. In: Brunett Pérez L, Gómez Demetrio W, Gutiérrez Castillo AC, Salgado Siclán ML, Jaimes-Arriaga E, editors. Sustentabilidad agropecuaria: experiencias de investigación para el desarrollo agropecuario, forestal y rural. Ciudad de México: Universidad Autónoma del Estado de México; 2017. p. 49-60.). Likewise, this vegetal species is used in Mexican traditional medicine for throat lung pain and rheumatism (UNAM, 2023Universidad Nacional Autónoma de México – UNAM. Biblioteca Digital de la Medicina Tradicional Mexicana. Atlas de las Plantas de la Medicina Tradicional Mexicana [online]. México; 2023 [cited 2023 Mar 23]. Available from: www.medicinatradicionalmexicana.unam.mx/apmtm/index.html
www.medicinatradicionalmexicana.unam.mx/...
). The chemical composition of A. vaginatum has not been described; however, some Arceuthobium genera like A. oxycedri and A. americanum contain phenolic compounds, which have shown antibacterial and antifungal effects (Zaidi et al., 2006Zaidi MA, Huda A, Crow SA. Pharmacological Screening of Arceuthobium oxycedri (Dwarf Mistletoe) of Juniper Forest of Pakistan. Online J Biol Sci 2006; 6(2): 67-70. http://dx.doi.org/10.3844/ojbsci.2006.67.70.
http://dx.doi.org/10.3844/ojbsci.2006.67...
; 2008Zaidi M, Huda A, Crow S. Biological activity and elemental composition of Arceuthobium oxycedri (Dwarf Mistletoe) of juniper forest of Pakistan. Acta Bot Hung 2008; 50(1-2): 223-230. http://dx.doi.org/10.1556/ABot.50.2008.1-2.17.
http://dx.doi.org/10.1556/ABot.50.2008.1...
; Pernitsky et al., 2011Pernitsky KY, Mason QD, Cinel B, Friedman CMR. Discovery and partial purification of an antibiotic from lodgepole pine dwarf mistletoe (Arceuthobium americanum) active against Gram-positive organisms including Methicillin-resistant Staphylococcus aureus (MRSA). J Med Plants Res 2011; 5(9): 1722-1727.). Thus, the objective of the present study was to assess the ovicidal effect of an acetate ethyl extract and its fractions from A. vaginatum against H. contortus under in vitro conditions.

Material and Methods

Vegetal material

Arceuthobium vaginatum samples were harvested at the Flora and Fauna Protection Area of Nevado de Toluca, located in the central and volcanic axis of Mexico State (19°07´07´´ N, 099°46´53” W). One hundred twenty-one trees infested with the parasitic plant were considered as representative samples, which 50 samples were collected in June-August 2021. The mistletoe sample was identified using taxonomic keys available in specialized literature (Hawksworth & Wiens, 1972Hawksworth FG, Wiens D. Biology and classification of dwarf mistletoes (Arceuthobium). Washington: Forest Service Departament of Agiculture; 1972.; Rzedowski et al., 2005Rzedowski GC, Rzedowski J, Acosta-Castellanos S, Aguilar-Rodríguez S, Lerner de Scheinvar LA, Andrade-Malfavon JE, et al. Flora fanerogámica del Valle de México. 2nd ed. Pátzcuaro: Instituto de Ecología, A.C., Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 2005.) at the facilities of the Instituto de Ciencias Agropecuarias y Rurales of the Universidad Autónoma del Estado de México. It has also been reported that in the Flora and Fauna Protection Area of Nevado de Toluca only the specie A. vaginatum subsp. vaginatum is distributed (Endara-Agramont et al., 2022Endara-Agramont AR, Heredia-Bobadilla RL, García-Almaraz LA, Luna-Gil AA, Franco-Maass S, Cibrián-Llanderal VD. Factores asociados con la distribución espacial de muérdagos enanos en dos poblaciones de Pinus hartwegii del centro de México. Rev Mex Biodivers 2022; 93: e935008. http://dx.doi.org/10.22201/ib.20078706e.2022.93.5008.
http://dx.doi.org/10.22201/ib.20078706e....
). The vegetal material was dehydrated at 35 °C in a botanical dryer for 72 h. Then, the dried plant was ground in a Willey mill to reduce the size particle to 1 mm.

Obtaining the ethyl acetate extract and subfractions

A representative sample of A. vaginatum (2.5 kg) was macerated using 5,000 mL of ethyl acetate at room temperature (25-30 °C) for 24 h. The liquid extract was filtered using different sieves (gauze, cotton and Whatman® 4 filter paper). The liquid ethyl acetate extract (EtOAc-E) was concentrated by distillation under reduced pressure using a rotary evaporator (Buchi R-210, Flawil, Switzerland). Solvent traces were eliminated through a Freeze dryer (Labconco 4.5), resulting in a dark violet solid extract. A part of EtOAc-E (25.3 g) was adsorbed in silica gel (41.8 g normal phase, Merck, Darmstadt, Germany), applied to a glass column with silica gel (4.5 x 65 cm) and eluted with hexane/ethyl acetate with 10% ascendant polarity, collecting 36 fractions of 200 mL each. These fractions were concentrated in a rotary evaporator under the same conditions previously described and grouped according to their similarity by thin layer chromatography (TLC) into 14 subfractions (AvR1-AvR14). The high yielding subfractions (AvR5, AvR7, AvR9, AvR11, AvR13 and AvR14) were considered for their anthelmintic evaluation.

Identification of major compounds

The EtOAc-E and subfractions were subjected to chemical analysis by high performance liquid chromatography (HPLC) using a Waters 2695 separation module system equipped with a Waters 996 photodiode array detector and Empower Pro software (Water Corporation, USA). Chemical separation was achieved using a Supelcosil LC-F reverse phase column (250 mm x 4.6 mm i.d., 5 µm particle size, Sigma-Aldrich, Bellefonte, USA). The mobile phase consisted of 0.5% trifluoroacetic acid aqueous solution (Solvent A) and acetonitrile (Solvent B). The gradient system was as follows: 0-1 min 0% B; 2-3 min, 5% B; 4-20 min, 30% B; 21-23 min 50% B; 24-25 min, 80% B; 26-27 min, 100% B; 28-30 min, 0% B. The flow rate was maintained at 0.9 mL/min, and the sample injection volume was 10 µL. Absorbance was measured at 330 nm. The identification of compounds was performed based on a direct comparison of the retention times and UV spectra with the reference standards (Zarza-Albarrán et al., 2020Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, et al. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J Ethnopharmacol 2020; 249: 112402. http://dx.doi.org/10.1016/j.jep.2019.112402. PMid:31739102.
http://dx.doi.org/10.1016/j.jep.2019.112...
).

Collection of Haemonchus contortus eggs

The H. contortus eggs were obtained from an egg-donor lamb (20 kg of bodyweight) previously infected with 7,000 H. contortus L3 (INIFAP-HcIVMr-SAI strain, Mexico). This isolate was obtained from a naturally infected grazing sheep from a tropical region in the Salto de Agua municipality, Chiapas, Mexico (González-Garduño et al., 2012González-Garduño R, Torres-Hernández G, López-Arellano ME, Mendoza-de-Gives P. Resistencia antihelmíntica de nematodos parásitos en ovinos. Rev Geogr Agric 2012; 48-49: 63-74.; Reyes-Guerrero et al., 2023Reyes-Guerrero DE, Jiménez-Jacinto V, Alonso-Morales RA, Alonso-Díaz MA, Maza-Lopez J, Camas-Pereyra R, et al. Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of ivermectin resistance mechanisms. Pathogens 2023; 12(3): 499. http://dx.doi.org/10.3390/pathogens12030499. PMid:36986421.
http://dx.doi.org/10.3390/pathogens12030...
). The lamb was housed indoors on a metabolic floor, feed hay and commercial concentrate and had free access to water. The animal was housed following the care/welfare guidelines of the Mexican Official Rule NOM-051-ZOO-1995 (México, 1999México. Secretaría de Agricultura y Desarrollo Rural – Sagarpa. Norma Oficial Mexicana NOM-062-ZOO-1999: especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación [online], México, 22 ago. 1999 [cited 2023 Mar 29]. Available from: https://www.gob.mx/senasica/documentos/nom-062-zoo-1999?state=published
https://www.gob.mx/senasica/documentos/n...
). Egg recovery was performed according to the technique described by Coles et al. (1992)Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 1992; 44(1-2): 35-44. http://dx.doi.org/10.1016/0304-4017(92)90141-U. PMid:1441190.
http://dx.doi.org/10.1016/0304-4017(92)9...
with minor modifications. Briefly, 50-60 g of faeces were collected directly from the rectum of the animal. The faecal material was macerated with clean water in a mortar and was deposited in Falcon tubes (30 mL faecal solution) to which saline solution (25 mL) was added. The tubes were centrifuged at 3,500 rpm for 5 min and the supernatants were recovered and rinsed with clean water on two sieves of 75 and 32 µm. The H. contortus eggs retained in the 32 µm sieve were recovered in a Falcon tube (12 mL) and rinsed three times by centrifugation (3,500 rpm for 3 min) using distilled water. Finally, the H. contortus eggs concentration was estimated by counting the number of eggs in ten 5-µL aliquots using an optical microscope until reach a quantity of 100 ± 10 H. contortus eggs in 50 µL.

Egg hatching inhibition (EHI) test

The bioassays were performed in 96-well microtitration plates, and for each treatment four repetitions were performed (n=12). The treatments were assigned as follows: ethyl acetate extract (EtOAc-E at 0.12, 0.25, 0.50, 1.00 and 2.00 mg/mL final concentration), subfractions (AvR5, AvR7, AvR9, AvR11, AvR13 and AvR14) at 0.25, 0.50, 1.00 and 2.00 mg/mL final concentration. The subfraction with the best ovicidal activity (AvR9) was tested at 0.015-2.00 mg/mL. Additionally, distilled water and 2% methanol (to solubilized the extract and subfractions) were used as negative controls and Thiabendazole (0.1 mg/mL) as a positive control. An aqueous suspension of 50 µL containing 100 ± 10 H. contortus eggs was deposited in each well. Then, 50 µL of treatments were deposited in each well. The plates were incubated at room temperature (25-30 °C) for 48 h. Following incubation, the total eggs or larvae (L1 and L2) of each well were counted under an optical microscope at 10x. The EHI percentage for each treatment was determined according to the following Formula 1:

% E H I = n u m b e r o f e g g s / n u m b e r o f l a r v a e + n u m b e r e g g s × 100 (1)

Statistical analysis

The EHI percentages were analysed based on a completely randomised design using ANOVA through a general linear model with the following statistical model: Yij = μ + Ti + ξij; where Yij= response variable (EHI%), μ= general mean and ξij=error. The differences among treatments were compared with a Tukey’s test (P < 0.05). The concentration-effect dependent treatments were subjected to regression analysis to determine the effective concentrations (EC50 and EC90), using the Proc Probit analysis in SAS 9.0 (SAS Institute, 2006SAS Institute. SAS user’s guide: statistics. Version 9.0. Cary: SAS; 2006.).

Results

HPLC analysis of the chemical constituents of the ethyl acetate extract and fractions

The HPLC chromatograms of the EtOAc-E and its subfractions are shown in Figure 1. According to retention times (Rt) and the UV absorption spectra (λmax), the identified compounds in the EtOAc-E were a polyphenol (Rt= 8.81 min, λmax = 191.1, 229.8 and 360.6 nm), two glycosylated flavanones (Rt= 9.09, λmax = 206.3, 287.6 and 343.4 nm; Rt= 9.41 min, λmax = 208.7, 288.8 and 427.1 nm) and quercetin glucoside (Rt= 9.78 min, λmax = 194.6, 256.9 and 355.3). The AvR5 showed the presence of cinnamates (Rt= 9.18, λmax= 221.6 and 285.2 nm; Rt= 29.1 min, λmax= 192.3 and 280.5 nm; Rt= 29.25 min; λmax= 198.2 and 280.5 nm), a coumarin (Rt= 9.43 min, λmax= 231.0, 279.3 and 310.1 nm) and a flavone (Rt= 28.61 min, λmax= 211.0, 254.5 and 304.2 nm). The major compounds identified in the AvR7 subfraction were cinnamic acid derivative (Rt= 9.17 min, λmax=223 and 284 nm) and ferulic acid (Rt= 10.38 min, λmax =233.3 and 325.5 nm). The best bioactive fraction (AvR9) showed the presence of a coumarate (Rt= 9.36 min, λmax= 192.3, 228.6 and 310.1 nm) and naringenin (Rt= 13.85 min, λmax= 213.4 and 289.9 nm). Regarding AvR11, protocatechuic acid (Rt= 8.36 min, λmax=214.5, 260.4 and 294.7 nm) and naringin (Rt= 9.47 min, λmax=213.4 and 288.8 nm) were observed.

Figure 1
HPLC analysis of Arceuthobium vaginatum showing egg-hatching inhibition of Haemonchus contortus eggs. EC = effective concentration.

Egg hatching inhibition (EHI) test

The H. contortus EHI percentages caused by EtOAc-E and subfractions, as well as their proper controls, are shown in Table 1. The EtOAc-E displayed an ovicidal effect greater than 90% from at 0.25 mg/mL concentration. The AvR9 subfraction displayed the best ovicidal activity (P<0.05), reaching a 96.10% EHI from 0.25 mg/mL. Subfractions AvR5, AvR7 and AvR11 showed an EHI greater than 80% at 2.00 mg/mL. Meanwhile, AvR13 and AVR14 recorded the lowest ovicidal effect in the range of 17.28-36.29% EHI.

Table 1
Haemonchus contortus egg hatching inhibition percentages (EHI%) of an ethyl acetate extract (EtOAc-E) and subfractions from Arceuthobium vaginatum.

Effective concentrations 50 and 90

The effective concentrations (EC) required to cause 50 and 90% egg-hatching inhibition of EtOAc-E and its subfractions are shown in Table 2. The EtOAc-E and AvR9 induced 50% inhibition at minimum concentration (EC50=0.12 and 0.088 mg/mL) compared with to other subfractions.

Table 2
Effective concentrations required to cause 50% and 90% of Haemonchus contortus egg hatching inhibition after 48 h exposure to an ethyl acetate extract and its bioactive fractions from Arceuthobium vaginatum.

Discussion

Egg hatching inhibition (EHI) test

The results obtained in the present study show that A. vaginatum EtOAc-E is able to inhibit the egg-hatching process of H. contortus. The chemical fractionation of the integrate extract allowed obtain some subfractions with important inhibition effects against this parasite. A number of studies, under in vitro and in vivo conditions using organic plant extracts with different polarity on nematodes have evidenced nematocidal effects (Morais-Costa et al., 2016Morais-Costa F, Bastos GA, Soares ACM, Costa EGL, Vasconcelos VO, Oliveira NJF, et al. In vitro and in vivo action of Piptadenia viridiflora (Kunth) Benth against Haemonchus contortus in sheep. Vet Parasitol 2016; 223: 43-49. http://dx.doi.org/10.1016/j.vetpar.2016.04.002. PMid:27198776.
http://dx.doi.org/10.1016/j.vetpar.2016....
; Mengistu et al., 2017Mengistu G, Hoste H, Karonen M, Salminen JP, Hendriks WH, Pellikaan WF. The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Vet Parasitol 2017; 237: 110-116. http://dx.doi.org/10.1016/j.vetpar.2016.12.020. PMid:28262394.
http://dx.doi.org/10.1016/j.vetpar.2016....
; Badar et al., 2021Badar SN, Iqbal Z, Sajid MS, Rizwan HM, Shareef M, Malik MA, et al. Comparative anthelmintic efficacy of Arundo donax, Areca catechu, and Ferula assa-foetida against Haemonchus contortus. Rev Bras Parasitol Vet 2021; 30(2): e001221. http://dx.doi.org/10.1590/s1984-29612021028. PMid:34076046.
http://dx.doi.org/10.1590/s1984-29612021...
; Hassan et al., 2021Hassan NMF, Zaghawa AA, Abu-Elezz NMT, Nayel MA, Salama AA. Efficacy of some Egyptian native plant extracts against Haemonchus contortus in vitro and in experimentally infected sheep along with the associated haematological and biochemical alterations. Bull Natl Res Cent 2021; 45(1): 180. http://dx.doi.org/10.1186/s42269-021-00636-5.
http://dx.doi.org/10.1186/s42269-021-006...
). The ability of solvents to extract secondary compound groups in several plant families (Fabaceae, Asteraceae, Bixaceae, Santalaceae, etc.) has been documented worldwide (Akkol et al., 2010Akkol EK, Orhan I, Kartal M, Yesilada E. Bioactivity guided evaluation of anti-inflammatory and antinociceptive activities of Arceuthobium oxycedri (D.C.) M. Bieb. J Ethnopharmacol 2010; 128(1): 79-84. http://dx.doi.org/10.1016/j.jep.2009.12.028. PMid:20038452.
http://dx.doi.org/10.1016/j.jep.2009.12....
; Zeb et al., 2017Zeb A, Ullah F, Ayaz M, Ahmad S, Sadiq A. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complement Altern Med 2017; 17(1): 284. http://dx.doi.org/10.1186/s12906-017-1798-9. PMid:28558679.
http://dx.doi.org/10.1186/s12906-017-179...
; Ondua et al., 2021Ondua M, Mfotie-Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res 2021; 120(10): 3437-3449. http://dx.doi.org/10.1007/s00436-021-07269-7. PMid:34424423.
http://dx.doi.org/10.1007/s00436-021-072...
). Studies have been conducted with extracts of intermediate polarity like acetonic or with ethyl acetate, which have demonstrated a potent ovicidal and larvicidal effect against gastrointestinal nematodes including H. contortus. For instance, Mhomga et al. (2022)Mhomga LI, Adamu M, Idika IK, Sakong BM, Marire BN, Nwosu CO. In vitro anthelmintic activities of three ethnomedicinal plant extracts against Haemonchus contortus. Span J Agric Res 2022; 20(3): e0504. http://dx.doi.org/10.5424/sjar/2022203-18708.
http://dx.doi.org/10.5424/sjar/2022203-1...
tested an acetonic extract from Cochlospermum planchonii (Bixaceae) on H. contortus eggs and reported an ovicidal effect of 100% at 0.31 mg/mL. These results were similar to the findings of our study with the A. vaginatum EtOAc-E. In another study with an EtOAc-E and two fractions from Ananas comosus (Bromeliaceae), an ovicidal effect close to 100% at 5 mg/mL on H. contortus eggs was recorded (Rodrigues et al., 2020Rodrigues CI, Costa DM, Santos ACV, Batatinha MJM, Souza FVD, de Souza EH, et al. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet Parasitol 2020; 285: 109219. http://dx.doi.org/10.1016/j.vetpar.2020.109219. PMid:32889401.
http://dx.doi.org/10.1016/j.vetpar.2020....
). In the present study, when the extract was fractionated, the subfraction AvR9 exhibited the same ovicidal effect at 0.25 mg/mL (Table 1).

Arceuthobium vaginatum is used in traditional medicine in Mexico to treat some respiratory and gastrointestinal diseases. According to the available literature and to our knowledge, there are no reports about this plant concerning anthelmintic properties. Thus, this will be the first report of the nematicidal activity of A. vaginatum against H. contortus. There are reports about some plants belonging to the Santalaceae family with anthelmintic effect. For instance, Payne et al. (2013)Payne SE, Kotze AC, Durmic Z, Vercoe PE. Australian plants show anthelmintic activity toward equine cyathostomins in vitro. Vet Parasitol 2013; 196(1-2): 153-160. http://dx.doi.org/10.1016/j.vetpar.2013.01.012. PMid:23394801.
http://dx.doi.org/10.1016/j.vetpar.2013....
found an important nematocidal effect of an aqueous extract from Santalum spicatum against cyathostomins, nematodes with a high prevalence in horses. In another study by Tibe et al. (2013)Tibe O, Sutherland IA, Lesperance L, Harding DRK. The effect of purified condensed tannins of forage plants from Botswana on the free-living stages of gastrointestinal nematode parasites of livestock. Vet Parasitol 2013; 197(1-2): 160-167. http://dx.doi.org/10.1016/j.vetpar.2013.07.004. PMid:23927915.
http://dx.doi.org/10.1016/j.vetpar.2013....
it was demonstrated that the ethyl acetate extract from Viscum rotundifolium inhibited the larval development of H. contortus at 100 µg/mL. In this same study, the authors did not found egg-hatching inhibition in this extract.

Analyzing the EC50 results of the present study, the AvR9 subfraction was 13.29, 10.34 and 1.36 more effective than the AvR7, AvR5 and AvR11 subfractions and the EtOAc-E. The A. vaginatum EtOAc-E was more active than those reported with an extract with the same polarity from Typha capensis (EC50= 0.12 vs 0.43 mg/mL) on H. contortus eggs (Ondua et al., 2021Ondua M, Mfotie-Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res 2021; 120(10): 3437-3449. http://dx.doi.org/10.1007/s00436-021-07269-7. PMid:34424423.
http://dx.doi.org/10.1007/s00436-021-072...
) and Ananas comosus (EC50= 0.45 mg/mL) (Rodrigues et al., 2020Rodrigues CI, Costa DM, Santos ACV, Batatinha MJM, Souza FVD, de Souza EH, et al. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet Parasitol 2020; 285: 109219. http://dx.doi.org/10.1016/j.vetpar.2020.109219. PMid:32889401.
http://dx.doi.org/10.1016/j.vetpar.2020....
). In our study, the concentration required to cause a 50% of ovicidal effect from A. vaginatum EtOAc extract was only 0.12 mg/mL (Table 2). These differences could be related to the family/species used, since the amount and type of bioactive compounds contained in A. comosus are different in comparison to A. vaginatum.

Major compounds identified by HPLC analysis

The chemical fractionation of A. vaginatum EtOAc extract allowed us to identify the hydroxycinnamic acid derivatives, coumarates and the flavonoid naringenin. According to the literature, this plant contains flavonoids such as quercetin-3-O-galactoside, myricetin-3-O-galactoside and quercetin-3-O-glycoside (Crawford & Hawksworth, 1979Crawford DJ, Hawksworth FG. Flavonoid chemistry of Arceuthobium (Viscaceae). Brittonia 1979; 31(2): 212-216. http://dx.doi.org/10.2307/2806177.
http://dx.doi.org/10.2307/2806177...
). In other mistletoe genus (Viscum spp.), flavonoids, alkaloids and saponins were identified (Hawu et al., 2022Hawu O, Ravhuhali KE, Musekwa MG, Sipango N, Mudau HS, Mokoboki KH, et al. Utilization of the Viscum species for diet and medicinal purposes in ruminants: a review. Animals 2022; 12(19): 2569. http://dx.doi.org/10.3390/ani12192569. PMid:36230309.
http://dx.doi.org/10.3390/ani12192569...
). Compounds belonging to hydroxycinnamic acid derivatives like coumaric acid, ferulic acid, caffeic acid and chlorogenic acid are phytochemicals present in the fruits and aerial pars of several plants, which are known to exert beneficial effects linked to their antioxidant and anthelmintic activity (Mancilla-Montelongo et al., 2019Mancilla-Montelongo G, Castañeda-Ramírez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argáez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019; 270: 25-30. http://dx.doi.org/10.1016/j.vetpar.2019.05.009. PMid:31213238.
http://dx.doi.org/10.1016/j.vetpar.2019....
; Ondua et al., 2021Ondua M, Mfotie-Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res 2021; 120(10): 3437-3449. http://dx.doi.org/10.1007/s00436-021-07269-7. PMid:34424423.
http://dx.doi.org/10.1007/s00436-021-072...
; Orzuna-Orzuna et al., 2023Orzuna-Orzuna JF, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA. Meta-analysis of hydroxycinnamic acids into finishing lambs’ diet: growth performance, antioxidant status, and meat quality. Small Rumin Res 2023; 223: 106963. http://dx.doi.org/10.1016/j.smallrumres.2023.106963.
http://dx.doi.org/10.1016/j.smallrumres....
). Some bioguided studies with plants rich in secondary metabolites have identified molecules like hydroxycinnamic acid and naringenin. For example, the coumaric acid has been isolated from A. comosus and was evaluated against H. contortus, demonstrating an important nematicidal effect (Rodrigues et al., 2020Rodrigues CI, Costa DM, Santos ACV, Batatinha MJM, Souza FVD, de Souza EH, et al. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet Parasitol 2020; 285: 109219. http://dx.doi.org/10.1016/j.vetpar.2020.109219. PMid:32889401.
http://dx.doi.org/10.1016/j.vetpar.2020....
). Thus, the ovicidal activity of AvR5 and AvR7 could be attributed to the hydroxycinnamic acid present in these fractions. Several reports assessing phenolic compounds in combined form have evidenced that they can enhance the anthelmintic effect (Klongsiriwet et al., 2015Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist 2015; 5(3): 127-134. http://dx.doi.org/10.1016/j.ijpddr.2015.06.001. PMid:26199861.
http://dx.doi.org/10.1016/j.ijpddr.2015....
; von Son-de Fernex et al., 2015von Son-de Fernex E, Alonso-Díaz MA, Mendoza-de Gives P, Valles-de la Mora B, González-Cortazar M, Zamilpa A, et al. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet Parasitol 2015; 214(1-2): 89-95. http://dx.doi.org/10.1016/j.vetpar.2015.10.005. PMid:26477279.
http://dx.doi.org/10.1016/j.vetpar.2015....
; Mendonça Soares et al., 2019Mendonça Soares S, Domingues R, Baldo Gaspar E, Santos PA, Canuto KM, Minho AP, et al. In vitro ovicidal effect of a Senecio brasiliensis extract and its fractions on Haemonchus contortus. BMC Vet Res 2019; 15(1): 99. http://dx.doi.org/10.1186/s12917-019-1843-7. PMid:30909906.
http://dx.doi.org/10.1186/s12917-019-184...
). Chlorogenic acid and chatequin have been reported in A. oxycedri, another mistletoe specie (Orhan et al., 2019Orhan IE, Akkol EK, Suntar I, Yesilada E. Assessment of anticholinesterase and antioxidant properties of the extracts and (+)-catechin obtained from Arceuthobium oxycedri (D.C.) M. Bieb (dwarf mistletoe). S Afr J Bot 2019; 120: 309-312. http://dx.doi.org/10.1016/j.sajb.2018.09.023.
http://dx.doi.org/10.1016/j.sajb.2018.09...
). Chlorogenic acid was isolated from Tagetes filiflora (Asteraceae) and showed 100% of EHI at 0.5 mg/mL against H. contortus (Jasso Díaz et al., 2017Jasso Díaz G, Torres Hernández G, Zamilpa A, Becerril Pérez CM, Ramírez Bribiesca JE, Mendo OH, et al. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae. Microb Pathog 2017; 109: 162-168. http://dx.doi.org/10.1016/j.micpath.2017.05.048. PMid:28578091.
http://dx.doi.org/10.1016/j.micpath.2017...
). Another phenolic acid like coumaric acid also showed ovicidal and larvicidal effects on this parasite (Castañeda-Ramírez et al., 2019Castañeda-Ramírez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argáez R, Cáceres-Farfán M, Mancilla-Montelongo G, et al. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet Parasitol 2019; 270: 13-19. http://dx.doi.org/10.1016/j.vetpar.2019.05.001. PMid:31213236.
http://dx.doi.org/10.1016/j.vetpar.2019....
; Mancilla-Montelongo et al., 2019Mancilla-Montelongo G, Castañeda-Ramírez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argáez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019; 270: 25-30. http://dx.doi.org/10.1016/j.vetpar.2019.05.009. PMid:31213238.
http://dx.doi.org/10.1016/j.vetpar.2019....
; Rodrigues et al., 2020Rodrigues CI, Costa DM, Santos ACV, Batatinha MJM, Souza FVD, de Souza EH, et al. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet Parasitol 2020; 285: 109219. http://dx.doi.org/10.1016/j.vetpar.2020.109219. PMid:32889401.
http://dx.doi.org/10.1016/j.vetpar.2020....
). In this regard, these chemical constituents present in A. vaginatum could be responsible for ovicidal activity. Another compound identified in the AvR9 subfraction was naringenin, which has been associated with an anthelmintic effect on H. contortus (Zarza-Albarrán et al., 2020Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, et al. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J Ethnopharmacol 2020; 249: 112402. http://dx.doi.org/10.1016/j.jep.2019.112402. PMid:31739102.
http://dx.doi.org/10.1016/j.jep.2019.112...
). The naringenin together with the coumarate present in the AvR9 subfraction might act in a synergic form on the H. contortus eggs.

On the other hand, the anthelmintic effect of some coumarins has been documented, i.e., von Son-de Fernex et al. (2017)von Son-de Fernex E, Alonso-Díaz MA, Valles-de la Mora B, Mendoza-de Gives P, González-Cortazar M, Zamilpa A. Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata. Exp Parasitol 2017; 178: 1-6. http://dx.doi.org/10.1016/j.exppara.2017.04.013. PMid:28483658.
http://dx.doi.org/10.1016/j.exppara.2017...
evaluated the coumarin 2H-chromen-2-one from Gliricidia sepium leaves (Fabaceae) on Cooperia punctata, a nematode of cattle and observed that this compound inhibited the egg hatching process. In our study, the presence of coumarins, cinnamates and flavones was observed in the AvR5 subfraction. These compounds present in this fraction could act in a synergic form on the eggshell of the parasite, which interrupts the development of the next stage. There is information about the possible mechanism of action of some phenolic compounds on the eggs or larvae of gastrointestinal nematodes. The anthelmintic activity of phenolic compounds could be associated with the enzymatic process of parasites; the exchange of these compounds with the H. contortus eggshell structures could provoke inhibition of the development of the eggs to the following stage (Rabbi et al., 2020Rabbi F, Zada A, Nisar A. Larvicidal, leishmanicidal, insecticidal and anthelmintic effects of Sterculia diversifolia stem bark and leaf. Bangladesh J Pharmacol 2020; 15(1): 32-38. http://dx.doi.org/10.3329/bjp.v15i1.43235.
http://dx.doi.org/10.3329/bjp.v15i1.4323...
; Ondua et al., 2021Ondua M, Mfotie-Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res 2021; 120(10): 3437-3449. http://dx.doi.org/10.1007/s00436-021-07269-7. PMid:34424423.
http://dx.doi.org/10.1007/s00436-021-072...
). The interaction of some phenolic compounds with the egg membrane causes structural changes affecting its permeability, oxygen exchange, and release of substances and enzymes involved in eggshell degradation and this allows no release of the larvae (Rogers & Brooks, 1977Rogers WP, Brooks F. The mechanism of hatching of eggs of Haemonchus contortus. Int J Parasitol 1977; 7(1): 61-65. http://dx.doi.org/10.1016/0020-7519(77)90026-1. PMid:558173.
http://dx.doi.org/10.1016/0020-7519(77)9...
; Vargas-Magaña et al., 2014Vargas-Magaña JJ, Torres-Acosta JFJ, Aguilar-Caballero AJ, Sandoval-Castro CA, Hoste H, Chan-Pérez JI. Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: interactions between tannins and other plant secondary compounds. Vet Parasitol 2014; 206(3-4): 322-327. http://dx.doi.org/10.1016/j.vetpar.2014.10.008. PMid:25468031.
http://dx.doi.org/10.1016/j.vetpar.2014....
; Engström et al., 2016Engström MT, Karonen M, Ahern JR, Baert N, Payré B, Hoste H, et al. Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. J Agric Food Chem 2016; 64(4): 840-851. http://dx.doi.org/10.1021/acs.jafc.5b05691. PMid:26807485.
http://dx.doi.org/10.1021/acs.jafc.5b056...
). Recent studies with confocal laser microscopy scanning analysis have demonstrated important scientific evidence concerning the possible mechanism of action of the flavonol isokaempferide and coumaric acid on the H. contortus egg hatching process, where there is colocalization of the compounds with the egg membrane (Cortes-Morales et al., 2019Cortes-Morales JA, Olmedo-Juárez A, Trejo-Tapia G, González-Cortazar M, Domínguez-Mendoza BE, Mendoza-de Gives P, et al. A. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp Parasitol 2019; 197: 20-28. http://dx.doi.org/10.1016/j.exppara.2019.01.003. PMid:30633914.
http://dx.doi.org/10.1016/j.exppara.2019...
, 2022Cortes-Morales JA, Olmedo-Juárez A, González-Cortazar M, Zamilpa A, López-Arellano MA, Ble-González EA, et al. In vitro ovicidal activity of Brongniartia montalvoana against small ruminant gastrointestinal nematodes. Exp Parasitol 2022; 240: 108336. http://dx.doi.org/10.1016/j.exppara.2022.108336. PMid:35850275.
http://dx.doi.org/10.1016/j.exppara.2022...
). These findings indicate that these compounds pass through the external cuticle of the eggs and there is a chemical interaction between the compounds with the H. contortus morula or embryo (Cortes-Morales et al., 2022Cortes-Morales JA, Olmedo-Juárez A, González-Cortazar M, Zamilpa A, López-Arellano MA, Ble-González EA, et al. In vitro ovicidal activity of Brongniartia montalvoana against small ruminant gastrointestinal nematodes. Exp Parasitol 2022; 240: 108336. http://dx.doi.org/10.1016/j.exppara.2022.108336. PMid:35850275.
http://dx.doi.org/10.1016/j.exppara.2022...
). This evidence could help to knowledge of the interaction of the secondary compounds with the parasites. Unfortunately, in the present study microscopic analysis of the bioactive subfractions on H. contortus eggs was not performed and further studies will be considered to corroborate such interaction.

In the present study, it was demonstrated that the EtOAc extract from A. vaginatum contains bioactive compounds that interrupt the life cycle of H. contortus. The coumarate and naringenin present in the AvR9 subfraction revealed the best ovicidal activity against this parasite and could represent a candidate for use in further in vivo studies. Additionally, chemical characterization of the extract is necessary to determine the identity and amount of the compounds responsible for the anthelmintic activity.

Acknowledgements

This study formed part of the thesis work of María Mitsi Nallely Becerril Gil (scholarship CONAHCYT: 654795) to obtain a PhD degree at Universidad Autónoma del Estado de México under the direction of Dr Julieta Estrada Flores and Dr Agustín Olmedo Juárez.

  • How to cite: Becerril-Gil MMN, Estrada-Flores JG, González-Cortazar M, Zamilpa A, Endara-Agramont AR, Mendoza-de Gives P, et al. Bioactive compounds from the parasitic plant Arceuthobium vaginatum inhibit Haemonchus contortus egg hatching. Braz J Vet Parasitol 2024; 33(1): e013223. https://doi.org/10.1590/S1984-29612024004

References

  • Akkol EK, Orhan I, Kartal M, Yesilada E. Bioactivity guided evaluation of anti-inflammatory and antinociceptive activities of Arceuthobium oxycedri (D.C.) M. Bieb. J Ethnopharmacol 2010; 128(1): 79-84. http://dx.doi.org/10.1016/j.jep.2009.12.028 PMid:20038452.
    » http://dx.doi.org/10.1016/j.jep.2009.12.028
  • Alowanou GG, Olounladé PA, Akouèdegni GC, Faihun AML, Koudandé DO, Hounzangbé-Adoté S. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants. Parasitol Res 2019; 118(4): 1215-1223. http://dx.doi.org/10.1007/s00436-019-06262-5 PMid:30848351.
    » http://dx.doi.org/10.1007/s00436-019-06262-5
  • Badar SN, Iqbal Z, Sajid MS, Rizwan HM, Shareef M, Malik MA, et al. Comparative anthelmintic efficacy of Arundo donax, Areca catechu, and Ferula assa-foetida against Haemonchus contortus. Rev Bras Parasitol Vet 2021; 30(2): e001221. http://dx.doi.org/10.1590/s1984-29612021028 PMid:34076046.
    » http://dx.doi.org/10.1590/s1984-29612021028
  • Baudinette E, O’Handley R, Trengove C. Anthelmintic resistance of gastrointestinal nematodes in goats: a systematic review and meta-analysis. Vet Parasitol 2022; 312: 109809. http://dx.doi.org/10.1016/j.vetpar.2022.109809 PMid:36395622.
    » http://dx.doi.org/10.1016/j.vetpar.2022.109809
  • Can-Celis A, Torres-Acosta JFJ, Mancilla-Montelongo MG, González-Pech PG, Ramos-Bruno E, Sandoval-Castro CA, et al. Effect of three feeding levels on the pathogenesis and establishment of Haemonchus contortus in parasite-naïve Pelibuey hair sheep lambs during their first infection. Vet Parasitol 2022; 311: 109811. http://dx.doi.org/10.1016/j.vetpar.2022.109811 PMid:36240521.
    » http://dx.doi.org/10.1016/j.vetpar.2022.109811
  • Castañeda-Ramírez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argáez R, Cáceres-Farfán M, Mancilla-Montelongo G, et al. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet Parasitol 2019; 270: 13-19. http://dx.doi.org/10.1016/j.vetpar.2019.05.001 PMid:31213236.
    » http://dx.doi.org/10.1016/j.vetpar.2019.05.001
  • Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 1992; 44(1-2): 35-44. http://dx.doi.org/10.1016/0304-4017(92)90141-U PMid:1441190.
    » http://dx.doi.org/10.1016/0304-4017(92)90141-U
  • Colvin AF, Reeve I, Thompson LJ, Kahn LP, Besier RB, Walkden-Brown SW. Benchmarking Australian sheep parasite control: changes in gastrointestinal nematode control practices reported from surveys between 2003 and 2019. Vet Parasitol Reg Stud Rep 2021; 26: 100653. http://dx.doi.org/10.1016/j.vprsr.2021.100653 PMid:34879963.
    » http://dx.doi.org/10.1016/j.vprsr.2021.100653
  • Cortes-Morales JA, Olmedo-Juárez A, González-Cortazar M, Zamilpa A, López-Arellano MA, Ble-González EA, et al. In vitro ovicidal activity of Brongniartia montalvoana against small ruminant gastrointestinal nematodes. Exp Parasitol 2022; 240: 108336. http://dx.doi.org/10.1016/j.exppara.2022.108336 PMid:35850275.
    » http://dx.doi.org/10.1016/j.exppara.2022.108336
  • Cortes-Morales JA, Olmedo-Juárez A, Trejo-Tapia G, González-Cortazar M, Domínguez-Mendoza BE, Mendoza-de Gives P, et al. A. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp Parasitol 2019; 197: 20-28. http://dx.doi.org/10.1016/j.exppara.2019.01.003 PMid:30633914.
    » http://dx.doi.org/10.1016/j.exppara.2019.01.003
  • Crawford DJ, Hawksworth FG. Flavonoid chemistry of Arceuthobium (Viscaceae). Brittonia 1979; 31(2): 212-216. http://dx.doi.org/10.2307/2806177
    » http://dx.doi.org/10.2307/2806177
  • Davuluri T, Chennuru S, Pathipati M, Krovvidi S, Rao GS. In vitro anthelmintic activity of three tropical plant extracts on Haemonchus contortus. Acta Parasitol 2020; 65(1): 11-18. http://dx.doi.org/10.2478/s11686-019-00116-x PMid:31552583.
    » http://dx.doi.org/10.2478/s11686-019-00116-x
  • Endara-Agramont AR, Heredia-Bobadilla RL, García-Almaraz LA, Luna-Gil AA, Franco-Maass S, Cibrián-Llanderal VD. Factores asociados con la distribución espacial de muérdagos enanos en dos poblaciones de Pinus hartwegii del centro de México. Rev Mex Biodivers 2022; 93: e935008. http://dx.doi.org/10.22201/ib.20078706e.2022.93.5008
    » http://dx.doi.org/10.22201/ib.20078706e.2022.93.5008
  • Engström MT, Karonen M, Ahern JR, Baert N, Payré B, Hoste H, et al. Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. J Agric Food Chem 2016; 64(4): 840-851. http://dx.doi.org/10.1021/acs.jafc.5b05691 PMid:26807485.
    » http://dx.doi.org/10.1021/acs.jafc.5b05691
  • González-Garduño R, Torres-Hernández G, López-Arellano ME, Mendoza-de-Gives P. Resistencia antihelmíntica de nematodos parásitos en ovinos. Rev Geogr Agric 2012; 48-49: 63-74.
  • Hassan NMF, Zaghawa AA, Abu-Elezz NMT, Nayel MA, Salama AA. Efficacy of some Egyptian native plant extracts against Haemonchus contortus in vitro and in experimentally infected sheep along with the associated haematological and biochemical alterations. Bull Natl Res Cent 2021; 45(1): 180. http://dx.doi.org/10.1186/s42269-021-00636-5
    » http://dx.doi.org/10.1186/s42269-021-00636-5
  • Hawksworth FG, Wiens D, Muir JA, Shamoun SF, DeWald LE, Collazo IV. Mistletoes of North American conifers: general technical report of the Rocky Mountain Research Station: GTR-98 [USDA]. Ogden, UT: U.S. Department of Agriculture, Forest Service; 2002.
  • Hawksworth FG, Wiens D. Biology and classification of dwarf mistletoes (Arceuthobium). Washington: Forest Service Departament of Agiculture; 1972.
  • Hawu O, Ravhuhali KE, Musekwa MG, Sipango N, Mudau HS, Mokoboki KH, et al. Utilization of the Viscum species for diet and medicinal purposes in ruminants: a review. Animals 2022; 12(19): 2569. http://dx.doi.org/10.3390/ani12192569 PMid:36230309.
    » http://dx.doi.org/10.3390/ani12192569
  • Hernández Luna GB, Endara Agramont AR, González Ronquillo M. MartínezHernández J, Vilmar Kozloski G, Estrada Flores JG. La utilización de muérdago enano (Arceuthobium globosum) como forraje en la alimentación de rumiantes. In: Brunett Pérez L, Gómez Demetrio W, Gutiérrez Castillo AC, Salgado Siclán ML, Jaimes-Arriaga E, editors. Sustentabilidad agropecuaria: experiencias de investigación para el desarrollo agropecuario, forestal y rural. Ciudad de México: Universidad Autónoma del Estado de México; 2017. p. 49-60.
  • Herrera-Manzanilla FA, Ojeda-Robertos NF, González-Garduño R, Cámara-Sarmiento R, Torres-Acosta JFJ. Gastrointestinal nematode populations with multiple anthelmintic resistance in sheep farms from the hot humid tropics of Mexico. Vet Parasitol Reg Stud Rep 2017; 9: 29-33. http://dx.doi.org/10.1016/j.vprsr.2017.04.007 PMid:31014838.
    » http://dx.doi.org/10.1016/j.vprsr.2017.04.007
  • Jasso Díaz G, Torres Hernández G, Zamilpa A, Becerril Pérez CM, Ramírez Bribiesca JE, Mendo OH, et al. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae. Microb Pathog 2017; 109: 162-168. http://dx.doi.org/10.1016/j.micpath.2017.05.048 PMid:28578091.
    » http://dx.doi.org/10.1016/j.micpath.2017.05.048
  • Jayawardene KLTD, Palombo EA, Boag PR. Natural products are a promising source for anthelmintic drug discovery. Biomolecules 2021; 11(10): 1457. http://dx.doi.org/10.3390/biom11101457 PMid:34680090.
    » http://dx.doi.org/10.3390/biom11101457
  • Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist 2015; 5(3): 127-134. http://dx.doi.org/10.1016/j.ijpddr.2015.06.001 PMid:26199861.
    » http://dx.doi.org/10.1016/j.ijpddr.2015.06.001
  • Kuiseu J, Zinsou FTA, Olounlade PA, Alowanou GG, Adenile AD, Dansou CC, et al. Prevalence, effects and alternative control methods of Haemonchus contortus in small ruminants: a review. J Vet Med Anim Health 2021; 13(2): 84-97. http://dx.doi.org/10.5897/JVMAH2020.0868
    » http://dx.doi.org/10.5897/JVMAH2020.0868
  • López-Rodríguez G, Rivero-Perez N, Olmedo-Juárez A, Valladares-Carranza B, Rosenfeld-Miranda C, Hori-Oshima S, et al. Efecto del extracto hidroalcohólico de hojas de Leucaena leucocephala sobre la eclosión de Haemonchus contortus in vitro. Abanico Vet 2022; 12: e2021-e2054. http://dx.doi.org/10.21929/abavet2022.8
    » http://dx.doi.org/10.21929/abavet2022.8
  • Mancilla-Montelongo G, Castañeda-Ramírez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argáez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019; 270: 25-30. http://dx.doi.org/10.1016/j.vetpar.2019.05.009 PMid:31213238.
    » http://dx.doi.org/10.1016/j.vetpar.2019.05.009
  • Mendonça Soares S, Domingues R, Baldo Gaspar E, Santos PA, Canuto KM, Minho AP, et al. In vitro ovicidal effect of a Senecio brasiliensis extract and its fractions on Haemonchus contortus. BMC Vet Res 2019; 15(1): 99. http://dx.doi.org/10.1186/s12917-019-1843-7 PMid:30909906.
    » http://dx.doi.org/10.1186/s12917-019-1843-7
  • Mendoza-de Gives P, Braga RF, Araújo JV. Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocontrol Sci Technol 2022; 32(7): 777-793. http://dx.doi.org/10.1080/09583157.2022.2028725
    » http://dx.doi.org/10.1080/09583157.2022.2028725
  • Mengistu G, Hoste H, Karonen M, Salminen JP, Hendriks WH, Pellikaan WF. The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Vet Parasitol 2017; 237: 110-116. http://dx.doi.org/10.1016/j.vetpar.2016.12.020 PMid:28262394.
    » http://dx.doi.org/10.1016/j.vetpar.2016.12.020
  • México. Secretaría de Agricultura y Desarrollo Rural – Sagarpa. Norma Oficial Mexicana NOM-062-ZOO-1999: especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación [online], México, 22 ago. 1999 [cited 2023 Mar 29]. Available from: https://www.gob.mx/senasica/documentos/nom-062-zoo-1999?state=published
    » https://www.gob.mx/senasica/documentos/nom-062-zoo-1999?state=published
  • Mhomga LI, Adamu M, Idika IK, Sakong BM, Marire BN, Nwosu CO. In vitro anthelmintic activities of three ethnomedicinal plant extracts against Haemonchus contortus. Span J Agric Res 2022; 20(3): e0504. http://dx.doi.org/10.5424/sjar/2022203-18708
    » http://dx.doi.org/10.5424/sjar/2022203-18708
  • Morais-Costa F, Bastos GA, Soares ACM, Costa EGL, Vasconcelos VO, Oliveira NJF, et al. In vitro and in vivo action of Piptadenia viridiflora (Kunth) Benth against Haemonchus contortus in sheep. Vet Parasitol 2016; 223: 43-49. http://dx.doi.org/10.1016/j.vetpar.2016.04.002 PMid:27198776.
    » http://dx.doi.org/10.1016/j.vetpar.2016.04.002
  • Ondua M, Mfotie-Njoya E, Abdalla MA, McGaw LJ. Investigation of anthelmintic activity of the acetone extract and constituents of Typha capensis against animal parasitic Haemonchus contortus and free-living Caenorhabditis elegans. Parasitol Res 2021; 120(10): 3437-3449. http://dx.doi.org/10.1007/s00436-021-07269-7 PMid:34424423.
    » http://dx.doi.org/10.1007/s00436-021-07269-7
  • Orhan IE, Akkol EK, Suntar I, Yesilada E. Assessment of anticholinesterase and antioxidant properties of the extracts and (+)-catechin obtained from Arceuthobium oxycedri (D.C.) M. Bieb (dwarf mistletoe). S Afr J Bot 2019; 120: 309-312. http://dx.doi.org/10.1016/j.sajb.2018.09.023
    » http://dx.doi.org/10.1016/j.sajb.2018.09.023
  • Orzuna-Orzuna JF, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA. Meta-analysis of hydroxycinnamic acids into finishing lambs’ diet: growth performance, antioxidant status, and meat quality. Small Rumin Res 2023; 223: 106963. http://dx.doi.org/10.1016/j.smallrumres.2023.106963
    » http://dx.doi.org/10.1016/j.smallrumres.2023.106963
  • Payne SE, Kotze AC, Durmic Z, Vercoe PE. Australian plants show anthelmintic activity toward equine cyathostomins in vitro. Vet Parasitol 2013; 196(1-2): 153-160. http://dx.doi.org/10.1016/j.vetpar.2013.01.012 PMid:23394801.
    » http://dx.doi.org/10.1016/j.vetpar.2013.01.012
  • Pernitsky KY, Mason QD, Cinel B, Friedman CMR. Discovery and partial purification of an antibiotic from lodgepole pine dwarf mistletoe (Arceuthobium americanum) active against Gram-positive organisms including Methicillin-resistant Staphylococcus aureus (MRSA). J Med Plants Res 2011; 5(9): 1722-1727.
  • Queijeiro-Bolaños ME, Cano-Santana Z, Castellanos-Vargas I. Does disturbance determines the prevalence of dwarf mistletoe (Arceuthobium, Santalales: Viscaceae) in Central Mexico? Rev Chil Hist Nat 2013; 86(2): 181-190. http://dx.doi.org/10.4067/S0716-078X2013000200007
    » http://dx.doi.org/10.4067/S0716-078X2013000200007
  • Rabbi F, Zada A, Nisar A. Larvicidal, leishmanicidal, insecticidal and anthelmintic effects of Sterculia diversifolia stem bark and leaf. Bangladesh J Pharmacol 2020; 15(1): 32-38. http://dx.doi.org/10.3329/bjp.v15i1.43235
    » http://dx.doi.org/10.3329/bjp.v15i1.43235
  • Reyes-Guerrero DE, Jiménez-Jacinto V, Alonso-Morales RA, Alonso-Díaz MA, Maza-Lopez J, Camas-Pereyra R, et al. Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of ivermectin resistance mechanisms. Pathogens 2023; 12(3): 499. http://dx.doi.org/10.3390/pathogens12030499 PMid:36986421.
    » http://dx.doi.org/10.3390/pathogens12030499
  • Rodrigues CI, Costa DM, Santos ACV, Batatinha MJM, Souza FVD, de Souza EH, et al. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet Parasitol 2020; 285: 109219. http://dx.doi.org/10.1016/j.vetpar.2020.109219 PMid:32889401.
    » http://dx.doi.org/10.1016/j.vetpar.2020.109219
  • Rogers WP, Brooks F. The mechanism of hatching of eggs of Haemonchus contortus. Int J Parasitol 1977; 7(1): 61-65. http://dx.doi.org/10.1016/0020-7519(77)90026-1 PMid:558173.
    » http://dx.doi.org/10.1016/0020-7519(77)90026-1
  • Rzedowski GC, Rzedowski J, Acosta-Castellanos S, Aguilar-Rodríguez S, Lerner de Scheinvar LA, Andrade-Malfavon JE, et al. Flora fanerogámica del Valle de México 2nd ed. Pátzcuaro: Instituto de Ecología, A.C., Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 2005.
  • SAS Institute. SAS user’s guide: statistics. Version 9.0 Cary: SAS; 2006.
  • Sotero-García AI, Arteaga-Reyes TT, Martínez-Campos AR, Galicia L. Efecto de las podas sobre Arceuthobium spp. en bosques densos y semidensos de Pinus hartwegii (Lindl.). Madera Bosques 2018; 24(2): 1-9. http://dx.doi.org/10.21829/myb.2018.2421582
    » http://dx.doi.org/10.21829/myb.2018.2421582
  • Tibe O, Sutherland IA, Lesperance L, Harding DRK. The effect of purified condensed tannins of forage plants from Botswana on the free-living stages of gastrointestinal nematode parasites of livestock. Vet Parasitol 2013; 197(1-2): 160-167. http://dx.doi.org/10.1016/j.vetpar.2013.07.004 PMid:23927915.
    » http://dx.doi.org/10.1016/j.vetpar.2013.07.004
  • Universidad Nacional Autónoma de México – UNAM. Biblioteca Digital de la Medicina Tradicional Mexicana. Atlas de las Plantas de la Medicina Tradicional Mexicana [online]. México; 2023 [cited 2023 Mar 23]. Available from: www.medicinatradicionalmexicana.unam.mx/apmtm/index.html
    » www.medicinatradicionalmexicana.unam.mx/apmtm/index.html
  • Vargas-Magaña JJ, Torres-Acosta JFJ, Aguilar-Caballero AJ, Sandoval-Castro CA, Hoste H, Chan-Pérez JI. Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: interactions between tannins and other plant secondary compounds. Vet Parasitol 2014; 206(3-4): 322-327. http://dx.doi.org/10.1016/j.vetpar.2014.10.008 PMid:25468031.
    » http://dx.doi.org/10.1016/j.vetpar.2014.10.008
  • von Son-de Fernex E, Alonso-Díaz MA, Mendoza-de Gives P, Valles-de la Mora B, González-Cortazar M, Zamilpa A, et al. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet Parasitol 2015; 214(1-2): 89-95. http://dx.doi.org/10.1016/j.vetpar.2015.10.005 PMid:26477279.
    » http://dx.doi.org/10.1016/j.vetpar.2015.10.005
  • von Son-de Fernex E, Alonso-Díaz MA, Valles-de la Mora B, Mendoza-de Gives P, González-Cortazar M, Zamilpa A. Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata. Exp Parasitol 2017; 178: 1-6. http://dx.doi.org/10.1016/j.exppara.2017.04.013 PMid:28483658.
    » http://dx.doi.org/10.1016/j.exppara.2017.04.013
  • Zaidi M, Huda A, Crow S. Biological activity and elemental composition of Arceuthobium oxycedri (Dwarf Mistletoe) of juniper forest of Pakistan. Acta Bot Hung 2008; 50(1-2): 223-230. http://dx.doi.org/10.1556/ABot.50.2008.1-2.17
    » http://dx.doi.org/10.1556/ABot.50.2008.1-2.17
  • Zaidi MA, Huda A, Crow SA. Pharmacological Screening of Arceuthobium oxycedri (Dwarf Mistletoe) of Juniper Forest of Pakistan. Online J Biol Sci 2006; 6(2): 67-70. http://dx.doi.org/10.3844/ojbsci.2006.67.70
    » http://dx.doi.org/10.3844/ojbsci.2006.67.70
  • Zajac AM, Garza J. Biology, epidemiology, and control of gastrointestinal nematodes of small ruminants. Vet Clin North Am Food Anim Pract 2020; 36(1): 73-87. http://dx.doi.org/10.1016/j.cvfa.2019.12.005 PMid:32029190.
    » http://dx.doi.org/10.1016/j.cvfa.2019.12.005
  • Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, et al. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J Ethnopharmacol 2020; 249: 112402. http://dx.doi.org/10.1016/j.jep.2019.112402 PMid:31739102.
    » http://dx.doi.org/10.1016/j.jep.2019.112402
  • Zeb A, Ullah F, Ayaz M, Ahmad S, Sadiq A. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complement Altern Med 2017; 17(1): 284. http://dx.doi.org/10.1186/s12906-017-1798-9 PMid:28558679.
    » http://dx.doi.org/10.1186/s12906-017-1798-9

Publication Dates

  • Publication in this collection
    22 Dec 2023
  • Date of issue
    2024

History

  • Received
    16 Aug 2023
  • Accepted
    07 Nov 2023
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br