Acessibilidade / Reportar erro

The role of the oviduct and extracellular vesicles during early embryo development in bovine

Abstract

The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.

Keywords:
oviductal environment; oviductal fluid; cell communication

Introduction

In vitro embryo production (IVEP) is a very well-established reproductive biotechnology, used worldwide and capable to contribute to the increasing genetic merit and consequently improvement of different domestic species. However, the use of IVEP exposes gametes and embryos to non-physiological spatial and temporal conditions (Besenfelder et al., 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
). Furthermore, in vivo derived embryos still have superior quality and developmental potential than those produced in vitro (Rizos et al., 2002aRizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P. Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev. 2002a;62(3):320-7. http://dx.doi.org/10.1002/mrd.10138. PMid:12112595.
http://dx.doi.org/10.1002/mrd.10138...
, bRizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002b;61(2):234-48. http://dx.doi.org/10.1002/mrd.1153. PMid:11803560.
http://dx.doi.org/10.1002/mrd.1153...
). Thus, the IVEP is efficient in producing embryos, but it still does not completely mimic the physiological ovarian and oviductal environments. During the short period of early embryonic development within the oviduct, the embryo will activate its genome, thus comprising a sensitive and important period that can determine the subsequent stages of its development.

In the in vivo situation, the oviduct takes place to important events for the reproductive function, such as final oocyte maturation, fertilization and early embryonic development. The oviduct can provide a favorable and dynamic microenvironment for ideal functioning and development of these processes. Interestingly the oviduct of different species has similar biological properties; however, the time that the embryo resides and undergoes modifications is not the same. Bovine embryos develop within the oviduct within 4 days after ovulation (Kölle et al., 2009Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874. PMid:19299315.
http://dx.doi.org/10.1095/biolreprod.108...
), 4 days in human (Aplin, 2003Aplin JD. Implantation. In: Henry HL, Norman AW, editors. Encyclopedia of hormones. Amsterdam: Academic Press; 2003. p. 289-97. http://dx.doi.org/10.1016/B0-12-341103-3/00165-0.
http://dx.doi.org/10.1016/B0-12-341103-3...
), 5.5 days in equine (Freeman et al., 1991Freeman DA, Weber JA, Geary RT, Woods GL. Time of embryo transport through the mare oviduct. Theriogenology. 1991;36(5):823-30. http://dx.doi.org/10.1016/0093-691X(91)90348-H. PMid:16727051.
http://dx.doi.org/10.1016/0093-691X(91)9...
) and 4 days in mice (Potts and Wilson, 1967Potts DM, Wilson IB. The preimplantation conceptus of the mouse at 90 hours post coitum. J Anat. 1967;102(Pt 1):1-11. PMid:17103504.), demonstrating the importance for studying the events that take place in the oviduct.

The oviduct fluid that bathes gametes and embryos contain substrates and co-factors that help to create the oviductal environment prepared to the embryo cleavage and development. Furthermore, present in the oviduct fluid, extracellular vesicles (EVs) are nanoparticles that mediate cell communication acting as vectors of biological information. In the oviduct, the EVs plays an important role once they interact with gametes-embryo and oviductal epithelial cells acting in this bidirectional communication. Thus, oviductal EVs can modulates the oviductal environment and influences the reproductive events that takes place there, and also the oviduct-embryo interaction in order to contribute with maternal-embryonic communication even before the recognition of pregnancy (Mazzarella et al., 2021Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752. PMid:33748215.
http://dx.doi.org/10.3389/fvets.2021.639...
). Therefore, this review will present the adaptability of the oviduct during reproductive events based on its dynamic and systemic changes, as well as the contribution of EVs in this process.

Composition and importance of the oviduct environment for early embryonic development

The oviduct is a small, elongated and tubular structure that connects the ovary to the uterus and is formed by a fibromuscular complex composed of layers such as mucosa, muscle and connective serosa (Besenfelder et al., 2012Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim. 2012;47(Suppl. 4):156-63. http://dx.doi.org/10.1111/j.1439-0531.2012.02070.x. PMid:22827365.
http://dx.doi.org/10.1111/j.1439-0531.20...
, 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
; Avilés et al., 2015Avilés M, Coy P, Rizos D. The oviduct : a key organ for the success of early reproductive events. Anim Front. 2015;5(1):25-31. http://dx.doi.org/10.2527/af.2015-0005.
http://dx.doi.org/10.2527/af.2015-0005...
). These layers’ structure and composition depends on the three different anatomical portions that make up the oviduct: infundibulum, ampulla and isthmus (Besenfelder et al., 2012Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim. 2012;47(Suppl. 4):156-63. http://dx.doi.org/10.1111/j.1439-0531.2012.02070.x. PMid:22827365.
http://dx.doi.org/10.1111/j.1439-0531.20...
, 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
; Avilés et al., 2015Avilés M, Coy P, Rizos D. The oviduct : a key organ for the success of early reproductive events. Anim Front. 2015;5(1):25-31. http://dx.doi.org/10.2527/af.2015-0005.
http://dx.doi.org/10.2527/af.2015-0005...
). The infundibulum is responsible for capturing recently ovulated cumulus-oocyte-complexes (COCs) (Besenfelder et al., 2012Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim. 2012;47(Suppl. 4):156-63. http://dx.doi.org/10.1111/j.1439-0531.2012.02070.x. PMid:22827365.
http://dx.doi.org/10.1111/j.1439-0531.20...
; Avilés et al., 2015Avilés M, Coy P, Rizos D. The oviduct : a key organ for the success of early reproductive events. Anim Front. 2015;5(1):25-31. http://dx.doi.org/10.2527/af.2015-0005.
http://dx.doi.org/10.2527/af.2015-0005...
). The cumulus cells extracellular matrix filaments are able to adhere to the infundibulum cells glycocalyx and enter the oviduct at the ampulla region where the oocyte maturation process is completed and fertilization takes place (Kölle et al., 2009Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874. PMid:19299315.
http://dx.doi.org/10.1095/biolreprod.108...
; Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
). The cilia beating is responsible for creating a negative pressure and microtubule movement, which will produce a current flow that helps the COC movement throughout the oviduct towards the uterine (Olsen et al., 2018Olsen SL, Li S, Winuthayanon W, States U. Embryo transport. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Amsterdam: Elsevier; 2018. (vol. I). http://dx.doi.org/10.1016/B978-0-12-801238-3.64489-6.
http://dx.doi.org/10.1016/B978-0-12-8012...
). Bad quality oocytes move faster through the oviduct by floating in oviductal lumen, demonstrating that there is function related to the movement as well as the capability of COC and oviduct to recognize themselves (Kölle et al., 2009Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874. PMid:19299315.
http://dx.doi.org/10.1095/biolreprod.108...
). Female and male gametes enter at oviduct from opposite sides but oocyte and sperm meet in the ampulla (Besenfelder et al., 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
). In order to the sperm arrive at the oviduct, uterine contractibility as well as oviduct secretions play an important role directing the sperm towards the ampulla (Hawk, 1983Hawk HW. Sperm survival and transport in the female reproductive tract. J Dairy Sci. 1983;66(12):2645-60. http://dx.doi.org/10.3168/jds.S0022-0302(83)82138-9. PMid:6365994.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Suarez, 2008Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol. 2008;52(5–6):455-62. http://dx.doi.org/10.1387/ijdb.072527ss. PMid:18649258.
http://dx.doi.org/10.1387/ijdb.072527ss...
). Then, on isthmic region crucial processes related to pre-implantation embryo development takes place. During the time that the embryo stays at isthmus, besides the initial development, the major gene activation happens starting at the 8-cell stage (Memili and First, 2000Memili E, First NL. Zygotic and embryonic gene expression in cow : a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8(1):87-96. http://dx.doi.org/10.1017/S0967199400000861. PMid:10840878.
http://dx.doi.org/10.1017/S0967199400000...
) suggesting that this oviductal region has an important role through the subsequently embryo development at uterus.

A size comparison between the different parts of the oviduct demonstrated that the ampullary lumen is large and filled with primary and secondary folds, while the isthmic lumen is smaller and constituted only with primary folds (Besenfelder et al., 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
). The mucosa is constituted by epithelial cells that can be ciliated or secretory cells, and these cells proportion depends on the oviducts anatomical portion and the ovarian cycle stage. Endocrine mechanisms, mainly controlled by steroid hormones (estrogen and progesterone) are well known to mediate morphological, physiological and molecular changes in the oviduct (Gonella-Diaza et al., 2017Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Strefezzi RDF. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. http://dx.doi.org/10.1007/s00441-017-2666-0. PMid:28770380.
http://dx.doi.org/10.1007/s00441-017-266...
; Almiñana et al., 2018Almiñana C, Tsikis G, Labas V, Uzbekov R, Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://dx.doi.org/10.1186/s12864-018-4982-5. PMid:30134841.
http://dx.doi.org/10.1186/s12864-018-498...
; Gonella-Diaza et al., 2018Gonella-Diaza AM, Mesquita FS, Lopes E, Silva KR, Cogliati B, Francisco Strefezzi R, Binelli M. Sex steroids drive the remodeling of oviductal extracellular matrix in cattle. Biol Reprod. 2018;99(3):590-9. http://dx.doi.org/10.1093/biolre/ioy083. PMid:29659700.
http://dx.doi.org/10.1093/biolre/ioy083...
). In response to the high concentrations of preovulatory estrogen (E2), the oviduct initiates morphogenic and proliferative processes in the ampulla lumen, increasing the number of secretory cells and the functional area of the epithelium (Gonella-Diaza et al., 2017Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Strefezzi RDF. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. http://dx.doi.org/10.1007/s00441-017-2666-0. PMid:28770380.
http://dx.doi.org/10.1007/s00441-017-266...
). Thus, the ampulla prepares to become receptive to the COC and sperm cells. After fertilization, the number of secretory cells continuously decreases and, during the embryo first cleavages, the isthmus is mostly composed by ciliated cells (Kölle et al., 2009Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874. PMid:19299315.
http://dx.doi.org/10.1095/biolreprod.108...
). COCs and embryos are immobile and must be transported through the oviductal anatomical structures by a combination of factors: waves of smooth muscle layer contraction and relaxation (longitudinal and circular), ciliary beating of epithelial cells and follicular fluid flow. These mechanisms are mostly controlled by steroid hormones and prostaglandins (Amini et al., 2015Amini MR, Kohram H, Zare Shahaneh A, Zhandi M, Sharideh H, Nabi MM. The effects of different levels of vitamin E and vitamin C in modified Beltsville extender on rooster post-thawed sperm quality. Cell Tissue Bank. 2015;16(4):587-92. http://dx.doi.org/10.1007/s10561-015-9506-9. PMid:25779925.
http://dx.doi.org/10.1007/s10561-015-950...
). Apparently, in a pre-ovulatory stage, E2 modulates the action of prostaglandins (PGE2 and PGF2α) in the oviduct (Lindblom et al., 1980Lindblom B, Hamberger L, Ljung B. Contractile patterns of isolated oviductal smooth muscle under different hormonal conditions. Fertil Steril. 1980;33(3):283-7. http://dx.doi.org/10.1016/S0015-0282(16)44595-4. PMid:7364061.
http://dx.doi.org/10.1016/S0015-0282(16)...
) and is related to muscle contraction, increased frequency of ciliary beat and increased oviductal fluid volume, as it increases the number of secretory cells (Valle et al., 2007Valle GR, Cassali GD, Nogueira JC, Castro ACS, Reis AM, Cardoso FM, Figueiredo CBO, Nascimento EF. Nuclear estrogen and progesterone receptors in the oviduct of heifers under natural and superovulated estrous cycles. Anim Reprod Sci. 2007;101(1-2):28-37. http://dx.doi.org/10.1016/j.anireprosci.2006.08.026. PMid:17010540.
http://dx.doi.org/10.1016/j.anireprosci....
; Huang et al., 2015Huang N, Liu B, Dong Z, Mao W, Zhang N, Li C, Cao J. Prostanoid receptors EP2, EP4, and FP are regulated by estradiol in bovine oviductal smooth muscle. Prostaglandins Other Lipid Mediat. 2015;121(Pt B):170-5. http://dx.doi.org/10.1016/j.prostaglandins.2015.08.002. PMid:26319698.
http://dx.doi.org/10.1016/j.prostaglandi...
; Gonella-Diaza et al., 2017Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Strefezzi RDF. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. http://dx.doi.org/10.1007/s00441-017-2666-0. PMid:28770380.
http://dx.doi.org/10.1007/s00441-017-266...
). Progesterone (P4) seems to have the opposite effect to E2 (Lindblom et al., 1980Lindblom B, Hamberger L, Ljung B. Contractile patterns of isolated oviductal smooth muscle under different hormonal conditions. Fertil Steril. 1980;33(3):283-7. http://dx.doi.org/10.1016/S0015-0282(16)44595-4. PMid:7364061.
http://dx.doi.org/10.1016/S0015-0282(16)...
), once this hormone acts in the muscle relaxation and decreased frequency of ciliary beat.

The sperm, even having their own movement, must undergo morphophysiological changes to reach fertilizing capacity such as hyperactivation and acrosome reaction. In cows, the semen is ejaculated into vagina, against the cervix, where the natural selection occurs by the cervical mucus flow and only the motile sperm can advance towards the uterus (Coy et al., 2012Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of oviduct in mammalian fertilization. Reproduction. 2012;144(6):649-60. http://dx.doi.org/10.1530/REP-12-0279. PMid:23028122.
http://dx.doi.org/10.1530/REP-12-0279...
; Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
). Besides their own motility, the sperm moves through the uterus due to muscular contractions, ciliary beat and fluid flow that helps the healthy sperm to arrive at uterotubal junction (Hawk, 1983Hawk HW. Sperm survival and transport in the female reproductive tract. J Dairy Sci. 1983;66(12):2645-60. http://dx.doi.org/10.3168/jds.S0022-0302(83)82138-9. PMid:6365994.
http://dx.doi.org/10.3168/jds.S0022-0302...
). Once in the oviduct, sperm interact with isthmic epithelial cells. The oviduct guides the sperm to the fertilization site and helps in this process, but first provides the formation of a sperm reservoir and enabling the activation of Ca2+ influx in the sperm in order to initiate the flagellum hyperactivation process (Miki and Clapham, 2013Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443-52. http://dx.doi.org/10.1016/j.cub.2013.02.007. PMid:23453951.
http://dx.doi.org/10.1016/j.cub.2013.02....
). Once this occurs, the sperm is able to swim against the oviduct flow to find the COC to be fertilized (Kölle et al., 2009Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874. PMid:19299315.
http://dx.doi.org/10.1095/biolreprod.108...
). The follicular fluid present at the ampulla after ovulation contains progesterone (Saint-Dizier et al., 2020Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2020;21(1):1-21. PMid:31905654.) and chemoattractants that helps to bring the sperm closer to the COC within the ampullary region. Furthermore, proteins and phospholipids present in the ampulla lumen can influence the sperm fertilizing capacity inducing the acrosome reaction (Griffiths et al., 2008Griffiths GS, Miller KA, Galileo DS, Martin-DeLeon PA. Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction. 2008;135(3):293-301. http://dx.doi.org/10.1530/REP-07-0340. PMid:18299422.
http://dx.doi.org/10.1530/REP-07-0340...
). Thus, the oviduct and its fluid are able to guide the sperm and provide subsidies for it to become fertile in addition to sense the presence of the sperm cells and adjust proteins and antioxidants concentration possibly reducing sperm stress. Also, the increase in E2 concentration induces the production of GPX4 (Glutathione peroxidation 4) in the oviduct, indicating an antioxidant defense mechanism for gametes and future embryonic development (Lapointe et al., 2005Lapointe J, Kimmins S, MacLaren LA, Bilodeau JF. Estrogen selectively up-regulates the phospholipid hydroperoxide glutathione peroxidase in the oviducts. Endocrinology. 2005;146(6):2583-92. http://dx.doi.org/10.1210/en.2004-1373. PMid:15746255.
http://dx.doi.org/10.1210/en.2004-1373...
).

Gametic and embryo transport play an important role, since to be fertilized the COC and sperm must be at the proper time and place for fertilization, and the early development embryo must to exit from the oviduct to carry on development otherwise it can implant in the wrong place or generate an ectopic pregnancy. Furthermore, embryonic development and transport are simultaneous events under physiological conditions (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
). Embryonic movement, acts to prevent the accumulation of harmful by-products to embryonic development once allows full exposure of the embryo to the medium providing the appropriate access to nutrients and preventing metabolic stress during the first cleavages (Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
).

In addition, a recent study demonstrated that the embryo presence alters the miRNA profile of the isthmic cells generating an inflammatory type response (Mazzarella et al., 2021Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752. PMid:33748215.
http://dx.doi.org/10.3389/fvets.2021.639...
), suggesting that the embryo presence modulates the oviductal epithelial cells. In goats, the nutritional plan influences the ampullary epithelial cells protein profile (Fernandes et al., 2018Fernandes CCL, Rodriguez-Villamil P, Vasconcelos FR, Nagano CS, Rossetto R, Moura AAAN, Rondina D. Proteome of the periovulatory oviduct and uterus of goats as related to nutritional balance. Reprod Domest Anim. 2018;53(5):1085-95. http://dx.doi.org/10.1111/rda.13208. PMid:29885005.
http://dx.doi.org/10.1111/rda.13208...
). Furthermore, environmental factors such as the animal's energy balance also appear to have an influence on the oviduct dynamics. Therefore, the oviduct is a dynamic and adaptable structure able to respond to situations in which it is exposed and is not just a simple organ for transporting COCs and embryos.

Composition and importance of oviductal fluid

Until the establishment intimate contact between mother and embryo, embryonic development is directly influenced by secreted products by oviductal and endometrial epithelial cells (Binelli et al., 2018Binelli M, Gonella-Diaza A, Mesquita F, Membrive C. Sex steroid-mediated control of oviductal function in cattle. Biology. 2018;7(1):15. http://dx.doi.org/10.3390/biology7010015. PMid:29393864.
http://dx.doi.org/10.3390/biology7010015...
). Oviductal fluid, synthesized primarily by secretory epithelial cells, is also composed of transudate from the systemic circulation and supplemented by follicular fluid upon ovulation (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
; Olsen et al., 2018Olsen SL, Li S, Winuthayanon W, States U. Embryo transport. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Amsterdam: Elsevier; 2018. (vol. I). http://dx.doi.org/10.1016/B978-0-12-801238-3.64489-6.
http://dx.doi.org/10.1016/B978-0-12-8012...
; Besenfelder et al., 2020Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X. PMid:32024564.
http://dx.doi.org/10.1017/S1751731119003...
). Prior to fertilization, oviductal fluid is responsible for protecting and guiding sperm and COCs (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
). After fertilization, the oviductal fluid role is responsible to nourish, protect and assist the transport of the pre-implantation embryo (Olsen et al., 2018Olsen SL, Li S, Winuthayanon W, States U. Embryo transport. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Amsterdam: Elsevier; 2018. (vol. I). http://dx.doi.org/10.1016/B978-0-12-801238-3.64489-6.
http://dx.doi.org/10.1016/B978-0-12-8012...
) as well as to provide optimal pH and stable temperature (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
). Its composition is anatomically dynamic and influenced by early developing embryo presence (Rodríguez-Alonso et al., 2020aRodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681. PMid:32121434.
http://dx.doi.org/10.3390/ijms21051681...
; Mazzarella et al., 2021Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752. PMid:33748215.
http://dx.doi.org/10.3389/fvets.2021.639...
). Interestingly, the embryo presence is capable of modulating the oviduct environment, being able to acquire components of the maternal environment.

The volume of oviductal fluid is dependent on the estrous cycle and varies among species, but in general, in mammals, the highest production is during the end of estrus and beginning of diestrus (Leese et al., 2001Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid : role of a neglected epithelium. Reproduction. 2001;121(3):339-46. http://dx.doi.org/10.1530/rep.0.1210339. PMid:11226059.
http://dx.doi.org/10.1530/rep.0.1210339...
), when the oviduct prepares to receive gametes and embryo by increasing the number of secretory epithelial cells as well as lumen size (Leese et al., 2001Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid : role of a neglected epithelium. Reproduction. 2001;121(3):339-46. http://dx.doi.org/10.1530/rep.0.1210339. PMid:11226059.
http://dx.doi.org/10.1530/rep.0.1210339...
; Gonella-Diaza et al., 2017Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Strefezzi RDF. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. http://dx.doi.org/10.1007/s00441-017-2666-0. PMid:28770380.
http://dx.doi.org/10.1007/s00441-017-266...
). In addition, the increase in oviductal fluid volume during this period is also due to the follicular fluid coming from the recently ovulated follicle (Saint-Dizier et al., 2020Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2020;21(1):1-21. PMid:31905654.). Thus, the estimated volume of the oviductal fluid in bovine is 1-3 mL per day on day one of the estrus cycle, and 0.1-0.2 mL per day at luteal phase (Kavanaugh and Killian, 1988Kavanaugh JF, Killian GJ. Bovine oviductal cannulations. J Invest Surg. 1988;1(3):201-8. http://dx.doi.org/10.3109/08941938809141106. PMid:3154098.
http://dx.doi.org/10.3109/08941938809141...
).

Oviductal fluid is composed by substrates and cofactors linked to oocyte maturation, oocyte fertilization and early embryo development such as glucose, arginine, serum albumin, transferrin, glycoprotein, galactose, immunoglobulins, lactate, pyruvate, bicarbonate, cytokines, growth factors, amino acids, enzymes, hormones and EVs (Beier, 1974Beier HM. Oviducal and uterine fluids. J Reprod Fertil. 1974;37(1):221-37. http://dx.doi.org/10.1530/jrf.0.0370221. PMid:4593606.
http://dx.doi.org/10.1530/jrf.0.0370221...
; Binelli et al., 2018Binelli M, Gonella-Diaza A, Mesquita F, Membrive C. Sex steroid-mediated control of oviductal function in cattle. Biology. 2018;7(1):15. http://dx.doi.org/10.3390/biology7010015. PMid:29393864.
http://dx.doi.org/10.3390/biology7010015...
; Rodríguez-Alonso et al., 2020bRodríguez-Alonso B, Sánchez JM, González E, Lonergan P, Rizos D. Challenges in studying preimplantation embryo-maternal interaction in cattle. Theriogenology. 2020b;150:139-49. http://dx.doi.org/10.1016/j.theriogenology.2020.01.019. PMid:31973965.
http://dx.doi.org/10.1016/j.theriogenolo...
; Saint-Dizier et al., 2020Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2020;21(1):1-21. PMid:31905654.). These constituents’ concentration varies among species, estrous cycle stage and oviduct anatomical portion (Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
; Rodríguez-Alonso et al., 2020aRodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681. PMid:32121434.
http://dx.doi.org/10.3390/ijms21051681...
). This is probably due to the different metabolic needs of gametes and embryo as they pass through oviduct.

Oocytes, sperm and embryos in early developmental stage, use oxidative metabolism to obtain energy. During the first cleavages, until the morula stage, embryonic mitochondria are not yet mature, so simple sugars such as pyruvate and lactate (Rodríguez-Alonso et al., 2020aRodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681. PMid:32121434.
http://dx.doi.org/10.3390/ijms21051681...
) and high oxygen concentration (Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
) are essential for oxidative phosphorylation that provides energy for the first cleavages. Pyruvate is an important sugar for oxidative phosphorylation, but is mostly intended for lactate conversion. Lactate is a simple sugar that is essential for early embryonic development, which acts to protect cells at the cleavage stage from toxins, oxidative stress and infections (Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
). In cyclic and pregnant cows, the ampullary lactate concentration is higher than in the isthmus (Rodríguez-Alonso et al., 2020aRodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681. PMid:32121434.
http://dx.doi.org/10.3390/ijms21051681...
). This suggests that besides oviduct adaptation to the estrous cycle and embryo presence, oviduct is able to produce lactate to help with embryo metabolism. The ATP production increases even before first cleavage, but the early embryo metabolism has low metabolic and nutrient uptake due to the minimal cell growth and membrane biosynthesis (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
; Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
). The early developing embryo has a low metabolic requirement originating the “quiet embryo” hypothesis (Leese, 2002Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://dx.doi.org/10.1002/bies.10137. PMid:12210521.
http://dx.doi.org/10.1002/bies.10137...
). Leese (2002)Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://dx.doi.org/10.1002/bies.10137. PMid:12210521.
http://dx.doi.org/10.1002/bies.10137...
suggests that the embryo should remain “quiet”, with reduced metabolism during early development in order to minimize the production of reactive oxygen species and other metabolic products harmful to the embryo during this vulnerable time period. Thus, is important that the oviduct can detect the embryo presence in order to regulate the right amounts of molecules to be secreted in its lumen.

As the embryo develops, mitochondrial maturation occurs and the embryo metabolism, which was previously oxidative, becomes glycolytic. Thus, the presence of glucose becomes essential for the compaction and embryonic genome activation (Li and Winuthayanon, 2017Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302. PMid:27875265.
http://dx.doi.org/10.1530/JOE-16-0302...
; Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
). The absence of glucose during compaction irreversibly decreases cell proliferation and increases apoptosis and oxidative stress (Jansen et al., 2009Jansen S, Cashman K, Thompson JG, Pantaleon M, Kaye PL. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos". Reproduction. 2009;138(3):493-505. http://dx.doi.org/10.1530/REP-09-0038. PMid:19531609.
http://dx.doi.org/10.1530/REP-09-0038...
; Pantaleon et al., 2007Pantaleon M, Scott J, Kaye PL. Nutrient sensing by the early mouse embryo : hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod. 2007;78(4):595-600. PMid:18046015.). The concentration of glucose in the oviductal fluid is not static, that is, it varies according to oviductal need; however, during the stage of embryonic oxidative metabolism, it is essential that the concentration of this sugar stay low to avoid metabolic stress (Hu and Yu, 2017Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868. PMid:28722155.
http://dx.doi.org/10.1002/mrd.22868...
). Changes in glucose availability can accelerate or delay key events during the major genome activation shifting from oxidative to glycolytic metabolism (Harvey, 2019Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction. 2019;157(5):R159-79. http://dx.doi.org/10.1530/REP-18-0431. PMid:30870807.
http://dx.doi.org/10.1530/REP-18-0431...
).

Therefore, as the gametes and embryo transit through the oviduct, the need for nutrients available in the oviductal fluid varies according to the gametic-embryonic metabolism. The oviductal fluid composition contributes to the embryo development and could modulate the maternal-embryonic communication processes even before the maternal gestation recognition. Present in oviductal fluid, the EVs acts in this modulation by mediating the bidirectional communication between oviductal epithelial cells (mother) and gametic-embryonic cells.

Role of EVs in oviductal dynamics and maternal-embryonic communication

In addition to substrates and cofactors, EVs are also present in the oviduct fluid (Al-Dossary et al., 2013Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. http://dx.doi.org/10.1371/journal.pone.0080181. PMid:24244642.
http://dx.doi.org/10.1371/journal.pone.0...
) and play important roles in the oviduct dynamics environment and maternal-embryonic communication (Mazzarella et al., 2021Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752. PMid:33748215.
http://dx.doi.org/10.3389/fvets.2021.639...
). EVs are evolutionarily conserved mediators of cell communication (Fu et al., 2020Fu B, Ma H, Liu D. Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. Int J Mol Sci. 2020;21(6):2189. http://dx.doi.org/10.3390/ijms21062189. PMid:32235756.
http://dx.doi.org/10.3390/ijms21062189...
). These biological nanoparticles use extracellular fluids to diffuse and interact with target cells in order to transfer their contents (Silveira et al., 2015Silveira JC, Andrade GM, Nogueira MFG, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015;22(12):1474-83. http://dx.doi.org/10.1177/1933719115574344. PMid:25736328.
http://dx.doi.org/10.1177/19337191155743...
, 2018Silveira JC, Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol. 2018;236(1):R15-27. http://dx.doi.org/10.1530/JOE-17-0200. PMid:28870888.
http://dx.doi.org/10.1530/JOE-17-0200...
; Gross et al., 2017Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology. 2017;6(3):34. http://dx.doi.org/10.3390/biology6030034. PMid:28906477.
http://dx.doi.org/10.3390/biology6030034...
) acting as vectors of biological information and being able to modify the cell function of recipient organs (Lawson et al., 2017Lawson C, Kovacs D, Finding E, Ulfelder E, Luis-Fuentes V. Extracellular vesicles: evolutionarily conserved mediators of intercellular communication. Yale J Biol Med. 2017;90(3):481-91. PMid:28955186.). EVs are nanoparticles secreted by different cell types and initially classified into exosomes and microvesicles. Exosomes are small EVs originated from endosomes and have a 30-150 nm diameter; microvesicles are larger EVs, having 100-1000 nm and originated in the plasma membrane (Machtinger et al., 2016Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182-93. PMid:26663221.; van Niel et al., 2018van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-28. http://dx.doi.org/10.1038/nrm.2017.125. PMid:29339798.
http://dx.doi.org/10.1038/nrm.2017.125...
). The EVs isolated by serial centrifugation, filtered in > 0.20 µm filter and validated nanoparticle tracking analysis (Nanotracking), transmitted electron microscopy and specific proteins by western blot, are recently classified as small EVs, according to Minimal Information for Studies of Extracellular Vesicles guidelines (Théry et al., 2018Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. PMid:30637094.). Molecules present on the surface of EVs allows the interaction with target cells through their adhesion to lipids and receptor ligands, allowing their entry into cells through endocytosis or pinocytosis (Machtinger et al., 2016Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182-93. PMid:26663221.; Gross et al., 2017Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology. 2017;6(3):34. http://dx.doi.org/10.3390/biology6030034. PMid:28906477.
http://dx.doi.org/10.3390/biology6030034...
). In reproduction it was already demonstrated that EVs are able to modulate, cumulus-oocyte-complex maturation, embryonic development (Battaglia et al., 2019Battaglia R, Palin S, Vento ME, Ferlita AL, Faro MJL, Caroppo E, Borzi P, Falzone L, Barbagallo D, Ragusa M, Scalia M, D'Amato G, Scollo P, Musumeci P, Purrello M, Gravotta E, Di Pietro C. Identification of extracellular vesicles and characterization of miRNA expression profiles in human blastocoel fluid. Sci Rep. 2019;1–11. http://dx.doi.org/ 10.1038/s41598-018-36452-7.
http://dx.doi.org/ 10.1038/s41598-018-36...
), as well as changes in global DNA methylation and hydroxymethylation levels of bovine embryos (Silveira et al., 2017Silveira JC, Andrade GM, del Collado M, Sampaio RV, Sangalli JR, Silva LA, Pinaffi FVL, Jardim IB, Cesar MC, Nogueira MFG, Cesar ASM, Coutinho LL, Pereira RW, Perecin F, Meirelles FV. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017;12(6):1-25. http://dx.doi.org/10.1371/journal.pone.0179451. PMid:28617821.
http://dx.doi.org/10.1371/journal.pone.0...
).

In the oviduct, EVs were identified as key mediators components in the interaction between gametes and embryo, contributing to the pregnancy success (Almiñana and Bauersachs, 2020Almiñana C, Bauersachs S. Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology. 2020;150:59-69. http://dx.doi.org/10.1016/j.theriogenology.2020.01.077. PMid:32088033.
http://dx.doi.org/10.1016/j.theriogenolo...
). The EVs that make up the oviduct fluid can have different origins: i) follicular fluid upon ovulation; ii) secreted by oviduct epithelial cells; iii) secreted by gametes; iv) secreted by the embryo (Figure 1). Although it is difficult to distinguish these EVs origins, in general they act on physiological and molecular functions influencing oocyte maturation, spermatic hyperactivation and embryonic development (Harris et al., 2020Harris EA, Stephens KK, Winuthayanon W. Extracellular vesicles and the oviduct function. Int J Mol Sci. 2020;21:1-20. PMid:33167378.). Importantly, it is possible that EVs act as fine-tuners of early reproductive events since these events can occur out of the reproductive tract. These interactions are possible due to the fact that EVs contain bioactive material such as proteins, lipids, mRNAs and miRNAs that are transferred to the target cells (Valadi et al., 2007Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. http://dx.doi.org/10.1038/ncb1596. PMid:17486113.
http://dx.doi.org/10.1038/ncb1596...
; Silveira et al., 2015Silveira JC, Andrade GM, Nogueira MFG, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015;22(12):1474-83. http://dx.doi.org/10.1177/1933719115574344. PMid:25736328.
http://dx.doi.org/10.1177/19337191155743...
; Al-Dossary and Martin-DeLeon, 2016Al-Dossary AA, Martin-DeLeon PA. Role of exosomes in the reproductive tract Oviductosomes mediate interactions of oviductal secretion with gametes early embryo. Front Biosci. 2016;21(6):1278. PMid:27100506.). Thus, the content of EVs in the oviduct can modulate cell function by increasing the delivery of transcripts, miRNAs and proteins, thus affecting translation of mRNAs into functional proteins (Bauersachs and Almiñana, 2020Bauersachs S, Almiñana C. Embryo–maternal interactions underlying reproduction in mammals. Int J Mol Sci. 2020;21(14):1-6. http://dx.doi.org/10.3390/ijms21144872. PMid:32664189.
http://dx.doi.org/10.3390/ijms21144872...
). MiRNAs are stable small non-coding RNA molecules involved in several cellular processes and indispensable for animal development, cell differentiation and homeostasis (Bartel, 2009Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-33. http://dx.doi.org/10.1016/j.cell.2009.01.002. PMid:19167326.
http://dx.doi.org/10.1016/j.cell.2009.01...
, 2018Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20-51. http://dx.doi.org/10.1016/j.cell.2018.03.006. PMid:29570994.
http://dx.doi.org/10.1016/j.cell.2018.03...
; Gebert and Macrae, 2019Gebert LFR, Macrae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20:21-37. PMid:30108335.). The role of miRNAs in the reproductive cycle is essential for gamete development, oocyte maturation, fertilization and early embryonic development (Hayashi et al., 2008Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3(3):e1738. http://dx.doi.org/10.1371/journal.pone.0001738. PMid:18320056.
http://dx.doi.org/10.1371/journal.pone.0...
). In the extracellular environment, miRNAs are fragile and, once inside the EVs, they are protected from degradation and can act as information vectors (Fu et al., 2020Fu B, Ma H, Liu D. Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. Int J Mol Sci. 2020;21(6):2189. http://dx.doi.org/10.3390/ijms21062189. PMid:32235756.
http://dx.doi.org/10.3390/ijms21062189...
). Furthermore, EVs have powerful systemic access to the most varied and distant cells enabling miRNAs to fulfill autocrine, paracrine and endocrine signaling functions (Gross et al., 2017Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology. 2017;6(3):34. http://dx.doi.org/10.3390/biology6030034. PMid:28906477.
http://dx.doi.org/10.3390/biology6030034...
). Thus, EVs carrying messages including miRNAs could play an important role within the oviduct once these messages are different depending on ovarian cycle stage or embryos presence/absence (Table 1).

Figure 1
Reproductive events occurring in the oviduct mediated by extracellular vesicles. Schematic representation of female reproductive tract in post ovulation stage of estrus cycle and oviductal anatomic regions. The infundibulum is responsible for capturing recently ovulated cumulus oocyte complexes (COC). (I)The ampullary region is mainly composed by secretory epithelial cells which allows a high production of oviductal fluid which is also composed by follicular fluid. (a) Together these vesicles act at the oocyte final maturation; (b) At the ampulla region cumulus oocyte complexes and sperm will meet, and subsequently initiates the fertilization process. (II) The isthmic region is mainly composed by ciliated cells; (c) Once the fertilization happened, the initial embryo development occurs; (d) The embryo develops, activates its genome and modulates the isthmic region mediated by embryo and oviductal extracellular vesicles. This figure was Created with BioRender.com.
Table 1
The differential expression of miRNA content of oviductal extracellular vesicles and their predictive biological associated pathways.

In the oviduct, embryos stay and develop in a short period of time (4-5 days), but this can have great consequences at later stages of development (Fu et al., 2020Fu B, Ma H, Liu D. Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. Int J Mol Sci. 2020;21(6):2189. http://dx.doi.org/10.3390/ijms21062189. PMid:32235756.
http://dx.doi.org/10.3390/ijms21062189...
). Zygotes and pre-implantation embryos are not in direct contact with the oviduct because they still have the zona pellucida (ZP), which is resistant to the uptake of exogenous genetic material, although the biological action of EVs allows these molecules to enter the ZP and perform functions in the embryo (Fu et al., 2020Fu B, Ma H, Liu D. Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. Int J Mol Sci. 2020;21(6):2189. http://dx.doi.org/10.3390/ijms21062189. PMid:32235756.
http://dx.doi.org/10.3390/ijms21062189...
). Interestingly, the oviductal EVs miRNAs cargo are related to embryonic development, embryonic morphology and implantation (Almiñana et al., 2018Almiñana C, Tsikis G, Labas V, Uzbekov R, Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://dx.doi.org/10.1186/s12864-018-4982-5. PMid:30134841.
http://dx.doi.org/10.1186/s12864-018-498...
). EVs originated from oviductal fluid and in vitro culture of bovine oviduct epithelial cell (BOEC) were able to internalize in in vitro produced bovine embryos, increasing production rates, prolonging embryo survival and to improving their quality and cryoprotection (Lopera-Vasquez et al., 2016Lopera-Vasquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltran-Brena P, Calle A, Redruello A, Lopez-Martin S, Gutierrez-Adan A, Yanez-Mo M, Ramirez MA, Rizos D. Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One. 2016;11(2):1-23. http://dx.doi.org/10.1371/journal.pone.0148083. PMid:26845570.
http://dx.doi.org/10.1371/journal.pone.0...
; Almiñana et al., 2017Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction. 2017;154(3):153-68. http://dx.doi.org/10.1530/REP-17-0054. PMid:28630101.
http://dx.doi.org/10.1530/REP-17-0054...
). Additionally, oviductal EVs contain mRNAs associated with epigenetic DNA modifications, indicating that these biological nanoparticles can control chromatin modification and epigenetic regulation in the developing embryo (Almiñana et al., 2018Almiñana C, Tsikis G, Labas V, Uzbekov R, Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://dx.doi.org/10.1186/s12864-018-4982-5. PMid:30134841.
http://dx.doi.org/10.1186/s12864-018-498...
). Moreover, besides the oviductal EVs supplementation in IVEP did not affect the blastocyst production rates and embryo cryotolerance, the oviductal EVs were able to modulate the blastocyst phospholipid content by making it more abundant in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sphingomyelins (SM) with long-chain fatty acids (Banliat et al., 2020Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct fluid extracellular vesicles change the phospholipid composition of bovine embryos developed in vitro. Int J Mol Sci. 2020;21(15):1-13. http://dx.doi.org/10.3390/ijms21155326. PMid:32727074.
http://dx.doi.org/10.3390/ijms21155326...
). This is interestingly because when analyzing the oviductal EVs lipidic content, authors found that the overabundant lipids in blastocysts were 100% also present in oviductal EVs (Banliat et al., 2020Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct fluid extracellular vesicles change the phospholipid composition of bovine embryos developed in vitro. Int J Mol Sci. 2020;21(15):1-13. http://dx.doi.org/10.3390/ijms21155326. PMid:32727074.
http://dx.doi.org/10.3390/ijms21155326...
). This suggests that in vitro produced embryos can incorporate the lipidic EVs content which may modulate the embryonic lipidic metabolism. Thus, suggesting that EVs from the oviduct can impact bovine embryos in vivo and in vitro.

As already discussed, the oviduct is a dynamic structure capable of adapting during reproductive events (maturation, fertilization and early embryonic development) under the action of ovarian hormones. According to Rodríguez-Alonso et al. (2020a)Rodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681. PMid:32121434.
http://dx.doi.org/10.3390/ijms21051681...
oviductal fluid composition is anatomically dynamic and affected by embryo presence. Since the content of EVs reflects the cells of origin, changes in the epithelium cellular morphology can induce changes in the biological functions of EVs (Al-Dossary and Martin-DeLeon, 2016Al-Dossary AA, Martin-DeLeon PA. Role of exosomes in the reproductive tract Oviductosomes mediate interactions of oviductal secretion with gametes early embryo. Front Biosci. 2016;21(6):1278. PMid:27100506.; Almiñana and Bauersachs, 2020Almiñana C, Bauersachs S. Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology. 2020;150:59-69. http://dx.doi.org/10.1016/j.theriogenology.2020.01.077. PMid:32088033.
http://dx.doi.org/10.1016/j.theriogenolo...
). These changes could lead to changes in secretion and contents of EVs during the estrous cycle. At the estrous cycle phases (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage), the oviductal fluid EVs RNA and protein contents are different and many of these molecules are related to gametic interaction and pre-implantation embryo development (Almiñana et al., 2018Almiñana C, Tsikis G, Labas V, Uzbekov R, Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://dx.doi.org/10.1186/s12864-018-4982-5. PMid:30134841.
http://dx.doi.org/10.1186/s12864-018-498...
). Another recent study assessing the miRNA profile from oviductal and uterine fluid EVs, showed that the estrous cycle change the EV cargo (Hamdi et al., 2021Hamdi M, Cañon‐Beltrán K, Mazzarella R, Cajas YN, Leal CLV, Gutierrez‐Adan A, Silveira JC, Rizos D. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J. 2021;35(12):e22000. http://dx.doi.org/10.1096/fj.202101023R. PMid:34731497.
http://dx.doi.org/10.1096/fj.202101023R...
). Together, this information suggests that these EVs are under hormonal control and indicates the crucial role of EVs in reproductive events. Furthermore, the isthmic EVs culture medium supplementation used in IVEP induces greater blastocysts rates (91.3%) when compared to ampullary EVs (62.2%) (Lopera-Vasquez et al., 2016Lopera-Vasquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltran-Brena P, Calle A, Redruello A, Lopez-Martin S, Gutierrez-Adan A, Yanez-Mo M, Ramirez MA, Rizos D. Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One. 2016;11(2):1-23. http://dx.doi.org/10.1371/journal.pone.0148083. PMid:26845570.
http://dx.doi.org/10.1371/journal.pone.0...
). In addition, the results suggest that isthmus EVs may contribute to the normal regulation of the methylation pattern in embryos and improvement of embryonic cryopreservation, indicating that the content of EVs may be anatomically variable. However, studies analyzing the EVs content through the oviductal regions should be performed to better elucidate their function at the distinct anatomical regions. Finally, in a recent study, although the size and concentration of EVs has not been altered, the miRNA profile from isthmus EVs of Nelore cows is altered in the presence of a single embryo (Mazzarella et al., 2021Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752. PMid:33748215.
http://dx.doi.org/10.3389/fvets.2021.639...
). Using a miRNAs analysis, the authors identified predicted biological pathways regulated by EVs miRNAs which were involved with the immune system suggesting that EVs can possibly mediate maternal-embryonic communication even before pregnancy recognition. Additionally, EVs from good quality embryo and degenerating embryo were supplemented to primary BOEC monolayer culture (Dissanayake et al., 2020Dissanayake K, Nõmm M, Lättekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Bæk R, Jørgensen MM, Bhattacharjee S, Andronowska A, Salumets A, Jaakma Ü, Fazeli A. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology. 2020;149:104-16. http://dx.doi.org/10.1016/j.theriogenology.2020.03.008. PMid:32259747.
http://dx.doi.org/10.1016/j.theriogenolo...
). Genes related to interferon-τ-induced genes were upregulated at the BOEC monolayer suggesting that the embryos EVs modulates the oviduct in response to their quality (Dissanayake et al., 2020Dissanayake K, Nõmm M, Lättekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Bæk R, Jørgensen MM, Bhattacharjee S, Andronowska A, Salumets A, Jaakma Ü, Fazeli A. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology. 2020;149:104-16. http://dx.doi.org/10.1016/j.theriogenology.2020.03.008. PMid:32259747.
http://dx.doi.org/10.1016/j.theriogenolo...
). Furthermore, it was already demonstrated that EVs can carry molecular signals in response to environmental factors such as environmental stress and body energy balance (Tesfaye et al., 2020Tesfaye D, Hailay T, Salilew-wondim D, Hoelker M, Bitseha S, Gebremedhn S. Theriogenology extracellular vesicle mediated molecular signaling in ovarian follicle : implication for oocyte developmental competence. Theriogenology. 2020;150:70-4.).

Thus, EVs can act mediating the bidirectional crosstalk between mother and gametes/embryo, helping to fine tuning the oviduct and endometrium contributing to successful embryo development and implantation. However, these types of studies that analyze the role of these EVs in embryonic development are still recent (Al-Dossary et al., 2013Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. http://dx.doi.org/10.1371/journal.pone.0080181. PMid:24244642.
http://dx.doi.org/10.1371/journal.pone.0...
) and compose promising lines of research, once they importance to oviductal environment and embryo development. Additionally, it is possible that EVs generate specific biological environments providing the physiological basis for oocyte maturation, fertilization and early embryonic development within the oviduct.

Despite the evidences that oviductal EVs and their contents can play important roles in oocyte maturation in the oviduct, due to the recent discovery of oviductal EVs (Al-Dossary et al., 2013Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. http://dx.doi.org/10.1371/journal.pone.0080181. PMid:24244642.
http://dx.doi.org/10.1371/journal.pone.0...
) and the difficulty of obtaining oviductal samples, additional analysis are still necessary to demonstrate the action of these nanoparticles in the final oocyte maturation.

Conclusions

Anatomically the oviduct is a small structure where the embryo develops in a short period of time (4-5 days); furthermore this reproductive structure has a huge importance at early embryonic development and subsequently pregnancy establishment. This is due to the unique microenvironment that the oviduct provides to gametes and embryos, built under the influence of ovarian hormones, oviduct fluid composition and EVs mediation. As future perspectives, the understanding of EVs contribution to the oviductal environment fine tuning can help to better mimic the in vitro environment during IVEP and contribute to increase quality of in vitro produced embryo.

Acknowledgements

This work was funded by São Paulo Research Foundation (FAPESP), grant-2015/21829-9, grant-2014/22887-0, grant-2020/08478-0 and grant-2020/13075-2, National Council for Scientific and Technological Development- CNPq – Grant 420152/2018-0 and by Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES – Finance code 001).

  • Financial support: NMB: Received a scholarship from Coordination for the Improvement of Higher Education Personnel (CAPES - Finance code 001); JGF: received a scholarship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Grant: 2020/13075-2); JCS: Received a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Grant: 2014/22887-0, 2020/08478-0, 2015/21829-9) and from National Council for Scientific and Techonolical Development (CNPq – Grant: #420152/2018-0).

References

  • Al-Dossary AA, Martin-DeLeon PA. Role of exosomes in the reproductive tract Oviductosomes mediate interactions of oviductal secretion with gametes early embryo. Front Biosci. 2016;21(6):1278. PMid:27100506.
  • Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013;8(11):e80181. http://dx.doi.org/10.1371/journal.pone.0080181 PMid:24244642.
    » http://dx.doi.org/10.1371/journal.pone.0080181
  • Almiñana C, Bauersachs S. Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology. 2020;150:59-69. http://dx.doi.org/10.1016/j.theriogenology.2020.01.077 PMid:32088033.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.01.077
  • Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction. 2017;154(3):153-68. http://dx.doi.org/10.1530/REP-17-0054 PMid:28630101.
    » http://dx.doi.org/10.1530/REP-17-0054
  • Almiñana C, Tsikis G, Labas V, Uzbekov R, Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics. 2018;19(1):622. http://dx.doi.org/10.1186/s12864-018-4982-5 PMid:30134841.
    » http://dx.doi.org/10.1186/s12864-018-4982-5
  • Amini MR, Kohram H, Zare Shahaneh A, Zhandi M, Sharideh H, Nabi MM. The effects of different levels of vitamin E and vitamin C in modified Beltsville extender on rooster post-thawed sperm quality. Cell Tissue Bank. 2015;16(4):587-92. http://dx.doi.org/10.1007/s10561-015-9506-9 PMid:25779925.
    » http://dx.doi.org/10.1007/s10561-015-9506-9
  • Aplin JD. Implantation. In: Henry HL, Norman AW, editors. Encyclopedia of hormones. Amsterdam: Academic Press; 2003. p. 289-97. http://dx.doi.org/10.1016/B0-12-341103-3/00165-0
    » http://dx.doi.org/10.1016/B0-12-341103-3/00165-0
  • Avilés M, Coy P, Rizos D. The oviduct : a key organ for the success of early reproductive events. Anim Front. 2015;5(1):25-31. http://dx.doi.org/10.2527/af.2015-0005
    » http://dx.doi.org/10.2527/af.2015-0005
  • Banliat C, Le Bourhis D, Bernardi O, Tomas D, Labas V, Salvetti P, Guyonnet B, Mermillod P, Saint-Dizier M. Oviduct fluid extracellular vesicles change the phospholipid composition of bovine embryos developed in vitro. Int J Mol Sci. 2020;21(15):1-13. http://dx.doi.org/10.3390/ijms21155326 PMid:32727074.
    » http://dx.doi.org/10.3390/ijms21155326
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-33. http://dx.doi.org/10.1016/j.cell.2009.01.002 PMid:19167326.
    » http://dx.doi.org/10.1016/j.cell.2009.01.002
  • Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20-51. http://dx.doi.org/10.1016/j.cell.2018.03.006 PMid:29570994.
    » http://dx.doi.org/10.1016/j.cell.2018.03.006
  • Battaglia R, Palin S, Vento ME, Ferlita AL, Faro MJL, Caroppo E, Borzi P, Falzone L, Barbagallo D, Ragusa M, Scalia M, D'Amato G, Scollo P, Musumeci P, Purrello M, Gravotta E, Di Pietro C. Identification of extracellular vesicles and characterization of miRNA expression profiles in human blastocoel fluid. Sci Rep. 2019;1–11. http://dx.doi.org/ 10.1038/s41598-018-36452-7
    » http://dx.doi.org/ 10.1038/s41598-018-36452-7
  • Bauersachs S, Almiñana C. Embryo–maternal interactions underlying reproduction in mammals. Int J Mol Sci. 2020;21(14):1-6. http://dx.doi.org/10.3390/ijms21144872 PMid:32664189.
    » http://dx.doi.org/10.3390/ijms21144872
  • Beier HM. Oviducal and uterine fluids. J Reprod Fertil. 1974;37(1):221-37. http://dx.doi.org/10.1530/jrf.0.0370221 PMid:4593606.
    » http://dx.doi.org/10.1530/jrf.0.0370221
  • Besenfelder U, Brem G, Havlicek V. Review : environmental impact on early embryonic development in the bovine species. Animal. 2020;14(S1):103-12. http://dx.doi.org/10.1017/S175173111900315X PMid:32024564.
    » http://dx.doi.org/10.1017/S175173111900315X
  • Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim. 2012;47(Suppl. 4):156-63. http://dx.doi.org/10.1111/j.1439-0531.2012.02070.x PMid:22827365.
    » http://dx.doi.org/10.1111/j.1439-0531.2012.02070.x
  • Binelli M, Gonella-Diaza A, Mesquita F, Membrive C. Sex steroid-mediated control of oviductal function in cattle. Biology. 2018;7(1):15. http://dx.doi.org/10.3390/biology7010015 PMid:29393864.
    » http://dx.doi.org/10.3390/biology7010015
  • Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of oviduct in mammalian fertilization. Reproduction. 2012;144(6):649-60. http://dx.doi.org/10.1530/REP-12-0279 PMid:23028122.
    » http://dx.doi.org/10.1530/REP-12-0279
  • Dissanayake K, Nõmm M, Lättekivi F, Ressaissi Y, Godakumara K, Lavrits A, Midekessa G, Viil J, Bæk R, Jørgensen MM, Bhattacharjee S, Andronowska A, Salumets A, Jaakma Ü, Fazeli A. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology. 2020;149:104-16. http://dx.doi.org/10.1016/j.theriogenology.2020.03.008 PMid:32259747.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.03.008
  • Fernandes CCL, Rodriguez-Villamil P, Vasconcelos FR, Nagano CS, Rossetto R, Moura AAAN, Rondina D. Proteome of the periovulatory oviduct and uterus of goats as related to nutritional balance. Reprod Domest Anim. 2018;53(5):1085-95. http://dx.doi.org/10.1111/rda.13208 PMid:29885005.
    » http://dx.doi.org/10.1111/rda.13208
  • Freeman DA, Weber JA, Geary RT, Woods GL. Time of embryo transport through the mare oviduct. Theriogenology. 1991;36(5):823-30. http://dx.doi.org/10.1016/0093-691X(91)90348-H PMid:16727051.
    » http://dx.doi.org/10.1016/0093-691X(91)90348-H
  • Fu B, Ma H, Liu D. Extracellular vesicles function as bioactive molecular transmitters in the mammalian oviduct: an inspiration for optimizing in vitro culture systems and improving delivery of exogenous nucleic acids during preimplantation embryonic development. Int J Mol Sci. 2020;21(6):2189. http://dx.doi.org/10.3390/ijms21062189 PMid:32235756.
    » http://dx.doi.org/10.3390/ijms21062189
  • Gebert LFR, Macrae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20:21-37. PMid:30108335.
  • Gonella-Diaza AM, Mesquita FS, Lopes E, Silva KR, Cogliati B, Francisco Strefezzi R, Binelli M. Sex steroids drive the remodeling of oviductal extracellular matrix in cattle. Biol Reprod. 2018;99(3):590-9. http://dx.doi.org/10.1093/biolre/ioy083 PMid:29659700.
    » http://dx.doi.org/10.1093/biolre/ioy083
  • Gonella-Diaza AM, Mesquita FS, Silva KR, Carvalho Balieiro JC, Santos NP, Pugliesi G, Strefezzi RDF. Sex steroids modulate morphological and functional features of the bovine oviduct. Cell Tissue Res. 2017;370(2):319-33. http://dx.doi.org/10.1007/s00441-017-2666-0 PMid:28770380.
    » http://dx.doi.org/10.1007/s00441-017-2666-0
  • Griffiths GS, Miller KA, Galileo DS, Martin-DeLeon PA. Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction. 2008;135(3):293-301. http://dx.doi.org/10.1530/REP-07-0340 PMid:18299422.
    » http://dx.doi.org/10.1530/REP-07-0340
  • Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology. 2017;6(3):34. http://dx.doi.org/10.3390/biology6030034 PMid:28906477.
    » http://dx.doi.org/10.3390/biology6030034
  • Hamdi M, Cañon‐Beltrán K, Mazzarella R, Cajas YN, Leal CLV, Gutierrez‐Adan A, Silveira JC, Rizos D. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J. 2021;35(12):e22000. http://dx.doi.org/10.1096/fj.202101023R PMid:34731497.
    » http://dx.doi.org/10.1096/fj.202101023R
  • Harris EA, Stephens KK, Winuthayanon W. Extracellular vesicles and the oviduct function. Int J Mol Sci. 2020;21:1-20. PMid:33167378.
  • Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction. 2019;157(5):R159-79. http://dx.doi.org/10.1530/REP-18-0431 PMid:30870807.
    » http://dx.doi.org/10.1530/REP-18-0431
  • Hawk HW. Sperm survival and transport in the female reproductive tract. J Dairy Sci. 1983;66(12):2645-60. http://dx.doi.org/10.3168/jds.S0022-0302(83)82138-9 PMid:6365994.
    » http://dx.doi.org/10.3168/jds.S0022-0302(83)82138-9
  • Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3(3):e1738. http://dx.doi.org/10.1371/journal.pone.0001738 PMid:18320056.
    » http://dx.doi.org/10.1371/journal.pone.0001738
  • Hu K, Yu Y. Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev. 2017;84(10):1027-38. http://dx.doi.org/10.1002/mrd.22868 PMid:28722155.
    » http://dx.doi.org/10.1002/mrd.22868
  • Huang N, Liu B, Dong Z, Mao W, Zhang N, Li C, Cao J. Prostanoid receptors EP2, EP4, and FP are regulated by estradiol in bovine oviductal smooth muscle. Prostaglandins Other Lipid Mediat. 2015;121(Pt B):170-5. http://dx.doi.org/10.1016/j.prostaglandins.2015.08.002 PMid:26319698.
    » http://dx.doi.org/10.1016/j.prostaglandins.2015.08.002
  • Jansen S, Cashman K, Thompson JG, Pantaleon M, Kaye PL. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos". Reproduction. 2009;138(3):493-505. http://dx.doi.org/10.1530/REP-09-0038 PMid:19531609.
    » http://dx.doi.org/10.1530/REP-09-0038
  • Kavanaugh JF, Killian GJ. Bovine oviductal cannulations. J Invest Surg. 1988;1(3):201-8. http://dx.doi.org/10.3109/08941938809141106 PMid:3154098.
    » http://dx.doi.org/10.3109/08941938809141106
  • Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct : ex vivo analyses using a new digital videomicroscopic system in the cow 1. Biol Reprod. 2009;81(2):267-74. http://dx.doi.org/10.1095/biolreprod.108.073874 PMid:19299315.
    » http://dx.doi.org/10.1095/biolreprod.108.073874
  • Lapointe J, Kimmins S, MacLaren LA, Bilodeau JF. Estrogen selectively up-regulates the phospholipid hydroperoxide glutathione peroxidase in the oviducts. Endocrinology. 2005;146(6):2583-92. http://dx.doi.org/10.1210/en.2004-1373 PMid:15746255.
    » http://dx.doi.org/10.1210/en.2004-1373
  • Lawson C, Kovacs D, Finding E, Ulfelder E, Luis-Fuentes V. Extracellular vesicles: evolutionarily conserved mediators of intercellular communication. Yale J Biol Med. 2017;90(3):481-91. PMid:28955186.
  • Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://dx.doi.org/10.1002/bies.10137 PMid:12210521.
    » http://dx.doi.org/10.1002/bies.10137
  • Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid : role of a neglected epithelium. Reproduction. 2001;121(3):339-46. http://dx.doi.org/10.1530/rep.0.1210339 PMid:11226059.
    » http://dx.doi.org/10.1530/rep.0.1210339
  • Li S, Winuthayanon W. Oviduct : roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-26. http://dx.doi.org/10.1530/JOE-16-0302 PMid:27875265.
    » http://dx.doi.org/10.1530/JOE-16-0302
  • Lindblom B, Hamberger L, Ljung B. Contractile patterns of isolated oviductal smooth muscle under different hormonal conditions. Fertil Steril. 1980;33(3):283-7. http://dx.doi.org/10.1016/S0015-0282(16)44595-4 PMid:7364061.
    » http://dx.doi.org/10.1016/S0015-0282(16)44595-4
  • Lopera-Vasquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltran-Brena P, Calle A, Redruello A, Lopez-Martin S, Gutierrez-Adan A, Yanez-Mo M, Ramirez MA, Rizos D. Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One. 2016;11(2):1-23. http://dx.doi.org/10.1371/journal.pone.0148083 PMid:26845570.
    » http://dx.doi.org/10.1371/journal.pone.0148083
  • Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182-93. PMid:26663221.
  • Mazzarella R, Bastos NM, Bridi A, del Collado M, Andrade GM, Pinzon J, Prado CM, Silva LA, Meirelles FV, Pugliesi G, Perecin F, Silveira JC. Changes in oviductal cells and small extracellular vesicles miRNAs in pregnant cows. Front Vet Sci. 2021;8:639752. http://dx.doi.org/10.3389/fvets.2021.639752 PMid:33748215.
    » http://dx.doi.org/10.3389/fvets.2021.639752
  • Memili E, First NL. Zygotic and embryonic gene expression in cow : a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8(1):87-96. http://dx.doi.org/10.1017/S0967199400000861 PMid:10840878.
    » http://dx.doi.org/10.1017/S0967199400000861
  • Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443-52. http://dx.doi.org/10.1016/j.cub.2013.02.007 PMid:23453951.
    » http://dx.doi.org/10.1016/j.cub.2013.02.007
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-28. http://dx.doi.org/10.1038/nrm.2017.125 PMid:29339798.
    » http://dx.doi.org/10.1038/nrm.2017.125
  • Olsen SL, Li S, Winuthayanon W, States U. Embryo transport. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Amsterdam: Elsevier; 2018. (vol. I). http://dx.doi.org/10.1016/B978-0-12-801238-3.64489-6
    » http://dx.doi.org/10.1016/B978-0-12-801238-3.64489-6
  • Pantaleon M, Scott J, Kaye PL. Nutrient sensing by the early mouse embryo : hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod. 2007;78(4):595-600. PMid:18046015.
  • Potts DM, Wilson IB. The preimplantation conceptus of the mouse at 90 hours post coitum. J Anat. 1967;102(Pt 1):1-11. PMid:17103504.
  • Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P. Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev. 2002a;62(3):320-7. http://dx.doi.org/10.1002/mrd.10138 PMid:12112595.
    » http://dx.doi.org/10.1002/mrd.10138
  • Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002b;61(2):234-48. http://dx.doi.org/10.1002/mrd.1153 PMid:11803560.
    » http://dx.doi.org/10.1002/mrd.1153
  • Rodríguez-Alonso B, Maillo V, Acuña OS, López-úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and pregnancy-related changes in the protein, amino acid, and carbohydrate composition of bovine oviduct fluid. Int J Mol Sci. 2020a;21(5):1-19. http://dx.doi.org/10.3390/ijms21051681 PMid:32121434.
    » http://dx.doi.org/10.3390/ijms21051681
  • Rodríguez-Alonso B, Sánchez JM, González E, Lonergan P, Rizos D. Challenges in studying preimplantation embryo-maternal interaction in cattle. Theriogenology. 2020b;150:139-49. http://dx.doi.org/10.1016/j.theriogenology.2020.01.019 PMid:31973965.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.01.019
  • Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2020;21(1):1-21. PMid:31905654.
  • Silveira JC, Andrade GM, del Collado M, Sampaio RV, Sangalli JR, Silva LA, Pinaffi FVL, Jardim IB, Cesar MC, Nogueira MFG, Cesar ASM, Coutinho LL, Pereira RW, Perecin F, Meirelles FV. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017;12(6):1-25. http://dx.doi.org/10.1371/journal.pone.0179451 PMid:28617821.
    » http://dx.doi.org/10.1371/journal.pone.0179451
  • Silveira JC, Andrade GM, Nogueira MFG, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015;22(12):1474-83. http://dx.doi.org/10.1177/1933719115574344 PMid:25736328.
    » http://dx.doi.org/10.1177/1933719115574344
  • Silveira JC, Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol. 2018;236(1):R15-27. http://dx.doi.org/10.1530/JOE-17-0200 PMid:28870888.
    » http://dx.doi.org/10.1530/JOE-17-0200
  • Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol. 2008;52(5–6):455-62. http://dx.doi.org/10.1387/ijdb.072527ss PMid:18649258.
    » http://dx.doi.org/10.1387/ijdb.072527ss
  • Tesfaye D, Hailay T, Salilew-wondim D, Hoelker M, Bitseha S, Gebremedhn S. Theriogenology extracellular vesicle mediated molecular signaling in ovarian follicle : implication for oocyte developmental competence. Theriogenology. 2020;150:70-4.
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. PMid:30637094.
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. http://dx.doi.org/10.1038/ncb1596 PMid:17486113.
    » http://dx.doi.org/10.1038/ncb1596
  • Valle GR, Cassali GD, Nogueira JC, Castro ACS, Reis AM, Cardoso FM, Figueiredo CBO, Nascimento EF. Nuclear estrogen and progesterone receptors in the oviduct of heifers under natural and superovulated estrous cycles. Anim Reprod Sci. 2007;101(1-2):28-37. http://dx.doi.org/10.1016/j.anireprosci.2006.08.026 PMid:17010540.
    » http://dx.doi.org/10.1016/j.anireprosci.2006.08.026

Publication Dates

  • Publication in this collection
    20 Apr 2022
  • Date of issue
    2022

History

  • Received
    02 Feb 2022
  • Accepted
    17 Mar 2022
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com