Acessibilidade / Reportar erro

Is it possible to identify four small Neotropical felids (Carnivora: Felidae) based on hair microstructure?

Abstract

The microscopic characters of the hair can be used to indirectly identify species that are either uncommon or are difficult to see, for instance small Neotropical felids of the southern Brazilian Atlantic Forests. This widely used technique, which has not yet been standardized, involves the identification of hairs collected from feces. We tested the hypothesis that this tool is effective to identify four species of small Neotropical felids: Leopardus guttulus, Puma yagouaroundi, L. wiedii and L. pardalis. To accomplish that, we used measurements of the length, width and area of the cuticular scales in the guard hairs and calculated the relationship between width and length (quotient) for each species. A multiple discriminant analysis was conducted on the measurements and the percentage of correct identification was obtained. We found a high overlap in the quotients of these species, which indicates that this technique does not identify Neotropical felids accurately. This inefficiency was also confirmed by the multiple discriminant analysis, where only 74% correct identifications were obtained. Therefore we recommend that hair analysis is used only in combination with other sources of evidence, for instance molecular tools.

Diet; Leopardus guttulus; Leopardus wiedii; Leopardus pardalis; Puma yagouaroundi


In the southern Brazilian Atlantic Forest, the guild of small Neotropical felids includes four species: Leopardus guttulus (Hensel, 1872), recently separated from L. tigrinus (Schreber, 1775), Puma yagouaroundi (É. Geoffroy Saint-Hilaire, 1803), L. wiedii (Schinz, 1821) and L. pardalis (Linnaeus, 1758) (Nowell & Jackson 1996Nowell K, Jackson P (1996) Wild Cats - Status Survey and Conservation Action Plan. Gland, IUCN/SSC Cat Specialist Group.). The separation of L. guttulus from L. tigrinus was based on molecular and morphological data that demonstrated that populations of L. tigrinus in southern Brazil constitute a separate species (Trigo et al. 2013Trigo TC, Schneider A, Oliveira TG, Lehugeur LM, Silveira L, Freitas TRO, Eizirick E (2013) Molecular data reveal complex hybridization and a cryptic species of Neotropical Wild Cat. Current Biology 23(24): 2528-2533. doi: 10.1016/j.cub.2013.10.046
https://doi.org/10.1016/j.cub.2013.10.04...
, F.O. Nascimento unpubl. data). Thus, in this report we recognize all samples of oncilla from the southern Brazilian Atlantic Forest as L. guttulus.

These four small Neotropical felids occur in low densities and are difficult to find in their natural environment (Chiarello 1999Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation 89(1): 71-82. doi: 10.1016/S0006-3207(98)00130-X
https://doi.org/10.1016/S0006-3207(98)00...
, Silver et al. 2004Silver SC, Ostro LET, Marsh LK, Maffei F, Noss AJ, Kelly MJ, Wallace RB, Gomez H, Ayala G (2004) The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2): 1-7. doi: 10.1017/S0030605304000286
https://doi.org/10.1017/S003060530400028...
, Di Bitetti et al. 2010Di Bitetti MS, Angelo CD de, Blanco YE di, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36: 403-412. doi: 10.1016/j.actao.2010.04.001
https://doi.org/10.1016/j.actao.2010.04....
). Furthermore, they have large home ranges and territories, and have nocturnal/twilight activity, which reduce the efficiency of direct sampling techniques in-situ and results in insufficient ecological data in the literature (Downey et al. 2007Downey PJ, Hellgren EC, Caso A, Carvajal S, Frangioso K (2007) Hair Snares for noninvasive sampling of felids in North America: Do gray foxes affect success? The Journal of Wildlife Management 71(6): 2090-2094. doi: 10.2193/2006-500
https://doi.org/10.2193/2006-500...
, Abreu et al. 2008Abreu CK, Moro-Rios RF, Silva-Pereira JE, Miranda JMD, Jablonski EF, Passos FC (2008) Feeding habits of ocelot (Leopardus pardalis) in Southern Brazil. Mammalian Biology 73(5): 407-411. doi: 10.1016/j.mambio.2007.07.004
https://doi.org/10.1016/j.mambio.2007.07...
, Di Bitetti et al. 2010Di Bitetti MS, Angelo CD de, Blanco YE di, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36: 403-412. doi: 10.1016/j.actao.2010.04.001
https://doi.org/10.1016/j.actao.2010.04....
).

Indirect detection techniques, such as the identification of guard hairs ingested during self-cleaning and excreted in feces (Eckstein & Hart 2000Eckstein RA, Hart BL (2000) Grooming and control of fleas in cats. Applied Animal Behaviour Science 68: 141-150. doi: 10.1016/S0168-1591(00)00095-2
https://doi.org/10.1016/S0168-1591(00)00...
), have been used to collect information about Neotropical felids in the wild. This technique is commonly used in feeding studies (see Guerrero et al. 2002Guerrero S, Badii MH, Zalapa SS, Flores AE (2002) Dieta y nicho de alimentación del coyote zorra gris, mapache y jaguarondi en un bosque tropical caducifolio de la costa sur del estado de Jalisco, México. Acta Zoologica Mexicana 86: 119-137., Wang 2002Wang E (2002) Diet of Ocelots (Leopardus pardalis), Margays (Leopardus wiedii), and Oncillas (Leopardus tigrinus) in the Atlantic Rainforest in Southeast Brazil. Studies on Neotropical Fauna and Environment 37(3): 207-212., Ludwig et al. 2007Ludwig G, Aguiar LM, Miranda JMD, Teixeira GM, Svoboda WK, Malanski LS, Shiozawa MM, Hilst CLS, Navarro IT, Passos FC (2007) Cougar predation on black-and-gold howlers on Mutum Island, Southern Brazil. International Journal of Primatology 28(1): 39-46. doi: 10.1007/s10764-006-9103-7
https://doi.org/10.1007/s10764-006-9103-...
, Tófoli et al. 2009Tófoli CF, Rohe F, Setz EFF (2009) Jaguaroundi (Puma yagouaroundi) (Geoffroy, 1803) (Carnivora, Felidae) food habitats in a mosaic of Atlantic Rainforest and eucalypt plantations of southeastern Brazil. Brazilian Journal of Biology 69(3): 871-877. doi: 10.1590/S1519-69842009000400015
https://doi.org/10.1590/S1519-6984200900...
, Silva-Pereira et al. 2011Silva-Pereira JE, Moro-Rios R, Bilski DR, Passos FC (2011) Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mammalian Biology 76: 308-312. doi: 10.1016/j.mambio.2010.09.001
https://doi.org/10.1016/j.mambio.2010.09...
) and also provides data on the distribution and occurrence of these animals.

Nevertheless, the usefulness of species identification based on guard hairs in the stool has not escaped criticism. In a study that included all Brazilian felid species, Vanstreels et al. (2010Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.) indicated that they were able to successfully identify only 75% of the samples. Because this indirect tool is so important and so widely used (e.g., Wang 2002Wang E (2002) Diet of Ocelots (Leopardus pardalis), Margays (Leopardus wiedii), and Oncillas (Leopardus tigrinus) in the Atlantic Rainforest in Southeast Brazil. Studies on Neotropical Fauna and Environment 37(3): 207-212., Martins et al. 2008Martins R, Quadros J, Mazzolli M (2008) Food habits and anthropic interference on the territorial marking activity of Puma concolor and Leopardus pardalis (Carnivora: Felidae) and other carnivores in the Jureia-Itatins Ecological Station, Sao Paulo, Brazil. Revista Brasileira de Zoologia 25(3): 427-435. doi: 10.1590/S0101-81752008000300007
https://doi.org/10.1590/S0101-8175200800...
, Tófoli et al. 2009Tófoli CF, Rohe F, Setz EFF (2009) Jaguaroundi (Puma yagouaroundi) (Geoffroy, 1803) (Carnivora, Felidae) food habitats in a mosaic of Atlantic Rainforest and eucalypt plantations of southeastern Brazil. Brazilian Journal of Biology 69(3): 871-877. doi: 10.1590/S1519-69842009000400015
https://doi.org/10.1590/S1519-6984200900...
, Bianchi et al. 2011Bianchi RC, Rosa AF, Gatti A, Mendes SL (2011) Diet of margay, Leopardus wiedii, and jaguarundi, Puma yagouaroundi, (Carnivora: Felidae) in Atlantic Rainforest, Brazil. Zoologia 28(1): 127-132. doi: 10.1590/S1984-46702011000100018
https://doi.org/10.1590/S1984-4670201100...
, Silva-Pereira et al. 2011Silva-Pereira JE, Moro-Rios R, Bilski DR, Passos FC (2011) Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mammalian Biology 76: 308-312. doi: 10.1016/j.mambio.2010.09.001
https://doi.org/10.1016/j.mambio.2010.09...
), and considering the flaws in the diagnostics elaborated by Vanstreels et al. (2010Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.) (their method is circular: they used only qualitative characters for species determination, which in turn are dependent on the experience and the skills of the observer), we endeavored to evaluate metrically its usefulness to identify L. guttulus, P. yagouaroundi, L. wiedii, and L. pardalis.

The current method used for the identification of these four species follows three procedures: identification of the medullar pattern, the cuticular pattern, and the relationship between width and length of the cuticular scales of the hair shaft (Quadros & Monteiro-Filho 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66., Vanstreels et al. 2010Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.). The medullar pattern, called Trabecular with fringed margins, is similar in all small Brazilian Neotropical felids (Vanstreels et al. 2010Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.). The cuticular character, however, divides them into two pairs of species: the Losangic pattern clusters L. guttulus with P. yagouaroundi, and the Folidaceous pattern clusters L. wiedii with L. pardalis (Quadros & Monteiro-Filho 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.). Each small Neotropical Brazilian felid can be identified using the relationship between width and length of the scales on the shaft of the guard hairs (Quadros & Monteiro-Filho 2006Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66., 2010). In the species displaying the Losangic pattern, the scales are wider than long in P. yagouaroundi and longer than wide in L. guttulus. In the pair characterized by the Folidaceous pattern, the scales are as wide as long in L. pardalis and longer than wide in L. wiedii (Quadros & Monteiro-Filho 2006Quadros J, Monteiro-Filho ELA (2006) Revisão conceitual, padrões microestruturais e proposta nomenclatória para os pelos-guarda de mamíferos brasileiros. Revista Brasileira de Zoologia 23(1): 279-292. doi: 10.1590/S0101-81752006000100023
https://doi.org/10.1590/S0101-8175200600...
, 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.).

We collected morphometric data from animals kept at the Bela Vista Biological Sanctuary located at the ITAIPU Binational area and Center for Conservation of Neotropical Felids, Associação Mata Ciliar. Hairs were collected from 10 specimens of L. guttulus, seven of P. yagouaroundi, 10 of L. wiedii and 10 of L. pardalis. All samples of L. guttulus were collected from southeastern and southern Brazil (Appendix 1 APPENDIX Appendix 1. List of small Neotropical Felids specimens that were sampled in study of metric cuticular scale. *CASIB = Center for Conservation of Neotropical Felids ITAIPU Binacional, AMC = Associação Mata Ciliar. ). In this study, we used only secondary guard hairs with a straight shaft, as des cribed by Quadros & Monteiro-Filho (2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.).

We measured the length, width and area of 888 scales from L. guttulus (mean to specimens 88.80 ± 12.6 SD scales), 669 (66.90 ± 22) from P. yagouaroundi, 717 (71.70 ± 23.8) from L. wiedii and 548 (78.28 ± 9.6) from L. pardalis. This information was taken from the following total number of hairs per specimen: L. guttulus = 9.20 ± 1.03, P. yagouaroundi 8.30 ± 1.5, L. wiedii = 7.70 ± 2.1, and L. pardalis = 8.14 ± 1.09.

To measure the hairs, we applied thin Entellan (Merck(c)) resin layers onto microscope slides. After ten minutes, we placed the hairs onto the Entellan resin, pressed them and subsequently removed them. The resulting impression in the resin was then identified with the number of the specimen and abbreviation of the species name, facilitating individualization. Subsequently, microscopic images were obtained from the impressions using a digital camera coupled to a microscope, and the program MIAS 2.2. The images were taken at 400× magnification. The following measurements were taken from the images, using the program Image Tool (Wilcox et al. 2002Wilcox CD, Dove B, McDavid WD, Greer DB (2002) Image Tool software. San Antonio, University of Texas Health Sciense Center San Antonio Dental School. Available online at: http://compdent.uthscsa.edu/dig/itdesc.html [Accessed: May 2014]
http://compdent.uthscsa.edu/dig/itdesc.h...
): length, width and area of each scale. The area of the scale was included as a variable in the analysis due to irregularities in the shape of scales (Figs. 1-4).

Figures 1-4.
Cuticular patterns on the shaft of the secondary guard hairs of four species of Neotropical felids. Losangic: (1) Leopardus guttulus and (2) Puma yagouaroundi; and Imbricate Folidaceous: (3) L. wiedii and (4) L. pardalis.

To demonstrate the efficiency of the quotient between the width and length of guard hair scales, indicated in the dichotomous key of Quadros & Monteiro-Filho (2006Quadros J, Monteiro-Filho ELA (2006) Revisão conceitual, padrões microestruturais e proposta nomenclatória para os pelos-guarda de mamíferos brasileiros. Revista Brasileira de Zoologia 23(1): 279-292. doi: 10.1590/S0101-81752006000100023
https://doi.org/10.1590/S0101-8175200600...
, 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.), we prepared a blox-plot of quotient for each species in the pair. An overlap of quotients within a pair of small Neotropical felids suggests the inefficiency of the dichotomous key proposed.

Multivariate Linear Discriminant Analysis (LDA) was performed to test the hypothesis that it is possible to discriminate between pairs of species. The discriminant function used to calculate the scores of the samples was Zk = α + i X 1k+...+W i X ik, where: Zjk is the score obtained by the score function for the sample k, α is the intercept, Wi is the discriminant coefficient for the independent variable i, and X ik is the real value of the independent variable i for the object k (Hair et al. 2005Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.). After randomization of the original data, the matrices of the two species were divided into two sub-matrices; one was called the analysis matrix and the other, the testing matrix. The latter consisted of 100 samples and was used to validate the discriminant function. The remaining data were included in the analysis matrix and were used for the preparation of the discriminant function.

With the scores obtained from the analysis matrix, we calculated the centroid of each species, which we used to obtain the cut-off scores calculated by the weighted mean of centroids (Hair et al. 2005Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.). We used the Wilk's Lambda statistics to evaluate the significance and power of the discriminant function and the relative contribution of each variable to the model. The results of these statistics varied from zero to one, with a result close to zero indicating greater discrimination. To check which percentage of the overall variance was explained by the model, we used the square of the canonical correlation (Hair et al. 2005Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.). We also calculated the accuracy of reclassification for each species, and the rate of success of the discriminant function as a percentage. We adopted the criterion of proportional chances to exclude the possibility that the correct determinations were due to chance. The discriminant function was validated after confirming that the correct identifications were equal or greater than the sum of the values explained by chance, with the addition of a quarter of the same-value. Finally, we compared the success ratios obtained in the analysis matrix with those obtained in the testing matrix using the Chi-squared test for two samples. The premise of homoscedasticity was fulfilled. Independence between variables was tested using the Pearson's correlation test (Hair et al. 2005Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.), using R (R Development Core Team 2011R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing, ISBN 3-900051-07-0. Available online at: http://www.R-project.org [Accessed: May 2014]
http://www.R-project.org...
) and observing the predominance of low correlations (< 0.5, Table I). The proportionality of the sample size and the minimum size of the group per independent variable were observed (Hair et al. 2005Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.).

Table I.
Pearsons's correlation coefficient between the cuticular variables: width, length and area of the cuticular scales of the secondary guard hairs of small felids in the Brazilian Neotropical forest.

There is strong overlap in the width\length quotient obtained for the scales of the guard hairs of each pair of small Neotropical felids. Therefore, this quotient is not adequate to separate these species (Figs. 5 and 6).

Figures 5-6.
Quotient of width and length (cm) of guard hairs scales for each pair of small Neotropical felids: (5) Leopardus guttulus and Puma yagouaroundi; (6) L. wiedii and L. pardalis.

The success rate in determining species using LDA was 80% and 73% for the pairs L. guttulus and P. yagouaroundi, and L. wiedii and L. pardalis, respectively. The precision of the identification was 91% for L. guttulus, 60% for P. yagouaroundi, 76% for L. wiedii and 70% for L. pardalis.

Despite the apparent success, the discriminatory power of the technique in the identification of the pairs L. guttulus and P. yagouaroundi (Wilkin's Lambda = 0.65, p < 0.001) and L. wiedii and L. pardalis (Wilkin's Lambda = 0.74, p < 0.001) was low and failed to explain the variance (34% and 25%, respectively). The variable length contributed the most to the discrimination of both pairs.

The result obtained from the reclassification matrix tests were not significantly different from those obtained in the matrix analysis of L. guttulus and P. yagouaroundi 2 = 0.14, d.f. = 1, p > 0.05), and of L. wiedii and L. pardalis 2 = 0.16, d.f. = 1, p > 0.05), validating the results of the discriminant function. The centroid, critical cutoff scores, sample size and discriminant functions obtained, which are essential for the computation of new samples, are available in Table II.

Table II.
Summary of the identification process for small Neotropical felids (Leopardus guttulus, L. wiedii, L. pardalis, and Puma yagouaroundi) using the linear discriminant analysis (ADL) of metrics of guard hair scales.

Our knowledge of the biodiversity in Neotropical ecosystems is insufficient and the limited information concerning these small Neotropical felids exemplifies this (Wang 2002Wang E (2002) Diet of Ocelots (Leopardus pardalis), Margays (Leopardus wiedii), and Oncillas (Leopardus tigrinus) in the Atlantic Rainforest in Southeast Brazil. Studies on Neotropical Fauna and Environment 37(3): 207-212., Bianchi et al. 2011Bianchi RC, Rosa AF, Gatti A, Mendes SL (2011) Diet of margay, Leopardus wiedii, and jaguarundi, Puma yagouaroundi, (Carnivora: Felidae) in Atlantic Rainforest, Brazil. Zoologia 28(1): 127-132. doi: 10.1590/S1984-46702011000100018
https://doi.org/10.1590/S1984-4670201100...
, Silva-Pereira et al. 2011Silva-Pereira JE, Moro-Rios R, Bilski DR, Passos FC (2011) Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mammalian Biology 76: 308-312. doi: 10.1016/j.mambio.2010.09.001
https://doi.org/10.1016/j.mambio.2010.09...
). Indirect techniques such as the identification of stool samples are therefore important to remediate this situation, as they allow the determination of records in situ. This technique, however, is not without shortcomings. The results obtained illustrate that specific determination by visual comparison of scale widths (Quadros & Monteiro-Filho 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66., Vanstreels et al. 2010Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.) is subjective and cannot be used to identify the species of these small Neotropical felids, even with the use of metric variables (see the overlap of metrics of hair scales in Figs. 7 and 8).

Figures 7-8.
Overlap frequency of the multivariate metric (length, width and area of hair scales) for: (7) Leopardus guttulus (grey) and Puma yagouaroundi (black); (8) L. wiedii (grey) and L. pardalis (black).

Furthermore, the metric evaluation of stool guard hairs might be complemented by molecular techniques (Zuercher et al. 2003Zuercher GL, Gipson PS, Stewart GC (2003) Identification of carnivore feces by local peoples and molecular analyses. Wildlife Society Bulletin 31(4): 961-970., Michalski et al. 2011Michalski F, Valdez FP, Norris D, Zieminski C, Kashivakura CK, Trinca C, Smith HB, Vynne C, Wasser SK, Metzger JP, Eizirik E (2011) Successful carnivore identification with fecal DNA across a fragmented Amazonian landscape. Molecular Ecology Resources 11(5): 862-871. doi: 10.1111/j.1755-0998.2011.03031.x
https://doi.org/10.1111/j.1755-0998.2011...
) to solve specific identification, since cuticular characteristics divide these four species into two pairs, Losangic pattern for L. guttulus and P. yagouaroundi; and Folidaceous pattern for L. wiedii and L. pardalis (Quadros & Monteiro-Filho 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66. and this study).

Due to the scarcity of information concerning the four species studied here and their conservation status, ecological studies in situ are fundamental, especially in ecosystems where fragmentation rates and habitat loss are high (Myers et al. 2000Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858. doi: 10.1038/35002501
https://doi.org/10.1038/35002501...
). Reliable information can help implement correct management actions that may prevent the extinction of these small predators and the consequent adverse effect of their extinction on the entire community (see Van Jaarsveld et al. 1998Van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Krüger M, Endrödy-Younga S, Mansell MW, Scholtz CH (1998) Biodiversity assessment and conservation strategies. Science 27(279): 2106-2108. doi: 10.1126/science.279.5359.2106
https://doi.org/10.1126/science.279.5359...
, Groves et al. 2002Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. BioScience 52(6): 499-512. doi: 10.1641/0006-3568(2002)052[0499:PFBCPC]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)0...
, Wang 2002Wang E (2002) Diet of Ocelots (Leopardus pardalis), Margays (Leopardus wiedii), and Oncillas (Leopardus tigrinus) in the Atlantic Rainforest in Southeast Brazil. Studies on Neotropical Fauna and Environment 37(3): 207-212., Moreno et al. 2006Moreno RS, Kays RW, Samudio Jr R (2006) Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. Journal of Mammalogy 87(4): 808-816. doi: 10.1644/05-MAMM-A-360R2.1
https://doi.org/10.1644/05-MAMM-A-360R2....
). Therefore, the standardization of existing methods and the search for new technologies should be encouraged, with an emphasis on information gathering.

Finally, considering the results obtained in this work and the current availability of identification keys for other Neotropical mammals (e.g., rodents: Silveira et al. 2013Silveira F, Sbalqueiro IJ, Monteiro-Filho ELA (2013) Identificação de espécies de Akodon (Rodentia: Cricetidae: Sigmodontinae) através da microestrutura dos pelos. Biota Neotropica 13(1): 339-345. doi: 10.1590/S1676-06032013000100033
https://doi.org/10.1590/S1676-0603201300...
, primates: Ingberman & Monteiro-Filho 2006Ingberman B, Monteiro-Filho ELA (2006) Identificação microscópica dos pelos das espécies brasileiras de Alouatta Lacépède, 1799 (Primates, Atelidae, Alouattinae). Arquivos do Museu Nacional Rio de Janeiro 64(1): 61-71., other mammals: Martin et al. 2009Martin PS, Gueler-Costa C, Verdade LM (2009) Microestrutura de pelos de pequenos mamíferos não-voadores: chave para identificação de espécies de agroecossistemas do Estado de São Paulo, Brasil. Biota Neotropica 9(1). doi: 10.1590/S1676-06032009000100022
https://doi.org/10.1590/S1676-0603200900...
, Quadros & Monteiro-Filho 2010Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.) based on the morphology of hair microstructure, we encourage the standardization of these identification keys with testable metric variables to prevent future waste of resources and possible invalid research outputs.

ACKNOWLEDGEMENTS

We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the doctorate scholarship to ARR in Postgraduate Programme of Ecology and Conservation, UFPR. We also thank the Anglo-American College for granting us access to their laboratories; the ITAIPU Binacional and the Mata Ciliar Association for giving us authorization to access the samples of guard hairs. This work does not reflect the opi nion of the institutions mentioned above. CNPq provided a Grant to Fernando C. Passos (303757/2012-4).

  • Abreu CK, Moro-Rios RF, Silva-Pereira JE, Miranda JMD, Jablonski EF, Passos FC (2008) Feeding habits of ocelot (Leopardus pardalis) in Southern Brazil. Mammalian Biology 73(5): 407-411. doi: 10.1016/j.mambio.2007.07.004
    » https://doi.org/10.1016/j.mambio.2007.07.004
  • Bianchi RC, Rosa AF, Gatti A, Mendes SL (2011) Diet of margay, Leopardus wiedii, and jaguarundi, Puma yagouaroundi, (Carnivora: Felidae) in Atlantic Rainforest, Brazil. Zoologia 28(1): 127-132. doi: 10.1590/S1984-46702011000100018
    » https://doi.org/10.1590/S1984-46702011000100018
  • Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation 89(1): 71-82. doi: 10.1016/S0006-3207(98)00130-X
    » https://doi.org/10.1016/S0006-3207(98)00130-X
  • Di Bitetti MS, Angelo CD de, Blanco YE di, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36: 403-412. doi: 10.1016/j.actao.2010.04.001
    » https://doi.org/10.1016/j.actao.2010.04.001
  • Downey PJ, Hellgren EC, Caso A, Carvajal S, Frangioso K (2007) Hair Snares for noninvasive sampling of felids in North America: Do gray foxes affect success? The Journal of Wildlife Management 71(6): 2090-2094. doi: 10.2193/2006-500
    » https://doi.org/10.2193/2006-500
  • Eckstein RA, Hart BL (2000) Grooming and control of fleas in cats. Applied Animal Behaviour Science 68: 141-150. doi: 10.1016/S0168-1591(00)00095-2
    » https://doi.org/10.1016/S0168-1591(00)00095-2
  • Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. BioScience 52(6): 499-512. doi: 10.1641/0006-3568(2002)052[0499:PFBCPC]2.0.CO;2
    » https://doi.org/10.1641/0006-3568(2002)052[0499:PFBCPC]2.0.CO;2
  • Guerrero S, Badii MH, Zalapa SS, Flores AE (2002) Dieta y nicho de alimentación del coyote zorra gris, mapache y jaguarondi en un bosque tropical caducifolio de la costa sur del estado de Jalisco, México. Acta Zoologica Mexicana 86: 119-137.
  • Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de dados. Porto Alegre, Bookman.
  • Ingberman B, Monteiro-Filho ELA (2006) Identificação microscópica dos pelos das espécies brasileiras de Alouatta Lacépède, 1799 (Primates, Atelidae, Alouattinae). Arquivos do Museu Nacional Rio de Janeiro 64(1): 61-71.
  • Ludwig G, Aguiar LM, Miranda JMD, Teixeira GM, Svoboda WK, Malanski LS, Shiozawa MM, Hilst CLS, Navarro IT, Passos FC (2007) Cougar predation on black-and-gold howlers on Mutum Island, Southern Brazil. International Journal of Primatology 28(1): 39-46. doi: 10.1007/s10764-006-9103-7
    » https://doi.org/10.1007/s10764-006-9103-7
  • Martin PS, Gueler-Costa C, Verdade LM (2009) Microestrutura de pelos de pequenos mamíferos não-voadores: chave para identificação de espécies de agroecossistemas do Estado de São Paulo, Brasil. Biota Neotropica 9(1). doi: 10.1590/S1676-06032009000100022
    » https://doi.org/10.1590/S1676-06032009000100022
  • Martins R, Quadros J, Mazzolli M (2008) Food habits and anthropic interference on the territorial marking activity of Puma concolor and Leopardus pardalis (Carnivora: Felidae) and other carnivores in the Jureia-Itatins Ecological Station, Sao Paulo, Brazil. Revista Brasileira de Zoologia 25(3): 427-435. doi: 10.1590/S0101-81752008000300007
    » https://doi.org/10.1590/S0101-81752008000300007
  • Michalski F, Valdez FP, Norris D, Zieminski C, Kashivakura CK, Trinca C, Smith HB, Vynne C, Wasser SK, Metzger JP, Eizirik E (2011) Successful carnivore identification with fecal DNA across a fragmented Amazonian landscape. Molecular Ecology Resources 11(5): 862-871. doi: 10.1111/j.1755-0998.2011.03031.x
    » https://doi.org/10.1111/j.1755-0998.2011.03031.x
  • Moreno RS, Kays RW, Samudio Jr R (2006) Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. Journal of Mammalogy 87(4): 808-816. doi: 10.1644/05-MAMM-A-360R2.1
    » https://doi.org/10.1644/05-MAMM-A-360R2.1
  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858. doi: 10.1038/35002501
    » https://doi.org/10.1038/35002501
  • Nowell K, Jackson P (1996) Wild Cats - Status Survey and Conservation Action Plan. Gland, IUCN/SSC Cat Specialist Group.
  • Quadros J, Monteiro-Filho ELA (2006) Revisão conceitual, padrões microestruturais e proposta nomenclatória para os pelos-guarda de mamíferos brasileiros. Revista Brasileira de Zoologia 23(1): 279-292. doi: 10.1590/S0101-81752006000100023
    » https://doi.org/10.1590/S0101-81752006000100023
  • Quadros J, Monteiro-Filho ELA (2010) Identificação dos mamíferos de uma área de Floresta Atlântica utilizando a microestrutura de pelos-guarda de predadores e presas. Arquivos do Museu Nacional 68(1-2): 47-66.
  • R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing, ISBN 3-900051-07-0. Available online at: http://www.R-project.org [Accessed: May 2014]
    » http://www.R-project.org
  • Silva-Pereira JE, Moro-Rios R, Bilski DR, Passos FC (2011) Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mammalian Biology 76: 308-312. doi: 10.1016/j.mambio.2010.09.001
    » https://doi.org/10.1016/j.mambio.2010.09.001
  • Silveira F, Sbalqueiro IJ, Monteiro-Filho ELA (2013) Identificação de espécies de Akodon (Rodentia: Cricetidae: Sigmodontinae) através da microestrutura dos pelos. Biota Neotropica 13(1): 339-345. doi: 10.1590/S1676-06032013000100033
    » https://doi.org/10.1590/S1676-06032013000100033
  • Silver SC, Ostro LET, Marsh LK, Maffei F, Noss AJ, Kelly MJ, Wallace RB, Gomez H, Ayala G (2004) The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2): 1-7. doi: 10.1017/S0030605304000286
    » https://doi.org/10.1017/S0030605304000286
  • Tófoli CF, Rohe F, Setz EFF (2009) Jaguaroundi (Puma yagouaroundi) (Geoffroy, 1803) (Carnivora, Felidae) food habitats in a mosaic of Atlantic Rainforest and eucalypt plantations of southeastern Brazil. Brazilian Journal of Biology 69(3): 871-877. doi: 10.1590/S1519-69842009000400015
    » https://doi.org/10.1590/S1519-69842009000400015
  • Trigo TC, Schneider A, Oliveira TG, Lehugeur LM, Silveira L, Freitas TRO, Eizirick E (2013) Molecular data reveal complex hybridization and a cryptic species of Neotropical Wild Cat. Current Biology 23(24): 2528-2533. doi: 10.1016/j.cub.2013.10.046
    » https://doi.org/10.1016/j.cub.2013.10.046
  • Van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Krüger M, Endrödy-Younga S, Mansell MW, Scholtz CH (1998) Biodiversity assessment and conservation strategies. Science 27(279): 2106-2108. doi: 10.1126/science.279.5359.2106
    » https://doi.org/10.1126/science.279.5359.2106
  • Vanstreels RET, Ramalho FP, Adania CH (2010) Microestrutura de pelos-guarda de felídeos brasileiros: considerações para a identificação de espécies. Biota Neotropica 10(1): 333-337.
  • Wang E (2002) Diet of Ocelots (Leopardus pardalis), Margays (Leopardus wiedii), and Oncillas (Leopardus tigrinus) in the Atlantic Rainforest in Southeast Brazil. Studies on Neotropical Fauna and Environment 37(3): 207-212.
  • Wilcox CD, Dove B, McDavid WD, Greer DB (2002) Image Tool software. San Antonio, University of Texas Health Sciense Center San Antonio Dental School. Available online at: http://compdent.uthscsa.edu/dig/itdesc.html [Accessed: May 2014]
    » http://compdent.uthscsa.edu/dig/itdesc.html
  • Zuercher GL, Gipson PS, Stewart GC (2003) Identification of carnivore feces by local peoples and molecular analyses. Wildlife Society Bulletin 31(4): 961-970.

APPENDIX

Appendix 1.
List of small Neotropical Felids specimens that were sampled in study of metric cuticular scale.

Publication Dates

  • Publication in this collection
    Jan-Feb 2015

History

  • Received
    20 Aug 2014
  • Reviewed
    14 Nov 2014
  • Accepted
    06 Dec 2014
Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: (55 41) 3266-6823 - Curitiba - PR - Brazil
E-mail: sbz@sbzoologia.org.br