Acessibilidade / Reportar erro

Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution

Abstracts

In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements.

Nanodrug; Muscimol; Acid/dissociation constants; Computational chemistry; Density Functional Theory


No presente trabalho, calculou-se a constante de dissociação do ácido (pKa) dos derivados de muscimol, utilizando-se o método da teoria do funcional de densidade (DFT). Com esse objetivo, calcularam-se os valores das espécies neutra, protonada e desprotonada do muscimol em água em base B3LYP/6-31G(d). A formação da ligação de hidrogênio de todas as espécies foi analisada utilizando o método de Tomasi. Demonstrou-se que os valores de pKa calculados teoricamente estavam em boa concordância com os valores experimentais disponíveis, determinados por eletroforese capilar, titulação potenciométrica e medidas por espectrofotometria UV-visível.

Nanofármaco; Muscimol; Ácido/constantes de dissociação; Química computacional; Teoria do funcional de densidade


INTRODUCTION

Muscimol ([methylene-3H(n)]-3-hydroxy-5-aminoethyl isoxazole) is a strong GABAA agonist found naturally in the mushroom (Amanita muscaria). Muscimol is slowly removed by the uptake mechanism, making it more suitable for long-term quantitative studies. Antiepileptic effects were found with epidural pentobarbital and GABA administrations. The antiepileptic effects of subarachnoid lidocaine were shown in epilepsy patients undergoing tissue resection (Michelot, Melendez-Howell, 2003MICHELOT, D.; MELENDEZ-HOWELL. L. M. Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol. Res., v.107, p.131-146, 2003.; Steardo et al., 1985STEARDO, L.; IOVINO, M.; MONTELEONE, P.; AGRUSTA, M.; ORIO, F. Evidence for a GABAergic control of the exercise-induced rise in GH in man. Eur. J. Clin. Pharmacol., v.28, p.607-609, 1985.; Frolund et al., 2002FROLUND, B.; EBERT, B.; KRISTIANSEN, U.; LILJEFORS, T.; KROGSGAARD-LARSEN, P. GABA-A receptor ligands and their therapeutic potentials. Curr. Top. Med. Chem., v.2, p.817-832, 2002.; Chilton, Ott, 1976CHILTON, W. S.; OTT, J. Toxic metabolites of Amanita panterina, A. cothurnata, A. muscarina, and other Amanita species. Lloydia, v.39, p.150-157, 1976.).

The tendency of a molecule to lose hydarogen atom as an acidic proton is quantified as pKa. It is well-known that pKa values are important for the development of new compounds with biological activity. It can be due to the relationships between the pKa values and those structures, which may help studies in drugs design and also explain the biopharmaceutical properties of substances (Duran, Aydemir, 2012DURAN, M.; AYDEMIR, S. Ab initio studies on acidity and tautomeric equilibrium constants of some benzoxa-, benzothia-, benzoselena-zolinone derivatives. Comput. Theor. Chem., v.989, p.69-74, 2012.; Barbosa et al., 2001BARBOSA, J.; BARRON, D.; JIMENES LOZANO, E.; SANZ NEBOT, V. Comparison between capillary electrophoresis, liquid chromatography, potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures. Anal. Chim. Acta, v.437, p.309-321, 2001.). There are several experimental methods for determining the acidity constants in aqueous solutions for example, conductometry, spectrophotometric, capillary electrophoresis, calorimetric adsorption, potentiometric titration, HPLC, solubility, partition and distribution (Reijenga et al., 2013REIJENGA, J.; VAN HOOF, A.; VAN LOON, A.; TEUNISSEN, B. Development of methods for the determination of pKa values. Anal. Chem. Insights, v.8, p.53-71, 2013.; Heinze, 1984HEINZE, J. Cyclic voltammetry-"Electrochemical spectroscopy". Angew. Chem. Int. Ed., v.23, p.831-847, 1984.; Thurlkill et al., 2005THURLKILL, R. L.; CROSS, D. A.; SCHOLTS, J. M.; PACE, C. N. The pKa of fentanyl varies with temperature: implications for acid-base management during extremes of body temperature. J. Cardiothorac. Vas. Anesth., v.19, p.759-762, 2005.; Santos et al., 2010SANTOS, T. A. D.; COSTA, D. O.; PITA, S.; SEMAAN, F. S. Potentiometric and conductimetric studies of chemical equilibria for pyridoxine hydrochloride in aqueous solutions: simple experimental determination of pKa values and analytical applications to pharmaceutical analysis. Eclet. Quím., v.35, p.81-86, 2010.).

In addition to experimental methods, theoretical prediction of the pKa values has received considerable attention and many studies have been carried out on this topic in recent years (Kelly, Cramer, Truhlar, 2006KELLY, C. P.; CRAMER, C. J.; TRUHLAR, D. G. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J. Phys. Chem. A., v.110, p.2493-2499, 2006.; Ho, Coote, 2010HO, J.; COOTE, M. L. A universal approach for continuum solvent pKa calculations: are we there yet? Theor. Chem. Accounts, v.125, p.3-21, 2010.).

The DFT methods provide reliable pKa values, which help us to better understanding of different effective factors on solvent-solute interactions. This understanding can be essential for interpretation of experimental values in various systems (Topol et al., 2000TOPOL, I. A.; BURT, S. K.; RASHIN, A. A.; ERICKSON, J. W. Calculation of substituent effects on pKa values for pyrone and dihydropyrone inhibitors of HIV-1 protease. J. Phys. Chem. A., v.104, p.866-872, 2000.; Ho, Coote, 2010HO, J.; COOTE, M. L. A universal approach for continuum solvent pKa calculations: are we there yet? Theor. Chem. Accounts, v.125, p.3-21, 2010.).

As the pK a equals to ΔG/2.303RT (where ΔG is a free energy change of the dissociation reaction either in a gas or solution) acidity of a compound can be determined by its ΔG value (Tosso et al., 2009TOSSO, R. D.; ZAMORA, M. A.; SURVIRE, F. D.; ENRIZ, R. D. Ab initio and DFT study of the conformational energy hypersurface of cyclic gly-gly-gly. J. Phys. Chem. A., v.113, p.10818-10825, 2009.).

In summary, the aim of this study was to calculate pKa values of muscimol using the DFT method and the results were compared with those of existed experimental values. At first, all structures were optimized using the B3LYP/6-31G(d) level of theory. The solvent effect was simulated using integral equation formalism of the polarizable continuum model (IEF-PCM). Also explicit solvent were used in our calculation to study hydrogen bond formation. Table II shows that there is a good agreement between experimental and calculated pKa values by considering their RD.

Table 1.
Calculated free energies (G0 sol) using the solvation model density (SMD) method at the B3LYP/6-31G(d) level of theory for cationic (H2L+), neutral (HL), and anionic (L-) species of muscimol molecule with or without water clusters
Table 2.
Values of the ?G, pKa, and relative deviations (RD) of pKa for muscimol obtained using the B3LYP/6-31G(d)/SMD

COMPUTATIONAL METHODS

All calculations about properties of muscimol molecule (Figure 1) were carried out, on a Pentium 4 computer, using the Gaussian_09 version (Frisch et al., 2009FRISCH, M. J., TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E. ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHINA, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A. J. E. P.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K., RENDELL, A., BURANT, J. C., IYENGAR, S. S., TOMASI, J., COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, O.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.). The DFT-B3LYP/6-31G(d)/SMD method were applied on all structures.

Figure 1.
Planar structure of muscimol molecule (The figure was generated using the Spartan 08 programa.) a: Young, 2001; Spartan, 2008.

To evaluate the conformational behaviour of these systems in solvent-solution phase, calculations were performed using the solvation model density (SMD) a method of implicit solvation model (Marenich, Cramer, Truhlar, 2009MARENICH, A. V.; CRAMER, C. J.; TRUHLAR, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B., v.113, p.6378-6396, 2009.). The SMD uses the integral equation formalism of the polarizable continuum model (IEF-PCM) (Scalmani, Frisch, 2010SCALMANI, G.; FRISCH, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys., v.132, p.114110-15, 2010.; Cossi et al., 1998COSSI, M.; BARONE, V.; MENNUCCI, B.; TOMASI, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. J. Chem. Phys. Lett., v.286, p.253-260, 1998.; Mennucci, Cances, Tomasi, 1997MENNUCCI, B.; CANCES, E.; TOMASI, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B., v.101, p.10506- 10517, 1997.; Ribeiro et al., 2010RIBEIRO, R. F.; MARENICH, A. V.; CRAMER, C. J.; TRUHLAR, D. G. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J. Computer-Aided. Mol. Design, v.24, p.317-333, 2010.) with a parameterized set of atomic radii, to calculate the bulk electrostatic energy contribution.

The model calculates short-range interaction energies between solvent and solute using a modified solvent-accessible surface area which incorporates parameters for atomic and molecular surface tensions and hydrogen-bond acidity and basicity, which has been proven to be an effective tool to investigate on a variety of solution phase physicochemical properties. Solvation of selected species was finally considered in terms of the intermolecular hydrogen bonds (IHBs) (see Table I and Figure 2) (Remko, 2010REMKO, M. Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. J. Mol. Struc.: THEOCHEM., v.944, p.34-42, 2010.).

Figure 2.
Optimized molecular structure for muscimol clusters in presence of water molecules using the solvation model density (SMD) method. The most important hydrogen bond distances are shown in figures (green lines) and its distance are in angstrom (red number). The figures were generated using the Spartan 08 programa. The carbon atoms are represented by gray circles, oxygen, red; nitrogen, purple and hydrogen atoms, yellow sticks. a: Young, 2001; Spartan, 2008.

RESULTS AND DISCUSSION

Muscimol naturally have both keto and enol forms (Oster, Harris, 1983OSTER, T. A.; HARRIS, T. M. Generation and reactions of the dianion of 3-hydroxy-5-methylisoxazole, a convenient beta-oxo amide synthon. Total synthesis of muscimol. J. Org. Chem., v.48, p.4307-4311, 1983.). Fully protonated muscimol can lose two acidic hydrogens. The first proton can be lost from OH group and the second one from NH2 group (Figure 2). In this study, several models of muscimol were investigated by the DFT-B3LYP/6-31G(d)/SMD method. Different reactions including cationic, neutral, and anionic species were tested and some of them were finally chosen for the studied system. Table II shows the selected reactions and calculated pKa values of muscimol together with the relative deviations (RD) for pKa which can be obtained from the following equation:

The very low values of RD (for pKa) (see Table II) show that there is a good agreement between experimental and calculated values of pKa for muscimol .

First Ionization Constant of Muscimol

It was selected that in alkaline solutions muscimol suffers a total neutralization as follows:

In the above reaction, H2L+(H2O) is the cluster of a cationic muscimol with one molecule of water, and HL(H2O)2 represents a cluster of neutral muscimol with two water molecules. The above reaction was used to determine value of the first ionization constant of muscimol in water. Table II shows the calculated pKa values and the difference of free energy between [HL(H2O)2, 3H2O] and [H2L+(H2O), OH-(H2O)3] according to Equation 2 obtained at the B3LYP/6-31G(d)/SMD level of theory.

Second Ionization Constant of Muscimol

It is selected that the neutral HL suffers a reaction of partial neutralization as follows:

In the above reaction, HL and L-(H2O)2 represent the neutral and anionic cluster forms of muscimol, respectively. The above reaction was used to determine value of the second ionization constant of muscimol in water. Table II shows the calculated pKa and the difference of free energy between [L-(H2O)2, 2H2O] and [HL, OH-(H2O)3] according to Equation 3 obtained at the B3LYP/6-31G(d) level of theory with solvation model density (SMD) method in water.

The pKa determination method was previously described, and its values for muscimol were used in this work (Krogsgaard-Larsen et al., 1980KROGSGAARD-LARSEN, P.; HONORE, T.; HANSEN, J.J.; CURTIS, D.R.; LODGE, D. New class of glutamate agonist structurallly related to ibotecnic acid. Nature, v.284, p.64-66, 1980.; Brehm et al., 1997BREHM, L.; EBERT, B.; KRISTIANSEN, U.; WAFFORD, K. A.; KEMP, J. A.; KROGSGAARD-LARSEN, P. Structure and pharmacology of 4,5,6,7-tetrahydroisothiazolo[5,4-c]pyridin-3-ol (Thio-THIP), an agonist/antagonist at GABAA receptors. Eur. J. Med. Chem., v.32, p.357-363, 1997.). These values are listed in Table II together with the calculated values using the solvation model density (SMD) method at the B3LYP/6-31G(d) level of theory. The total energies of single and solvated muscimol species (cationic, neutral, and anionic) were calculated in water. Table I summarizes the variations of the free energy (G0 sol, kcal.mol-1) per water molecule as a function of the total number of solvation water molecules for muscimol species. Figure 3 and Table I show the marked decrease of the total energies of ions when the number of solvation molecules increases.

Figure 3.
Plot of the total energies (Hartree) of the solvated muscimol per water molecules against the total number of solvation water molecules.

The data of Table III shows that water, exerting its hydrogen bond donor (HBD) capability, forms intermolecular hydrogen bonds (IHBs) with the muscimol molecule. These hydrogen bonds can be classified as strong, moderate, and weak, according to their lengths, angles, and energies (Cilli et al., 1996CILLI, E. M.; OLIVEIRA, E.; MARCHETTO, R.; NAKAIE, C. R. Correlation between solvation of peptide-resins and solvent properties. J. Org. Chem., v.61, p.8992-9000, 1996.; Corradi et al., 2000CORRADI, E.; MEILLE, S. V.; MESSINA, M. T.; METRANGOLO, P.; RESNATI, G. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew. Chem. Int. Ed., v.112, p.1852-1856, 2000.). According to ref (Blanco, Almandoz, Ferretti, 2005BLANCO, S. E.; ALMANDOZ, M. C.; FERRETTI, F. H. Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods. Spectrochim. Acta Part A., v.61, p.93-102, 2005.), the properties of the moderate hydrogen bonds have the following classification: bond lengths of H·B is between (1.5 and 2.2) Å and the bond angle is 130° to 180°. For weak hydrogen bonds, the bond length and angle are (2.2 to 3.2) Å and 90° to 150°, respectively, and for strong hydrogen bonds are (1.2 to 1.5) Å and 175° to 180°, respectively.

Table 3.
Intermolecular hydrogen bonds (IHBs) information of all muscimol species. Values were taken from Cilli et al. (1996) and Corradi et al. (2000)

Molecular surface and volumes of muscimol's cluster were calculated using solvation model density (SMD) method and are summarized in Table IV.

Table 4.
Calculated molecular surfaces (Å2) and Van der Waals volumes (Å3) of different species in equations 2 and 3 for muscimol molecule by using the solvation model density (SMD) method

The volume of clusters may be affected by two main factors. The first factor is the number and volume of atoms or molecules (solute and solvent) which form a cluster. The second factor is the interaction between positive or negative charge of ions (solute) and electrons of solvent molecules. The second factor can be more used in cases that clusters have (approximately) the same number and type of atoms or molecules.

The volume values (V) for the species of muscimol's cluster fall in the order of:

V[L-(H2O)2] > V[HL(H2O)2] > V[H2L+(H2O)] > V[HL]

As seen in the above order (and Table IV), HL has the minimum volume among four species of muscimol. The first factor is more effective in this case. HL has only one hydrogen atom but other species have hydrogen atom (or atoms) and water molecule (or molecules). The volume of hydrogen atom is less than water molecule.

As an example, the calculated surface of HL(H2O)2 is shown in Figure 4. It is reasonable to observe that molecular volume of the drugs solvated with two water molecules is approximately the sum of the molecular volumes of the species that form it (Figure 4).

Figure 4.
Calculated molecular surface (wireframe) of HL(H2O)2 using the SMD method at the B3LYP/6-31G(d) level of theory. The carbon atoms are represented by gray circles, oxygen, red; nitrogen, purple and hydrogen atoms, white balls.

CONCLUSION

The pKa values of muscimol (in water) have been predicted using the density functional theory calculation.

In summary, free energies and other molecular parameters were calculated for muscimol molecule, using the B3LYP/6-31G(d)/SMD method for shown species in Tables I, II and III. As shown in Table II, the theoretically calculated pKa values are very close to the experimentally calculated pKa values. So we can conclude that cluster continuum model, which uses implicit and explicit solvation model, is probably a good way of calculating pKa values for biochemical systems.

ACKNOWLEDGMENT

Thanks are gratefully extended to the Faculty of Chemistry, University of Islamic Azad University, Ayatollah Amoli Branch, for its valuable help with this work.

REFERENCES

  • BARBOSA, J.; BARRON, D.; JIMENES LOZANO, E.; SANZ NEBOT, V. Comparison between capillary electrophoresis, liquid chromatography, potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures. Anal. Chim. Acta, v.437, p.309-321, 2001.
  • BLANCO, S. E.; ALMANDOZ, M. C.; FERRETTI, F. H. Determination of the overlapping pKa values of resorcinol using UV-visible spectroscopy and DFT methods. Spectrochim. Acta Part A., v.61, p.93-102, 2005.
  • BREHM, L.; EBERT, B.; KRISTIANSEN, U.; WAFFORD, K. A.; KEMP, J. A.; KROGSGAARD-LARSEN, P. Structure and pharmacology of 4,5,6,7-tetrahydroisothiazolo[5,4-c]pyridin-3-ol (Thio-THIP), an agonist/antagonist at GABAA receptors. Eur. J. Med. Chem., v.32, p.357-363, 1997.
  • CHILTON, W. S.; OTT, J. Toxic metabolites of Amanita panterina, A. cothurnata, A. muscarina, and other Amanita species. Lloydia, v.39, p.150-157, 1976.
  • CILLI, E. M.; OLIVEIRA, E.; MARCHETTO, R.; NAKAIE, C. R. Correlation between solvation of peptide-resins and solvent properties. J. Org. Chem., v.61, p.8992-9000, 1996.
  • CORRADI, E.; MEILLE, S. V.; MESSINA, M. T.; METRANGOLO, P.; RESNATI, G. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew. Chem. Int. Ed., v.112, p.1852-1856, 2000.
  • COSSI, M.; BARONE, V.; MENNUCCI, B.; TOMASI, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. J. Chem. Phys. Lett., v.286, p.253-260, 1998.
  • DURAN, M.; AYDEMIR, S. Ab initio studies on acidity and tautomeric equilibrium constants of some benzoxa-, benzothia-, benzoselena-zolinone derivatives. Comput. Theor. Chem., v.989, p.69-74, 2012.
  • FROLUND, B.; EBERT, B.; KRISTIANSEN, U.; LILJEFORS, T.; KROGSGAARD-LARSEN, P. GABA-A receptor ligands and their therapeutic potentials. Curr. Top. Med. Chem., v.2, p.817-832, 2002.
  • FRISCH, M. J., TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E. ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHINA, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A. J. E. P.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K., RENDELL, A., BURANT, J. C., IYENGAR, S. S., TOMASI, J., COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, O.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
  • HEINZE, J. Cyclic voltammetry-"Electrochemical spectroscopy". Angew. Chem. Int. Ed., v.23, p.831-847, 1984.
  • HO, J.; COOTE, M.L. pKa calculation of some biologically important carbon acids - an Assessment of contemporary theoretical procedures. J. Chem. Theor. Comput., v.5, p.295-306, 2009.
  • HO, J.; COOTE, M. L. A universal approach for continuum solvent pKa calculations: are we there yet? Theor. Chem. Accounts, v.125, p.3-21, 2010.
  • KELLY, C. P.; CRAMER, C. J.; TRUHLAR, D. G. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J. Phys. Chem. A., v.110, p.2493-2499, 2006.
  • KROGSGAARD-LARSEN, P.; HONORE, T.; HANSEN, J.J.; CURTIS, D.R.; LODGE, D. New class of glutamate agonist structurallly related to ibotecnic acid. Nature, v.284, p.64-66, 1980.
  • MARENICH, A. V.; CRAMER, C. J.; TRUHLAR, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B., v.113, p.6378-6396, 2009.
  • MENNUCCI, B.; CANCES, E.; TOMASI, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B., v.101, p.10506- 10517, 1997.
  • MICHELOT, D.; MELENDEZ-HOWELL. L. M. Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol. Res., v.107, p.131-146, 2003.
  • OSTER, T. A.; HARRIS, T. M. Generation and reactions of the dianion of 3-hydroxy-5-methylisoxazole, a convenient beta-oxo amide synthon. Total synthesis of muscimol. J. Org. Chem., v.48, p.4307-4311, 1983.
  • REIJENGA, J.; VAN HOOF, A.; VAN LOON, A.; TEUNISSEN, B. Development of methods for the determination of pKa values. Anal. Chem. Insights, v.8, p.53-71, 2013.
  • REMKO, M. Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. J. Mol. Struc.: THEOCHEM., v.944, p.34-42, 2010.
  • RIBEIRO, R. F.; MARENICH, A. V.; CRAMER, C. J.; TRUHLAR, D. G. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J. Computer-Aided. Mol. Design, v.24, p.317-333, 2010.
  • SANTOS, T. A. D.; COSTA, D. O.; PITA, S.; SEMAAN, F. S. Potentiometric and conductimetric studies of chemical equilibria for pyridoxine hydrochloride in aqueous solutions: simple experimental determination of pKa values and analytical applications to pharmaceutical analysis. Eclet. Quím., v.35, p.81-86, 2010.
  • SCALMANI, G.; FRISCH, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys., v.132, p.114110-15, 2010.
  • Spartan. Wavefunction, Inc. Available at: <http://www.wavefun.com/index.html>. Accessed on: Dec 2013.
    » http://www.wavefun.com/index.html
  • STEARDO, L.; IOVINO, M.; MONTELEONE, P.; AGRUSTA, M.; ORIO, F. Evidence for a GABAergic control of the exercise-induced rise in GH in man. Eur. J. Clin. Pharmacol., v.28, p.607-609, 1985.
  • THURLKILL, R. L.; CROSS, D. A.; SCHOLTS, J. M.; PACE, C. N. The pKa of fentanyl varies with temperature: implications for acid-base management during extremes of body temperature. J. Cardiothorac. Vas. Anesth., v.19, p.759-762, 2005.
  • TOPOL, I. A.; BURT, S. K.; RASHIN, A. A.; ERICKSON, J. W. Calculation of substituent effects on pKa values for pyrone and dihydropyrone inhibitors of HIV-1 protease. J. Phys. Chem. A., v.104, p.866-872, 2000.
  • TOSSO, R. D.; ZAMORA, M. A.; SURVIRE, F. D.; ENRIZ, R. D. Ab initio and DFT study of the conformational energy hypersurface of cyclic gly-gly-gly. J. Phys. Chem. A., v.113, p.10818-10825, 2009.
  • YOUNG, D. Computational Chemistry: a practical guide for applying techniques to reall world problems. London: John Wiley & Sons, 2001. 408 p. (Appendix A. A.1.6 pg 330, SPARTAN).

Publication Dates

  • Publication in this collection
    Jan-Mar 2015

History

  • Received
    02 Dec 2013
  • Accepted
    26 Nov 2014
Universidade de São Paulo, Faculdade de Ciências Farmacêuticas Av. Prof. Lineu Prestes, n. 580, 05508-000 S. Paulo/SP Brasil, Tel.: (55 11) 3091-3824 - São Paulo - SP - Brazil
E-mail: bjps@usp.br