Acessibilidade / Reportar erro

Isolation and characterization of homoisoflavonoids from Scilla persica HAUSSKN

abstract

Medicinal plants have many traditional claims including the treatment of ailments of infectious origin. In the evaluation of traditional claims, scientific research is extremely important. In this study, five homoisoflavonoids named 3-(4'-hydroxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one(Autumnalin),3-(4'-hydroxybenzyl)-5,7-dihydroxy-6-methoxychroman-4-one (3,9-dihydro-autumnalin), 3-(3',4'-dihydroxybenzyl)-5,8-dihydroxy-7-methoxychroman-4-one,3-(3',4'-dihydroxybenzylidene)-5,8-dihydroxy-7-methoxychroman-4-one and 3-(3',4'-dihydroxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one, were isolated from the bulbs of the plant Scilla persica HAUSSKN. Their structures were established on the basis of extensive spectroscopic analyses such as NMR, MS, IR and UV.

Uniterms:
ScillapersicaHAUSSKN/phytochemistry; Homoisoflavonoids/isolation; Medicinal plants

resumo

Plantas medicinais apresentam muitas atribuições tradicionais, incluindo o tratamento de doenças de origem infecciosa. A pesquisa científica é extremamente importante na avaliação dos usos tradicionais. Neste estudo, cinco homoisoflavonóides: 3-(4'-hidroxibenzilideno)-5,7-diidroxi-6-metoxicroman-4-ona(autumnalina), 3-(4'-hidroxibenzil)-5,7-diidroxi-6- metoxicroman-4-ona (3,9-diidro-autumnalina), 3-(3',4'-diidroxibenzil)-5,8-diidroxi-7- metoxicroman-4-ona, 3-(3',4'-diidroxibenzilideno)-5,8-diidroxi-7- metoxicroman-4-ona e 3-(3',4'-diidroxibenzilideno)-5,7-diidroxi-6- metoxicroman-4-ona foram isolados dos bulbos da planta Scilla persica HAUSSKN. Suas estruturas foram estabelecidas com base na extensa análise espectroscópica, como RMN, EM, IV e UV.

Unitermos:
ScillapersicaHAUSSKN/fitoquímica; Homoisoflavonóides/separação; Homoisoflavonóides/isolamento; Plantas medicinais

INTRODUCTION

Over the years, natural medicines, especially medicinal herbs, were considered for the treatment of a variety of ailments. The ingredients contained in these plants are used in the pharmaceutical industry because of their disinfecting properties (Amin, 1991AMIN, G. Traditional pharmaceutical plants of Iran Tehran: Iranian Ministry of Health & Medical Education Publications, 1991. v.1, p.8-10.; Volak, Stodola, 1995VOLAK, J.; STODOLA, J. Pharmaceutical plants, culturing and taking methods and explanation of 256 plant color slides Translated by SAED, Z. 2.ed. Tehran: Ghoghnus Pub., 1995. ; Yasuda et al., 2013YASUDA, S.; NISHIDA, Y.; WADA, K.; AKIYAMA, D.; TOYOHISA, D.; TANAKA, T.; IGOSHI, K.; ONO, M. Anti-inflammatory and antioxidative effects of a methanol extract from bulbs of Scilla scilloides. Biosci. Biotech. Biochem. v.77, n.7, p.1569-1571, 2013.). Scilla persica HAUSSKN is a perennial plant that belongs to the Liliaceae family. The bulb of this plant is used as a foodstuff, a traditional medicine that increases blood circulation, as an anti-inflammatory agent as well as an analgesic (Crouch, Bangani, Mulholland, 1999CROUCH, N.R.; BANGANI, V.; MULHOLLAND, D.A. Homoisoflavanones from three South African: Scilla species. Phytochemistry v.51, n.7, p.943-946, 1999.). This plant has a small white bracteole that includes one or two high-centered flowers (10-13 flowers), with two to four leaf sheathes. Its petals are bluish in color, standing erect with inflorescence or a cluster of flowers. The axis of their flowers is usually single and rarely dual. In Iran, the habitat of this plant exists in the West Azerbaijan, Khorram Abad, Alvand, Hamedan, Qasr Shirin, Sanandaj and the Mountains of Rzab (Mobin, 1975; Rahimi, Aghaalinejad, Arslana, 2012RAHIMI, A.; AGHAALINEJAD, M.; ARSLANA, N. Geophytes of sulduz region, west azerbayjan province, Iran and their characteristics. Pure App. Biol. v.1, n.1, p.18-21, 2012.).

According to phytochemical studies performed on the Scilla species, the chemical compounds reported contain alkaloids, cardiac glycosides, stilbenes (Bangani, Crouch, Mulholland, 1999BANGANI, V.; CROUCH, N.R.; MULHOLLAND, D.A. Homoisoflavanones and stilbenoids from Scilla nervosa. Phytochemistry v.51, n.7, p.947-951, 1999.; Crouch, Bangani, Mulholland, 1999CROUCH, N.R.; BANGANI, V.; MULHOLLAND, D.A. Homoisoflavanones from three South African: Scilla species. Phytochemistry v.51, n.7, p.943-946, 1999.; Kato et al., 2007KATO, A. KATO, N.; ADACHI, I.; HOLLINSHEAD, J.; FLEET, G.W.J.; KURIYAMA, C.; IKEDA, K.; ASANO, N.; NASH, R.J. Isolation of glycosidase-inhibiting hyacinthacines and related alkaloids from Scilla socialis. J. Nat. Prod.v.70, n.6, p.993-997, 2007.; Nishida et al., 2008NISHIDA, Y.; ETO, M.; MIYASHITA, H.; IKEDA, T.; YAMAGUCHI, K.; YOSHIMITSU, H.; NOHARA, T.; ONO, M. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides. Chem. Pharm. Bull.v.56, n.7, p.1022-1025, 2008.; Ono et al., 2013ONO, M.; OCHIAI, T.; YASUDA, SH.; NISHIDA, Y.; TANAKA, T.; OKAWA, M.; KINJO, J.; YOSHIMITSU, H.; NOHARA, T. Five new nortriterpenoid glycosides from the bulbs of Scilla scilloides. Chem. Pharm. Bull.v.61, n.5, p.592-598, 2013.; Silayo, Ngadjui, Abegaz, 1999SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.) and specially homoisoflavanones (Bangani, Crouch, Mulholland, 1999BANGANI, V.; CROUCH, N.R.; MULHOLLAND, D.A. Homoisoflavanones and stilbenoids from Scilla nervosa. Phytochemistry v.51, n.7, p.947-951, 1999.; Famuyiwa et al., 2012FAMUYIWA, S.O.; SICHILONGO, K.F.; YEBOAH, S.O.; ABEGAZ, B.M. Homoisoflavonoids from the inter-bulb surfaces of Scilla nervosa subsp.rigidifolia. Phytochem. Lett. v.5, n.3, p.591-595, 2012.; Ghoran et al., 2014GHORAN, S.H.; SAEIDNIA, S.; BABAEI, E.; KIUCHID, F.; DUSEKE, M.; EIGNERE, V.; KHALAJI, A.D.; SOLTANI, A.; EBRAHIMI, P.; MIGHANI, H. Biochemical and biophysical properties of a novel homoisoflavonoid extracted from Scilla persica HAUSSKN. Bioorg. Chem. v.57, p.51-56, 2014.; Heller, Tamm, 1981HELLER, W.; TAMM, C. Homoisoflavanones and biogenetically related compounds. Progress in the Chemistry of Organic Natural Products. Springer, 1981. p.105-152. ; Kouno, Komori, Kawasaki, 1973KOUNO, I.; KOMORI, T.; KAWASAKI, T. Zur struktur der neuen typen homo-isoflavanone aus bulben von scilla scilloides druce. Tetrahedron Lett. v.14, n.46, p.4569-4572, 1973.; Shim et al., 2004SHIM, J. S.; KIM, J.H.; LEE, J.; KIM, S.N.; KWON, H.J. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. v.70, n.2, p.171-173, 2004.). Homoisoflavonoids were reported to be responsible for the biomedical activities of these plants, such as antibacterial, antifungal, anti-allergic, antioxidant, cytotoxic and anti-angiogenic activities. They also inhibit in-vitro the growth and sporogenesis of several microorganisms (Heller, Tamm, 1981HELLER, W.; TAMM, C. Homoisoflavanones and biogenetically related compounds. Progress in the Chemistry of Organic Natural Products. Springer, 1981. p.105-152. ; Kouno, Komori, Kawasaki, 1973KOUNO, I.; KOMORI, T.; KAWASAKI, T. Zur struktur der neuen typen homo-isoflavanone aus bulben von scilla scilloides druce. Tetrahedron Lett. v.14, n.46, p.4569-4572, 1973.; Mighani, Ebrahimi, 2014MIGHANI, H.; EBRAHIMI, P. In-Vitro anti-bacterial activity of chloroform, ethyl acetate and hydroalcoholic extracts of Scilla persica Hausskn. J. Gorgan Un. Med. Sci.v.16, n.1, p.106-113, 2014.; Nishida et al., 2013NISHIDA, Y.; WADA, K.; TOYOHISA, D.; TANAKA, T.; ONO, M.; Yasuda, SH. Homoisoflavones as the antioxidants responsible from bulbs of Scilla scilloides. Nat. Prod. Res.v.27, n.24, p.2360-2362, 2013.; Shim et al., 2004SHIM, J. S.; KIM, J.H.; LEE, J.; KIM, S.N.; KWON, H.J. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. v.70, n.2, p.171-173, 2004.). Stilbenes of scilla bulbs has been used in the treatment of asthma, coughs, bronchitis, heart disease (adjusted HR), rheumatism, diuretic, expectorant (Gupta, Raina, 2001GUPTA, L.; RAINA, R. Antioxidant property of the bulb of Scilla indica. Curr. Sci. v.80, n.10, p. 1267, 2001.), internal tumors, dilate blood vessels, anti-allergic and anti-mutagenic (Dias, Graça, Gonçalves, 2000DIAS, C.; GRAÇA, J.B.; GONÇALVES, M.L. Scilla maderensis, TLC screening and positive inotropic effect of bulb extracts. J. Ethnopharmacol. v.71, n.3, p.487-492, 2000.; Yasuda et al., 2013YASUDA, S.; NISHIDA, Y.; WADA, K.; AKIYAMA, D.; TOYOHISA, D.; TANAKA, T.; IGOSHI, K.; ONO, M. Anti-inflammatory and antioxidative effects of a methanol extract from bulbs of Scilla scilloides. Biosci. Biotech. Biochem. v.77, n.7, p.1569-1571, 2013.). In traditional Iranian medicine, the bulbs of scilla herb were used as the antidote, activator of blood circulation and also the treatment of eczema. It can also treat swelling and abscesses (Winnicka, Bielawski, Bielawski, 2006WINNICKA, K.; BIELAWSKI, K.; BIELAWSKA, A. Cardiac glycosides in cancer research and cancer therapy. Acta Pol. Pharm. v.63, n.2, p.109-15, 2006.). Studies have shown that the bulb of Scilla natalensis has anti-cancer properties, antibacterial properties; it kills worms (intestinal parasite) and also prevents the formation of cancerous agents. Also sodden these plants are used for the treatment of abscesses (Chinthala, Chinde, 2014CHINTHALA, Y.; CHINDE, S. Anticancer active homoisoflavone from the underground bulbs of Ledebouria hyderabadensisPharm. Res.v.6, n.4, p.303, 2014.; Koorbanally et al., 2007KOORBANALLY, C.; SEWJEE, S.; MULHOLLAND, D.A.; CROUCH, N.R.; DOLD, A. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae). Phytochemistry v.68, n.22, p.2753-2756, 2007.). There are reports that bulbs of Scilla are used for gynecological treatment of menstrual pains and to facilitate delivery in childbirth (Gerstner, 1941GERSTNER, J. A preliminary check list of Zulu names of plants: With short notes. J. Bantu Studies v.15, n.1, p.277-301, 1941.; Hutchings, 1989HUTCHINGS, A. A survey and analysis of traditional medicinal plants as used by the Zulu; Xhosa and Sotho. Bothaliav.19, n.1, p.112-123, 1989.; 1996HUTCHINGS, A. Zulu medicinal plants: an inventory. Pietermarizburg: University of Natal Press, 1996. 464 p.). Decoctions are also taken as enemas for female fertility and to enhance male potency and libido (Gerstner, 1941GERSTNER, J. A preliminary check list of Zulu names of plants: With short notes. J. Bantu Studies v.15, n.1, p.277-301, 1941.).

In a previous paper (Ghoran et al., 2014GHORAN, S.H.; SAEIDNIA, S.; BABAEI, E.; KIUCHID, F.; DUSEKE, M.; EIGNERE, V.; KHALAJI, A.D.; SOLTANI, A.; EBRAHIMI, P.; MIGHANI, H. Biochemical and biophysical properties of a novel homoisoflavonoid extracted from Scilla persica HAUSSKN. Bioorg. Chem. v.57, p.51-56, 2014.), we reported the isolation and structural elucidation of a new homoisoflavonoid from the CHCl3 extract of fresh bulbs of S. persica along with MTT cytotoxicity assay on AGS and WEHI-164 cancerous cell lines. As part of an ongoing study of this plant, we described the isolation and structural characterization of five other homoisoflavonoids from the CHCl3 extract from the bulbs of the plant Scilla persica HAUSSKN. Their structures were identified on the basis of extensive spectroscopic analyses such as NMR, MS, IR and UV.

MATERIAL AND METHODS

General experimental procedures

An Electrothermal Melting Point Apparatus was used to determine precise melting points. UV and IR spectra were recorded by a Shimadzu UV-PC 2501 and Perkin- Elmer spectrophotometer, respectively. NMR spectra were also obtained in either CD3OD or DMSO-d6 using a Bruker AV-500 instrument with TMS as the internal standard. EIMS were also recorded with a VG-Autospec-3000 spectrometer. HREIMS were recorded with a Thermo Fisher Finnegan MAT 95 XP instrument. Column chromatography (CC) was carried out using silica gel (70-230 and 230-400 mesh; E-Merck, Darmstadt, Germany). Aluminum sheets precoated with silica gel 60 F 254 (10×10 cm, 0.2 mm thick; E-Merck) were applied for TLC to check the purity of the compounds and were observed under UV light (254 and 365 nm) followed by anisaldehyde as the spray reagent and then it was heated.

Plant material

The plant used for the present study (S. persica) was collected and identified in March 2011 from the village of Valliv (Sardasht, West Azerbaijan Province, Iran) at an altitude of 1700-1800 m. A voucher specimen (6334) is deposited in the Herbarium of Agricultural Research Center and Natural Resources of Sari, Iran.

Phytochemical screening (qualification tests)

The tests were performed to find the presence of the bioactive chemical constituents, such as alkaloids, anthraquinones, flavonoids, glycosides, reducing sugar, saponins, tannins, terpenoids and steroids (Table I) (Iyengar, 1981; Savithramma, Rao, Suhrulatha, 2011SAVITHRAMMA, N.; RAO, M.L.; SUHRULATHA, D. Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res. v.8, n.3, p.579-584, 2011.; Siddiqui, Ali, 1997SIDDIQUI, A.A.; ALI, M. Practical pharmaceutical chemistry1.edn. New Delhi: CBS Publishers and Distributors, 1997. p.126-131.).

TABLE I
Results of phytochemical screening tests on Scilla persica HAUSSKN

Extraction and isolation

The bulbs of S. persica (400 g) were crashed and extracted with EtOAc (3×2.5 L) at room temperature for 24 h. The combined extracts were concentrated under reduced pressure. Then the crude extract of the bulbs were subjected to column chromatography and eluted with n-hexane:EtOAc:MeOH, in the order of increasing polarity (70:30:0, 60:40:0, 50:50:0, 40:60:0, 20:80:0, 0:100:0, 0:80:20, 0:70:30 0:60:40 and 0:50:50 (v/v), respectively) to separate different fractions. Fraction A (190 mg) was further separated by Sephadex LH-20 column chromatography and eluted with MeOH to give 1 (7 mg) (SILAYO et al., 1999SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.) and 2 (18 mg) (Silayo, Ngadjui, Abegaz, 1999SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.). Repeated column chromatography of fraction B (210 mg) using a silica gel column and isocratic elution with CHCl3: MeOH 8:2) afforded 3 (30 mg) (Adinolfi et al., 1989ADINOLFI, M.; AQUILA, T.; BARONE, G.; LANZETTA, R.; PARRILLI, M. Homoisoflavanones from Bellevalia romana. Phytochemistry v.28, n.11, p.3244-3246, 1989.). Moreover fraction C (150 mg) gave two compounds 4 (15 mg) and 5 (23 mg) (Mašterová et al., 1991MAŠTEROVÁ, I.; GRANCAIOVA, Z.; UHRINOVA, S.; SUCHY, V.; UBIK, K.; NAGY, M. Flavonoids in flowers of Calendula officinalis L. Chem. Papers v.45, n.1, p.105-108, 1991.) upon elution with MeOH on a Sephadex LH-20 column.

RESULTS AND DISCUSSION

Table I shows the results of phytochemical screening (qualification tests) on S. persica HAUSSKN. These results indicated that this plant contains flavonoids, glycosides, reducing sugars, saponins and tannins especially catecholic tannins and alkaloids. The bulb of this plant is void of terpenoids and steroids.

The spectroscopic and other physical data of the isolated compounds 1-5 were indicated below and details of 1H and 13C-NMR spectroscopic data were also shown in Table II.

TABLE II
1H and 13C-NMR chemical shifts (δ/ppm) of compounds 1-5 in CD3ODa and DMSO-d6b as the solvents (500 MHz for δH and 125 MHz for δC)

3-(4'-Hydroxybenzylidene)-5, 7-dihydroxy-6-methoxychroman-4-one (1)

Yellowish powder with C17H14O6 molecular formula; mp 242-245 ºC; IR (KBr) Vmax (cm-1) 3423 (OH), 1647 (C=O), 1510 (C=C Ar), 1458 (-CH3), 1328, 1173 (C-O); UV (MeOH) λmax (log ε) 197 (4.80), 359 (4.25) nm; EIMS m/z (rel. int.) 314 [M]+ (89), 299 (25), 183 (15), 167 (55), 131 (24); 1H and 13C-NMR spectroscopic data are shown in Table II.

3-(4'-Hydroxybenzyl)-5, 7-dihydroxy-6-methoxychroman-4-one (2)

Yellowish plates from CHCl3 with C17H16O6 molecular formula; mp 198-200 ºC; IR (KBr) Vmax (cm-1) 3356 (OH), 1638 (C=O), 1609 (C=C Ar.), 1451 (-CH3), 1265, 1153 (C-O); UV (MeOH) λmax (log ε) 211 (4.30), 293 (4.421) 320 (4.98) nm; EIMS m/z (rel. int.) 316 [M]+ (100), 301 (37), 283 (15), 265 (12), 210 (85), 109 (77); 1H and 13C-NMR spectroscopic data are shown in Table II.

3-(3', 4'-dihydroxybenzyl)-5, 8-dihydroxy-7-methoxychroman-4-one (3)

Yellow-Brown plates from MeOH with C17H16O7 molecular formula; mp 138-141 ºC; EIMS (70 eV) m/z (rel. int.) 332.0899 ([M]+; calc for C17H16O7 332.0896) (95), 210 (100), 195 (15), 183 (50), 167 (35), 149 (20), 123 (95); 1H and 13C-NMR spectroscopic data are shown in Table II.

3-(3', 4'-dihydroxybenzylidene)-5, 8-dihydroxy-7-methoxychroman-4-one (4)

Orange powder from MeOH with C17H14O7 molecular formula; mp: 233-237 ºC; IR (KBr) Vmax (cm-1) 3501 (OH), 3348 (-CH Ar. and vin. Stretching), 1638 (C=O), 1568 (C=C Ar.), 1521 (C=C Ar.), 1477 (C=C Ar.), 1436 (-CH3), 1264, 1089 (-C-O); UV (MeOH) λmax (log ε) 269 (4.19), 340 (shoulder) (4.30), 367 (4.29) nm; EIMS (70 eV) m/z (rel. int.) 330.0909 [M]+ C17H14O7 (100), 315 (25), 183 (38), 169 (10), 168 (12), 167 (48), 149 (18), 148 (25), 147 (12); 1H and 13C-NMR spectroscopic data are shown in Table II.

3-(3', 4'-dihydroxybenzylidene)-5, 7-dihydroxy-6-methoxychroman-4-one (5)

Orange crystals from MeOH with C17H14O7 molecular formula; mp 237-240ºC; IR (KBr) Vmax (cm-1) 3497 (OH), 3343 (-CH Ar. and vin. Stretching), 1642 (C=O), 1531 (C=C Ar.),1436 (-CH3), 1260, 1050 (-C-O); UV (MeOH) λmax (log ε) 264 (4.02), 384 (4.35) nm; EIMS (70 eV) m/z (rel. int.) 330.0910 [M]+ C17H14O7 (100), 315 (25), 183 (38), 169 (10), 168 (12), 167 (48), 149 (18), 148 (25), 147 (12); 1H and 13C-NMR spectroscopic data are shown in Table II.

The isolated compounds 1-5 in this plant showed the presence of a 5-OH group confirmed by 1H-NMR spectroscopy (δOH > 11.5) in Table II.

As it can be seen in Figures 1, 4 and 5 compounds have the same mass and due to the position of CH3 and -OH substituents on ring A are different.

FIGURE 1
Chemical structures of the isolated homoisoflavonoids 1-5 from bulbs of the plant Scilla persica HAUSSKN

Compound 1: The spectroscopic and other physical data of compound 1 were found to be similar to those reported for autumnalin isolated from the bulbs of Eucomis autumnalis,Colchicum doerfleri and Scilla nervosa (Buckingham, 1993BUCKINGHAM, J. Dictionary of natural productsBoca Raton, FL: CRC Press, 1993. 8584 p.; Sidwell, Tamm, 1970SIDWELL, W.; TAMM, C. The homo-isoflavones II1). Isolation and structure of 4′-o-methyl-punctatin, autumnalin and 3, 9-dihydro-autumnalin. Tetrahedron Lett.v.11, n.7, p.475-478, 1970.; Silayo, Ngadjui, Abegaz, 1999SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.).

Compound 2: Compound 2 exhibited spectral data very similar to those reported for eucomnalin (3,9-dihydro-autumnalin), a compound isolated previously from Eucomis autumnalis (Tamm, 1972TAMM, C. Homo-isoflavones, a new series of natural products. Arzneim. Forsch.v.22, n.10, p.1776-1784, 1972.) and it was recently reported from S. nervosaSilayo, Ngadjui, Abegaz, 1999SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.). The 1H-NMR of compound 2 indicated a sharp singlet at δH 5.93 ppm and it was assigned to H-8 in compound 2. The 13C-NMR data is in complete agreement with the given structure (Agrawal, 1989AGRAWAL, P. Carbon-13 NMR of flavonoids. Amesterdam: Elsevier, 1989. v.39, p.256.). The location of the only methoxy signal observed in 2 was deduced to be at C-6 on the basis of the downfield resonance position of the methoxy carbon at δC 60.47 ppm and the presence of a C-5 OH group.

Compound 3: The B ring of 3-benzyl-4-chromanone 3 has two oxygenated functions. In fact, the base peak in the mass spectra of compound 3 was due to dihydroxytropylium fragment (m/z 123). The peak (m/z 183) in the mass spectrum of 3 also indicated that the A ring has two hydroxyl and one methoxy group. The NMR signals of the hydroxyl proton, methoxy and methine protons in the A ring at δH 11.83, 3.82 and 6.19 ppm, respectively, revealed that one hydroxyl group located at C-5 while the methoxy group is at C-7. The chemical shifts of the A ring carbons are very similar to those of 2. Therefore the remaining hydroxyl group is linked at C-8.

Compound 4: The 1H and 13C-NMR spectral data of compound 4 are identical with those previously described (Adinolfi et al., 1989ADINOLFI, M.; AQUILA, T.; BARONE, G.; LANZETTA, R.; PARRILLI, M. Homoisoflavanones from Bellevalia romana. Phytochemistry v.28, n.11, p.3244-3246, 1989.; Mašterová et al., 1991MAŠTEROVÁ, I.; GRANCAIOVA, Z.; UHRINOVA, S.; SUCHY, V.; UBIK, K.; NAGY, M. Flavonoids in flowers of Calendula officinalis L. Chem. Papers v.45, n.1, p.105-108, 1991.).

Compound 5: Substitution of a methoxy group at C-6 in compound 5 was confirmed by losing methyl group giving a characteristic [M-15]+ ion like those in 6-OMe flavones (Bowie, Cameron, 1966BOWIE, J.; CAMERON, D. Electron impact studies. II. Mass spectra of quercetagetin derivatives. Aust. J. Chem., v.19, n.9, p.1627-1635, 1966.). This cleavage is followed in ring A by a gradual elimination of CO (m/z287) and H2O ('ortho effect', m/z 269). The latter experiment also led to the assignment of carbon resonances in this part of the molecule. These results are in good agreement with 13C-NMR data of the 3, 9-dihydro derivative of 5 (Purushothaman et al., 1982PURUSHOTHAMAN, K.; KALYANI, K.; SUBRAMANIAM, K.; SHAUMUGHANATHAN, S.P. Structure of bonducellin-New homoisoflavone from Caesalpinia bonducella. Indian J. Chem.v.21B, p.383-386, 1982.).

CONCLUSION

Scilla persica HAUSSKN is an edible plant that is used in traditional medicine to treat eczema and to relieve constipation, but, so far, no reports have been documented with evidence of its compounds. The results of phytochemical screening of this plant showed the presence of flavonoids, glycoside, tannin and saponin. The presence of flavonoids in this plant is probably responsible for the antibacterial effects. In this study, five homoisoflavonoids were isolated from bulbs of the plant Scilla persica HAUSSKN and their structures were identified using spectroscopic analyses such as NMR, MS, IR and UV. The spectroscopic and other physical data of isolated compounds were found to be similar to those reported for autumnalin isolated from the bulbs of Eucomis autumnalis, Colchicum doerfleri and Scilla nervosa.

REFERENCES

  • ADINOLFI, M.; AQUILA, T.; BARONE, G.; LANZETTA, R.; PARRILLI, M. Homoisoflavanones from Bellevalia romana. Phytochemistry v.28, n.11, p.3244-3246, 1989.
  • AGRAWAL, P. Carbon-13 NMR of flavonoids. Amesterdam: Elsevier, 1989. v.39, p.256.
  • AMIN, G. Traditional pharmaceutical plants of Iran Tehran: Iranian Ministry of Health & Medical Education Publications, 1991. v.1, p.8-10.
  • BANGANI, V.; CROUCH, N.R.; MULHOLLAND, D.A. Homoisoflavanones and stilbenoids from Scilla nervosa. Phytochemistry v.51, n.7, p.947-951, 1999.
  • BOWIE, J.; CAMERON, D. Electron impact studies. II. Mass spectra of quercetagetin derivatives. Aust. J. Chem., v.19, n.9, p.1627-1635, 1966.
  • BUCKINGHAM, J. Dictionary of natural productsBoca Raton, FL: CRC Press, 1993. 8584 p.
  • CHINTHALA, Y.; CHINDE, S. Anticancer active homoisoflavone from the underground bulbs of Ledebouria hyderabadensisPharm. Res.v.6, n.4, p.303, 2014.
  • CROUCH, N.R.; BANGANI, V.; MULHOLLAND, D.A. Homoisoflavanones from three South African: Scilla species. Phytochemistry v.51, n.7, p.943-946, 1999.
  • DIAS, C.; GRAÇA, J.B.; GONÇALVES, M.L. Scilla maderensis, TLC screening and positive inotropic effect of bulb extracts. J. Ethnopharmacol. v.71, n.3, p.487-492, 2000.
  • FAMUYIWA, S.O.; SICHILONGO, K.F.; YEBOAH, S.O.; ABEGAZ, B.M. Homoisoflavonoids from the inter-bulb surfaces of Scilla nervosa subsp.rigidifolia. Phytochem. Lett. v.5, n.3, p.591-595, 2012.
  • GERSTNER, J. A preliminary check list of Zulu names of plants: With short notes. J. Bantu Studies v.15, n.1, p.277-301, 1941.
  • GHORAN, S.H.; SAEIDNIA, S.; BABAEI, E.; KIUCHID, F.; DUSEKE, M.; EIGNERE, V.; KHALAJI, A.D.; SOLTANI, A.; EBRAHIMI, P.; MIGHANI, H. Biochemical and biophysical properties of a novel homoisoflavonoid extracted from Scilla persica HAUSSKN. Bioorg. Chem. v.57, p.51-56, 2014.
  • GUPTA, L.; RAINA, R. Antioxidant property of the bulb of Scilla indica. Curr. Sci. v.80, n.10, p. 1267, 2001.
  • HELLER, W.; TAMM, C. Homoisoflavanones and biogenetically related compounds. Progress in the Chemistry of Organic Natural Products Springer, 1981. p.105-152.
  • HUTCHINGS, A. A survey and analysis of traditional medicinal plants as used by the Zulu; Xhosa and Sotho. Bothaliav.19, n.1, p.112-123, 1989.
  • HUTCHINGS, A. Zulu medicinal plants: an inventory. Pietermarizburg: University of Natal Press, 1996. 464 p.
  • IYENGAR, M.A. Study of crude drugs. 8.ed. Manipal India: Manipal College of Pharmaceutical Sciences, 1995. p.2.
  • KATO, A. KATO, N.; ADACHI, I.; HOLLINSHEAD, J.; FLEET, G.W.J.; KURIYAMA, C.; IKEDA, K.; ASANO, N.; NASH, R.J. Isolation of glycosidase-inhibiting hyacinthacines and related alkaloids from Scilla socialis J. Nat. Prod.v.70, n.6, p.993-997, 2007.
  • KOORBANALLY, C.; SEWJEE, S.; MULHOLLAND, D.A.; CROUCH, N.R.; DOLD, A. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae). Phytochemistry v.68, n.22, p.2753-2756, 2007.
  • KOUNO, I.; KOMORI, T.; KAWASAKI, T. Zur struktur der neuen typen homo-isoflavanone aus bulben von scilla scilloides druce. Tetrahedron Lett. v.14, n.46, p.4569-4572, 1973.
  • MAŠTEROVÁ, I.; GRANCAIOVA, Z.; UHRINOVA, S.; SUCHY, V.; UBIK, K.; NAGY, M. Flavonoids in flowers of Calendula officinalis L. Chem. Papers v.45, n.1, p.105-108, 1991.
  • MIGHANI, H.; EBRAHIMI, P. In-Vitro anti-bacterial activity of chloroform, ethyl acetate and hydroalcoholic extracts of Scilla persica Hausskn. J. Gorgan Un. Med. Sci.v.16, n.1, p.106-113, 2014.
  • MOBIN, S. Iranian plants, flora of vascular plants. 2.ed. Tehran: University Press, 1980. v.1, p.163-165.
  • NISHIDA, Y.; ETO, M.; MIYASHITA, H.; IKEDA, T.; YAMAGUCHI, K.; YOSHIMITSU, H.; NOHARA, T.; ONO, M. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides. Chem. Pharm. Bull.v.56, n.7, p.1022-1025, 2008.
  • NISHIDA, Y.; WADA, K.; TOYOHISA, D.; TANAKA, T.; ONO, M.; Yasuda, SH. Homoisoflavones as the antioxidants responsible from bulbs of Scilla scilloides. Nat. Prod. Res.v.27, n.24, p.2360-2362, 2013.
  • ONO, M.; OCHIAI, T.; YASUDA, SH.; NISHIDA, Y.; TANAKA, T.; OKAWA, M.; KINJO, J.; YOSHIMITSU, H.; NOHARA, T. Five new nortriterpenoid glycosides from the bulbs of Scilla scilloides. Chem. Pharm. Bull.v.61, n.5, p.592-598, 2013.
  • PURUSHOTHAMAN, K.; KALYANI, K.; SUBRAMANIAM, K.; SHAUMUGHANATHAN, S.P. Structure of bonducellin-New homoisoflavone from Caesalpinia bonducella. Indian J. Chem.v.21B, p.383-386, 1982.
  • RAHIMI, A.; AGHAALINEJAD, M.; ARSLANA, N. Geophytes of sulduz region, west azerbayjan province, Iran and their characteristics. Pure App. Biol. v.1, n.1, p.18-21, 2012.
  • SAVITHRAMMA, N.; RAO, M.L.; SUHRULATHA, D. Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res. v.8, n.3, p.579-584, 2011.
  • SHIM, J. S.; KIM, J.H.; LEE, J.; KIM, S.N.; KWON, H.J. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. v.70, n.2, p.171-173, 2004.
  • SIDDIQUI, A.A.; ALI, M. Practical pharmaceutical chemistry1.edn. New Delhi: CBS Publishers and Distributors, 1997. p.126-131.
  • SIDWELL, W.; TAMM, C. The homo-isoflavones II1). Isolation and structure of 4′-o-methyl-punctatin, autumnalin and 3, 9-dihydro-autumnalin. Tetrahedron Lett.v.11, n.7, p.475-478, 1970.
  • SILAYO, A.; NGADJUI, B.T.; ABEGAZ, B.M. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp.Rigidifolia. Phytochemistry v.52, n.5, p.947-955, 1999.
  • TAMM, C. Homo-isoflavones, a new series of natural products. Arzneim. Forsch.v.22, n.10, p.1776-1784, 1972.
  • VOLAK, J.; STODOLA, J. Pharmaceutical plants, culturing and taking methods and explanation of 256 plant color slides Translated by SAED, Z. 2.ed. Tehran: Ghoghnus Pub., 1995.
  • WINNICKA, K.; BIELAWSKI, K.; BIELAWSKA, A. Cardiac glycosides in cancer research and cancer therapy. Acta Pol. Pharm. v.63, n.2, p.109-15, 2006.
  • YASUDA, S.; NISHIDA, Y.; WADA, K.; AKIYAMA, D.; TOYOHISA, D.; TANAKA, T.; IGOSHI, K.; ONO, M. Anti-inflammatory and antioxidative effects of a methanol extract from bulbs of Scilla scilloides Biosci. Biotech. Biochem. v.77, n.7, p.1569-1571, 2013.

Publication Dates

  • Publication in this collection
    Oct-Dec 2015

History

  • Received
    07 Dec 2014
  • Accepted
    24 June 2015
Universidade de São Paulo, Faculdade de Ciências Farmacêuticas Av. Prof. Lineu Prestes, n. 580, 05508-000 S. Paulo/SP Brasil, Tel.: (55 11) 3091-3824 - São Paulo - SP - Brazil
E-mail: bjps@usp.br