Acessibilidade / Reportar erro

Phytotoxicity of petroleum-contaminated soil and bioremediated soil on Allophylus edulis

Fitotoxicidade do solo contaminado por petróleo e biorremediado em Allophylus edulis

Abstract

This study aimed to assess the effect of petroleum-contaminated and bioremediated soils on germination, growth and anatomical structure of Allophylus edulis. We tested oil-contaminated soil, bioremediated soil and non-contaminated soil. We evaluated germination percentage, germination speed index (GSI), biomass and length of roots and shoots, total biomass, root and hypocotyl diameter, thickness of eophylls and cotyledons, leaf area, eophyll stomatal index and seedling anatomy. Germination percentage, GSI, biomass and leaf area did not differ between treatments after 30 days. Root biomass and plant height were lower in the noncontaminated treatment. Root biomass and leaf area differed between treatments after 60 days. Thickness of cotyledons was higher in bioremediated soil than in other treatments. Root and eophyll structure showed little variation in contaminated soil. We conclude that A. edulis was not affected by petroleum in contaminated and bioremediated soils and that this species has potential for phytoremediation.

Key words:
hydrocarbons; seedling; germination; biomass; anatomy

Resumo

O objetivo do trabalho foi avaliar o efeito do solo contaminado por petróleo e biorremediado na germinação, crescimento e estrutura anatômica de Allophylus edulis. Foram testados: solo contaminado por petróleo, solo biorremediado e solo não contaminado. Foram avaliados: porcentagem e índice de velocidade de germinação (GSI), biomassa e comprimento radicular e aéreo, biomassa total, diâmetro radicular e do hipocótilo, espessura dos cotilédones e eofilos, área foliar, índice estomático dos eofilos e a estrutura anatômica da plântula. A porcentagem de germinação, GSI, biomassa aérea e área foliar não diferiram entre os tratamentos após 30 dias. A biomassa radicular e o comprimento aéreo foram menores no tratamento sem contaminação. Após 60 dias, a biomassa radicular e a área foliar foram diferentes entre os tratamentos. A espessura do cotilédone, em solo biorremediado, foi maior que nos demais tratamentos. A estrutura radicular e do eofilo apresentou poucas alterações em solo contaminado. Conclui-se que A. edulis não foi afetada pelo solo contaminado e biorremediado, apresentando potencial para fitorremediação.

Palavras-chave:
hidrocarbonetos; plântula; germinação; biomassa; anatomia

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

References

  • Achuba, F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of Cowpea (Vigna unguiculata) seedlings. Environmental 26: 17-20.
  • Adam, G. & Duncan, H. 1999. Effect of diesel fuel on growth of selected plant species. Environmental Geochemistry and Health 21: 353-357.
  • Adam, G. & Duncan, H. 2002. Influence of diesel fuel on seed germination. Environmental Pollution 120: 363-370.
  • Adenipekun, C.O.; Oyetunji, O.J. & Kassim, L.S. 2008. Effect of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitorius Linn. Environmentalist 28: 446-450.
  • Adenipekun, C.O.; Oyetunji, O.J. & Kassim, L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. Journal of Applied Biosciences 20:1131-1137.
  • Alkio, M.; Tabuchi, T.M.; Wang, X. & Colón-Carmona, A. 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany 56: 2983-2994.
  • Baek, K.H.; Kim, H.S.; Oh, H.M.; Yoon, B.D.; Kim, J. & Lee, I.S. 2004. Effects of crude oil, oil components, and bioremediation on plant growth. Journal of Environmental Science and Health, Part A 39: 2465-2472.
  • Baker, J.M. 1970. The effects of oils on plants. Environmental Pollution 1: 27-44.
  • Bamidele, J.F. & Agbogidi, O.M. 2000. Toxic of Odidi petroleum oil and its water soluble fraction on three aquatic macrophytes. Nigerian Journal of Science and Environment 2: 113-121.
  • Banks, M.K. & Schultz, K.E. 2005. Comparison of plants for germination toxicity tests in petroleumcontaminated soils. Water, Air, and Soil Pollution 167: 211-219.
  • Carvalho, F.J.P.C.; Castro, R.A.C.; Abdanur, A.; Krenczynki, M.C.; Teixeira, S.C.; Coneglian, D. 2003. Relatório sobre o monitoramento do solo contaminado. Repar/SMS, Araucária. 94p.
  • Collin, P.H. 2001. Dictionary of Ecology and the Environment. Peter Collin Publishing, London. 560p.
  • Dorn, P.B. & Salanitro, J.P. 2000. Temporal ecological assessment of oil contamined soils before and after bioremediation. Chemosphere 40: 419-426.
  • Esau, K. 1977. Anatomy of seed plants. 2 ed. John Willey and Sons, New York. 550p.
  • Farias, V.; Maranho, L.T.; Vasconcelos, E.C.; Carvalho- Filho, M.A.S.; Lacerda, L.G; Menegassi, J.A.; Pandey, A. & Soccol, C. R. 2009. Phytodegradation potencial os Erythrina crista-galli L., Fabaceae, in petroleum-contamined soil. Applied Biochemistry and Biotechnology 157: 10-22.
  • Furtado, M. 2002. Petrobrás descontamina vazamento com micróbios. Revista Química e Derivados. Disponível em <http://www.quimicaederivados.com.br/revista/qd404/ambiente1.htm>. Acesso em 06 Abr 2008.
    » http://www.quimicaederivados.com.br/revista/qd404/ambiente1.htm
  • Gill, L.S.; Nyawuame, H.G.K. & Ehikhametalor, A.O. 1992. Effect of crude oil on the growth and anatomical features of Chromolaena odorata (L) K. e R. Newsletter 6: 1-6.
  • Hutchinson, S.L.; Banks, M.K. & Schwab, A.P. 2001. Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. Journal of Environmental Quality 30: 395-403.
  • Inckot, R.C.; Bona, C.; Souza, L.A. de & Santos, G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59: 513-524.
  • Johansen, D.A. 1940. Plant microtechnique. Mc Graw Hill, New York. 523p.
  • Kraus, E.J. & Arduin, M. 1997. Manual básico de métodos em morfologia vegetal. Edur, Rio de Janeiro. 198p.
  • Levitt, J. 1980. Responses of plants to environmental stress: water, radiation, salt and other stresses. Academic Press, New York. 297p.
  • Lorenzi, H. 1992. Árvores brasileiras. Plantarum, Nova Odessa. 315p.
  • Ma, Z.; Bielenberg, D.G.; Brown, K.M. & Lynch, J.P. 2001. Regulation of root hair density by phosphorus availability in Arabodopsis thaliana Plant, Cell and Environmentalist 24: 459-467.
  • Maguire, J.D. 1962. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science 2: 176-177.
  • Malallah, G.; Afzal, M.; Gulshan, S.; Abraham, D.; Kurian, M. & Dhami, M.S.I. 1996. Vicia faba as a bioindicator of oil pollution. Environmental Pollution 92: 213-217.
  • Maranho, L.T.; Galvão, F.; Preussler, K.H.; Muñiz, G.I.B. de & Kuniyoshi, Y.S. 2006. Efeitos da poluição por petróleo na estrutura da folha de Podocarpus lambertii Klotzsch ex Endl., Podocarpaceae. Acta Botanica Brasilica 20: 615-624.
  • McDowell, E.M. & Trump, B.F. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine 100: 405-414.
  • Merkl, N.; Schultze-Kraft, R. & Infante, C. 2004. Phytoremediation in the tropics - the effect of crude oil on the growth of tropical plants. Bioremediation Journal 8: 177-184.
  • Merkl, N.; Schultze-Kraft, R. & Infante, C. 2005. Phytoremediation in the Tropics - Influence of heavy crude oil on root morphological characteristics of graminoids. Environmental Pollution 138: 86-91.
  • O'Brien, T.P.; Feder, N. & McCully, M.E. 1964. Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59: 368-373.
  • Ogbo, E. M. 2009. Effects of diesel fuel contamination on seed germination of four crop plants - Arachis hypogaea, Vigna unguiculata, Sorghum bicolor and Zea mays African Journal of Biotechnology 8: 250-253.
  • Omosun, G.; Markson, A.A. & Mbanasor, O. 2008. Growth and anatomy of Amaranthus hybridus as affected by diferrent crude oil concentrations. American-Eurasian Journal of Scientific Research 3: 70-74.
  • Pandey, A.; Soccol, C.R. & Mitchell, D. 2000. New development in solid state fermentation: I - bioprocesses and products. Process Biochemistry 35: 1153-1169.
  • Pezeshki, S.R.; Hester, M.W.; Lin, Q. & Nyman, J.A. 2000. The effects of oil spill and clean-up on dominant us gulf coast marsh macrophytes: a review. Environmental Pollution 108: 129-139.
  • Sass, J.E. 1951. Botanical microtechnique 2ed. Iowa State College Press, Iowa. 228p.
  • Shahriari, M.H.; Savaghebi-Firoozabadi, G.; Azizi, M.; Kalantari, F. & Minai-Tehrani, D. 2007. Study of growth and germination of Medicago sativa (alfalfa) in light crude oil-contaminated soil. Research Journal of Agriculture and Biological Sciences 3: 46-51.
  • Sharifi, M.; Sadeghi, Y. & Akbarpour, M. 2007. Germination and growth of six plant species on contaminated soil with spent oil. International Journal of Environmental Science Technology 4: 463-470.
  • Sifton, H.B. 1945. Air-space tissue in plants. Botanical Review 11: 108-143.

Publication Dates

  • Publication in this collection
    Jul-Sep 2011

History

  • Received
    02 Mar 2011
  • Accepted
    09 May 2011
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br