Acessibilidade / Reportar erro

Russula (Russulales, Agaricomycetes) associated with Pinus spp. plantations from northeastern Argentina

Abstract

Russula comprises more than 3,000 species worldwide and is a characteristic genus of the coniferous forests of the northern hemisphere. The forest plantations with non-native species in the northeastern Argentina, such as pine or eucalyptus, provide the biotic and environmental conditions for the establishment of ectomycorrhizal fungi associated with these forest plantations. Due to the complexity of identifying Russula at specific level, morpho-anatomical, scanning electron microscopy, and phylogenetic (ITS) analysis were used to identify the specimens. As result, three Russula species, R. recondita, R. sardonia, and R. sororia, are described in detail and illustrated, none previously known to Argentina. Also, two of them, R. recondita and R. sororia, represent new records for South America.

Key words
Russulaceae; Basidiomycota; ectomycorrhizae; forestry; fungi

Resumen

Russula es un género que comprende más de 3.000 especies de distribución mundial, siendo un género característico de los bosques de coníferas del hemisferio norte. Las plantaciones forestales con especies no nativas en el Nordeste argentino, como por ejemplo pino o eucalipto, proporcionan las condiciones bióticas y ambientales para el establecimiento de hongos ectomicorrícicos asociados a dichos cultivos. Debido a la complejidad que presenta la determinación de Russula a nivel específico, se utilizaron métodos morfo-anatómicos, de microscopía electrónica de barrido y análisis filogenéticos (ITS) para la identificación de los especímenes. Como resultado, tres especies de Russula, R. recondita, R. sardonia y R. sororia son descriptas en detalle e ilustradas. Ninguna de estas especies era conocida previamente para Argentina, y dos de ellas, R. recondita y R. sororia, representan nuevas citas para Sudamérica.

Palabras clave
Russulaceae; Basidiomycota; ectomicorrizas; forestación; hongos

Introduction

Russula Pers. comprises more than 3,000 species worldwide (He et al. 2019He M-Q, Zhao R-L, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EH, Raspe O, Kakishima M, Sanchez-Ramirez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui B, Schoutteten N, Liu X, Li T, Yao Y, Zhu X, Liu A, Li G, Zhang M, Ling Z, Cao B, Antonín V, Boekhout T, Barbosa da Silva BD, De Crop E, Decock C, Dima B, Kumar Dutta A, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He S, Hodkinson BP, Hora E, Hoshino T, Justo A, Lim YW, Menolli Jr N, Mešić A, Moncalvo J, Mueller GM, Nagy L, Nilsson RH, Noordeloos ME, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalĉec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei T, Weiß M, Zhao C & Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105-367. ; Wijayawardene et al. 2020Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev D, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, Souza FA, Oehl F, Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP & Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere, Journal of Fungal Biology 11: 1060-1456.). In a traditional sense, Russula is characterized by its middle to large size basidiomes, with brittle context due to the presence of sphaerocysts in conjunction with filamentous hyphae, basidiospores with amyloid ornamentations and ectomycorrhizal habit (Schaeffer 1952Schaeffer J (1952) Russula monographie. Klinkhardt, Bad Heilbrunn. 296p.; Romagnesi 1967Romagnesi H (1967) Les russules d’Europe et d’Afrique du Nord. Bordas, Paris. 1000p.; Largent & Baroni 1988Largent DL & Baroni TJ (1988) How to identify mushrooms to genus VI: modern genera. Mad River Press, Eureka. 277p.; Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.). However, with the use of phylogenetic tools, currently a broader generic concept is considered, which includes not only the traditionally agaricoid species, but also species of pleurotoid habit, and even truffle-like basidiome of hypogeal habit (Buyck et al. 2018Buyck B, Zoller S & Hofstetter V (2018) Walking the thin line… ten years later: the dilemma of above versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267-292.). Even though Russula is easy to recognize macroscopically to genus, most species are difficult to identify due to the complexity and subjectivity of many characters (as odor and taste) that were utilized to delimit its species (Largent & Baroni 1988Largent DL & Baroni TJ (1988) How to identify mushrooms to genus VI: modern genera. Mad River Press, Eureka. 277p.). Although its infrageneric classification was always complex (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Romagnesi 1967Romagnesi H (1967) Les russules d’Europe et d’Afrique du Nord. Bordas, Paris. 1000p.; Singer 1986Singer R (1986) The Agaricales in modern taxonomy. Koeltz, Koenigstein. 981p.), Buyck et al. (2018)Buyck B, Zoller S & Hofstetter V (2018) Walking the thin line… ten years later: the dilemma of above versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267-292. proposed a classification based on morphoanatomic and multigene characters, concluding in seven well-defined subgenera: Archaea Buyck & V. Hofst., Compactae (Fr.) Bon, Crassotunicata Buyck & V. Hofst., Heterophyllidia Romagnesi, Malodora Buyck & V. Hofst., Brevipes Buyck & V. Hofst., and Russula Pers.

Russula is mainly represented in temperate cold forests associated with conifers (Bills et al. 1986Bills GF, Holtzman GI & Miller OK (1986) Comparison of ectomycorrhizal–Basidiomycetes communities in red spruce versus northern forest of West Virginia. Canadian Journal of Botany 64: 760-768.; Schmit et al. 1989Schmit JP, Murphy JF & Mueller GM (1989) Macrofungal diversity of a temperate oak forest: a test of species richness estimators. Canadian Journal of Botany 77: 1014-1027.; Villeneuve et al. 1989Villeneuve N, Grandtner MM & Fortin JA (1989) Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Canadian Journal of Botany 67: 2626-2629.; Ferris et al. 2000Ferris R, Peace AJ & Newton AC (2000) Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten) plantations in England: relationships with site factors and stand structure. Forest Ecology and Management 131: 255-267.; Gómez-Hernández et al. 2011Gómez-Hernández M, Williams-Linera G, Gevara R & Lodge DJ (2011) Patterns of macromycetes community assemblage along an elevation gradient: options for fungal gradient and metacomunity analyse. Biodiversity Conservation 21: 2247-2268.; O’Hanlon & Harrington 2012O’Hanlon R & Harrington TJ (2012) Macrofungal diversity and ecology in four Irish forest types. Fungal Ecology 5: 499-508.) and Angiosperms as Fagales (Halling & Mueller 2005Halling RE & Mueller GM (2005) Common mushrooms of the Talamanca Mountains, Costa Rica. Memoirs of the New York Botanil Garden 90: 1-195.; Gómez-Hernández et al. 2011Gómez-Hernández M, Williams-Linera G, Gevara R & Lodge DJ (2011) Patterns of macromycetes community assemblage along an elevation gradient: options for fungal gradient and metacomunity analyse. Biodiversity Conservation 21: 2247-2268.; O’Hanlon & Harrington 2012O’Hanlon R & Harrington TJ (2012) Macrofungal diversity and ecology in four Irish forest types. Fungal Ecology 5: 499-508.) and Myrtaceae (Packham et al. 2002Packham JM, May TW, Brown MJ, Wardlaw TJ & Mills AK (2002) Macrofungal diversity and community ecology in mature and regrowth wet eucalypt forest in Tasmania: A multivariate study. Austral Ecology 27: 149-161.; Gates et al. 2005Gates GM, Ratkowsky DA & Grove SJ (2005) A comparison of macrofungi in young silvicultural regeneration and mature forest at the Warra LTER site in the southern forests of Tasmania. Tasmanian Forests 16: 127-152.). Restricting our scope to South America, the main diversity of autochthonous Russula species is concentrated in Andino-Patagonic forests (Singer 1950Singer R (1950) Les russules de l´Argentine. Revue de Mycologie (Paris) 15: 125-137.; Gamundi & Horak 1994Gamundi IJ & Horak E (1994) Hongos de los Bosques Andinopatagonicos. Vazquez Mazzini Editores, Buenos Aires. 140p.; Romano et al. 2017Romano GM, Greslebin AG & Lechner BE (2017) Hongos agaricoides de los bosques de Nothofagus pumilio (Chubut, Argentina): clave y listado de especies. Revista del Museo Argentino de Ciencias Naturales nueva serie 19: 39-69.), lowlands forests in Amazonian region (Singer et al. 1983Singer R, Araujo I & Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially central Amazonia. Beihefte zur Nova Hedwigia 77: 9-352.; Maia et al. 2015Maia LC, Carvalho Júnior AA, Cavalcanti LH, Gugliotta AM, Drechsler-Santos ER, Santiago ALMA, Cáceres MES, Gibertoni TB, Aptroot A, Giachini AJ, Soares AMS, Silva ACG, Magnago AC, Goto BT, Lira CRS, Montoya CAS, Pires-Zottarelli CLA, Silva DKA, Soares DJ, Rezende DHC, Luz EDMN, Gumboski EL, Wartchow F, Karstedt F, Freire FM, Coutinho FP, Melo GSN, Sotão HMP, Baseia IG, Pereira J, Oliveira JJS, Souza JF, Bezerra JL, Araujo Neta LS, Pfenning LH, Gusmão LFP, Neves MA, Capelari M, Jaeger MCW, Pulgarín MP, Menoli N, Medeiro OS, Friedrich RCS, Chikowski RS, Pires RM, Melo RF, Silveira RMB, Urrea-Valencia S, Cortez VG & Silva VF (2015) Diversity of Brazilian fungi. Rodriguésia 66: 1033-1045.), Northeast Brazil (Sá & Wartchow 2016Sá MCA & Wartchow F (2016) Russula omnileuca, a new species of Russula from Pernambuco, Brazil. Sydowia 68: 63-68.; et al. 2018Sá MCA, Coimbra VRM & Wartchow F (2018) Discovery of Russula rubropunctatissima in Brazil. Current Research in Evironmental & Applied Mycology 8: 24-29.), and Guyana (Miller et al. 2012Miller SL, Aime MC & Henkel TW (2012) Russulaceae of the Pakaraima mountains of Guyana 2. New species of Russula and Lactifluus. Mycotaxon 121: 233-253.), being many of them endemic of these regions. Nevertheless, forestry with introduced species, pine and eucalyptus for example, provides biotic and environmental conditions for the establishment of allochthonous ectomycorrhizal fungi associated with these forest (Barroetaveña & Rajchenberg 2003Barroetaveña C & Rajchenberg M (2003) Las micorrizas y la producción de plántulas de Pinus ponderosa Dougl. et Laws. en la Patagonia Argentina. Bosque 24: 17-33. ; Diez 2005Diez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with Eucalypt plantations into the Iberian Peninsula. Biological Invasions 7: 3-15.; Barroetaveña et al. 2007Barroetaveña C, Cazares E & Rajchenberg M (2007) Ectomycorrhizal fungal species associated with Ponderosa pine and Douglas fir: a comparison of species richness in native forests and Patagonian plantations. Mycorrhiza 17: 355-373., 2012Barroetaveña C, Bassani VN & Rajchenberg M (2012) Inoculación micorrícica de Pinus ponderosa en la Patagonia Argentina: colonización de las raíces, descripción de morfotipos y crecimiento de plántulas en vivero. Bosque 33: 163-169.). In recent collections made in Pinus plantation from northeastern Argentina, three Russula species not previously known for Argentina were identified, two of them unknown to South America. These species are described and illustrated, and their distribution and phylogenetic position are discussed.

Materials and Methods

Collections and morphological analyses

The specimens here studied were collected under Pinus taeda L. and P. elliottii Engelm plantations of Misiones and Corrientes provinces, and deposited at CTES Herbarium. These samples were described according to Adamčík et al. (2019)Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.. Color codes follow Kornerup & Wanscher (1978)Kornerup A & Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen Publishers, London. 252p.. Microscopic characters were examined using light microscope (LM), Leica model CME, and scanning electron microscope (SEM), JEOL 5800 LV, operating at 20 KV. The SEM images were obtained from herbarium samples, rehydrated in Triton aqueous solution, and dehydrated in an ethanol series, dried to critical-point, and then mounted on double-sided tape and coated with gold-palladium. All LM images were taken with Leica EC3 camera from material mounted in 5% KOH and stained with phloxine (1%) or treated with Melzer’s reagent, Cresyl Blue and sulfobenzaldehyde (Adamčík et al. 2019Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.). Ammonia was used to observe color changes in the basidiomes. The measurements of microstructures (basidiospores, basidia, hyphae in the lamellae, trama and pileipellis) were made directly in LM or through photographs using ImageJ software (Schneider et al. 2012Schneider CA, Rasband WS & Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nature Methods 9: 671-675.). The basidiospore walls ornamentations were measured in SEM. For basidiospores´ measurements, the following notations were used: x= arithmetic mean of length and width; Q= quotient of length and width indicated as a variation range; Qx = mean of Q values; n= number of basidiospores measured, N= number of basidiomata from which spores were measured. All GPS readings were taken on Garmin eTrex 10, hand held unit using WGS84 standard. Herbaria abbreviations follow Index Herbariorum (Thiers 2020Thiers B [continuously updated] (2020) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at <http://sweetgum.nybg.org/ih/>. Access on 14 May 2020.
http://sweetgum.nybg.org/ih/...
) and the authors of species are according to Index Fungorum - Authors of Fungal Names (2020Index Fungorum – Authors of Fungal Names (2020) Available at <http://www.indexfungorum.org/names/AuthorsOfFungalNames.asp>. Access on 14 May 2020.
http://www.indexfungorum.org/names/Autho...
).

DNA extraction, amplification, and sequencing

Genomic DNA of specimens N. Niveiro 3274 CTES and N. Niveiro 3341 CTES were isolated from dried basidiomata tissue following standard protocols of the Canadian Centre for DNA Barcoding (CCDB) for fungi (Ivanova et al. 2006Ivanova NV, Dewaard J & Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002., 2016Ivanova NV, Kuzmina M & Fazekas A (2016) CCDB Protocols. Glass Fiber Plate DNA Extraction Protocol for plants, fungi, echinoderms and mollusks, Manual protocol employing centrifugation. Available at <http://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.pdf>. Access on 14 May 2020.
http://ccdb.ca/site/wp-content/uploads/2...
). The nuclear ribosomal internal transcribed spacer (ITS) region of the DNA was amplified using primers ITS1-F and ITS4-B (Gardes & Bruns 1993Gardes M & Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes: Application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.), which was suggested as the universal DNA barcode marker for Basidiomycetes fungi (Ivanova et al. 2008Ivanova NV, Fazekas AJ & Hebert PDN (2008) Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Molecular Biology Reporter 26: 186-198. ; Schoch et al. 2012Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA & Chen W & Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241-6246.). PCR products were purified and sequenced by the Canadian Center of DNA Barcoding (CCDB). The ITS sequences were deposited in the GenBank database (Tab. 1).

Table 1
Sequences used in the phylogenetical analysis. Sequences obtained in this study are in bold.

Phylogenetic analysis

The resulting sequences were assembled and manually edited using Geneious v. 6.1.8 (Kearse et al. 2012Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P & Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.). The nrITS dataset was built with 61 sequences of sect. Ingratae treated by Jabeen et al. (2017)Jabeen S, Razaq A, Niazi ARK, Ahmad I, Grebenc T & Khalid AN (2017) Russula ahmadii (Basidiomycota, Russulales), a new species in section Ingratae and its ectomycorrhiza from coniferous forests of Pakistan. Phytotaxa 321: 241-253. and Melera et al. (2017)Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134., including our sequences (Tab. 1). Lactifluus chrysocarpus E.S. Popov & O.V. Morozova was used as outgroup (Wang et al. 2015Wang XH, Buyck B, Verbeken A & Hansen K (2015) Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China. Mycologia 107: 941-958. ). The nrITS sequences were initially aligned with MAFFTv.7 (under Q–INS–i criteria) (Katoh & Standley 2013Katoh K & Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.) and manually edited using MEGA5 (Tamura et al. 2011Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.). The nrITS dataset was subdivided into three data partition (ITS1, 5.8S, and ITS2).

The dataset was analyzed with Maximum Likelihood (ML) and Bayesian Inference (BI) approaches. Maximum Likelihood searches were conducted with RaxML-HPC v.8 (Stamatakis 2014Stamatakis A (2014) RaxML Version 8: a tool phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.), searching for the best scored trees with GTRGAMMA model for the dataset with all the default parameters estimated by the software. The analysis first involved 1000 ML independent searches each one starting from one randomized stepwise addition parsimony tree. Only the best-scored ML tree was kept, and the confidence of nodes was accessed through non-parametric Bootstrapping (BS) pseudoreplicates under the same model, allowing the program to stop bootstrapping automatically by the autoMRE option. An additional alignment partition file was used to force RAxML software to search for a separate evolution model for each partition. The best fit model of nucleotide evolution to the dataset was selected using AIC (Akaike Information Criterion) as implemented in jModelTest2 v.1.6 (Guindon & Gascuel 2003Guindon S & Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696-704.; Darriba et al. 2012Darriba D, Taboada GL, Doallo R & Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.). Bayesian Inference analyses were performed with MrBayes 3.2.6 (Ronquist & Huelsenbeck 2003Ronquist F & Huelsenbeck JP (2003) MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.), and implemented with two independent runs, each one beginning from random trees with four simultaneous independent chains. A total of 2×107 generations were carried out, sampling one tree every 1×103 generations. The initial 25% of the sampled trees was discarded as burn-in and checked by the convergence criterion (frequencies of average standard deviation of split <0.01) in Tracer v.1.6 (Rambaut et al. 2014Rambaut A, Suchard MA, Xie D & Drummond AJ (2014) Tracer. V. 1.6. Available at <http://tree.bio.ed.ac.uk/software/tracer/>. Access on 14 May 2020.
http://tree.bio.ed.ac.uk/software/tracer...
), while the remaining ones were used to reconstruct a 50% majority-rule consensus tree and to estimate Bayesian posterior probabilities (BPP) of the branches. J Model Test2 v.1.6, MrBayes 3.1.2 and RaxML-HPC v. 8.2.3 were used in CIPRES Science Gateway (Miller et al. 2010Miller MA, Pfeiffer W & Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: SC10 Workshop on Gateway Computing Environments (GCE10). New Orleans. Pp. 8.; http://www.phylo.org/). A node was considered to be strongly supported if it showed a BPP ≥ 0.95 and/or BS ≥ 90%, while moderate support was considered BPP ≥ 0.9 and/or BS ≥ 70%. Only the topology from the best ML tree is shown, indicating support values (BPP/BS) of each node.

Results

Molecular phylogenetic inferences

The nrITS dataset included 61 sequences belonging to 15 species of Russula plus the outgroup, resulting in an alignment with 631 characters, of which 396 are constant sites, 235 variable uninformative and 135 parsimony-informative.

The phylogenetic inference from nrITS dataset (Fig. 1), shows that Russula specimens from Pinus forest plantation in the northeastern Argentina are distributed in two strongly supported clades. The specimen N. Niveiro 3274 (CTES) is closely related to Asian and North American R. sororia (BPP=1/BS=98), and the specimen N. Niveiro 3341 (CTES) with European specimens of R. recondita (BPP=1/BS=100). Both species are described below.

Figure 1
Molecular phylogeny carried out by Maximum Likelihood based on dataset of ITS sequences. Bayesian posterior probability above 0.7 (BPP ≥ 0.7) and Bootstrap value above 70% (BS ≥ 70%) are shown. Sequences obtained from this work are indicated in bold type. Clade with taxa of interest is shown in grayish box.

Taxonomy

Russula recondita Melera & Ostellari. Mycological Progress 16 (2): 128 (2017). Figs. 2-4

Figure 2
Macroscopic characters of R. recondita [N. Niveiro 3341 (CTES)]. Scale bar = 5 cm.
Figure 3
Microscopic characters of R. recondita - a. basidiospores - b. basidia - c. hymenial cystidia - d. pileipellis terminal hyphae - e. pileocystidia - f. pileocystidia originated by gloeopleural hyphae [N. Niveiro 3341 (CTES)]. Scale bars = 10 µm.
Figure 4
Microscopic characters of R. recondita - a-b. basidiospores on SEM - c. basidia - d. hymenial cystidia. [N. Niveiro 3341 (CTES)]. Scale bars = 10 µm.

Pileus 30–70 mm diam., flattened-globose when young, then convex to flat, depressed when mature; margin tuberculate-corrugated, incurved to plane-upturned; cuticle viscid when young, turning dry, easily separable from the context at approximately one third of the diameter of the pileus, orange white (6A2), pale orange (6A3), light orange (6A4) to grayish orange (6B3-5) surface, occasionally with deep orange (5A6-7) stains, dark brown (7F4-8) in the center. Lamellae up to 3 mm broad, adnate to sinuate, crowded at first, turning close, thick, whitish (5A1), orange white (5A2) to orange gray (5B2), occasionally with brownish orange (5C5) to brownish yellow (5C7) stains when mature; entire and concolorous edge. Stipe 30–80 × 10–20 mm, thick, cylindrical, rough, bright, white (5A1) when young, turning pale gray (5B1) when old, occasionally with reddish brown (7B7) to brown (7E7) stain in lower half. Context fleshy, up to 8 mm thickness, whitish (1A1) to orange white (6A2), brittle. Taste mild, odor fruity. Spore-print cream color (2A2 “yellowish white” to 2B2 “yellowish gray”). Negative reaction with potassium hydroxide and ammonia.

Basidiospores 6.5–8.5 × 4.5–7 µm; x= 7.5 × 6.0 µm; Q= 1.15–1.35; Qx = 1.25; n= 22; N= 1; ovoid to broadly ellipsoidal, hyaline, ornamented with isolated warts (2–4 warts in a 3 µm diam. circle), or occasionally with thin-lines interconnections (0–1 fusion in the circle), warts up to 0.8–1.3 µm high, amyloid; smooth suprahilar spot, inamyloid. Basidia 43–46 × 9–11 µm, clavate, 4-spored, thin-walled, hyaline. Hymenial cystidia moderately numerous, ca. 600–1200/mm2, (30–)37–55(–70) × 5–8 µm, fusiform, rarely cylindrical, apically obtuse, mucronate, with an appendage 5–9 µm long, occasionally moniliform, mainly originating slightly below the level of the basidia, a few longer originating in subhymenium, thin-walled, smooth, content completely heteromorphous, grayish reaction in sulfovanillin. Hymenophoral trama with globose to subglobose sphaerocysts, 11–21 µm diam., thin-walled, intermixed with cylindrical hyphae up to 5 µm diam. Gloeopleural hyphae up to 8.5 µm diam., turning black with sulphobenzaldehyde. Pileipellis in an ixotrichoderm up to 280 µm deep, orthochromatic in Cresyl Blue; suprapellis 90–150 µm deep, made up ascending cylindrical hyphae, 1–3 µm diam., septate, hyaline, intermixed, embedded in a gelatinized matrix; subpellis 70–130 µm deep, composed of horizontally oriented, intermixed and strongly gelatinized hyphae. Hyphal termination near the pileus margin composed of 2-3 unbranched cells, thin-walled, terminal cells 30–35 × 2–3 µm, cylindrical, similar to subterminal cells. Hyphal termination near the pileus center similar to the margin, slightly longer, terminal cells 30–40 × 2–3 µm, cylindrical to narrowly lageniform. Pileocystidia dispersed near the pileus margin, composed of 1 cell, 38–50 × 3–5 µm, fusiform to narrowly lageniform, thin-walled, content undifferentiated; pileocystidia near the pileus center, 25–40 × 4–5 µm, fusiform to narrowly lageniform, thin-walled, content undifferentiated. Oleiferous hyphae frequent in context, with yellowish pigments, terminal cells occasionally formed larger pileocystidia, 45–80 × 4–5 µm, cylindrical to lanceolate, thin-walled.

Examined material: ARGENTINA. CORRIENTES: Dpto. Capital, Santa Ana de los Guácaras, 27°27’42.01”S, 058°40’04.85”W, 70 m a.s.l., 2.VI.2019, in soil between pines at the edge of the road, former pine plantation area, N Niveiro 3341 (CTES); 11.VIII.2019, in soil between isolated pines at the roadside, former pine plantation area, A Somrau et al. 3 (CTES).

The species is distributed in Europe, North America, and Asia (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ; Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.). Russula recondita was found in different habitats (deciduous forest, coniferous forest, grasslands, plantations, anthropic habitats) associated with numerous potential symbionts (e.g. Pinus sp., Quercus sp., and Salix sp.) on sandy and airy soils (Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.).

Previous records were not found for South America.

Russula pectinatoides Peck is currently considered a species complex, that is still not resolved (Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.; Adamčík et al. 2013Adamčík S, Carteret X & Buyck B (2013) Type studies on some Russula species described by C.H. Peck. Cryptogamie, Mycologie 34: 367-391.; Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.). Firstly, Sarnari (1998)Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p., separated many European collections of R. pectinatoides as an independent species, R. praetervisa Sarnari, emphasizing that both species are macroscopically identical. Later, Melera et al. (2017)Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134. analyzed this species complex, concluding that the original concept of R. pectinatoides (Peck 1907Peck CH (1907) Report of the State Botanist, 1906. Bulletin of the New York State Museum 116: 1-117.) corresponds to at least three different species: R. pectinatoides, R. praetervisa, and a new species, R. recondita, differentiating them mainly by molecular data. Russula recondita is described as a wide and very diverse species, with variability in spore size (average range of 6–10 × 5–7 µm), ornamentation (from isolated warts to sometimes with some connections), habitat, and potential symbionts (Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.). In addition, recent phylogenetic studies (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ; Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.) have shown the concept of R. recondita (fide Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.) or R. aff. pectinatoides (fide Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ) comprises three geographical distinct clades: i- European specimens, ii- Asian specimens and, iii- North American specimens. Further studies of R. recondita are needed to determine if this phylogenetic arrangement indicates a middle stage of speciation or a discrete species (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ). Recently, Adamčík et al. (2019)Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449., propose to R. amerorecondita Avis & Barajas as the North American sister species of R. recondita, restricting the latter to Europe and Asia. The South American specimens described here are closely related to the clade of European specimens, named R. recondita s.s. by Melera et al. (2017)Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134..

The completely mild taste, without any bitterness, and its fruity smell distinguish R. recondita from other morphologically similar species (Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.). Russula ahmadii S. Jabeen, A. Razaq., A.R. Niazi, I. Ahmad & A.N. Khalid is a similar species of the R. pectinatoides species complex, but is differentiated from R. recondita by having partially reticulate basidiospores, with crests that are mostly forked (Jabeen et al. 2017Jabeen S, Razaq A, Niazi ARK, Ahmad I, Grebenc T & Khalid AN (2017) Russula ahmadii (Basidiomycota, Russulales), a new species in section Ingratae and its ectomycorrhiza from coniferous forests of Pakistan. Phytotaxa 321: 241-253.). Russula catillus H. Lee, M.S. Park & Y.W. Lim is microscopically similar to R. recondita, but differs in its paler pileus coloration, with pale yellow to light yellow surface (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ). Russula hortensis Sarnari and R. pseudopectinatoides G.J. Li & H.A. Wen are two other macroscopically similar species, but are differentiated by their crested ornamented basidiospores, forming complete reticles (Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.; Li et al. 2015Li GJ, Zhao D, Li SF & Wen HA (2015) Russula chiui and R. pseudopectinatoides, two new species from southwestern China supported by morphological and molecular evidence. Mycological Progress 14: 1-14.). The recently described R. amerorecondita is another similar species to R. recondita but has larger basidiospores (8.5–10.7 × 7.5–9.5 µm) that the European and Argentinean specimens (Adamčík et al. 2019Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.). In relation to this complex of species, Wright & Albertó (2002)Wright JE & Albertó E (2002) Hongos. Guía de la Región Pampeana I. Hongos con laminillas. L.O.L.A. Buenos Aires. 279p. described R. pectinatoides for introduced pine forests on Pampean region of Argentina. Russula pectinatoides could be confused with R. recondita, but further morphological studies and molecular analyses should be performed to confirm their identity and relationship.”Russula recondita was described as part of the section Foetentinae Melzer & Zvára (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ; Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.), currently included in subgenus Heterophyllidae (Byuck et al. 2018; Adamčík et al. 2019Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.).

Russula sardonia Fr., Epicrisis Systematis Mycologici: 353 (1838). Figs. 5-7

Figure 5
Macroscopic characters of R. sardonia - a. general aspect - b. pileus surface detail - c. longitudinal section of basidiome - d. lamellae detail. [O. Popoff 5601 (CTES)]. Scale bars = 5 cm.
Figure 6
Microscopic characters of R. sardonia - a. basidiospores - b. basidia - c. hymenial cystidia - d. pileipellis terminal hyphae - e. pileocystidia. [O. Popoff 5601 (CTES)]. Scale bars = 10 µm.
Figure 7
Microscopic characters of R. sardonia - a-b. basidiospores on SEM - c. hymenial cystidia - d. pileipellis with pileocystidia (marked with arrows) [O. Popoff 5601 (CTES)]. Scale bars = 10 µm.

Pileus 70–120 mm diameter, convex to flattened, depressed on the central region when mature; striated to subsulcate at the margin, incurved; subviscid cuticle when wet, turning dry, glabrous, red-purple (11A6), brownish-violet (11D6) to brownish-red (9A7-9C7), turning darker in the center, darker violet (11F5-11F8). Lamellae up to 5 mm, deep, attached, sinuated, crowded to close, smooth to finely crenulated margin, whitish (1A1) when young, turning yellowish white (1A2) to pale yellow (1A3) when mature, frequently with brownish orange (6C6-6C8) stained; entire and concolorous edge. Stipe 60–82 × 10–18 mm, cylindrical or more attenuated towards the base, central, slightly rough surface, fibrillose, whitish (9A1) when young, with a red-pinkish stained when mature, pale red (9A3) to grayish red (9B4). Context fleshy, up to 10 mm thickness, whitish (1A1), slightly reddish brown (9D6-9E6) towards the cuticle, firm, brittle, with watery line at the level of the lamellae. Taste hot spicy, odor fruity. Spore-print cream color (2A2 “yellowish white” to 2B2 “yellowish gray”). Positive reaction with potassium hydroxide and ammonia coloring salmon red (near 9B5 “grayish red”).

Basidiospores 6.4–9.8 × 5.5–8 µm; x= 8 × 6.4 µm; Q= 1.05–1.44; Qx = 1.23; n= 21; N= 2; ellipsoidal, hyaline, with subreticulated warts [(4–) 5–7 warts in a 3 µm diam. circle] frequently fused in short to long ridges (0–3 fusions in the circle), connected by occasional thin-lines (0–4 fusions in the circle), warts of 0.75–1.22 µm high, amyloid; smooth suprahilar spot (wrinkled under SEM), inamyloid. Basidia 38–51 × 5.8–7 µm, cylindrical-subclavate, 4-spored, thin-walled, hyaline. Hymenial cystidia numerous, ca. 1800–2600/mm2, 57.5–90 × 7.5–12.5 µm; cylindrical-fusoid, apically obtuse, mucronate, with an appendage 1–9 µm long, originating in subhymenium, thin-walled, smooth, content completely heteromorphous, grayish reaction in sulfovanillin, more numerous near to the lamellae edges, usually smaller, 35–50 × 5.5–7.5 µm, cylindrical-fusoid to fusoid, occasionally claviform. Hymenophoral trama irregular, with polyhedric sphaerocysts up to 20 µm diameter intermixed with cylindrical hyphae, up to 6 µm diam. Gloeopleural hyphae up to 7.8 µm thick, turning black when stained with sulphobenzaldehyde.

Pileipellis in an ixotrichoderm, 160–200 µm deep, orthochromatic in Cresyl Blue; suprapellis 90–120 µm deep, made up ascending cylindrical hyphae, 1–4 µm diam., septate, hyaline, intermixed, embedded in a gelatinized matrix; subpellis 70–100 µm deep, composed of horizontally oriented, intermixed and strongly gelatinized hyphae. Hyphal termination near the pileus margin composed of 2-3 unbranched cells, thin-walled, terminal cells 35–45 × 2.5–3.5 µm, cylindrical to narrowly lageniform, subterminal cells wider and shorter, unbranched. Hyphal termination near the pileus center similar to the margin, slightly shorter, terminal cells 20–40 × 2–3 µm, cylindrical to narrowly lageniform. Pileocystidia dispersed near the pileus margin, composed of 1–2 cells, thin or slightly thick-walled, often flexuous and occasionally slightly moniliform; terminal cells 23–43 × 4–5 µm, conic to narrowly fusiform, content with dispersed granulations; pileocystidia near the pileus center similar to the latter in shape and size, slightly wider, 38–45 × 4–6 µm. Oleiferous hyphae frequent in context, with yellowish pigments.

Examined material: ARGENTINA. CORRIENTES. Dpto. Gral. San Martin, La Cruz, Paraje Tres Cerros, 29°04’09.15”S, 057°03’13.52”W, 88 m a.s.l., 19.V.2017, associated with Pinus elliottii plantation, abundant. O Popoff 5601 (CTES).

The species is known from Europe (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.; Moreno et al. 1986Moreno G, García JL & Zugaza A (1986) La guía de incafo de los hongos de la Península Ibérica. Tomo I-II. Incafo, Madrid. 1276p.; Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.). In South America, described from center and south Chile, associated with pine plantation (Garrido 1982Garrido N (1982) Russulaceae en plantaciones introducidas en Chile. Boletín de la Sociedad Argentina de Botánica 21: 7-16.; Furci 2008Furci GM (2008) Hongos. In: Rovira F, Ugalde J & Stutzin M (eds). Biodiversidad de Chile, patrimonios y desafíos. Ocho Libros Editores, Santiago de Chile. Pp. 366-375.). Russula sardonia grows associated with pine forest or plantation, on sandy or loose soils, with a great abundance of basidiomes (Moreno et al. 1986Moreno G, García JL & Zugaza A (1986) La guía de incafo de los hongos de la Península Ibérica. Tomo I-II. Incafo, Madrid. 1276p.; Furci 2008Furci GM (2008) Hongos. In: Rovira F, Ugalde J & Stutzin M (eds). Biodiversidad de Chile, patrimonios y desafíos. Ocho Libros Editores, Santiago de Chile. Pp. 366-375.). Previous records were not found for Argentina.

Russula sardonia is characterized by its large pileus up to 18 cm diameter, with glabrous, purple-reddish to purplish surface, yellowish lamellae, subglobose basidiospores, 7–9 × 6–8 µm in size, ornamented with subreticulate amyloid warts, context and lamellae with hot spicy taste, and by reacting to potassium hydroxide or ammonia turning salmon red color. This species forms ectomycorrhizal associations with several Pinus species (Garrido 1982Garrido N (1982) Russulaceae en plantaciones introducidas en Chile. Boletín de la Sociedad Argentina de Botánica 21: 7-16.; Valenzuela et al. 1996Valenzuela E, Ramirez C, Moreno G, Polette M, Garniga S, Peredo H & Grinbergs J (1996) Agaricales más comunes recolectados en el Campus Isla Teja de la Universidad Austral de Chile. Bosque 17: 51-63., 1998Valenzuela E, Moreno G, Garnica S & Ramirez C (1998) Microsociología en bosques nativos de Nothofagus y plantaciones de Pinus radiata en la X Región de Chile: diversidad y rol ecológico. Revista chilena de Historia Natural 71: 133-146.). Its basidiomes with purple-violet coloration are morphologically similar to R. queletti Fr. and R. torulosa Bresad; however, these species can be distinguished from R. sardonia by their context and lamellae immutable to ammonia and potassium hydroxide test, smaller basidiomes (up to 6 and 8 cm wide respectively), and basidiospores with isolated warts (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.). Other similar species is R. exalbicans (Pers.) Melzer & Zvára, which is differentiated by having basidiospores, 7.5–8.5 × 6–7 µm, with isolated warts (Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.). Russula cavipes Britzelm. is other species with yellowish-toned lamellae, which turns salmon red with ammonia as observed in R. sardonia, but it has smaller basidiomes with variable colorations and basidiospores with more marked warts (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.).

Wright & Albertó (2002)Wright JE & Albertó E (2002) Hongos. Guía de la Región Pampeana I. Hongos con laminillas. L.O.L.A. Buenos Aires. 279p. described R. amethystina Quélet from Argentina, a species with similar dimensions and liliaceous colorations that resembles R. sardonia, nevertheless, it is differentiated by its darker and velvety pileus surface, whitish colored lamellae, and sweet taste.

Russula sardonia is part of the subgenus Russula (Byuck et al. 2018).

Russula sororia (Fr.) Romell, Öfvers. K. Förh. Kongl. Svenska Vetensk.-Akad. 48 (3): 177 (1891). Figs. 8-10

Figure 8
Macroscopic characters of R. sororia - a. general aspect - b. pileus surface detail from a young basidiome - c. stipe surface detail - d. lamellae detail [N. Niveiro 3274 (CTES)]. Scale bars = 5 cm.
Figure 9
Microscopic characters of R. sororia - a. basidiospores - b. basidia - c. hymenial cystidia - d. pileipellis terminal hyphae - e. pileocystidia. [N. Niveiro 3274 (CTES)]. Scale bars = 10 µm.
Figure 10
Microscopic characters of R. sororia - a-b. basidiospores on SEM - c. basidia - d. hymenial cystidia [N. Niveiro 3274 (CTES)]. Scale bars = 10 µm.

Pileus 30–70 mm diam., globose at first, then convex to flat, broadly depressed when mature; margin corrugated, incurved to plane-upturned; viscid cuticle when young, turning dry, easily separable from the context at approximately one third of the pileus diameter; light brown surface (6A2 “orange white” to 6A3 “pale orange”), darker in the center, dark brown (6F4-8), with ferruginous (6C5 “brownish orange” to 6D5 “light brown”) stains in mature specimens. Lamellae up to 3 mm deep, adnate to sinuate, crowded at first, turning close, thick, whitish (1A1) when young, turning yellowish white (1A2) when mature, with brownish orange (6C6-6C8) stained when bruised. Stipe 30–60 × 10–15 mm, thick, cylindrical or slightly attenuated at the base, rough, bright, white (1A1) when young, turning pale gray (1B2) when old, stained with ochre (6B2-3, “orange-gray”, “grayish orange”) at the base or when is bruised. Context fleshy, up to 6 mm thick, whitish (1A1), brittle. Taste hot spicy, odor spermatic or artichoke. Spore-print cream color (near to 2A2 “yellowish white”). Negative reaction with potassium hydroxide and ammonia.

Basidiospores 7–9.2 × 5.4–7.2 µm; x= 8 × 6.2 µm; Q= 1.13–1.45; Qx = 1.3; n= 20; N= 2; broadly ellipsoidal to subglobose, hyaline, ornamented with isolated warts [3–5 (–7) warts in a 3 µm diam. circle], or occasionally with thin interconnections [0–3 (–5) fusions in the circle], warts 0.8–1.0 (–1.2) µm high, amyloid; smooth suprahilar spot, inamyloid. Basidia 38–47 × 5–9 µm, clavate, 4-spored, thin-walled, hyaline. Hymenial cystidia numerous, ca. 1100–1700/mm2, (38–)45–69 × 5–9 µm, fusiform, rarely cylindrical, apically obtuse, mucronate, with an appendage 2–12 µm long, usually moniliform, occasionally bifurcate, mainly originating slightly below the level of the basidia, a few longer originating deeply in subhymenium, thin-walled, smooth, content completely heteromorphous, grayish reaction in sulfovanillin; Hymenial cystidia near the lamellae edges smaller, 38–45 × 4.5–7.5 µm, fusiform to narrowly lageniform. Hymenophoral trama with globose to subglobose sphaerocysts, 12–34 × 11–22 µm, thin-walled, intermixed with cylindrical hyphae up to 5 µm diam. Gloeopleural hyphae dispersed, up to 5 µm diam., black with sulphobenzaldehyde. Pileipellis in an ixotrichoderm up to 150 µm, orthochromatic in Cresyl Blue; suprapellis 60–90 µm deep, made up ascending cylindrical hyphae, 1–3 µm diam., septate, hyaline, intermixed more or less parallel, embedded in a gelatinized matrix; subpellis up 40–70 µm deep, composed of horizontally oriented, intermixed and strongly gelatinized hyphae. Hyphal termination near the pileus margin composed of 2-3 unbranched cells, thin-walled, terminal cells 38–68 × 1.5–2.5 µm, cylindrical, thin-walled, occasionally flexuose, slightly moniliform. Pileocystidia near the pileus margin dispersed, composed of one apical cell, 35–45 × 4–6 µm, fusiform, narrowly lageniform to cylindrical, thin-walled, with heteromorphous content; pileocystidia near the pileus center longer, 43–58 × 5–6 µm, fusiform to lageniform, thin-walled, with heteromorphous content. Oleiferous hyphae not observed in the context.

Examined material: ARGENTINA. MISIONES: Dpto. Iguazú, Puerto Libertad. Arauco S.A., San Jorge plantation, 25°48’09.84”S, 054°30’43.70”W, 271 m a.s.l., 2.V.2017, in 10 years old Pinus taeda plantation, N Niveiro 3274, N Niveiro ARA-P01-00.; ARA-P01-03; ARA-P03-01; ARA-P04-02 (CTES); 10.IV.2018, N Niveiro 2018.10.152 (CTES); N Ramírez 2018.10.88 (CTES). Dpto. Libertador General San Martin, Garuhapé, 26°48’36.16”S, 54°55’57.20”W, 163 m a.s.l., 6.X.2018, in Pinus taeda plantation, N Niveiro et al. 3350 (CTES). Dpto. San Ignacio, San Ignacio, 27°16’55.46”S, 55°33’07.68”W, 149 m a.s.l., in 15 years old Pinus taeda plantation, 29.IX.2018, N Niveiro 3351 (CTES).

Russula sororia grows scattered, solitary or gregarious, in soil associated with pinus and deciduous forest in Europe (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.) and North America (Shaffer 1972Shaffer RL (1972) North American Russulas of the subsection Foetentinae. Mycologia 64: 1008-1053.; Chou & Wang 2005Chou WN & Wang YZ (2005) Nine species of Russula (Basidiomycotina) new to Taiwan. Taiwania 50: 93-100.). Previous records were not found for South America.

Russula sororia is morphologically difficult to distinguish from related species (Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.). However, characters as the light brown pileus that does not exceed 8 cm in diameter, the white stipe that turns brown when is bruised, and the broadly ellipsoidal to subglobose basidiospores with subreticulated warts (Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Sarnari 1998Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.; Chou & Wang 2005Chou WN & Wang YZ (2005) Nine species of Russula (Basidiomycotina) new to Taiwan. Taiwania 50: 93-100.; Kränzlin 2005; Mir et al. 2017Mir G, Melis JLL & Prats MC (2017) Aportación al Catálogo Micológico de las Illes Balears. Menorca, III. Micobotánica-Jaen 12: 1-23. Available at <http://www.micobotanicajaen.com/Revista/Articulos/JLMelis/MenorcaIII/APORTACION%20AL%20CATALOGO%20MICOLOGICO%20III%20v2r.pdf>. Access on 14 May 2020.) are useful to recognize it.

Russula sororia constitutes a complex of morphologically similar species and commonly confused with R. amoenolens Romagn., R. cerolens Shaffer, R. pectinata (Bull.) Fr., R. pectinatoides (Shaffer 1972Shaffer RL (1972) North American Russulas of the subsection Foetentinae. Mycologia 64: 1008-1053.; Melera et al. 2017Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.), and R. ahmadii (Jabeen et. al. 2017). Russula amoenolens is distinguished by having larger (up to 10 cm) and firmer basidiomes, darker pileus surface (dark yellowish brown), more strongly acrid lamellae and a strong artichoke odor (Shaffer 1972Shaffer RL (1972) North American Russulas of the subsection Foetentinae. Mycologia 64: 1008-1053.). Russula cerolens is characterized by the red-brown stains on the stipe base and the ornamentation’s pattern of its basidiospores, with warts up to 0.8 µm high, isolated or with occasional interconnections forming a partial reticle (Shaffer 1972Shaffer RL (1972) North American Russulas of the subsection Foetentinae. Mycologia 64: 1008-1053.). Russula pectinata has more yellowish pileus surface, fish-like odor and is related to deciduous trees (Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.; Thiers 1997Thiers HD (1997) The Agaricales (Gilled Fungi) of California. 9. Russulaceae. I. Russula. Mad River Press, Eureka. 158p.). Russula pectinatoides, originally described for North America, is differentiated by its mild taste, of oil or fruity, and smaller basidiospores, 6–8.5 × 5.7–7.2 µm, with well-marked warts (Singer & Digilio 1951Singer R & Digilio APL (1951) Pródromo de la flora agaricina argentina. Lilloa 25: 5-461.; Schaeffer 1952Schaeffer J (1952) Russula monographie. Klinkhardt, Bad Heilbrunn. 296p.; Kühner & Romagnesi 1953Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.; Moser 1978Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.; Adamčík et al. 2013Adamčík S, Carteret X & Buyck B (2013) Type studies on some Russula species described by C.H. Peck. Cryptogamie, Mycologie 34: 367-391.). Russula ahmadii, recently described from Pakistan, differs by its smaller pileus (up to 4.5 cm), darker colorations and a more reticulated spore ornamentation (Jabeen et al. 2017Jabeen S, Razaq A, Niazi ARK, Ahmad I, Grebenc T & Khalid AN (2017) Russula ahmadii (Basidiomycota, Russulales), a new species in section Ingratae and its ectomycorrhiza from coniferous forests of Pakistan. Phytotaxa 321: 241-253.).

Russula sororia and related species were traditionally considered within the subgenus Ingratula Romagnesi, section Foetentinae (Lee et al. 2017Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360. ), but are currently considered in the subgenus Heterophyllidae (Byuck et al. 2018; Adamčík et al. 2019Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.).

Discussion

Russula is one of the most diverse and well-known genus worldwide with more than 3,000 species (He et al. 2019He M-Q, Zhao R-L, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EH, Raspe O, Kakishima M, Sanchez-Ramirez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui B, Schoutteten N, Liu X, Li T, Yao Y, Zhu X, Liu A, Li G, Zhang M, Ling Z, Cao B, Antonín V, Boekhout T, Barbosa da Silva BD, De Crop E, Decock C, Dima B, Kumar Dutta A, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He S, Hodkinson BP, Hora E, Hoshino T, Justo A, Lim YW, Menolli Jr N, Mešić A, Moncalvo J, Mueller GM, Nagy L, Nilsson RH, Noordeloos ME, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalĉec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei T, Weiß M, Zhao C & Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105-367. ). However, the identification of its species is difficult due to the subjectivity of many diagnostic characters, and by having species complex morphologically very similar among them, such as R. recondita and R. sororia case. To understand the diversity of this group, comprehensive studies are necessary, covering morphological, ecological, and phylogenetic analysis based on molecular data. Furthermore, the identification of species associated with introduced environments, such as pine forest plantations, is challenging because in many cases there is no prior knowledge of their biodiversity, neither the relationships that may exist among their components.

The diversity of ectomycorrhizal fungi associated with forest plantations in northern Argentina is little known (Niveiro et al. 2009Niveiro N, Popoff OF & Albertó EO (2009) Hongos comestibles silvestres: presencia de especies exóticas de Suillus (Boletales, Basidiomycota) y Lactarius (Russulales, Basidiomycota) asociadas a los cultivos de Pinus elliottii del nordeste Argentino. Bonplandia 18: 65-71.; Campi et al. 2017Campi M, Mancuello C, Maubet Y & Niveiro N (2017) Laccaria fraterna (Agaricales, Basidiomycota) associated to Eucalyptus sp. implanted forest in northern Argentina and Paraguay. Checklist 13: 87-90.). Studies on diversity of ectomycorrhizal fungi associated with Pinus elliottii in southern Brazil (Giachini et al. 2000Giachini A, Oliveira V, Castellano M & Trappe J (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92: 1166-1177., 2004Giachini A, Souza L & Oliveira V (2004) Species richness and seasonal abundance of ectomycorrhizal fungi in plantations of Eucalyptus dunnii and Pinus taeda in southern Brazil. Mycorrhiza 14: 375-381.; Sulzbacher et al. 2013Sulzbacher MA, Grebenc T, Jacques RJS & Antoniolli ZI (2013) Ectomycorrhizal fungi from southern Brazil - a literature-based review, their origin and potential hosts. Mycosphere 4: 61-95., 2018Sulzbacher MA, Grebenc T, Bevilacqua CB, Steffen RB, Cohelo G, Silveira AO, Jacques RJS & Antonilli ZI (2018) Co-invasion of ectomycorrhizal fungi in the Brazilian Pampa biome. Applied Soil Ecology 130: 194-201.; Silva-Filho et al. 2020Silva-Filho AGS, Sulzbacher MA, Grebnec T & Wartchow F (2020) Not every edible orange milkcap is Lactarius deliciosus: first record of Lactarius quieticolor (sect. Deliciosi) from Brazil. Journal of Applied Botany and Food Quality 93: 289-299.), and center of Argentina (Urcelay et al. 2017Urcelay C, Longo S, Geml J, Tecco P & Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal ecology 25: 50-58.), Pinus radiata D. Don. (Barroetaveña & Rajchenberg 2003Barroetaveña C & Rajchenberg M (2003) Las micorrizas y la producción de plántulas de Pinus ponderosa Dougl. et Laws. en la Patagonia Argentina. Bosque 24: 17-33. ), and Pinaceae (Hayward et al. 2015Hayward J, Horton TR & Nuñez MA (2015) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208: 497-506.) in southern Argentina, did not record Russula species.

In South America there is a mixture of forest species of different biogeographic origins, with their respective associated ectomycorrhizal fungi, which favors the conditions for hosts switch (Silva-Filho et al. 2020Silva-Filho AGS, Sulzbacher MA, Grebnec T & Wartchow F (2020) Not every edible orange milkcap is Lactarius deliciosus: first record of Lactarius quieticolor (sect. Deliciosi) from Brazil. Journal of Applied Botany and Food Quality 93: 289-299.). Thus, it is probable that most non-native ectomycorrhizal fungi have been introduced together with the seeds or seedlings of exotic Pinus species, coming from North America and Europe with ornamental or industrial purposes (Sulzbacher et al. 2013Sulzbacher MA, Grebenc T, Jacques RJS & Antoniolli ZI (2013) Ectomycorrhizal fungi from southern Brazil - a literature-based review, their origin and potential hosts. Mycosphere 4: 61-95.; Silva-Filho et al. 2020Silva-Filho AGS, Sulzbacher MA, Grebnec T & Wartchow F (2020) Not every edible orange milkcap is Lactarius deliciosus: first record of Lactarius quieticolor (sect. Deliciosi) from Brazil. Journal of Applied Botany and Food Quality 93: 289-299.). Specimens of R. recondita studied here, in spite of being related to the European lineage of this species, were found associated with symbionts originating from southeastern North America such as P. taeda and P. elliottii. This was also previously found in Lactarius quieticolor Romagn., which was originally described associated to the European P. sylvestris L. and in South America found growing under P. taeda in Brazil and P. radiata in Chile, both species of North American flora (Silva-Filho et al. 2020Silva-Filho AGS, Sulzbacher MA, Grebnec T & Wartchow F (2020) Not every edible orange milkcap is Lactarius deliciosus: first record of Lactarius quieticolor (sect. Deliciosi) from Brazil. Journal of Applied Botany and Food Quality 93: 289-299.).

The presence of ectomycorrhizal fungi is a fundamental requirement for the normal growth of pine species (Barroetaveña & Rajchenberg 2003Barroetaveña C & Rajchenberg M (2003) Las micorrizas y la producción de plántulas de Pinus ponderosa Dougl. et Laws. en la Patagonia Argentina. Bosque 24: 17-33. ), therefore knowledge about its distribution and ecology is important for the species selection for use in forest nurseries (Castellano & Molina 1989Castellano MA & Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE & Barnett JP (eds.) The container tree nursery manual, Vol 5. Agriculture Handbook 674. U.S. Department of Agriculture, Forest Service, Washington DC. Pp. 101-167.; Giachini et al. 2000Giachini A, Oliveira V, Castellano M & Trappe J (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92: 1166-1177.), or to establish control mechanisms on introduced species that may have effects as invasive (Hayward et al. 2015Hayward J, Horton TR & Nuñez MA (2015) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208: 497-506.; Urcelay et al. 2017Urcelay C, Longo S, Geml J, Tecco P & Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal ecology 25: 50-58.).

The presence of R. recondita, R. sardonia, and R. sororia represents the first records for the subtropical region of South America, allowing us to have a more complete knowledge about the diversity of ectomycorrhizal fungi associated with pine forest plantations.

References

  • Adamčík S, Carteret X & Buyck B (2013) Type studies on some Russula species described by C.H. Peck. Cryptogamie, Mycologie 34: 367-391.
  • Adamčík S, Looney B, Caboň M, Jančovičová S, Adamčíková K, Avis PG, Barajas M, Bhatt RP, Corrales A, Das K, Hampe F, Ghosh A, Gates G, Kälviäinen V, Khalid AN, Kiran M, De Lange R, Lee H, Lim YW, Kong A, Manz C, Ovrebo CL, Saba M, Taipale T, Verbeken A, Wisitrassameewong K & Buyck B (2019) The quest for a globally comprehensible Russula language. Fungal Diversity 99: 369-449.
  • Avis PG (2012) Ectomycorrhizal iconoclasts: The ITS rDNA diversity and nitrophilictendencies of foetid Russula Mycologia 104: 998-1007
  • Barroetaveña C & Rajchenberg M (2003) Las micorrizas y la producción de plántulas de Pinus ponderosa Dougl. et Laws. en la Patagonia Argentina. Bosque 24: 17-33.
  • Barroetaveña C, Bassani VN & Rajchenberg M (2012) Inoculación micorrícica de Pinus ponderosa en la Patagonia Argentina: colonización de las raíces, descripción de morfotipos y crecimiento de plántulas en vivero. Bosque 33: 163-169.
  • Barroetaveña C, Cazares E & Rajchenberg M (2007) Ectomycorrhizal fungal species associated with Ponderosa pine and Douglas fir: a comparison of species richness in native forests and Patagonian plantations. Mycorrhiza 17: 355-373.
  • Bills GF, Holtzman GI & Miller OK (1986) Comparison of ectomycorrhizal–Basidiomycetes communities in red spruce versus northern forest of West Virginia. Canadian Journal of Botany 64: 760-768.
  • Buyck B, Zoller S & Hofstetter V (2018) Walking the thin line… ten years later: the dilemma of above versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Diversity 89: 267-292.
  • Campi M, Mancuello C, Maubet Y & Niveiro N (2017) Laccaria fraterna (Agaricales, Basidiomycota) associated to Eucalyptus sp. implanted forest in northern Argentina and Paraguay. Checklist 13: 87-90.
  • Castellano MA & Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE & Barnett JP (eds.) The container tree nursery manual, Vol 5. Agriculture Handbook 674. U.S. Department of Agriculture, Forest Service, Washington DC. Pp. 101-167.
  • Chou WN & Wang YZ (2005) Nine species of Russula (Basidiomycotina) new to Taiwan. Taiwania 50: 93-100.
  • Darriba D, Taboada GL, Doallo R & Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
  • Diez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with Eucalypt plantations into the Iberian Peninsula. Biological Invasions 7: 3-15.
  • Eberhardt U (2002) Molecular kinship analyses of the agaricoid Russulaceae: correspondence with mycorrhizal anatomy and sporocarp features in the genus Russula Mycological Progress 1: 201-223.
  • Ferris R, Peace AJ & Newton AC (2000) Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten) plantations in England: relationships with site factors and stand structure. Forest Ecology and Management 131: 255-267.
  • Furci GM (2008) Hongos. In: Rovira F, Ugalde J & Stutzin M (eds). Biodiversidad de Chile, patrimonios y desafíos. Ocho Libros Editores, Santiago de Chile. Pp. 366-375.
  • Gamundi IJ & Horak E (1994) Hongos de los Bosques Andinopatagonicos. Vazquez Mazzini Editores, Buenos Aires. 140p.
  • Gardes M & Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes: Application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
  • Garrido N (1982) Russulaceae en plantaciones introducidas en Chile. Boletín de la Sociedad Argentina de Botánica 21: 7-16.
  • Gates GM, Ratkowsky DA & Grove SJ (2005) A comparison of macrofungi in young silvicultural regeneration and mature forest at the Warra LTER site in the southern forests of Tasmania. Tasmanian Forests 16: 127-152.
  • Giachini A, Oliveira V, Castellano M & Trappe J (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92: 1166-1177.
  • Giachini A, Souza L & Oliveira V (2004) Species richness and seasonal abundance of ectomycorrhizal fungi in plantations of Eucalyptus dunnii and Pinus taeda in southern Brazil. Mycorrhiza 14: 375-381.
  • Gómez-Hernández M, Williams-Linera G, Gevara R & Lodge DJ (2011) Patterns of macromycetes community assemblage along an elevation gradient: options for fungal gradient and metacomunity analyse. Biodiversity Conservation 21: 2247-2268.
  • Guindon S & Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696-704.
  • Halling RE & Mueller GM (2005) Common mushrooms of the Talamanca Mountains, Costa Rica. Memoirs of the New York Botanil Garden 90: 1-195.
  • Hayward J, Horton TR & Nuñez MA (2015) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208: 497-506.
  • He M-Q, Zhao R-L, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EH, Raspe O, Kakishima M, Sanchez-Ramirez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui B, Schoutteten N, Liu X, Li T, Yao Y, Zhu X, Liu A, Li G, Zhang M, Ling Z, Cao B, Antonín V, Boekhout T, Barbosa da Silva BD, De Crop E, Decock C, Dima B, Kumar Dutta A, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He S, Hodkinson BP, Hora E, Hoshino T, Justo A, Lim YW, Menolli Jr N, Mešić A, Moncalvo J, Mueller GM, Nagy L, Nilsson RH, Noordeloos ME, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalĉec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei T, Weiß M, Zhao C & Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105-367.
  • Index Fungorum – Authors of Fungal Names (2020) Available at <http://www.indexfungorum.org/names/AuthorsOfFungalNames.asp>. Access on 14 May 2020.
    » http://www.indexfungorum.org/names/AuthorsOfFungalNames.asp
  • Ivanova NV, Dewaard J & Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002.
  • Ivanova NV, Fazekas AJ & Hebert PDN (2008) Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Molecular Biology Reporter 26: 186-198.
  • Ivanova NV, Kuzmina M & Fazekas A (2016) CCDB Protocols. Glass Fiber Plate DNA Extraction Protocol for plants, fungi, echinoderms and mollusks, Manual protocol employing centrifugation. Available at <http://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.pdf>. Access on 14 May 2020.
    » http://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.pdf
  • Jabeen S, Razaq A, Niazi ARK, Ahmad I, Grebenc T & Khalid AN (2017) Russula ahmadii (Basidiomycota, Russulales), a new species in section Ingratae and its ectomycorrhiza from coniferous forests of Pakistan. Phytotaxa 321: 241-253.
  • Katoh K & Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P & Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
  • Kornerup A & Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen Publishers, London. 252p.
  • Kühner R & Romagnesi H (1953) Flore analytique des champignons supérieurs. Éd. Masson & Cie, Paris. 554p.
  • Largent DL & Baroni TJ (1988) How to identify mushrooms to genus VI: modern genera. Mad River Press, Eureka. 277p.
  • Lee H, Park MS, Jung PE, Eimes JA, Seok SJ & Lim YW (2017) Re-evaluation of the taxonomy and diversity of Russula section Foetentinae (Russulales, Basidiomycota) in Korea, Mycoscience 58(5): 351-360.
  • Li GJ, Zhao D, Li SF & Wen HA (2015) Russula chiui and R. pseudopectinatoides, two new species from southwestern China supported by morphological and molecular evidence. Mycological Progress 14: 1-14.
  • Maia LC, Carvalho Júnior AA, Cavalcanti LH, Gugliotta AM, Drechsler-Santos ER, Santiago ALMA, Cáceres MES, Gibertoni TB, Aptroot A, Giachini AJ, Soares AMS, Silva ACG, Magnago AC, Goto BT, Lira CRS, Montoya CAS, Pires-Zottarelli CLA, Silva DKA, Soares DJ, Rezende DHC, Luz EDMN, Gumboski EL, Wartchow F, Karstedt F, Freire FM, Coutinho FP, Melo GSN, Sotão HMP, Baseia IG, Pereira J, Oliveira JJS, Souza JF, Bezerra JL, Araujo Neta LS, Pfenning LH, Gusmão LFP, Neves MA, Capelari M, Jaeger MCW, Pulgarín MP, Menoli N, Medeiro OS, Friedrich RCS, Chikowski RS, Pires RM, Melo RF, Silveira RMB, Urrea-Valencia S, Cortez VG & Silva VF (2015) Diversity of Brazilian fungi. Rodriguésia 66: 1033-1045.
  • Melera S, Ostellari C, Roemes N, Avis PG, Tonolla M, Barja F & Narduzzi-Wicht B (2017) Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula preatervista Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycological Progress 16: 117-134.
  • Miller SL & Buyck B (2002) Molecular phylogeny of the genus Russula in Europe with a comparison of modern infrageneric classifications. Mycological Research 106: 259-276.
  • Miller MA, Pfeiffer W & Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: SC10 Workshop on Gateway Computing Environments (GCE10). New Orleans. Pp. 8.
  • Miller SL, Aime MC & Henkel TW (2012) Russulaceae of the Pakaraima mountains of Guyana 2. New species of Russula and Lactifluus Mycotaxon 121: 233-253.
  • Mir G, Melis JLL & Prats MC (2017) Aportación al Catálogo Micológico de las Illes Balears. Menorca, III. Micobotánica-Jaen 12: 1-23. Available at <http://www.micobotanicajaen.com/Revista/Articulos/JLMelis/MenorcaIII/APORTACION%20AL%20CATALOGO%20MICOLOGICO%20III%20v2r.pdf>. Access on 14 May 2020.
  • Moreno G, García JL & Zugaza A (1986) La guía de incafo de los hongos de la Península Ibérica. Tomo I-II. Incafo, Madrid. 1276p.
  • Morozova OV, Popov ES & Kovalenko AE (2013) Studies on mycobiota of Vietnam. II. Two new species of Lactifluus (Russulaceae) with pleurotoid basidiomata. Mikology and Phytopathology 47(2): 92-102.
  • Moser M (1978) Keys to agaric and boleti (Polyporales, Boletales, Agaricales, Russulales). The White Friars, Tombridge. 535p.
  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. Phytologia 169: 169-178.
  • Niveiro N, Popoff OF & Albertó EO (2009) Hongos comestibles silvestres: presencia de especies exóticas de Suillus (Boletales, Basidiomycota) y Lactarius (Russulales, Basidiomycota) asociadas a los cultivos de Pinus elliottii del nordeste Argentino. Bonplandia 18: 65-71.
  • O’Hanlon R & Harrington TJ (2012) Macrofungal diversity and ecology in four Irish forest types. Fungal Ecology 5: 499-508.
  • Packham JM, May TW, Brown MJ, Wardlaw TJ & Mills AK (2002) Macrofungal diversity and community ecology in mature and regrowth wet eucalypt forest in Tasmania: A multivariate study. Austral Ecology 27: 149-161.
  • Palmer JM, Lindner DL & Volk TJ (2008) Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza 19: 27-36.
  • Peck CH (1907) Report of the State Botanist, 1906. Bulletin of the New York State Museum 116: 1-117.
  • Rambaut A, Suchard MA, Xie D & Drummond AJ (2014) Tracer. V. 1.6. Available at <http://tree.bio.ed.ac.uk/software/tracer/>. Access on 14 May 2020.
    » http://tree.bio.ed.ac.uk/software/tracer/
  • Romagnesi H (1967) Les russules d’Europe et d’Afrique du Nord. Bordas, Paris. 1000p.
  • Romano GM, Greslebin AG & Lechner BE (2017) Hongos agaricoides de los bosques de Nothofagus pumilio (Chubut, Argentina): clave y listado de especies. Revista del Museo Argentino de Ciencias Naturales nueva serie 19: 39-69.
  • Ronquist F & Huelsenbeck JP (2003) MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
  • Sá MCA & Wartchow F (2016) Russula omnileuca, a new species of Russula from Pernambuco, Brazil. Sydowia 68: 63-68.
  • Sá MCA, Coimbra VRM & Wartchow F (2018) Discovery of Russula rubropunctatissima in Brazil. Current Research in Evironmental & Applied Mycology 8: 24-29.
  • Sarnari M (1998) Monografia illustrata del genere Russula in Europa. Vol I, Associazione Micologica Bresadola. Fondazione Centro Studi Micologici, Vicenza. 799p.
  • Schaeffer J (1952) Russula monographie. Klinkhardt, Bad Heilbrunn. 296p.
  • Schmit JP, Murphy JF & Mueller GM (1989) Macrofungal diversity of a temperate oak forest: a test of species richness estimators. Canadian Journal of Botany 77: 1014-1027.
  • Schneider CA, Rasband WS & Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nature Methods 9: 671-675.
  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA & Chen W & Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241-6246.
  • Shaffer RL (1972) North American Russulas of the subsection Foetentinae Mycologia 64: 1008-1053.
  • Silva-Filho AGS, Sulzbacher MA, Grebnec T & Wartchow F (2020) Not every edible orange milkcap is Lactarius deliciosus: first record of Lactarius quieticolor (sect. Deliciosi) from Brazil. Journal of Applied Botany and Food Quality 93: 289-299.
  • Singer R (1950) Les russules de l´Argentine. Revue de Mycologie (Paris) 15: 125-137.
  • Singer R (1986) The Agaricales in modern taxonomy. Koeltz, Koenigstein. 981p.
  • Singer R & Digilio APL (1951) Pródromo de la flora agaricina argentina. Lilloa 25: 5-461.
  • Singer R, Araujo I & Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially central Amazonia. Beihefte zur Nova Hedwigia 77: 9-352.
  • Stamatakis A (2014) RaxML Version 8: a tool phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
  • Sulzbacher MA, Grebenc T, Jacques RJS & Antoniolli ZI (2013) Ectomycorrhizal fungi from southern Brazil - a literature-based review, their origin and potential hosts. Mycosphere 4: 61-95.
  • Sulzbacher MA, Grebenc T, Bevilacqua CB, Steffen RB, Cohelo G, Silveira AO, Jacques RJS & Antonilli ZI (2018) Co-invasion of ectomycorrhizal fungi in the Brazilian Pampa biome. Applied Soil Ecology 130: 194-201.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.
  • Thiers B [continuously updated] (2020) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at <http://sweetgum.nybg.org/ih/>. Access on 14 May 2020.
    » http://sweetgum.nybg.org/ih/
  • Thiers HD (1997) The Agaricales (Gilled Fungi) of California. 9. Russulaceae. I. Russula Mad River Press, Eureka. 158p.
  • Urcelay C, Longo S, Geml J, Tecco P & Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal ecology 25: 50-58.
  • Valenzuela E, Moreno G, Garnica S & Ramirez C (1998) Microsociología en bosques nativos de Nothofagus y plantaciones de Pinus radiata en la X Región de Chile: diversidad y rol ecológico. Revista chilena de Historia Natural 71: 133-146.
  • Valenzuela E, Ramirez C, Moreno G, Polette M, Garniga S, Peredo H & Grinbergs J (1996) Agaricales más comunes recolectados en el Campus Isla Teja de la Universidad Austral de Chile. Bosque 17: 51-63.
  • Větrovský T, Kolařík M, Zifčáková L, Zelenka T, Baldrián P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resourses 16: 388-401.
  • Villeneuve N, Grandtner MM & Fortin JA (1989) Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Canadian Journal of Botany 67: 2626-2629.
  • Wang XH, Buyck B, Verbeken A & Hansen K (2015) Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China. Mycologia 107: 941-958.
  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev D, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, Souza FA, Oehl F, Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP & Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere, Journal of Fungal Biology 11: 1060-1456.
  • Wright JE & Albertó E (2002) Hongos. Guía de la Región Pampeana I. Hongos con laminillas. L.O.L.A. Buenos Aires. 279p.
  • Yao YG & Zhang YP (2002) Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. Journal of Human Genetics 6: 311-318.

Edited by

Area Editor: Dr. Anibal de Carvalho Junior

Publication Dates

  • Publication in this collection
    16 May 2022
  • Date of issue
    2022

History

  • Received
    22 Jan 2021
  • Accepted
    16 July 2021
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br