Acessibilidade / Reportar erro

Influence of environmental variables on the floristics and structure of natural regeneration in a Mixed Ombrophilous Forest remnant

Abstract

The present study explored the influence of edaphic variables and forest leaf cover on natural regeneration in a remnant of a Mixed Ombrophilous Forest (MOF) in southern Brazil. Principal component analysis (PCA) was used to elucidate the heterogeneity of edaphic and leaf cover variables among the sampling units, and the variables exhibiting the strongest correlations with the sampling units were selected. Subsequently, these variables were used to explain floristic patterns using canonical correspondence analysis (CCA). In PCA, the leaf area index explained only some variation in the data, and there was obvious heterogeneity in edaphic variables among the sample units. In the main canonical axis of the CCA, Miconia cubatanensis, Myrcia multiflora, Casearia decandra, and Myrsine coriacea showed greater correlation with variables associated with soil acidity. In contrast, Allophylus guaraniticus and Cupania vernalis showed a high correlation with variables related to bases. Overall, the analysis of soil physicochemical characteristics can allow for the more precise identification of indicator species for the restoration of remnant of MOF in southern Brazil.

Keywords:
araucaria forest; environmental analysis; physical-chemical attributes of the soil; phytosociology

Resumo

O objetivo do estudo foi compreender a influência das variáveis edáficas e da cobertura foliar florestal no desenvolvimento da regeneração natural em um remanescente de Floresta Ombrófila Mista (MOF) no Sul do Brasil. A análise de componentes principais (PCA) foi utilizada para identificar a heterogeneidade das variáveis edáficas e de cobertura foliar entre as unidades amostrais, a partir da qual foram selecionadas as variáveis com maior correlação com as unidades amostrais. Posteriormente, essas variáveis foram utilizadas para explicar os padrões florísticos por meio da análise de correspondência canônica (CCA). A PCA mostrou que o índice de área foliar explica apenas parte da variação dos dados e que as variáveis de solo estudadas não são homogêneas entre as unidades amostrais. No eixo canônico principal da CCA, Miconia cubatanensis, Myrcia multiflora, Casearia decandra e Myrsine coriacea apresentaram maior correlação com variáveis associadas à acidez do solo. Em contraste, Allophylus guaraniticus e Cupania vernalis apresentaram alta correlação com variáveis relacionadas às bases. A análise das características físico-químicas do solo pode permitir a identificação mais precisa de espécies indicadoras para a restauração de remanescentes de MOF no Sul do Brasil.

Palavras-chave:
floresta de araucária; análise ambiental; atributos físico-químicos do solo; fitossociologia

Introduction

In forest areas, diverse environmental conditions related to soil characteristics and canopy opening, among others, shape the mosaics of species associations, which further vary according to the microenvironment. Under specific conditions, species with varying edaphic and luminous demands coexist, thus increasing the local diversity ( Teixeira & Assis 2009Teixeira AP & Assis MA (2009) Relação entre heterogeneidade ambiental e distribuição de espécies em uma floresta paludosa no município de Cristais Paulista, SP, Brasil. Acta Botanica Brasilica 23: 843-853.). The species geographic distributions in their natural habitats reflect complex interactions between several ecological factors, both biotic and abiotic, and both deterministic and stochastic ( Aguiar et al. 2021 Aguiar JT, Higuchi P Silva AC (2021) Climatic niche determina a distribuição geográfica de espécies myrtaceae na floresta atlântica subtropical brasileira. Revista Árvore 45: e4501.). Environmental filtering, where the environment selects against certain species, is thought to be a major mechanism structuring communities ( Cadotte & Tucker 2017Cadotte MC & Tucker CM (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution 32: 429-437.).

Among the forest typologies occurring in the Atlantic Forest domain, the Mixed Ombrophilous Forest (MOF) is notable due to unique biological attributes including rare and endemic species ( Oliveira-Filho et al. 2015 Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV & Neves DRM (2015) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. Journal of Plant Ecology 8: 242-260.). In this forest, the gymnosperms Araucaria angustifolia (Bertol.) Kuntze and Podocarpus lambertii Klotzsch ex Endl. coexist with angiosperms of the genera Drimys, Ocotea, and Nectandra, among others ( Silva et al. 2017 Silva JO, Silva AC, Higuchi P, Mafra AL, Gonçalves DA, Buzzi Júnior F, Dalla Rosa A, Cruz AP & Ferreira TS (2017) Floristic composition and phytogeography contextualization of the natural regeneration of an alluvial forest located in the “Planalto Sul Catarinense” Region, SC, Brazil. Revista Árvore 41: e410203.). However, natural vegetation has been replaced by areas with alternative land uses, such as urbanization and agricultural and silviculture activities. Therefore, these forests have become one of the most threatened forest types in Brazil ( Negrini et al. 2014 Negrini M, Higuchi P, Silva AC, Spiazzi FR, Buzzi Junior F & Vefago MB (2014) Heterogeneidade florístico-estrutural do componente arbóreo em um sistema de fragmentos florestais no Planalto Sul Catarinense. Revista Árvore 38: 779-786.). In the state of Santa Catarina accelerated exploitation has transformed large areas of native vegetation into sparse and greatly altered remnants, leaving only 34% of the original coverage ( Vibrans et al. 2021 Vibrans AC, Nicoletti AL, Liesenberg V, Refosco JC, Kohler LAP, Bizon A, Dal Bosco F, Lingner DV, Bueno M, Silva MS & Pessatti TB (2021) Monitora SC: um novo mapa de cobertura florestal e uso da terra de Santa Catarina. Agropecuária Catarinense 34: 42-48.).

The MOF covers diverse environments with different geological, geomorphological, pedological, and climatic conditions, in which different types of soil can be found, ranging from shallow to deep and from dystrophic to eutrophic in relation to nutrient availability ( Kersten et al. 2015 Kersten RA, Borgo M & Galvão F (2015) Floresta Ombrófila Mista: aspectos fitogeográficos, ecológicos e métodos de estudo. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA & Meira Neto JAA (eds.) Fitossociologia no Brasil: métodos e estudos de casos, Vol. 2. Ed. UFV, Viçosa. Pp. 156-182.). Considering the environmental heterogeneity of this phytoecological region, mainly associated with the climate and other environmental factors, and history of anthropogenic disturbances, it is expected that different forest fragments present great floristic variations ( Higuchi et al. 2012a Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM & Santos KF (2012a) Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Brazilian Journal of Botany 35: 145-157.). In a previous study on the natural regeneration of a MOF at the same site as the present study, Ruggiero et al. ( 2021Ruggiero AR, Schorn LA, Santos KF & Fenilli TAB (2021) Dynamics of natural regeneration after disturbance in a remnant of Mixed Ombrophilous Forest in southern Brazil. Revista Ambiente e Água 16: e2679.) found that approximately half of the species (51.67%) were found in only 5% of the sample units, demonstrating great species diversity in the regenerated MOF. The environmental heterogeneity associated with geographic location drives the diversity of forests, including the elements of different forest types ( Teixeira & Assis 2009Teixeira AP & Assis MA (2009) Relação entre heterogeneidade ambiental e distribuição de espécies em uma floresta paludosa no município de Cristais Paulista, SP, Brasil. Acta Botanica Brasilica 23: 843-853.).

Because of the great environmental and social importance of the MOF, the conservation and restoration of its remnants are essential ( Higuchi et al. 2012a Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM & Santos KF (2012a) Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Brazilian Journal of Botany 35: 145-157.). For that it is necessary greater knowledge regarding the influence of environmental variables on the floristic and structural patterns of these forests ( Higuchi et al. 2012b Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.; Marcon et al. 2014 Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.; Negrini et al. 2014 Negrini M, Higuchi P, Silva AC, Spiazzi FR, Buzzi Junior F & Vefago MB (2014) Heterogeneidade florístico-estrutural do componente arbóreo em um sistema de fragmentos florestais no Planalto Sul Catarinense. Revista Árvore 38: 779-786.). Such studies are important because they provide information on the microsites of occurrence of tree species, which can facilitate the indication of species for restoration ( Higuchi et al. 2012b Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.). The presence of indicator species in specific environmental conditions may show that the maintenance of certain environmental conditions is essential for the conservation of biodiversity at the regional level. In addition, identifying species associated with different microenvironment allows the appropriate choice of taxa to be used in forest restoration programs, thus avoiding possible problems, such as the high mortality of seedlings or non-adapted seeds ( Silva et al. 2017 Silva JO, Silva AC, Higuchi P, Mafra AL, Gonçalves DA, Buzzi Júnior F, Dalla Rosa A, Cruz AP & Ferreira TS (2017) Floristic composition and phytogeography contextualization of the natural regeneration of an alluvial forest located in the “Planalto Sul Catarinense” Region, SC, Brazil. Revista Árvore 41: e410203.).

of environmental variables on the composition and floristic structure of vegetation, researches that propose an analysis of the influence of these variables on natural regeneration are relevant for understanding the spatial structure of communities. However, studies that evaluate the natural regeneration of MOF remnants with a focus on this aspect are still scarce in southern Brazil. To this end, the present study aimed to answer the following questions related to the natural regeneration of a remnant of MOF: (a) Which edaphic variables contribute to explaining the floristic patterns of natural regeneration in the forest under study? (b) Does the forest leaf area index influence the composition of naturally regenerated forests? (c) Is it possible to determine the indicator species of natural regeneration associated with edaphic variables?

Material and Methods

Study area

This study was conducted in a forest remnant of the Private Reserve of Natural Heritage (PRNH) “Emílio Einsfeld Filho in the municipalities of Campo Belo do Sul and Capão Alto, Santa Catarina (SC), Brazil. Sampling was conducted within a radius of up to 500 m from the coordinate point 28°02’55.00”S and 50°45’59.56”W. The remnant covers an area of 3,365 ha, with approximately 72% forest cover.

The PRNH is basically formed by the Mixed Ombrophilous Forest ( IBGE 2012IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 323p.) that covers part of the reserve comprising forest in late successional stages. Much of the vegetation in the study area has suffered anthropogenic action through selective logging in the past. However, these interventions have ceased decades ago ( Zeller 2010Zeller RH (2010) Plano de Manejo: Reserva Particular do Patrimônio Natural Emílio Einsfeld Filho, Santa Catarina. Florestal Gateados, Campo Belo do Sul. 48p.).

There are two dominant geomorphic units in the evaluated remnant forest: the Plateau of Campos Gerais and the Plateau Dissecado of the Iguaçu River/Uruguai River. The main soils identified at the remnant are the Neosols, the Cambisols and the Nitisols most present in the vicinity of the Pelotas and Canoas / Caveiras rivers ( EMBRAPA 2006EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2006) Sistema brasileiro de classificação de solos. EMBRAPA, Rio de Janeiro. 306p.). The climate of the region, according to the Köppen climate classification, is characterized as humid subtropical mesothermal (Cfb). The average annual temperature is approximately 15.6 °C and the average annual precipitation reaches 1,735 mm ( Alvares et al. 2013 Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 1-18.). The altitudinal gradient is between 650 to 900 m ( ICMBio 2008ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade (2008) Plano de Manejo Estação Ecológica Raso da Catarina. Ministério do Meio Ambiente, Brasília. 326p.).

Data collection

In 2016, 20 permanent circular sampling units were randomly set throughout the forest remnant of PRNH, with a 2.5 m radius, totaling a sampling area of 392.5 m² ( Fig. 1). In each of these units, soil samples were collected, and the physical- chemical attributes were determined according to the methodology recommended by EMBRAPA ( 1997EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo, 2. Embrapa Solos, Rio de Janeiro. 412p.). To determine the density of the soil, in each sampling unit, two soil samples with the structures preserved were collected in metallic volumetric rings. Chemical variables were measured from soil collected from six sampling locations at a depth of 0–20 cm. The six soil samples with non-preserved structure were homogenized, and a composite sample comprising a sampling unit was obtained. The following parameters were determined: pH in water and the content of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), organic matter (OM), the capacity to exchange cations at pH 7 (CTC), Al saturation (m), and base saturation (V).

Figure 1 –
Geographic location of the sample units in a remnant of the Mixed Ombrophilous Forest in Santa Catarina, Brazil.

Sampling of the regenerating community was conducted by surveying the number and height of the regenerating trees, by species, and by sample. All tree individuals with a minimum height of 0.50 m and circumference at breast height of less than 15 cm were measured.

The parameters used to estimate the structure of regeneration were density and frequency ( Mueller-Dombois & Ellenberg 1974Mueller-Dombois D & Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley & Sons, New York. 547p.; Souza & Soares 2013Souza AL & Soares CPB (2013) Florestas nativas. Estrutura, dinâmica e manejo. Editora UFV, Viçosa. 322p.) and the category of size and value of regeneration ( Finol 1971Finol UH (1971) Nuevos parametros a considerarse em el analisis estructural de las selvas virgines tropicales. Revista Forestal Venezolana 14: 29-42.; Souza & Soares 2013Souza AL & Soares CPB (2013) Florestas nativas. Estrutura, dinâmica e manejo. Editora UFV, Viçosa. 322p.). The absolute and relative values were calculated for each parameter. The parameter regeneration size category (SC) (absolute and relative) refers to the distribution of individuals in height classes. This parameter was calculated for each species which were divided into three size classes: class I (0.5–1.1 m); class II (1.1–3.0 m); and class III (> 3.0 m).

The category of absolute size by species is obtained by determining the phytosociological values (PV) for each class of natural regeneration, according to expression 1, 2 and 3. The phytosociological value represents the proportion of individuals observed in each size class in relation to the total number of individuals obtained in the sample ( Finol 1971Finol UH (1971) Nuevos parametros a considerarse em el analisis estructural de las selvas virgines tropicales. Revista Forestal Venezolana 14: 29-42.).

(1) P V i j = P V J . n i j ; P V j = ( N j N )
(2) S C i = j = 1 J n i j . ( N j N )

where: PV ij = phytosociological value of species i-th in the j-th size class: PV j = phytosociological value of the j-th size class; n ij = number of individuals of the species i-th in the j-th size class; N j = total number of individuals in the j-th size class; N = total number of naturally regenerating individuals in all size classes; SC i = absolute size class of the species i-th.

The category of relative size, by species, is obtained according to expression 3:

(3) R S C i = S C i i = 1 S S C i 100

where: RSC i = relative size class of regeneration of the species i; SC i = absolute size class of the species i.

The regeneration value (RV), in turn, expresses the importance of each species in the community and is obtained by adding the density, frequency, and regeneration size category in absolute and relative terms ( Souza & Soares 2013Souza AL & Soares CPB (2013) Florestas nativas. Estrutura, dinâmica e manejo. Editora UFV, Viçosa. 322p.).

Species identification

Identification at the genus and species level was carried out through expert consultation and specialized literature. The individuals were classified at family level according to the APG IV system ( APG IV 2016APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.). For the classification of species in regeneration guilds, the following classes were used: pioneer (Pi), climax demanding light (CL), and climax tolerant to shadow (CS) (classifications are based on those described by Oliveira-Filho 1994Oliveira-Filho A (1994) Estudos ecológicos da vegetação como subsídios para programas de revegetação com espécies nativas: uma proposta metodológica. Cerne 1: 64-72.).

Data analysis

Phytosociological calculations included all arboreal species in the area. For multivariate analysis, only species with more than 10 individuals were considered. First, the normality of the data was tested using the Shapiro-Wilk test, which demonstrated that the number of climax species demanding light and pioneers did not present a normal distribution.

Therefore, to obtain normality, the data for these groups were logarithmically transformed (base 10 log). Sample sufficiency was tested using the rarefaction method based on the number of individuals ( Gotelli & Colwell 2001Gotelli NJ & Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391.), with 95% confidence interval, calculated using the Biodiversity package in R.

In order to identify the environmental heterogeneity between the sampling units, a principal component analysis (PCA) was used, from which the environmental variables with the highest correlation with the sampling units were selected and eliminated redundant variables. Next, these variables were used to explain the floristic patterns through canonical correspondence analysis (CCA), which aimed to order the sampling units according to the environmental and floristic characteristics. The environmental variables were standardized using the “normalize” method from the Vegan library’s decostand function ( Oksanen et al. 2018 Oksanen JB, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, Solymos P, Stevens MHH & Wagner H (2017) Vegan: community ecology package. Available at < https://cran.r-project.org/web/packages/vegan/vegan.pdf> Access on 1 April 2020.
https://cran.r-project.org/web/packages/...
). The analyses were performed using the PAST® 2013 version 2.17c ( Hammer et al. 2001 Hammer O, Harper DAT & Ryan PD (2001) Past paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-99.) and R (version 3.5.0) ( R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Auckland. Available at < https://www.r-project.org/>. Access on 20 April 2020.
https://www.r-project.org/...
R Development Core Team 2008).

The significance of CCA and soil variables was examined using permutation tests, with a maximum number of 999 permutations, using the anova.cca function of the Vegan package (Oksanen et al. 2018). The Monte Carlo permutation test was performed to determine the level of significance of the main axis of canonical ordering ( Ter Braak & Prentice 1988Ter Braak CJF & Prentice IC (1988) A theory of gradient analysis. Advances Ecological Research 18: 271-317.).

Results and Discussion

Floristic structure

Overall, 11,185 ind ha-1 were found. The surveyed individuals belonged to 66 species, 39 genera, and 27 botanical families. Among these, seven species were not identified, two were identified only at the family level, and four at the genus level. The unidentified species showed values below 1% in relation to the relative natural regeneration (RNR%) in the community. The number of individuals, species, genera, and families present in the Mixed Ombrophilous Forest (MOF) can be quite variable, which may be due to different environmental conditions, succession stages, and other factors ( Figueiredo-Filho et al. 2010 Figueiredo-Filho A, Dias NA, Stepka TF & Sawczuk AR (2010) Crescimento, mortalidade, ingresso e distribuição diamétrica em floresta ombrófila mista. Floresta 40: 763-776.).

Through the rarefaction curve it was possible to observe that the minimum number of individuals estimated was 64 (± 2.38), with a richness of 14 species. And the maximum number of individuals estimated was 1,281 (± 0.92), with a richness of 59 species ( Fig. 2). This result indicates that sampling included a large part of the species in the area.

The number of species belonging to the Myrtaceae family was the highest; however, the density of individuals in the family was the second- highest. The Sapindaceae family had the highest number of individuals per hectare owing to the presence of Allophylus guaraniticus and Matayba elaeagnoides, both of which are representative at density and on relative natural regeneration of forest community.

Figure 2 –
Rarefaction curve estimating the expected richness according to the number of individuals of a remnant of the Mixed Ombrophilous Forest. Middle line = represents the average values of richness; vertical lines = standard deviation.

The species Allophylus guaraniticus (9.9%), Myrcia multiflora (9.9%), Casearia decandra (9.4%), Myrsine coriacea (8.1%) and Matayba elaeagnoides (5.5%), were found to have the highest density and relative natural regeneration values ( Tab. 1). Together, they accounted for 47% of the total density and 42% of the relative natural regeneration. The other species showed low density, being present in less than 40% of the sample units and having less than 4% representativeness in natural regeneration. Our results corroborates with other study that found in the lower strata of MOF many representatives of the Myrtaceae family, with emphasis on the genera Myrcia and Eugenia, along with Salicaceae ( Casearia and Xylosma), Sapindaceae ( Allophylus and Cupania), Rutaceae, Symplocaceae, and Aquifoliaceae ( e.g. Roderjan et al. 2002 Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência & Ambiente 13: 75-92.).

Allophylus guaraniticus, most important species found in the community, has also been observed in other studies conducted in the MOF. It was considered as one of the species with the greatest potential for regeneration in the studied community by Callegaro et al. ( 2015Callegaro MR, Longhi SJ, Andrzejewski C & Araujo MM (2015) Regeneração natural de espécies arbóreas em diferentes comunidades de um remanescente de floresta ombrófila mista. Ciência Rural 45: 1795-1801.). The species M. multiflora was considered the second most important in the community. This results corroborates with the study of Dorneles & Warcheter ( 2004Dorneles PPL & Waechter LJ (2004) Fitossociologia do componente arbóreo na floresta turfosa do Parque Nacional da Lagoa do Peixe, Rio Grande do Sul, Brasil. Acta Botânica Brasilica 18: 815-824.). The species was characterized by Kunz et al. ( 2008Kunz SH, Ivanauskas NM, Martins SV, Silva E & Stefanello D (2008) Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT. Acta Amazonica 38: 245-254.) as a typical understory species, whereas Seger et al. ( 2005Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencour SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de floresta ombrófila mista localizado no município de Pinhais, PR. Floresta 35: 291-302.) described M. multiflora as an intermediate or sub-canopy species.

Table 1 –
Stylosanthes species occurring in Northeast Brazil.

Araucaria angustifolia, despite dominating the studied forest typology, was the 15th most important species in relation to the others. The low participation of A. angustifolia in the regenerative stratum has been reported by authors who studied MOF ( e.g., Lingner et al. 2007 Lingner DV, Oliveira YMM, Rosot NC & Dlugosz FL (2007) Caracterização da estrutura e da dinâmica de um remanescente de Floresta Ombrófila no Planalto Catarinense. Pesquisa Florestal Brasileira 55: 55-66.; Higuchi et al. 2015 Higuchi P, Silva AC, Buzzi Junior F, Negrini M, Ferreira TS, Souza ST, Santos KF & Vefago MB (2015) Fatores determinantes da regeneração natural em um fragmento de floresta com araucária no Planalto Catarinense. Scientia Forestalis 43: 251-259.). Araucaria was one of the most important species in the occupying forest canopy in a study by Higuchi et al. (2007); however, it was absent in the lower stratum. This condition indicates that this species has low regenerative potential in the understory of such forests ( Higuchi et al. 2015 Higuchi P, Silva AC, Buzzi Junior F, Negrini M, Ferreira TS, Souza ST, Santos KF & Vefago MB (2015) Fatores determinantes da regeneração natural em um fragmento de floresta com araucária no Planalto Catarinense. Scientia Forestalis 43: 251-259.). Araucaria spp. require particular soil conditions ( Longhi et al. 2010 Longhi SJ, Brena DA, Ribeiro SB, Gracioli CR, Longhi RV & Mastella T (2010) Fatores ecológicos determinantes na ocorrência de Araucaria angustifolia e Podocarpus lambertii, na Floresta Ombrófila Mista da FLONA de São Francisco de Paula, RS, Brasil. Ciência Rural 40: 57-63.). The species has a limited number of regenerating individuals in the understory of the MOF; this limitation is even more extreme at high altitudes (> 1,500 m) ( Dalla Rosa et al. 2016 Dalla Rosa A, Silva AC, Higuchi P, Marcon AK, Missio FF, Bento MA, Silva JO, Gonçalves DA & Rodrigues Júnior LC (2016) Natural regeneration of tree species in a cloud forest in Santa Catarina, Brazil. Revista Árvore 40: 1073-1082.).

Environmental variables

In the present study, the LAI varied from 1.05 to 5.17 m² m-², with an average of 3.08 m² m-² ( Tab. 2). The percentage of clay in the soil varied from 22% to 54%, which, according to the Comissão de Química e Fertilidade do Solo ( 2004Comissão de Química e Fertilidade do Solo (2004) Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. Sociedade Brasileira de Ciência do Solo, Porto Algre. 400p.) indicates that the soil of the studied remnant have a medium to clayey texture. The values of soil density ranged from 0.28 to 1.00 g cm-3. These results are less than those considered critical for clayey soils (1.4 to 1.6 g cm-3) ( Reichert et al. 2003 Reichert JM, Reinert DJ & Braida JA (2003) Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ciência & Ambiente 27: 29-48.). In the study area, saturation by basis (V) indicated that the soil had low nutrient availability (31.13%), being classified as dystrophic soil, according to EMBRAPA ( 2018EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2018) Sistema brasileiro de classificação de solos. EMBRAPA, Brasília. 356p.). A low percentage of V indicates that the quantities of cations are reduced. In these situations, the soil is likely to be acidic and contain aluminum at levels that are toxic to most plants ( Sobral et al. 2015 Sobral LF, Barretto MCV, Silva AJ & Anjos JL (2015) Guia prático para interpretação de resultados de análises de solo. EMBRAPA, Aracaju. 13p.). The saturation by aluminum (m) was 37.40%, which was higher than the limit tolerated by plants (20.10%) ( Osaki 1991Osaki F (1991) Calagem e adubação. Instituto Brasileiro de Ensino Agrícola, Campinas. 503p.). The pH in H2O (4.37) was also characteristic of soils with high acidity, according to Sobral et al. ( 2015Sobral LF, Barretto MCV, Silva AJ & Anjos JL (2015) Guia prático para interpretação de resultados de análises de solo. EMBRAPA, Aracaju. 13p.).

The results of the PCA showed that the first two axes explained 68.8% of the total data variation (axis 1 = 47.6%; axis 2 = 17%) ( Fig. 3). The leaf area index (LAI) had a weak correlation with the PCA axes, suggesting that, in fact, they explain the variation in the data only to a small extent. The correlations were not statistically significant (p < 0.05).

Through PCA, we found that the values of the soil variables did not occur homogeneously in the sample units. The vectors related to soil acidity point to the right side of the quadrant. The vectors belonging to the basic variables point to the left side. Thus, the sampling units can be broken down into two groups: sampling units where the soils are less acidic and more fertile represented by the left side of the ordering diagram and sampling units in which the soils are more acidic, with a higher aluminum content (Al), occurring on the right side of the diagram.

Table 2 –
Average values of leaf area index and soil physical-chemical attributes in a Mixed Ombrophilous Forest remnant in Santa Catarina, Brazil.

However, most of the sample units were located on the right side of the quadrant. The variables that indicate higher acidity content in the soil had a strong positive correlation with axis 1 together with the ecological group of pioneer (Pi), climax tolerant to shadow (CS), and regeneration density (Dreg) and were negatively correlated with variables associated with saturation by basis (V), pH, leaf area index (LAI), and climax demanding of light (CL). In axis 2, the main components of variation were related to the variables phosphorus (P), organic matter (OM) and cation exchange capacity (CEC). In this axis, LAI and CS are positively and negatively correlated to Dreg, CL, P, and clay. These variables explain most of the data variation and determine the environmental patterns found in the sample units.

In the CCA, the results show that 43% (0.3273) of the total inertia (0.7528) are explained by the axes of the CCA, where axis one explains 20.7% (0.1561) and axis two 11.4% (0.08384) ( Fig. 4). Using the Monte Carlo permutation test, the model was statistically significant (0.019 p < 0.05) at the level of 5% probability, as well as the first ordering axis (0.023 p < 0.05). Among the soil variables, only OM (0.014 p < 0.05) and V (0.016 p < 0.05) explained the data variation significantly. The percentage not explained by the ordering axes can be related to other variables that were not analyzed or could be of a stochastic nature ( Balduíno 2001Balduíno APC (2001) Estrutura da vegetação lenhosa de cerrado stricto sensu e sua relação com o solo na estação florestal de experimentação de Paraopeba-MG. Dissertação de Mestrado. Universidade Federal de Viçosa, Viçosa. 81p.).

Pioneer species (Pi) and climax tolerant to shadow (CS) were organized in both ordering axes and correlated with variables related to soil acidity. In contrast, the climax demanding light (CL) were correlated with basic variables. It is important to note that the groupings formed by the species according to environmental conditions have arbitrary limits, i.e., even with subjectively established limits, the grouped species have different ecological requirements with greater overlap between them, in relation to the evaluated soil variables ( Meira-Neto et al. 2005 Meira-Neto AAJ, Martins RF & Souza AL (2005) Influência da cobertura e do solo na composição florística do sub-bosque em uma floresta estacional semidecidual em Viçosa, MG, Brasil. Acta Botanica Brasilica 19: 473-486.). The species have heterogeneous environmental adaptations in the context of recovery of degraded areas, resulting in the fact that, for each environmental situation, there is a set of species more suitable for use in recovery ( Higuchi et al. 2016 Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Berndt EJ, Souza Junior JO, Gois DT & Weiduschat F (2016) Florística e estrutura do componente arbóreo e relação com variáveis ambientais em um remanescente florestal em Campos Novos - SC. Ciência Florestal 26: 35-46.). Therefore, it is necessary to consider the variations of vegetation associated with the environment in the definition of conservation and recovery of degraded areas ( Higuchi et al. 2012b Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.; Marcon et al. 2014 Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.). vegetation associated with the environment in the definition of conservation and recovery of degraded areas ( Higuchi et al. 2012b Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.; Marcon et al. 2014 Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.).

Figure 3 –
Principal component analysis applied to environmental variable matrix and sample units in a Mixed Ombrophilous Forest remnant in Santa Catarina, Brazil. m = saturation by aluminum; CEC = pH7 cation exchange capacity; OM = organic matter; V = saturation by basis; pH = pH in H 2O; H+Al = potential acidity; Ca/K = calcium / potassium ratio; Ca = calcium; K = potassium; Al = aluminium; P = phosphorus; LAI = leaf area index; Dreg = regeneration density; Pi = pioneer; CL = climax demanding light; CS = climax tolerant to shadow.

The first axis of canonical ordering showed that the species that obtained the highest positive scores were M. cubatanensis (Mcub), D. frutescens (Dfru) e M. coriacea (Mcor) ( Fig. 4). In contrast, the highest negative scores were attributed to A. guaraniticus (Agua), Allophylus edulis (Aedu) and Cupania vernalis (Cver). The environmental variables, on the same axis, that obtained the highest positive scores were clay and m. The highest negative scores were attributed to pH and V. In the second axis of canonical ordering, the species with the highest positive scores were Allophylus edulis (Aedu) and C. decandra (Cdec), whereas the highest negative scores were M. cubatanensis (Mcub), D. frutescens (Dfru) and A. guaraniticus (Agua). For the soil variables, the highest positive scores were attributed to CEC, and m; and negative for V and pH. This demonstrates that species can behave differentiated in each environment, due to the different environmental variables and associations ( Marcon et al. 2014 Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.).

Figure 4 –
Canonical correspondence analysis, applied to the matrices of environmental variables and the most abundant regenerating species in a Mixed Ombrophilous Forest remnant in Santa Catarina, Brazil. m = saturation by aluminum; CEC = pH7 cation exchange capacity; OM = organic matter; V = saturation by basis; pH = pH in H 2O; Pi and ▲ = pioneer; CL and ● = climax demanding light; CS and = climax tolerant to shadow; Aedu = Allophylus edulis; Agua: Allophylus guaraniticus; Cdec: Casearia decandra; Cver: Cupania vernalis; Dfru: Dalbergia frutescens; Mela: Matayba elaeagnoides; Mcub: Miconia cubatanensis; Mmul: Myrcia multiflora; Mcor: Myrsine coriacea.

It was possible to identify some groups of species in the dispersion of the points generated by the orthogonal arrangement of the two main axes of canonical ordering. Group 1 comprised the species A. guaraniticus (Agua) and C. vernalis (Cver), which were associated with soils with medium to high values of V and pH, and low values of Al. Therefore, these species seems to be adapted to more fertile soils with low level of acidity. Similar results were found by Higuchi et al. ( 2012bHiguchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.), in which A. guaraniticus represented the group corresponding to the highest pH values (> 5.6), indicating that this species has a preference for less acids soils.

The second group comprised the species D. frutescens (Dfru), M. cubatanensis (Mcub), and M. coriacea (Mcor). These species are associated with plots whose soil characteristics include soils with medium to high levels of clay and Al, in addition to low levels of bases. So, the conditions of the physical environment, associated with the soil characteristics condition community organization ( Marcon et al. 2014 Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.). As a pioneer species ( Vibrans et al. 2013 Vibrans AC, McRoberts R, Lingner DV, Nicoletti AL & Moser P (2013) Extensão original e remanescentes da Floresta Ombrófila Mista em Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL & Lingner DV (eds.) Inventário florístico florestal de Santa Catarina: Floresta Ombrófila Mista. Edifurb, Blumenau. Pp. 191-222.), the presence of M. coriacea can be justified in units with moderate acidity and low soil fertility. This is a characteristic of r-strategist plants adapted to highly unstable environments ( Magnano et al. 2013 Magnano LFS, Martins SV, Venzke TS & Ivanauskas NM (2013) Os processos e estágios sucessionais da Mata Atlântica como referência para a restauração florestal. In: Martins SV (ed.) Restauração ecológica de ecossistemas degradados. Ed. UFV, Viçosa. Pp. 69-100.).

Matayba elaeagnoides (Mela), C. decandra (Cdec) and M. multiflora (Mmul) were found in the near the center of the ordering diagram, showing a low correlation with the soil variables, which may indicate that the main variation of this species may be associated with other environmental factors not addressed in this study. Casearia decandra (Cdec) has been described as a generalist species, owing to its easy adaptation to different habitats. This characteristic may be linked to their pioneering habit, as this ecological group comprises individuals with greater resistance to abiotic factors and less nutritional requirements ( Narvaes et al. 2008 Narvaes IS, Longhi SJ & Brena DA (2008) Florística e classificação da regeneração natural em Floresta Ombrófila Mista na Floresta Nacional de São Francisco de Paula, RS. Ciência Florestal 18: 233-245.). Likewise, the non-pioneer species M. elaeagnoides and M. multiflora showed similar associations with soil variables, suggesting that species responses to the tested variables are not limited to ecological groups.

Miconia cubatanensis (Mcub), Dalbergia frutescens (Dfru), and A. edulis (Aedu) occurred in both acidic soils and soils with low acidity, suggesting that these species can more easily adapt to the environment. However, the greatest correlation occurred with variables related to soil acidity. Therefore, we suggest that these species may be preferred for restoration of degraded areas in the MOF region, owing to apparently good adaptation to both soil environments.

Presumably, the functional characteristics of species explain the variability in the probability of establishment and growth in a given environment. In addition, different functional characteristics can vary within species, between populations, or even within the same population. Such interspecific variations may reflect the genetic diversity among individuals, which is typically conferred by phenotypic plasticity in response to variations in environmental factors ( Larson et al. 2015 Larson JE, Sheley RL, Hardegree SP, Doescher PS & James JJ (2015) Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. Journal of Applied Ecology 52: 199-209.; Jager et al. 2015 Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ & Laughlin DC (2015) Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology 103: 374-385.; Galetti 2021Galetti G (2021) Relação entre características funcionáis e desempenho de espécies arbóreas na restauração florestal: uma abordagem experimental. Tese de Doutorado. Universidade Federal de São Carlos, São Carlos. 83p.). Thus, the different responses of regenerating species to soil variables observed in the present study may also be related to the functional characteristics of species present in naturally regenerated MOFs. Additionally, the functional attributes of species may reflect their ecological strategies, resulting from the balance between the benefits of resource allocation (trade- offs) at the expense of energy ( Moreno 2019Moreno VS (2019) Ecologia funcional de florestas estacionais semideciduais em paisagens agrícolas da Mata Atlântica. Tese de Doutorado. Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba. 104p.; Mazon 2021Mazon JA (2021) Atributos e grupos funcionais de espécies arbóreas em áreas de Floresta Ombrófila Mista no Paraná. Tese de Doutorado. Universidade Estadual do Centro-Oeste do Paraná, Iratí. 201p.).

Our findings can be considered a preliminary reference for the association of plant community composition with pedological characteristics at a certain site. However, these results must be interpreted with caution and validated through additional complementary studies, given that the interactions of species with the environment go far beyond specific information ( Ferreira Junior et al. 2009 Ferreira Junior WG, Schaefer CEGR & Silva AF (2009) Uma visão pedogeomorfológica sobre as formações florestais da mata atlântica. In: Martins SV (ed.) Ecologia de florestas tropicais do Brasil. Ed. UFV, Viçosa. Pp. 109-142.). In addition to edaphic factors, other environmental variables, such as light and temperature as well as species autecology, are pivotal in shaping the spatial distribution of species within a community.

In the present study in a remnant Mixed Ombrophilous Forest (MOF), environmental heterogeneity explained part of the tree species composition during regeneration. Associations of regenerating species with two groups of soil variables were identified: (a) moderate-to-high values of V and low values of aluminum and (b) with moderate-to-high content of clay and aluminum.

Miconia cubatanensis, Dalbergia frutescens and Myrsine coriacea were strongly associated with variables related to soil acidity, while Allophylus guaraniticus and Cupania vernalis were highly associated with variables related to the presence of bases in the soil. Thus, these species can be considered the indicators of the respective soil characteristics in the study area. Overall, the analysis of soil physicochemical characteristics in areas to be restored can allow for the more precise identification of species in the MOFs of southern Brazil. In the present study, the leaf area index did not affect the floristic composition of the regenerating stratum.

To CAPES, for the scholarship granted to SNCG; The Florestal Gateados, for allowing to conduct research on their farm and for logistical support.

  • Aguiar JT, Higuchi P Silva AC (2021) Climatic niche determina a distribuição geográfica de espécies myrtaceae na floresta atlântica subtropical brasileira. Revista Árvore 45: e4501.
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 1-18.
  • APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
  • Balduíno APC (2001) Estrutura da vegetação lenhosa de cerrado stricto sensu e sua relação com o solo na estação florestal de experimentação de Paraopeba-MG. Dissertação de Mestrado. Universidade Federal de Viçosa, Viçosa. 81p.
  • Cadotte MC & Tucker CM (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution 32: 429-437.
  • Callegaro MR, Longhi SJ, Andrzejewski C & Araujo MM (2015) Regeneração natural de espécies arbóreas em diferentes comunidades de um remanescente de floresta ombrófila mista. Ciência Rural 45: 1795-1801.
  • Comissão de Química e Fertilidade do Solo (2004) Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. Sociedade Brasileira de Ciência do Solo, Porto Algre. 400p.
  • Dalla Rosa A, Silva AC, Higuchi P, Marcon AK, Missio FF, Bento MA, Silva JO, Gonçalves DA & Rodrigues Júnior LC (2016) Natural regeneration of tree species in a cloud forest in Santa Catarina, Brazil. Revista Árvore 40: 1073-1082.
  • Dorneles PPL & Waechter LJ (2004) Fitossociologia do componente arbóreo na floresta turfosa do Parque Nacional da Lagoa do Peixe, Rio Grande do Sul, Brasil. Acta Botânica Brasilica 18: 815-824.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo, 2. Embrapa Solos, Rio de Janeiro. 412p.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2006) Sistema brasileiro de classificação de solos. EMBRAPA, Rio de Janeiro. 306p.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2018) Sistema brasileiro de classificação de solos. EMBRAPA, Brasília. 356p.
  • Ferreira Junior WG, Schaefer CEGR & Silva AF (2009) Uma visão pedogeomorfológica sobre as formações florestais da mata atlântica. In: Martins SV (ed.) Ecologia de florestas tropicais do Brasil. Ed. UFV, Viçosa. Pp. 109-142.
  • Figueiredo-Filho A, Dias NA, Stepka TF & Sawczuk AR (2010) Crescimento, mortalidade, ingresso e distribuição diamétrica em floresta ombrófila mista. Floresta 40: 763-776.
  • Finol UH (1971) Nuevos parametros a considerarse em el analisis estructural de las selvas virgines tropicales. Revista Forestal Venezolana 14: 29-42.
  • Galetti G (2021) Relação entre características funcionáis e desempenho de espécies arbóreas na restauração florestal: uma abordagem experimental. Tese de Doutorado. Universidade Federal de São Carlos, São Carlos. 83p.
  • Gotelli NJ & Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391.
  • Hammer O, Harper DAT & Ryan PD (2001) Past paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-99.
  • Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM & Santos KF (2012a) Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Brazilian Journal of Botany 35: 145-157.
  • Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Linke C & Paulino PS (2012b) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22: 79-90.
  • Higuchi P, Silva AC, Buzzi Junior F, Negrini M, Ferreira TS, Souza ST, Santos KF & Vefago MB (2015) Fatores determinantes da regeneração natural em um fragmento de floresta com araucária no Planalto Catarinense. Scientia Forestalis 43: 251-259.
  • Higuchi P, Silva AC, Ferreira TF, Souza ST, Gomes JP, Silva KM, Santos KF, Berndt EJ, Souza Junior JO, Gois DT & Weiduschat F (2016) Florística e estrutura do componente arbóreo e relação com variáveis ambientais em um remanescente florestal em Campos Novos - SC. Ciência Florestal 26: 35-46.
  • IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 323p.
  • ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade (2008) Plano de Manejo Estação Ecológica Raso da Catarina. Ministério do Meio Ambiente, Brasília. 326p.
  • Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ & Laughlin DC (2015) Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology 103: 374-385.
  • Kersten RA, Borgo M & Galvão F (2015) Floresta Ombrófila Mista: aspectos fitogeográficos, ecológicos e métodos de estudo. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA & Meira Neto JAA (eds.) Fitossociologia no Brasil: métodos e estudos de casos, Vol. 2. Ed. UFV, Viçosa. Pp. 156-182.
  • Kunz SH, Ivanauskas NM, Martins SV, Silva E & Stefanello D (2008) Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT. Acta Amazonica 38: 245-254.
  • Larson JE, Sheley RL, Hardegree SP, Doescher PS & James JJ (2015) Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. Journal of Applied Ecology 52: 199-209.
  • LI-COR (2010) LAI-2200 Plant canopy analyzer: instruction manual. LI-COR Inc. Available at < http://www.licor.com/env/support/LAI-2200C/manuals>. Access on 30 May 2020.
    » http://www.licor.com/env/support/LAI-2200C/manuals
  • Lingner DV, Oliveira YMM, Rosot NC & Dlugosz FL (2007) Caracterização da estrutura e da dinâmica de um remanescente de Floresta Ombrófila no Planalto Catarinense. Pesquisa Florestal Brasileira 55: 55-66.
  • Longhi SJ, Brena DA, Ribeiro SB, Gracioli CR, Longhi RV & Mastella T (2010) Fatores ecológicos determinantes na ocorrência de Araucaria angustifolia e Podocarpus lambertii, na Floresta Ombrófila Mista da FLONA de São Francisco de Paula, RS, Brasil. Ciência Rural 40: 57-63.
  • Magnano LFS, Martins SV, Venzke TS & Ivanauskas NM (2013) Os processos e estágios sucessionais da Mata Atlântica como referência para a restauração florestal. In: Martins SV (ed.) Restauração ecológica de ecossistemas degradados. Ed. UFV, Viçosa. Pp. 69-100.
  • Marcon AK, Silva AC, Higuchi P, Ferreira TS, Missio FF, Salami B, Dalla Rosa A, Negrini M, Bento MA & Buzzi Júnior F (2014) Variação florístico-estrutural em resposta à heterogeneidade ambiental em uma floresta nebular em Urubici, Planalto Catarinense. Scientia Forestalis 42: 439-450.
  • Mazon JA (2021) Atributos e grupos funcionais de espécies arbóreas em áreas de Floresta Ombrófila Mista no Paraná. Tese de Doutorado. Universidade Estadual do Centro-Oeste do Paraná, Iratí. 201p.
  • Meira-Neto AAJ, Martins RF & Souza AL (2005) Influência da cobertura e do solo na composição florística do sub-bosque em uma floresta estacional semidecidual em Viçosa, MG, Brasil. Acta Botanica Brasilica 19: 473-486.
  • Moreno VS (2019) Ecologia funcional de florestas estacionais semideciduais em paisagens agrícolas da Mata Atlântica. Tese de Doutorado. Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba. 104p.
  • Mueller-Dombois D & Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley & Sons, New York. 547p.
  • Narvaes IS, Longhi SJ & Brena DA (2008) Florística e classificação da regeneração natural em Floresta Ombrófila Mista na Floresta Nacional de São Francisco de Paula, RS. Ciência Florestal 18: 233-245.
  • Negrini M, Higuchi P, Silva AC, Spiazzi FR, Buzzi Junior F & Vefago MB (2014) Heterogeneidade florístico-estrutural do componente arbóreo em um sistema de fragmentos florestais no Planalto Sul Catarinense. Revista Árvore 38: 779-786.
  • Oksanen JB, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, Solymos P, Stevens MHH & Wagner H (2017) Vegan: community ecology package. Available at < https://cran.r-project.org/web/packages/vegan/vegan.pdf> Access on 1 April 2020.
    » https://cran.r-project.org/web/packages/vegan/vegan.pdf
  • Oliveira-Filho A (1994) Estudos ecológicos da vegetação como subsídios para programas de revegetação com espécies nativas: uma proposta metodológica. Cerne 1: 64-72.
  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV & Neves DRM (2015) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. Journal of Plant Ecology 8: 242-260.
  • Osaki F (1991) Calagem e adubação. Instituto Brasileiro de Ensino Agrícola, Campinas. 503p.
  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Auckland. Available at < https://www.r-project.org/>. Access on 20 April 2020.
    » https://www.r-project.org/
  • Reichert JM, Reinert DJ & Braida JA (2003) Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ciência & Ambiente 27: 29-48.
  • Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência & Ambiente 13: 75-92.
  • Ruggiero AR, Schorn LA, Santos KF & Fenilli TAB (2021) Dynamics of natural regeneration after disturbance in a remnant of Mixed Ombrophilous Forest in southern Brazil. Revista Ambiente e Água 16: e2679.
  • Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencour SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de floresta ombrófila mista localizado no município de Pinhais, PR. Floresta 35: 291-302.
  • Silva JO, Silva AC, Higuchi P, Mafra AL, Gonçalves DA, Buzzi Júnior F, Dalla Rosa A, Cruz AP & Ferreira TS (2017) Floristic composition and phytogeography contextualization of the natural regeneration of an alluvial forest located in the “Planalto Sul Catarinense” Region, SC, Brazil. Revista Árvore 41: e410203.
  • Sobral LF, Barretto MCV, Silva AJ & Anjos JL (2015) Guia prático para interpretação de resultados de análises de solo. EMBRAPA, Aracaju. 13p.
  • Souza AL & Soares CPB (2013) Florestas nativas. Estrutura, dinâmica e manejo. Editora UFV, Viçosa. 322p.
  • Teixeira AP & Assis MA (2009) Relação entre heterogeneidade ambiental e distribuição de espécies em uma floresta paludosa no município de Cristais Paulista, SP, Brasil. Acta Botanica Brasilica 23: 843-853.
  • Ter Braak CJF & Prentice IC (1988) A theory of gradient analysis. Advances Ecological Research 18: 271-317.
  • Vibrans AC, McRoberts R, Lingner DV, Nicoletti AL & Moser P (2013) Extensão original e remanescentes da Floresta Ombrófila Mista em Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL & Lingner DV (eds.) Inventário florístico florestal de Santa Catarina: Floresta Ombrófila Mista. Edifurb, Blumenau. Pp. 191-222.
  • Vibrans AC, Nicoletti AL, Liesenberg V, Refosco JC, Kohler LAP, Bizon A, Dal Bosco F, Lingner DV, Bueno M, Silva MS & Pessatti TB (2021) Monitora SC: um novo mapa de cobertura florestal e uso da terra de Santa Catarina. Agropecuária Catarinense 34: 42-48.
  • Zeller RH (2010) Plano de Manejo: Reserva Particular do Patrimônio Natural Emílio Einsfeld Filho, Santa Catarina. Florestal Gateados, Campo Belo do Sul. 48p.
  • To CAPES, for the scholarship granted to SNCG; The Florestal Gateados, for allowing to conduct research on their farm and for logistical support.

Edited by

Area Editor:

Dr. Rafael Costa

Publication Dates

  • Publication in this collection
    04 Nov 2022
  • Date of issue
    2022

History

  • Received
    27 Jan 2021
  • Accepted
    15 Feb 2022
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br