Acessibilidade / Reportar erro

Indicator species and characterization of the woody and herbaceous layer in an Atlantic Forest ecotone area at the Paraná portion of Serra do Mar

Abstract

The study aimed to evaluate the degree of conservation, analyse the structural and floristic similarity of the woody and herbaceous layers of two ecotone forest communities and evaluate the indicator species of a Mixed Ombrophilous Forest (MOF) and Dense Ombrophilous Forest (DOF). We outlined 30 sampling units of 100 m2 in each area (West and East), where we measured three woody and one herbaceous layers. Each species was classified into ecological groups, phytogeographic distribution and conservation status. We selected other 13 studies performed on similar ecosystems to carry out cluster and indicator species analyses. We registered 213 species, arranged into 63 families. The richest families were Myrtaceae, Lauraceae and Fabaceae. In the woody layers Araucaria angustifolia, Allophylus edulis and Cupania vernalis highlighted in West area, while Casearia sylvestris, Cyathea phalerata and Ilex paraguariensis highlighted in East area. Ctenitis paranaensis predominates in herbaceous layer of both areas. Our cluster analysis has formed two groups (MOF; DOF), including both study areas in MOF group. The study areas are in a maturation process. Serra da Baitaca State Park presents high conservationist importance. We list indicator species of montane MOF and DOF forests in the Paraná State, which can be used for monitoring alterations in vegetation caused by environmental changes.

Key words:
conservation; Dense Ombrophilous Forest; indicator species; Mixed Ombrophilous Forest; phytosociology

Resumo

O estudo objetivou avaliar o grau de conservação, analisar a similaridade florística e estrutural dos estratos lenhosos e herbáceo de duas comunidades florestais em situação de ecótono e avaliar as espécies indicadoras de Floresta Ombrófila Mista (FOM) e Floresta Ombrófila Densa (FOD). Foram instaladas 30 parcelas de 100 m2 em cada área de estudo (Oeste e Leste) e mensurados três estratos lenhosos e um herbáceo. Cada espécie foi classificada conforme o grupo ecológico, ocorrência fitogeográfica e categoria de ameaça. Foram selecionados outros 13 estudos de ecossistemas similares, para a análise de agrupamento e espécies indicadoras. Foram registradas 213 espécies pertencentes a 63 famílias. As famílias mais ricas foram Myrtaceae, Lauraceae e Fabaceae. Destacaram-se nos estratos lenhosos da área Oeste Araucaria angustifolia, Allophylus edulis e Cupania vernalis. Na área Leste se destacaram Casearia sylvestris, Cyathea phalerata e Ilex paraguariensis. Ctenitis paranaenses destacou-se no estrato herbáceo de ambas as áreas. A análise de agrupamento formou dois grupos (FOM; FOD), incluindo as duas áreas de estudo no grupo FOM. As áreas de estudo estão em processo de amadurecimento e o Parque Estadual Serra da Baitaca apresenta elevada importância para conservação. Foram listadas espécies indicadoras para FOM e FOD montanas no Estado do Paraná, as quais podem ser utilizadas como parâmetros no monitoramento das alterações na vegetação frente às mudanças ambientais.

Palavras-chave:
conservação; Floresta Ombrófila Densa; espécies indicadoras; Floresta Ombrófila Mista; fitossociologia

Introduction

Ecotones are transition areas between ecological regions or distinct ecosystems, also called Ecological Stress Areas (Kark 2013Kark S (2013) Effects of ecotones on biodiversity. In: Levin SA (ed.) Encyclopedia of biodiversity: second edition. Elsevier, Cambridge. Pp. 142-148.). These are not simple boundaries but actually represent ecological systems with distinct environmental characteristics defined by spatial and temporal scales. Furthermore, they are further defined by the interaction between the ecosystems that form them, representing dynamic relationship zones between ecological communities (Kent et al. 1997Kent M, Gill WJ, Weaver RE & Armitage RP (1997) Landscape and plant community boundaries in biogeography. Progress in Physical Geography: Earth and Environment 21: 315-353.). Generally, they present elevated biodiversity and several rare species, being essential for the organismic flow (Smith et al. 2001Smith TB, Kark S, Schneider CJ, Wayne RK & Moritz C (2001) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends in Ecology and Evolution 16: 431.; Araújo 2002Araújo MB (2002) Biodiversity hotspots and zones of ecological transition. Conservation Biology 16: 1662-1663.; Yarrow & Marín 2007Yarrow MM & Marín VH (2007) Toward conceptual cohesiveness: a historical analysis of the theory and utility of ecological boundaries and transition zones. Ecosystems 10: 462-476.). Ecotones generally occur along an environmental gradient created by climatic, orographic, edaphic changes, or other environmental factors affecting the vegetation (Kark & Van Rensburg 2006Kark S & Van Rensburg BJ (2006) Ecotones: marginal or central areas of transition? Israel Journal of Ecology and Evolution 52: 29-53.; Kark 2012Kark S (2012) Ecotones and ecological gradients. In: Leemans R (ed.) Ecological systems: selected entries from the Encyclopedia of Sustainability Science and Technology. Springer Science & Business Media, Berlin. Pp. 174-160.).

The Serra do Mar Mountain Range, inserted in the Atlantic Forest biome (Ribeiro et al. 2009Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141-1153.), represents an abrupt transition between coastal plains and the First Parana Plateau, which elevates up to 1,000 m above the plateau’s mean elevation (Roderjan 1994Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.; Maack 2012Maack R (2012) Geografia física do estado do Paraná. Editora UEPG, Ponta Grossa. 526p.). The Serra da Baitaca Mountain Range, in the West-East direction, represents a transition zone between Mixed Ombrophilous Forest (MOF) of the first plateau and the formations under the Atlantic influence of the mountains and the coastal plain, Dense Ombrophilous Forest (DOF) (IBGE 2012IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 275p.).

The Atlantic Forest is a high priority biome for conservation, affected by anthropic pressures that affect the regeneration of secondary forests (Myers et al. 2000Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB & Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858.; Mantovani 2003Mantovani W (2003) A degradação dos biomas brasileiros. In: Ribeiro WC (ed.) Patrimônio ambiental brasileiro. Editora Universidade de São Paulo, São Paulo. Pp. 367- 439.; Viani et al. 2011Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira, MAP & Oliveira ACP (2011) Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, Sudoeste do Paraná. Biota Neotropica 11: 115-128.). In Paraná state, most of the Serra do Mar Mountain Range is in a situation of land use transition, to the east the matrix is forest while to the west the matrix is anthropic (agricultural and urban use) (Rezende et al. 2018Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA & Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16: 208-214.). After suffering an environmental disturbance, the secondary vegetation acquires an occupation dynamic by pioneer species, which get gradually replaced by non-pioneer species during the forest’s maturation (Chazdon 2012Chazdon R (2012) Regeneração de florestas tropicais. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 7: 195-218.; Oliva et al. 2018Oliva EV, Reissmann CB, Marques R, Bianchin JE, Dalmaso CA & Winagraski E (2018) Florística e estrutura de duas comunidades arbóreas secundárias com diferentes graus de distúrbio em processo de recuperação. Ciência Florestal 28: 1088-1103.).

Indicator species are organisms closely associated with specific environmental conditions (Caro 2010Caro T (2010) Conservation by Proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington. 400p.). They are used to define strategies for forest conservation and management (Lindenmayer 1999Lindenmayer DB (1999) Future directions for biodiversity conservation in managed forests: indicator species, impact studies and monitoring programs. Forest Ecology and Management 115: 277-287.) and to monitor the dynamics of communities and ecosystems in the face of environmental change (Siddig et al. 2016Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C & Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators 60: 223-230.). The Paraná state has a high environmental vulnerability to climate change, in this context the limits of coverage of phytophysiognomies should be regularly reviewed (Viana 2015Viana DB (2015) Vulnerabilidade de biomas às mudanças climáticas: o caso da Mata Atlântica no estado do Paraná. Doctoral thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 343p.).

Due to the importance of ecotone communities and the vulnerability of Atlantic Forest ecosystems at Paraná state, the present study aimed to: (1) analyse the conservation status and the structural and floristic composition of the woody and herbaceous layers of two secondary ecotone forest communities, in a transition zone between MOF and DOF with at least 60 years old, located on the west slope of Serra da Baitaca; (2) analyse the structural and floristic similarity between MOF and DOF at the study area; (3) list indicator species between montane MOF and DOF phytophysiognomies at Paraná state.

Material and Methods

Study area

This study was carried out at the northeastern portion of the Serra da Baitaca State Park (SBSP), in the municipality of Quatro Barras, state of Paraná (PR), Brazil. We selected two sites: 1) a West area (940 m a.s.l.) with a predominance of Araucaria angustifolia (Bertol.) Kuntze; and 2) a East area (940 m a.s.l.) without an expressive occurrence of A. angustifolia (Fig. 1). The sites are 0.8 km apart from each other.

Figure 1
Location of the study areas.

The region is located in a montane ecotone of Mixed Ombrophilous Forest (MOF) and Dense Ombrophilous Forest (DOF). The west portion of the region, the First Parana Plateau, is covered by MOF, while the DOF vegetation covers the Serra do Mar Mountain Range slopes in the eastern portion (IBGE 2012IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 275p.). This transition is due to the Serra da Baitaca Mountain Range localization and its topography in the east-west direction (Roderjan 1994Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.).

According to the Köppen climatic classification, the regional climate is classified as Cfb, humid subtropical, with an average annual temperature below 18 °C, a temperate summer, without a defined dry season and with the occurrence of frosts (Alvares et al. 2013). The geological formation is composed of Anhagava granite and the predominant soils are Cambisols (Roderjan 1994Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.).

Data collection

We installed three parallel sampling lines within forest communities, 40 meters apart from each other, each with ten 100 m2 (10 × 10 m) contiguous plots for each site (West and East), totalling 60 sampling units. We installed three subplots of 1 m2 in each sampling unit to evaluate the herbaceous and smaller woody vegetation, totalling 180 subplots.

To collect vegetation data, we surveyed the vegetation layers using different sample sizes and inclusion criteria. Square plots of 100 m2 were installed to measure trees, ferns and palms with diameter at breast height (DBH) greater than 15 cm, referred to as Woody layer 1 (WL1). Square plots of 25 m2 to measure trees, ferns, palms and shrubs with diameter less than 15 cm and height greater than 1 m, called Woody layer 2 (WL2). Three 1 m2 square plots in each sampling unit, to measure small-sized trees, ferns, palms and shrubs with height greater than 0.3 m and less than 1 m, referred to as Woody layer 3 (WL3). In the same 1 m2 plots we measure all terrestrial herbs, called Herbaceous layer (HL).

We identified the recorded species in all layers based on relevant literature and with the assistance of specialists in some groups. The taxonomic classification follows the Angiosperm Phylogeny Group (APG IV 2016APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.) and the Pteridophyte Phylogeny Group (PPG 2016PPG - The Pteridophyte Phylogeny Group (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.). Fertile material was collected, herborized, and deposited at the Escola de Florestas Curitiba Herbarium (EFC).

For the WL1 and WL2 we measured the Circumference at Breast Height (CBH) using a measuring tape. For the WL3 we measured the Total Height (TH). For the herbaceous layer we made a visual estimate of the species coverage rate adapted from the Braun-Blanquet (1964)Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. 3rd ed. Springer, Wien-New York. 865p. scale. This scale was used because it is commonly applied in phytosociological studies (Chmura & Salachna 2016Chmura D & Salachna A (2016) The errors in visual estimation of plants cover in the context of education of Phytosociology. Chemistry-Didactics-Ecology-Metrology 21: 75-82.), making the data comparison with other surveys easier.

The species were classified into ecological layers (Ephemerous Pioneers, Lasting Pioneers, Facultative, Non-Pioneers) based on their shade tolerance, seed size, dispersal syndrome, growth rate, and longevity. This approach followed Secco (2017)Secco RT (2017) Florística e ecologia de dois bancos de sementes em região de Floresta Ombrófila Mista no município de Campo do Tenente, PR. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 75p., who based himself on the works of Budowski (1965)Budowski G (1965) Distribution of tropical American rain forest species in the light of sucessional processes. Turrialba 15: 40-42., Whitmore (1990)Whitmore TC (1990) Tropical Rain Forest dynamics and its implications for management. In: Gomespompa A, Whitmore TC & Hadley M (eds.) Rain forest regeneration and management. UNESCO, Paris. Pp. 67-89., Finegan (1984)Finegan B (1984) Succession. Nature 312: 109-115. and Calegari et al. (2013)Calegari L, Martins SV & Campos LC (2013) Avaliação do banco de sementes do solo para fins de restauração florestal em Carandaí, MG. Revista Árvore 37: 871-880..Taxa not identified at the species level were not classified, except for the members of Myrtaceae, which, even if identified only at the genus level, could be classified as Non-Pioneers because they are known to occur in the dominanted strata of more conserved communities of Mixed Ombrophilous Forest (MOF) and Dense Ombrophilous Forest (DOF) (Roderjan et al. 2002Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência e Ambiente 24: 75-92.).

The species occurrence classification was based on the distribution of collections from the visited herbaria, and the data available in the Species Link database (CRIA 2021Centro de Referência e Informação Ambiental - CRIA (2021) Specieslink - simple search. Available at <http://www.splink.org.br/index>. Access on 10 May 2021.
http://www.splink.org.br/index...
). For the occurrence classification, we only considered collection records from Paraná, except for rare species, in which we took into account all records from Brazil. The species’ classification criteria were based on Reginato & Goldenberg (2007)Reginato M & Goldenberg R (2007) Análise florística, estrutural e fitogeográfica da vegetação em região de transição entre as Florestas Ombrófilas Mista e Densa Montana, Piraquara, Paraná, Brasil. Hoehnea 34: 349-364., considering both vegetation formations relevant for the present study (MOF and DOF). Therefore, species were classified as follows: 1) Preferential: with most records concentrated in one of the vegetation types (MOF or DOF); 2) Both: records are evenly distributed between both vegetation types; and 3) Undetermined: due to the small number of records, it is not possible to indicate its distribution pattern.

We highlight that some species classified as Preferential for either MOF and DOF are also widely distributed across the Semidecidual Seasonal Forest (SSF). However, in this study, these species were only accessed regarding MOF and DOF. The extinction-level of threatened species was determined according to Martinelli & Moraes (2013)Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Andrea Jakobsson, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p..

Data analysis

Data were entered into electronic spreadsheets and analyzed using the R statistical programming language (R Core Team 2021R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at <https://www.R-project.org/>. Access on 16 June 2022.
https://www.R-project.org/...
). Sample sufficiency was calculated using two distinct approaches, one based on structure and the other on richness. We calculated the density and dominance stratified sampling error for the structural sampling sufficiency, with the latter calculated only for WL1 and WL2. These values were calculated using the sampling.analysis function (Higuchi 2019Higuchi P (2019) sampling.analysis: função em linguagem de programação estatística R para análise do processo amostragem de levantamentos fitossociógicos em função do número de indivíduos e da área basal. Available at <https://github.com/higuchip/sampling.analysis>. Access on 16 June 2022.
https://github.com/higuchip/sampling.ana...
), allowing for a probability of 95% and an error of 20%. Alternatively, for richness sampling sufficiency, we calculated the interpolation and extrapolation curves using the iNEXT package (Hsieh et al. 2016Hsieh TC, Ma KH & Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456.), considering only taxa identified at the species level.

We calculated the phytosociological parameters using the fitoR function (Dalagnol et al. 2017Dalagnol R, Christo AG, Higuchi P & Rodrigues AV (2017) Função para cálculo dos descritores fitossociológicos e similaridade entre sítios. Available at <https://github.com/ricds/fitoR>. Access on 16 June 2022.
https://github.com/ricds/fitoR...
) for the WL1 and WL2. For the WL3, we calculated density, frequency, and importance values that considered only these two descriptors. For the HL, dominance was replaced by the coverage rate (Braun-Blanquet 1964Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. 3rd ed. Springer, Wien-New York. 865p.).

The floristic-structural dissimilarity was calculated considering previous studies for the region (Tab. 1; Fig. 2). We considered the absolute density for phytosociological studies at arboreal layers in montane patches of MOF, DOF or ecotone areas in the Paraná portion of the Serra do Mar Mountain Range and surroundings.

Table 1
Relationship between the selected studies to analyse their dissimilarity and indicator species. * Coordinates UTM (22S) Datum SIRGAS 2000.

Figure 2
Location of the selected studies used in the dissimilarity and indicator species.

We considered only the montane portions of the altitudinal gradient studies (Roderjan 1994Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.; Blum 2006Blum CT (2006) A Floresta Ombrófila Densa na Serra da Prata, Parque Nacional Saint-Hilaire/Lange, PR -Caracterização florística, fitossociológica e ambiental de um gradiente altitudinal. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 185p.). The studies that analyzed vegetation on different soil types (Schorn 1992Schorn LA (1992) Levantamento florístico e análise estrutural em três unidades edáficas em uma Floresta Ombrófila Densa Montana no estado do Paraná. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 144p.; Seger et al. 2005Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencourt SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de Floresta Ombrófila Mista localizado no município de Pinhais, Paraná-Brasil. Revista Floresta 35: 291-302.), we considered only communities growing on Cambisols. Finally, the only study that looked at vegetation classification in the region (Santos 2014Santos AAP (2014) Avaliação florística e estrutural de uma Floresta Ombrófila Mista Montana urbana. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 130p.), we excluded alluvial formations.

Taxonomic names have been updated for species listed in the selected phytosociological studies. Taxa not identified or identified only at the family and genus level were excluded from our analysis. Exotic species were also excluded.

We created an abundance matrix that considered the absolute density of each study. Based on this matrix, we created a dissimilarity matrix using the Bray & Curtis distance (1957)Bray RJ & Curtis JT (1957) An ordination of the upland forests communities of Southern Wisconsin. Ecological Monography 27: 325-349.. Using the dissimilarity matrix, we performed a cluster analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and created a dendrogram and a cophenetic matrix using the Vegan package (Oksanen et al. 2020Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E & Wagner H (2020) Vegan: community ecology package. R package version 2.5-7. Available at <https://CRAN.R-project.org/package=vegan>. Access on 16 June 2022.
https://CRAN.R-project.org/package=vegan...
).

Based on the cluster analysis, we performed the indicator species analysis. In this approach, the degree of specificity for a given habitat and the degree of fidelity or frequency of occurrence within the same habitat are determined for each species with their sum resulting in the IndVal value (Dufrene & Legendre 1997Dufrene M & Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.). The IndVal values were calculated according to Cáceres & Legendre (2009)Cáceres M & Legendre (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574., using the indicspecies package (Cáceres & Jansen 2016Cáceres M & Jansen F (2016) indicspecies: relationship between species and groups of sites. R package version 1.7.9. Available at <https://CRAN.R-project.org/package=indicspecies>. Access on 16 June 2022.
https://CRAN.R-project.org/package=indic...
). The statistical significance was randomly tested using the Monte Carlo method, considering 999 permutations and a significance value of 0.01.

Results

Structural sample sufficiency was reached for all layers. For WL1, the abundance and basal area sampling errors were 6.7% and 9.1%, respectively.

The WL2 layers showed 7.9% and 8.4% for abundance and basal area, respectively. For WL3 and EH, the abundance sampling errors were 8.2% and 16.4%, respectively.

When the number of sampled individuals was increased by 10%, the richness increased by less than 5% in most layers, with higher values only in the East WL3 and in the West herbaceous (5.5% and 6%, respectively). Even though these values were above the limit (Sanquetta et al. 2014Sanquetta CR, Watzlawick LF, Dalla Corte AP, Fernandes LAV & Siqueira JDP (2014) Inventários florestais: planejamento e execução. 3ª ed. Multi-Graphic Gráfica e Editora, Curitiba. 406p.), they were regarded as enough sufficiency of richness sampling.

A total of 213 taxa were recorded in the four layers, of which199 were identified to the species level, distributed among 63 families and 114 genera (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.21948215.v1>). A total of 152 species were measured in the WL1 layer, 147 in WL2, 66 in WL3 and 18 in the herbaceous. The most species-rich family was Myrtaceae (51), which accounted for 23.6% of the total richness, followed by Lauraceae (13), Fabaceae (12), Rubiaceae (10), Salicaceae (10), and Solanaceae (9). In total, these six families accounted for 48.6% of the total richness. The richest genera were Myrcia (21), Eugenia (15), and Ocotea (9).

Most species were non-pioneers (72.4%), followed by the facultative ecological group (16.8%). Lasting pioneers represented 6.5% and ephemeral pioneers 3.7%. In the layers WL1, 2, and 3, non-pioneer species represented 60%, 81.8%, and 89.5% of the respective density in the West area, and 60.3%, 85.7%, and 91.3% of the respective density in the East area. The proportion of non-pioneer species increased gradually in the above mentioned layers.

Almost half of the species occurred in Ombrophilous Dense and Mixed Forests (48.6%). There were similar values for species showing preferences for these vegetation types (22% and 21%, respectively). Only 7% of the species were not classified according to their distribution, as they were identified only at the genus level, and 1.4% of species were identified as indeterminate taxa.

Ten species were recorded as threatened in some extinction-level (Martinelli & Moraes 2013Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Andrea Jakobsson, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.), four of which are Vulnerable (VU): Ocotea catharinensis, Cedrela fissilis, Myrcia pileata, and Casearia paranaensis; and six Endangered (EN): Annona dolabripetala, Araucaria angustifolia, O. odorifera, O. porosa, Myrcia legrandii, and Pouteria bullata.

Phytosociological analysis - west

A total of 102 species were recorded in the WL1 layer with a density of 2,323.3 ind./ha and basal area of 62.7 m2/ha. For the WL2, 93 species were recorded with a density of 13,880 ind./ha and a basal area of 4.8 m2/ha. And for the WL3, 49 species were found and a density of 5,666.7 ind./ha. See Tabs. S2-S9 (available on supplementary material <https://doi.org/10.6084/m9.figshare.21948215.v1>) for all layers phytosociological parameters.

A total of 139 species were found in the three woody layers of the West area. Of these, 32 species were found in the three layers, 36 exclusively in WL1, 24 exclusively in WL2, and only six exclusively in WL3. A total of 30 species were found in layers WL1 and WL2, four in layers WL1 and WL3, and seven in layers WL2 and WL3 layers.

The species with the highest importance value in the WL1 layer was Araucaria angustifolia, which showed high dominance, as did Schinus terebinthifolia and Psidium longipetiolatum (Fig. 3a). Some species had higher density and frequency but low dominance, such as Allophylus edulis, Casearia sylvestris, Myrcia hatschbachii, Rudgea jasminoides, and Monteverdia gonoclada, which indicates species with low stature and regular horizontal occurrence.

Figure 3
a-c. Phytosociologycal parameters of the 15 species with the highest IV of the woody layer in the west area of Serra da Baitaca, PR – a. woody 1; b. woody 2; c. woody 3. RD = Relative Density; RF = Relative Frequency; RDm = Relative Dominance; (P) = Pioneer.

Rudgea jasminoides was the most important species in WL2, representing almost 1/3 of all measured individuals in this layer, and occurring in more than 90% of the sampling units with more than 1/4 of the total dominance (Fig. 3b). The species Psychotria suterella, Cupania vernalis, and Myrcia splendens were also highlighted in this layer.

In the WL3 layer, two species from the Rubiaceae family, Rudgea jasminoides and Psychotria suterella, had the highest importance value (Fig. 3c). The species Cupania vernalis and Pseuderanthemum riedelianum also had high importance value in this layer.

Phytosociological analysis - east

A total of 120 species were recorded in the WL1 layer, with a density of 2,219.8 ind./ha and a basal area of 60.6 m2/ha. In WL2, 121 species were observed, with a density of 10,559.9 ind./ha. A total of 165 species were found in the three woody layers in the East area. Of these, 27 species occurred in all three layers, 33 exclusively in WL1, 24 in WL2, and only ten exclusively in WL3. Additionally, 59 species were recorded jointly in WL1 and WL2 a single species in the WL1 and WL3 layers, and nine species in the WL2 and WL3 layers.

The species with the highest VI in the WL1 layer was Casearia sylvestris, mainly due to its higher density, which represents 9% of the total individuals (Fig. 4a). The second highest importance value was for Cyathea phalerata, which had a high density. The third highest VI value was observed for Ilex paraguariensis, which stood out for its large basal area. Some species, such as Casearia sylvestris, Cyathea phalerata, Rudgea jasminoides and Cupania vernalis, were represented by individuals of lower stature that were well distributed in the study area, showing high density and frequency but low dominance. Other species, such as Ilex paraguariensis, Aspidosperma olivaceum, Pseudobombax grandiflorum, Machaerium hatschbachii and Sloanea garckeana, were represented by tall and sparsely distributed individuals.

Figure 4
a-c. Phytosociologycal parameters of the 15 species with the highest IV of the woody layer in the east area of Serra da Baitaca, PR – a. woody 1; b. woody 2; c. woody 3. RD = Relative Density; RF = Relative Frequency; RDm = Relative Dominance; (P) = Pioneer.

Just as in the West area, Rudgea jasminoides and Psychotria suterella showed the greatest IV to the WL2 layer, but with lower expressivity and dominance of the first species (Fig. 4b). In the third place, Sorocea bonplandii was highlighted with a high dominance in WL2.

Pseuderanthemum riedelianum had the highest importance value in WL3, mainly because of its high density (Fig. 4c). Psychotria suterella also stood out with the second highest IV.

Herbaceous Layer

In the West area, seven species were recorded with a density of 3,000 ind./ha and coverage of 13.6% of the area. Ctenitis paranaensis was highlighted with 48.1% and 55.5% of the density and total coverage, respectively (Fig. 5a). Additionally, the herbaceous bamboo Taquara micrantha and the Commelinaceae Commelina obliqua were also highlighted.

Figure 5
a-b. Phytosociologycal parameters of the species with the highest IV of the herbaceous layer at Serra da Baitaca, PR – a. west area; b. east area. RD = Relative Density; RF = Relative Frequency; RC = Relative Cover.

In the East area, 17 species were recorded with a density of 7,444.4 ind./ha and coverage of 42.4%. Ferns are highlighted, such as Ctenitis paranaensis and Lastreopsis amplissima (Fig. 5b). The first species represented 28.3% and 39% of density and total coverage, respectively. The second species accounted for 20.9% of the density and 17.8% of the total coverage.

Cluster analysis

The cophenetic coefficient in the dendrogram (Fig. 6) was 0.93, with two groups formed (based on the 92% dissimilarity margin): a group of Mixed Ombrophilous Forest (MOF) studies and a group of Dense Ombrophilous Forest (DOF) studies. Both groups had only 8% similarity, which demonstrates the floristic and structural heterogeneity between MOF and DOF.

Figure 6
Dendrogram generated by the cluster analysis (UPGMA) based on the Bray-Curtis distance of studies developed in Montane MOF and DOF near the Serra do Mar Mountain Range.

Both areas in the present study were classified as MOF in the working groups, indicating that the WL1 layer of both areas is floristically and structurally similar to MOF. The floristic and structural similarities between the two study areas reached 50%.

The study with the highest floristic and structural similarity concerning the two areas of this study was ECO_02 (Lacerda 1999Lacerda AEB (1999) Levantamento florístico e estrutural de vegetação secundária em área de contato da Floresta Ombrófila Densa e Mista - PR. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 114p.), performed at South of the Serra do Marumbi Mountain Range, about 15 km away, reaching 31.8% of similarity with the East area and 24.9% with the West area.

Indicator species analysis

Indicator species analysis considered 324 species, with 14 indicative species (p-value < 0.01), 11 of MOF and three of FOD (Tab. 2). Two species had IndVal = 1, Araucaria angustifolia and Campomanesia xanthocarpa, showing maximum MOF specificity and fidelity, which shows that they are good indicators for this vegetation type Casearia sylvestris, Jacaranda puberula, and C. decandra showed maximum fidelity and high specificity to MOF. Allophylus edulis, Matayba elaeagnoides, Myrcia hatschbachii and Sapium glandulosum showed maximum specificity and high fidelity to MOF, which was also observed for Weinmannia paulliniifolia in DOF. Cupania vernalis and Ilex paraguariensis also showed high fidelity but low specificity in both vegetation types.

Table 2
Indicator species of Montane MOF and DOF in the gradient First Paranaense Plateau - Serra do Mar Mountain Range, from the indicator analysis (IndVal).

Discussion

In addition to characterizing the floristic and structure of several forest sinuses with high conservation value in the context of the Atlantic Forest Biome, this study has contributed with information that confirms the indicator aspect of certain species for montane MOF and DOF ecosystems of Paraná state, which can be used as parameters for monitoring alterations in vegetation in the face of environmental changes (Viana 2015Viana DB (2015) Vulnerabilidade de biomas às mudanças climáticas: o caso da Mata Atlântica no estado do Paraná. Doctoral thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 343p.).

The three richest families and genera in both study areas corroborate the study by Scheer & Blum (2011)Scheer MB & Blum CT (2011) Arboreal diversity of the Atlantic Forest of Southern Brazil: from the beach ridges to the Paraná River. In: Grillo O (ed.) The dynamical processes of biodiversity - case studies of evolution and spatial distribution. InTech, Rijeka. Pp. 109-134. to the WL1 layer of MOF and DOF. The richest families were Myrtaceae and Lauraceae, with high importance in mature forests (Tabarelli & Mantovani 1999Tabarelli M & Mantovani W (1999) Regeneração de uma Floresta Tropical Montana após corte e queima (São Paulo - Brasil). Revista Brasileira de Biologia 59: 239-250.). Ten threatened species were also found, indicating that the Serra da Baitaca State Park is of high importance for the conservation of the Atlantic Forest flora (Tabarelli et al. 2005Tabarelli M, Pinto LP, Silva JMC, Hirota M & Bedê L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology 19: 695-700.).

The gradual increase in density of nonpioneer species in the woody layers (WL1–WL3) indicates a substitution of ecological groups, a restart of the understory, and a shift to mature forest (Chazdon 2012Chazdon R (2012) Regeneração de florestas tropicais. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 7: 195-218.). In this scenario, pioneer species occupy only edge environments (Murcia 1995Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10: 58-62.) and natural clearings (Tabarelli & Mantovani 1997Tabarelli M & Mantovani W (1997) Colonização de clareiras naturais na floresta atlântica no sudeste do Brasil. Revta Brasileira de Botânica 20: 57-66.; Hubbell et al. 1999Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ & Loo de Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554-557.).

The co-occurrence of MOF and DOF preferential species confirms the ecotone situation of the study area (Kent et al. 1997Kent M, Gill WJ, Weaver RE & Armitage RP (1997) Landscape and plant community boundaries in biogeography. Progress in Physical Geography: Earth and Environment 21: 315-353.). Almost half of the species (48.6%) showed a wide distribution. A similar pattern was observed by Reginato & Goldenberg (2007)Reginato M & Goldenberg R (2007) Análise florística, estrutural e fitogeográfica da vegetação em região de transição entre as Florestas Ombrófilas Mista e Densa Montana, Piraquara, Paraná, Brasil. Hoehnea 34: 349-364. in an ecotone area of MOF-DOF, where these species represented 52.8%. For the ecotone between MOF and SSF in the state of Paraná, the percentage of species distributed in both vegetation types was higher, up to 71% (Seki et al. 2022Seki MS, Blum CT, Ríos RC, Barddal ML, Duarte E & Vieira RS (2022) Composição florística e fitossociológica de ecótono entre floresta ombrófila mista e floresta estacional semidecidual. Revista em Agronegócio e Meio Ambiente 15: 1-19.), indicating a lower species sharing between MOF and DOF compared to MOF and SSF.

In the WL1 layer from the West area, the higher VI was for Araucaria angustifolia, the same pattern observed in phytosociological studies in montane MOF (Rondon Neto et al. 2002Rondon Neto RM, Watzlawick LF, Caldeira MVW & Schoeninger ER (2002) Análise Florística e Estrutural de um fragmento de Floresta Ombrófila Mista Montana, situado em Criúva, RS - Brasil. Ciência Florestal 12: 29-37.; Seger et al. 2005Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencourt SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de Floresta Ombrófila Mista localizado no município de Pinhais, Paraná-Brasil. Revista Floresta 35: 291-302.; Silva et al. 2012Silva AC, Higuchi P, Aguiar MD, Negrini M, Fert Neto J & Hess AF (2012) Relações florísticas e fitossociologia de uma Floresta Ombrófila Mista Montana secundária em Lages, Santa Catarina. Ciência Florestal 22: 193-206.; Santos 2014Santos AAP (2014) Avaliação florística e estrutural de uma Floresta Ombrófila Mista Montana urbana. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 130p.). This species occurs in most of the three southern Brazilian states and in some patches in southeastern Brazil, occupying plateaus above 500 m, where MOF occurs (Souza et al. 2007Souza A (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Austral Ecology 32: 524-533.; Zanette et al. 2017Zanette F, Danner MA, Constantino V & Wendling I (2017) Particularidades e biologia reprodutiva de Araucaria angustifolia. In: Wendling I & Zanette F (ed.) Araucária: particularidades, propagação e manejo de plantios. Embrapa, Brasília. Pp. 13-39.).

Rudgea jasminoides was highlighted in the WL2 layer, resulting in similar patterns to other studies in DOF (Schorn 1992Schorn LA (1992) Levantamento florístico e análise estrutural em três unidades edáficas em uma Floresta Ombrófila Densa Montana no estado do Paraná. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 144p.; Blum 2006Blum CT (2006) A Floresta Ombrófila Densa na Serra da Prata, Parque Nacional Saint-Hilaire/Lange, PR -Caracterização florística, fitossociológica e ambiental de um gradiente altitudinal. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 185p.; Canestraro & Kersten 2018Canestraro B & Kersten RA (2018) The slope does not influence the understory community on a Brazilian montane Atlantic forest. Darwiniana 6: 5-23.; Pastório et al. 2018Pastório F, Bloemer H & Gasper A (2018) Floristic and structural composition of natural regeneration in a subtropical Atlantic Forest. Floresta e Ambiente 25: 1-11.). This species occurs in different stages of forest regeneration (Tabarelli & Mantovani 1997Tabarelli M & Mantovani W (1997) Colonização de clareiras naturais na floresta atlântica no sudeste do Brasil. Revta Brasileira de Botânica 20: 57-66.) in southern and southeastern Brazil, as well as in the state of Mato Grosso and Paraguay (Zappi 2003Zappi D (2003) Revision of Rudgea (Rubiaceae) in Southeastern and Southern Brazil. Kew Bulletin 58: 513-596.). In MOF communities in an advanced stage of succession, the species showed higher IV in the regenerating shrub layer (similar to WL2), considered typical of the forest understory (Felitto et al. 2017Felitto G, Lozano ED, Canestraro BK & Kersten RA (2017) Riqueza, composição e estrutura da comunidade arbustivo-regenerante em diferentes estágios sucessionais de uma Floresta Subtropical do Brasil. Hoehnea 44: 490-504.).

Rudgea jasminoides, Psychotria suterella and Cupania vernalis were highlighted in the WL2 and WL3 layers of the West area. Cardoso-Leite (1995)Cardoso-Leite E (1995) Ecologia de um fragmento florestal em São Roque, SP: florística, fitossociologia e silvigenese. Master’s dissertation. Universidade Estadual de Campinas, Campinas. 235p., in a DOF study in the state of São Paulo, observed the highest VI for R. jasminoides and P. suterella in the shrub layer and a higher VI for P. suterella in seedlings, corroborating our study. Blum (2006)Blum CT (2006) A Floresta Ombrófila Densa na Serra da Prata, Parque Nacional Saint-Hilaire/Lange, PR -Caracterização florística, fitossociológica e ambiental de um gradiente altitudinal. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 185p. also highlighted that Rubiaceae are mainly found in the shaded layers of the forest, showing high structural importance (Pastório et al. 2018Pastório F, Bloemer H & Gasper A (2018) Floristic and structural composition of natural regeneration in a subtropical Atlantic Forest. Floresta e Ambiente 25: 1-11.).

Cupania vernalis had the second highest number of individuals in natural regeneration in MOF from the State of Santa Catarina and represented the second largest VI in altitudes below 1,000 m and the third highest VI for altitudes between 1,000 and 1,200 m (Meyer et al. 2013Meyer L, Gasper AL, Sevegnani L, Schorn LA, Vibrans AC, Lingner DV, Verdi M, Santos AS, Dreveck S & Korte A (2013) Regeneração natural na Floresta Ombrófila Mista em Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL & Lingner DV (eds.) Inventário florístico florestal de Santa Catarina. Vol. III, Floresta Ombrófila Mista. Edifurb, Blumenau. Pp. 191-221.).

In the WL1 layers in the East area, Casearia sylvestris was highlighted with the highest structural importance in a study performed in an ecotonal area of MOF and SSF (Seki et al. 2022Seki MS, Blum CT, Ríos RC, Barddal ML, Duarte E & Vieira RS (2022) Composição florística e fitossociológica de ecótono entre floresta ombrófila mista e floresta estacional semidecidual. Revista em Agronegócio e Meio Ambiente 15: 1-19.) and also in an MOF remnant (Rondon Neto et al. 2002Rondon Neto RM, Watzlawick LF, Caldeira MVW & Schoeninger ER (2002) Análise Florística e Estrutural de um fragmento de Floresta Ombrófila Mista Montana, situado em Criúva, RS - Brasil. Ciência Florestal 12: 29-37.). It showed a high VI in MOF (Dias et al. 1998Dias MC, Vieira AOS, Nakajima JN, Pimenta JA & Lobo PC (1998) Composição florística e fitossociologia do componente arbóreo das florestas ciliares do Rio Iapó, na bacia do Rio Tibagi, Tibagi, PR. Brazilian Journal of Botany 21: 183-195.; Seger et al. 2005Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencourt SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de Floresta Ombrófila Mista localizado no município de Pinhais, Paraná-Brasil. Revista Floresta 35: 291-302.; Reginato et al. 2008Reginato M, Matos FB, Lindoso GS, Souza CMF, Prevedello JA, Morais JW & Evangelista PHL (2008) A vegetação na Reserva Mata Viva, Curitiba, Paraná, Brasil. Acta Biologica Paranaense 37: 229-252.; Santos 2014Santos AAP (2014) Avaliação florística e estrutural de uma Floresta Ombrófila Mista Montana urbana. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 130p.) and SSF studies (Silva et al. 1995Silva FC, Fonseca EP, Soares-Silva LH, Muller C & Bianchini E (1995) Composição florística e fitossociologia do componente arbóreo das florestas ciliares da bacia do Rio Tibagi. 3. Fazenda Bom Sucesso, município de Sapopema, PR. Acta Botanica Brasilica 9: 289-302.).

Cyathea phalerata was also highlighted to show high structural importance in an ecotone of MOF and DOF (Reginato & Goldenberg 2007Reginato M & Goldenberg R (2007) Análise florística, estrutural e fitogeográfica da vegetação em região de transição entre as Florestas Ombrófilas Mista e Densa Montana, Piraquara, Paraná, Brasil. Hoehnea 34: 349-364.). According to Schwartz & Gasper (2020)Schwartz CE & Gasper AL (2020) Environmental factors affect population structure of tree ferns in the Brazilian Subtropical Atlantic Forest. Acta Botanica Brasilica 34: 204-213., this species is widely distributed in the state of Santa Catarina in the DOF, in the MOF, and in areas close to the DOF. Ilex paraguariensis had the highest VI in the study by Roderjan (1994)Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p. in DOF at the same study area of the present study and a higher VI in MOF (Silva & Marconi 1990Silva FC & Marconi LP (1990) Fitossociologia de uma Floresta com Araucária em Colombo-PR. Boletim de Pesquisa Florestal 20: 23-38.).

In the WL2 layer Sorocea bonplandii was structurally important, corroborating Seki et al. (2022)Seki MS, Blum CT, Ríos RC, Barddal ML, Duarte E & Vieira RS (2022) Composição florística e fitossociológica de ecótono entre floresta ombrófila mista e floresta estacional semidecidual. Revista em Agronegócio e Meio Ambiente 15: 1-19., who studied the understory of an ecotonal area between MOF and SSF, and Barros (2006)Barros FA (2006) Efeito de borda em fragmentos de Floresta Montana, Nova Friburgo - RJ. Master’s dissertation. Universidade Federal Fluminense, Niterói. 100p., who studied the lower and intermediate layers of DOF. This species occurs sparsely within the Atlantic forest dominating the understory (Ruschel et al. 2006Ruschel AR, Moerschbacher BM & Nodari RO (2006) Demografia da Sorocea bonplandii em remanescentes da Floresta Estacional Decidual, Sul do Brasil. Scientia Forestalis 70: 149-159.).

In WL3 the most important species was Pseuderanthemum riedelianum corroborating Canestraro & Kersten (2018)Canestraro B & Kersten RA (2018) The slope does not influence the understory community on a Brazilian montane Atlantic forest. Darwiniana 6: 5-23. in a survey of the understory of DOF, in the same area of the present study. In fact, this species occurs mostly near the southern coast of the states of Paraná, Santa Catarina, and São Paulo in DOF and Restinga vegetation (Rodrigues & Souza 2022Rodrigues MC & Souza VC (2022) Pseuderanthemum in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB4190>. Access on 15 June 2022.
https://floradobrasil.jbrj.gov.br/FB4190...
).

In both areas, Ctenitis paranaensis was predominant in the herbaceous layer, showing high density and coverage. This species also showed high importance in a DOF study in Serra da Baitaca (Canestraro & Kersten 2018Canestraro B & Kersten RA (2018) The slope does not influence the understory community on a Brazilian montane Atlantic forest. Darwiniana 6: 5-23.). It is a species endemic to the Atlantic forest, occurring in MOF and DOF (Viveros & Salinos 2015Viveros RS & Salino A (2015) Two new species of Ctenitis (Dryopteridaceae) from South America and taxonomic notes on similar species. Phytotaxa 239: 1-16.).

The result of the cluster analysis was similar to that of obtained by Reginato & Goldenberg (2007)Reginato M & Goldenberg R (2007) Análise florística, estrutural e fitogeográfica da vegetação em região de transição entre as Florestas Ombrófilas Mista e Densa Montana, Piraquara, Paraná, Brasil. Hoehnea 34: 349-364., who made a floristic distinction between the MOF and the DOF groups, highlighting the floristic differences between these vegetation types.

Despite the geographical proximity of the FOD_05 study (Roderjan 1994Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.) to the present study area, it was clustered in the DOF group, showing only 11.8% of floristic and structural similarity with the West area and 24.8% with the East area. This low floristic and structural similarity is probably influenced by the higher altitude (1,100 m) of the FOD_05 study in comparison with the West (940 m) and East (950 m) areas, showing higher proximity with a high montane DOF from the peaks of the mountain range. The altitudinal gradient affects the local environment, especially the climate, resulting in differentiations in the vegetation along the altitudinal range (Blum et al. 2011Blum CT, Roderjan CV & Galvão F (2011) O clima e sua influência na distribuição da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná. Revista Floresta 41: 589-598.).

From the MOF indicative species, Araucaria angustifolia, Campomanesia xanthocarpa, Allophylus edulis, Casearia decandra; Myrcia hatschbachii, and Cinnamodendron dinisii are highlighted as preferential or dominant in MOF (Legrand & Klein 1977Legrand CD & Klein RM (1977) Myrtáceas: 8. Campomanesia, 9. Feijoa, 10. Briota, 11. Myrrhinium, 12. Hexachlamys, 13. Siphoneugena, 14. Myrcianthes, 15. Neomitranthes, 16. Psidium. In: Reitz R (ed.) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí. Pp. 572-730.; Sleumer 1980Sleumer HO (1980) Flora Neotropica 22: Flacourticaceae. The New York Botanical Garden, New York. 499p.; Roderjan et al. 2002Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência e Ambiente 24: 75-92.; Coelho 2022Coelho RLG (2022) Allophylus in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB20871>. Access on 16 June 2022.
https://floradobrasil.jbrj.gov.br/FB2087...
; Salazar et al. 2020Salazar J, Barros F & Caraballo-Ortiz MA (2020) Two new species of Cinnamodendron (Canellaceae) from Brazil. Brittonia 72: 381-392.; Lannoy et al. 2021Lannoy LC, Oliveira AI, Goldenberg R & Lima DF (2021) Myrcia (Myrtaceae) in the state of Paraná, Brazil. Phytotaxa 486: 1-105.).

In contrast, Casearia sylvestris, also an indicator of MOF, is a generalist, occurring in the Amazon, Cerrado, and Atlantic forest, including in MOF and DOF (Sleumer 1980Sleumer HO (1980) Flora Neotropica 22: Flacourticaceae. The New York Botanical Garden, New York. 499p.; Oliveira-Filho & Ratter 1995Oliveira-Filho AT & Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany 52: 141-194.). Jacaranda puberula occurs in all vegetation types of the Atlantic forest (Gentry 1992Gentry AH (1992) Flora Neotropica 25 (2): Bignoniaceae - Part II (Tribe Tecomeae). The New York Botanical Garden, New York. 370p.). Matayba elaeagnoides occurs in MOF and SSF, but is less frequent in DOF (Coelho et al. 2017Coelho RLG, Souza VC, Ferrucci MS & Flores TB (2017) Revisão taxonômica de Matayba sect. Matayba (Sapindaceae, Cupanieae). Rodriguésia 68: 411-443.). Sapium glandulosum occurs throughout Brazil, including in MOF and DOF (Cordeiro & Esser 2022Cordeiro WPFS & Esser HJ (2022) Sapium in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB17662>. Access on 15 June 2022.
https://floradobrasil.jbrj.gov.br/FB1766...
). Myrcia splendens occurs in all vegetation types of the State of Paraná (Lannoy et al. 2021Lannoy LC, Oliveira AI, Goldenberg R & Lima DF (2021) Myrcia (Myrtaceae) in the state of Paraná, Brazil. Phytotaxa 486: 1-105.).

For DOF, Weinmannia paulliniifolia stood out as common in the understory of the montane portions of this vegetation type (Roderjan et al. 2002Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência e Ambiente 24: 75-92.), and Ocotea catharinensis was identified as frequent in DOF and rare in MOF and SSF (Brotto et al. 2013Brotto ML, Cervi AC & Santos EP (2013) O gênero Ocotea (Lauraceae) no estado do Paraná, Brasil. Rodriguésia 64: 495-525.). Sloanea lasiocoma, on the other hand, occurs in the Atlantic forest, mostly in MOF and DOF (Sampaio & Souza 2014Sampaio D & Souza VC (2014) Typification of some Species of Sloanea (Elaeocarpaceae). Phytotaxa 184: 121-130.).

Cupania vernalis is considered frequent and common in both vegetation types in open or closed areas of MOF or DOF (Reitz 1980Reitz R (1980) Sapindáceas. In: Reitz R (ed.) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí. Pp. 1-156.), as is Ilex paraguariensis, which follows the same pattern (Silva et al. 2018Silva MAF, Higuchi P & Silva AC (2018) Impact of climate change on the potential geographical distribution of Ilex paraguariensis. Rodriguésia 69: 2069-2079.). This species was considered an indicator of montane gradient in the FOD of the Serra da Prata (Blum & Roderjan 2007Blum CT & Roderjan CV (2007) Espécies indicadoras em um gradiente da Floresta Ombrófila Densa na Serra da Prata, Paraná, Brasil. Revista Brasileira de Biociências 5: 873-875.).

Through ecological niche modeling, Wrege et al. (2017) pointed to the maintenance of DOF areas, but replacement of MOF by SSF in Paraná state. Saraiva et al. (2021)Saraiva DD, Esser LF, Grasel D & Jarenkow JA (2021) Distribution shifts, potential refugia, and the performance of protected areas under climate change in the Araucaria moist forests ecoregion. Applied Vegetation Science 24: 1-14. predicted f 43% to 64% losses of vegetation cover for the entire extent of the MOF ecoregion in the face of future climate change.

In this sense, the importance of defining indicator species for each phytophysiognomy is highlighted, in order to monitor the dynamics of vegetation and update the definition of its boundaries (Viana 2015Viana DB (2015) Vulnerabilidade de biomas às mudanças climáticas: o caso da Mata Atlântica no estado do Paraná. Doctoral thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 343p.). To this end, the species Araucaria angustifolia and Campomanesia xanthocarpa are good indicators of montane MOF; Allophylus edulis, Myrcia hatschbachii, and Cinnamodendron dinisii are indicators of MOF; and Weinmannia paulliniifolia and Ocotea catharinensis are indicators of DOF.

The studied forest communities are in a maturation process, and the Serra da Baitaca State Park shows high importance for conservation;

The study areas comprise species occurrences of both Mixed Ombrophilous Forest (MOF) and Dense Ombrophilous Forest (DOF), but the WL1 layer (trees, ferns and palms) shows higher floristic and structural similarity to MOF;

In the transition zone between MOF and DOF, in the Serra do Mar in the state of Paraná, the species Araucaria angustifolia and Campomanesia xanthocarpa were considered good indicators of montane MOF; Allophylus edulis, Myrcia hatschbachii, and Cinnamodendron dinisii were considered indicators of MOF; and Weinmannia paulliniifolia and Ocotea catharinensis were considered indicators of DOF.

References

  • APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
  • Araújo MB (2002) Biodiversity hotspots and zones of ecological transition. Conservation Biology 16: 1662-1663.
  • Barros FA (2006) Efeito de borda em fragmentos de Floresta Montana, Nova Friburgo - RJ. Master’s dissertation. Universidade Federal Fluminense, Niterói. 100p.
  • Blum CT & Roderjan CV (2007) Espécies indicadoras em um gradiente da Floresta Ombrófila Densa na Serra da Prata, Paraná, Brasil. Revista Brasileira de Biociências 5: 873-875.
  • Blum CT (2006) A Floresta Ombrófila Densa na Serra da Prata, Parque Nacional Saint-Hilaire/Lange, PR -Caracterização florística, fitossociológica e ambiental de um gradiente altitudinal. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 185p.
  • Blum CT, Roderjan CV & Galvão F (2011) O clima e sua influência na distribuição da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná. Revista Floresta 41: 589-598.
  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. 3rd ed. Springer, Wien-New York. 865p.
  • Bray RJ & Curtis JT (1957) An ordination of the upland forests communities of Southern Wisconsin. Ecological Monography 27: 325-349.
  • Brotto ML, Cervi AC & Santos EP (2013) O gênero Ocotea (Lauraceae) no estado do Paraná, Brasil. Rodriguésia 64: 495-525.
  • Budowski G (1965) Distribution of tropical American rain forest species in the light of sucessional processes. Turrialba 15: 40-42.
  • Cáceres M & Jansen F (2016) indicspecies: relationship between species and groups of sites. R package version 1.7.9. Available at <https://CRAN.R-project.org/package=indicspecies>. Access on 16 June 2022.
    » https://CRAN.R-project.org/package=indicspecies
  • Cáceres M & Legendre (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574.
  • Calegari L, Martins SV & Campos LC (2013) Avaliação do banco de sementes do solo para fins de restauração florestal em Carandaí, MG. Revista Árvore 37: 871-880.
  • Canestraro B & Kersten RA (2018) The slope does not influence the understory community on a Brazilian montane Atlantic forest. Darwiniana 6: 5-23.
  • Cardoso-Leite E (1995) Ecologia de um fragmento florestal em São Roque, SP: florística, fitossociologia e silvigenese. Master’s dissertation. Universidade Estadual de Campinas, Campinas. 235p.
  • Caro T (2010) Conservation by Proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington. 400p.
  • Centro de Referência e Informação Ambiental - CRIA (2021) Specieslink - simple search. Available at <http://www.splink.org.br/index>. Access on 10 May 2021.
    » http://www.splink.org.br/index
  • Chazdon R (2012) Regeneração de florestas tropicais. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 7: 195-218.
  • Chmura D & Salachna A (2016) The errors in visual estimation of plants cover in the context of education of Phytosociology. Chemistry-Didactics-Ecology-Metrology 21: 75-82.
  • Coelho RLG (2022) Allophylus in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB20871>. Access on 16 June 2022.
    » https://floradobrasil.jbrj.gov.br/FB20871
  • Coelho RLG, Souza VC, Ferrucci MS & Flores TB (2017) Revisão taxonômica de Matayba sect. Matayba (Sapindaceae, Cupanieae). Rodriguésia 68: 411-443.
  • Cordeiro WPFS & Esser HJ (2022) Sapium in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB17662>. Access on 15 June 2022.
    » https://floradobrasil.jbrj.gov.br/FB17662
  • Dalagnol R, Christo AG, Higuchi P & Rodrigues AV (2017) Função para cálculo dos descritores fitossociológicos e similaridade entre sítios. Available at <https://github.com/ricds/fitoR>. Access on 16 June 2022.
    » https://github.com/ricds/fitoR
  • Dias MC, Vieira AOS, Nakajima JN, Pimenta JA & Lobo PC (1998) Composição florística e fitossociologia do componente arbóreo das florestas ciliares do Rio Iapó, na bacia do Rio Tibagi, Tibagi, PR. Brazilian Journal of Botany 21: 183-195.
  • Dufrene M & Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.
  • Felitto G, Lozano ED, Canestraro BK & Kersten RA (2017) Riqueza, composição e estrutura da comunidade arbustivo-regenerante em diferentes estágios sucessionais de uma Floresta Subtropical do Brasil. Hoehnea 44: 490-504.
  • Finegan B (1984) Succession. Nature 312: 109-115.
  • Gentry AH (1992) Flora Neotropica 25 (2): Bignoniaceae - Part II (Tribe Tecomeae). The New York Botanical Garden, New York. 370p.
  • Higuchi P (2019) sampling.analysis: função em linguagem de programação estatística R para análise do processo amostragem de levantamentos fitossociógicos em função do número de indivíduos e da área basal. Available at <https://github.com/higuchip/sampling.analysis>. Access on 16 June 2022.
    » https://github.com/higuchip/sampling.analysis
  • Hsieh TC, Ma KH & Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456.
  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ & Loo de Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554-557.
  • IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro. 275p.
  • Kark S & Van Rensburg BJ (2006) Ecotones: marginal or central areas of transition? Israel Journal of Ecology and Evolution 52: 29-53.
  • Kark S (2012) Ecotones and ecological gradients. In: Leemans R (ed.) Ecological systems: selected entries from the Encyclopedia of Sustainability Science and Technology. Springer Science & Business Media, Berlin. Pp. 174-160.
  • Kark S (2013) Effects of ecotones on biodiversity. In: Levin SA (ed.) Encyclopedia of biodiversity: second edition. Elsevier, Cambridge. Pp. 142-148.
  • Kent M, Gill WJ, Weaver RE & Armitage RP (1997) Landscape and plant community boundaries in biogeography. Progress in Physical Geography: Earth and Environment 21: 315-353.
  • Kozera C, Dittrich VAO & Silva SM (2006) Fitossociologia do componente arbóreo de um fragmento de Floresta Ombrófila Mista Montana, Curitiba, PR, BR. Revista Floresta 36: 225-237.
  • Lacerda AEB (1999) Levantamento florístico e estrutural de vegetação secundária em área de contato da Floresta Ombrófila Densa e Mista - PR. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 114p.
  • Lannoy LC, Oliveira AI, Goldenberg R & Lima DF (2021) Myrcia (Myrtaceae) in the state of Paraná, Brazil. Phytotaxa 486: 1-105.
  • Legrand CD & Klein RM (1977) Myrtáceas: 8. Campomanesia, 9. Feijoa, 10. Briota, 11. Myrrhinium, 12. Hexachlamys, 13. Siphoneugena, 14. Myrcianthes, 15. Neomitranthes, 16. Psidium. In: Reitz R (ed.) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí. Pp. 572-730.
  • Lindenmayer DB (1999) Future directions for biodiversity conservation in managed forests: indicator species, impact studies and monitoring programs. Forest Ecology and Management 115: 277-287.
  • Maack R (2012) Geografia física do estado do Paraná. Editora UEPG, Ponta Grossa. 526p.
  • Mantovani W (2003) A degradação dos biomas brasileiros. In: Ribeiro WC (ed.) Patrimônio ambiental brasileiro. Editora Universidade de São Paulo, São Paulo. Pp. 367- 439.
  • Martinelli G & Moraes MA (2013) Livro vermelho da flora do Brasil. Andrea Jakobsson, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.
  • Meyer L, Gasper AL, Sevegnani L, Schorn LA, Vibrans AC, Lingner DV, Verdi M, Santos AS, Dreveck S & Korte A (2013) Regeneração natural na Floresta Ombrófila Mista em Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL & Lingner DV (eds.) Inventário florístico florestal de Santa Catarina. Vol. III, Floresta Ombrófila Mista. Edifurb, Blumenau. Pp. 191-221.
  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10: 58-62.
  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB & Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E & Wagner H (2020) Vegan: community ecology package. R package version 2.5-7. Available at <https://CRAN.R-project.org/package=vegan>. Access on 16 June 2022.
    » https://CRAN.R-project.org/package=vegan
  • Oliva EV, Reissmann CB, Marques R, Bianchin JE, Dalmaso CA & Winagraski E (2018) Florística e estrutura de duas comunidades arbóreas secundárias com diferentes graus de distúrbio em processo de recuperação. Ciência Florestal 28: 1088-1103.
  • Oliveira-Filho AT & Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany 52: 141-194.
  • Pastório F, Bloemer H & Gasper A (2018) Floristic and structural composition of natural regeneration in a subtropical Atlantic Forest. Floresta e Ambiente 25: 1-11.
  • PPG - The Pteridophyte Phylogeny Group (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.
  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at <https://www.R-project.org/>. Access on 16 June 2022.
    » https://www.R-project.org/
  • Reginato M & Goldenberg R (2007) Análise florística, estrutural e fitogeográfica da vegetação em região de transição entre as Florestas Ombrófilas Mista e Densa Montana, Piraquara, Paraná, Brasil. Hoehnea 34: 349-364.
  • Reginato M, Matos FB, Lindoso GS, Souza CMF, Prevedello JA, Morais JW & Evangelista PHL (2008) A vegetação na Reserva Mata Viva, Curitiba, Paraná, Brasil. Acta Biologica Paranaense 37: 229-252.
  • Reitz R (1980) Sapindáceas. In: Reitz R (ed.) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí. Pp. 1-156.
  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA & Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16: 208-214.
  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ & Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141-1153.
  • Roderjan CV (1994) O gradiente da Floresta Ombrófila Densa no morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Doctoral thesis. Universidade Federal do Paraná, Curitiba. 119p.
  • Roderjan CV, Galvão F, Kuniyoshi YS & Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência e Ambiente 24: 75-92.
  • Rodrigues MC & Souza VC (2022) Pseuderanthemum in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at <https://floradobrasil.jbrj.gov.br/FB4190>. Access on 15 June 2022.
    » https://floradobrasil.jbrj.gov.br/FB4190
  • Rondon Neto RM, Watzlawick LF, Caldeira MVW & Schoeninger ER (2002) Análise Florística e Estrutural de um fragmento de Floresta Ombrófila Mista Montana, situado em Criúva, RS - Brasil. Ciência Florestal 12: 29-37.
  • Ruschel AR, Moerschbacher BM & Nodari RO (2006) Demografia da Sorocea bonplandii em remanescentes da Floresta Estacional Decidual, Sul do Brasil. Scientia Forestalis 70: 149-159.
  • Salazar J, Barros F & Caraballo-Ortiz MA (2020) Two new species of Cinnamodendron (Canellaceae) from Brazil. Brittonia 72: 381-392.
  • Sampaio D & Souza VC (2014) Typification of some Species of Sloanea (Elaeocarpaceae). Phytotaxa 184: 121-130.
  • Sanquetta CR, Watzlawick LF, Dalla Corte AP, Fernandes LAV & Siqueira JDP (2014) Inventários florestais: planejamento e execução. 3ª ed. Multi-Graphic Gráfica e Editora, Curitiba. 406p.
  • Santos AAP (2014) Avaliação florística e estrutural de uma Floresta Ombrófila Mista Montana urbana. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 130p.
  • Saraiva DD, Esser LF, Grasel D & Jarenkow JA (2021) Distribution shifts, potential refugia, and the performance of protected areas under climate change in the Araucaria moist forests ecoregion. Applied Vegetation Science 24: 1-14.
  • Scheer MB & Blum CT (2011) Arboreal diversity of the Atlantic Forest of Southern Brazil: from the beach ridges to the Paraná River. In: Grillo O (ed.) The dynamical processes of biodiversity - case studies of evolution and spatial distribution. InTech, Rijeka. Pp. 109-134.
  • Schorn LA (1992) Levantamento florístico e análise estrutural em três unidades edáficas em uma Floresta Ombrófila Densa Montana no estado do Paraná. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 144p.
  • Schwartz CE & Gasper AL (2020) Environmental factors affect population structure of tree ferns in the Brazilian Subtropical Atlantic Forest. Acta Botanica Brasilica 34: 204-213.
  • Secco RT (2017) Florística e ecologia de dois bancos de sementes em região de Floresta Ombrófila Mista no município de Campo do Tenente, PR. Master’s dissertation. Universidade Federal do Paraná, Curitiba. 75p.
  • Seger CD, Dlugosz FL, Kurasz G, Martinez DT, Ronconi E, Melo LAN, Bittencourt SM, Brand MA, Carniatto I, Galvão F & Roderjan CV (2005) Levantamento florístico e análise fitossociológica de um remanescente de Floresta Ombrófila Mista localizado no município de Pinhais, Paraná-Brasil. Revista Floresta 35: 291-302.
  • Seki MS, Blum CT, Ríos RC, Barddal ML, Duarte E & Vieira RS (2022) Composição florística e fitossociológica de ecótono entre floresta ombrófila mista e floresta estacional semidecidual. Revista em Agronegócio e Meio Ambiente 15: 1-19.
  • Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C & Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators 60: 223-230.
  • Silva AC, Higuchi P, Aguiar MD, Negrini M, Fert Neto J & Hess AF (2012) Relações florísticas e fitossociologia de uma Floresta Ombrófila Mista Montana secundária em Lages, Santa Catarina. Ciência Florestal 22: 193-206.
  • Silva FC & Marconi LP (1990) Fitossociologia de uma Floresta com Araucária em Colombo-PR. Boletim de Pesquisa Florestal 20: 23-38.
  • Silva FC, Fonseca EP, Soares-Silva LH, Muller C & Bianchini E (1995) Composição florística e fitossociologia do componente arbóreo das florestas ciliares da bacia do Rio Tibagi. 3. Fazenda Bom Sucesso, município de Sapopema, PR. Acta Botanica Brasilica 9: 289-302.
  • Silva MAF, Higuchi P & Silva AC (2018) Impact of climate change on the potential geographical distribution of Ilex paraguariensis Rodriguésia 69: 2069-2079.
  • Sleumer HO (1980) Flora Neotropica 22: Flacourticaceae. The New York Botanical Garden, New York. 499p.
  • Smith TB, Kark S, Schneider CJ, Wayne RK & Moritz C (2001) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends in Ecology and Evolution 16: 431.
  • Souza A (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Austral Ecology 32: 524-533.
  • Tabarelli M & Mantovani W (1997) Colonização de clareiras naturais na floresta atlântica no sudeste do Brasil. Revta Brasileira de Botânica 20: 57-66.
  • Tabarelli M & Mantovani W (1999) Regeneração de uma Floresta Tropical Montana após corte e queima (São Paulo - Brasil). Revista Brasileira de Biologia 59: 239-250.
  • Tabarelli M, Pinto LP, Silva JMC, Hirota M & Bedê L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology 19: 695-700.
  • Viana DB (2015) Vulnerabilidade de biomas às mudanças climáticas: o caso da Mata Atlântica no estado do Paraná. Doctoral thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 343p.
  • Viani RAG, Costa JC, Rozza AF, Bufo LVB, Ferreira, MAP & Oliveira ACP (2011) Caracterização florística e estrutural de remanescentes florestais de Quedas do Iguaçu, Sudoeste do Paraná. Biota Neotropica 11: 115-128.
  • Viveros RS & Salino A (2015) Two new species of Ctenitis (Dryopteridaceae) from South America and taxonomic notes on similar species. Phytotaxa 239: 1-16.
  • Whitmore TC (1990) Tropical Rain Forest dynamics and its implications for management. In: Gomespompa A, Whitmore TC & Hadley M (eds.) Rain forest regeneration and management. UNESCO, Paris. Pp. 67-89.
  • Yarrow MM & Marín VH (2007) Toward conceptual cohesiveness: a historical analysis of the theory and utility of ecological boundaries and transition zones. Ecosystems 10: 462-476.
  • Zanette F, Danner MA, Constantino V & Wendling I (2017) Particularidades e biologia reprodutiva de Araucaria angustifolia In: Wendling I & Zanette F (ed.) Araucária: particularidades, propagação e manejo de plantios. Embrapa, Brasília. Pp. 13-39.
  • Zappi D (2003) Revision of Rudgea (Rubiaceae) in Southeastern and Southern Brazil. Kew Bulletin 58: 513-596.

Edited by

Area Editor: Dr. Rafael Costa

Publication Dates

  • Publication in this collection
    03 Apr 2023
  • Date of issue
    2023

History

  • Received
    29 Oct 2021
  • Accepted
    31 Aug 2022
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br