Acessibilidade / Reportar erro

Leaf anatomy for delimiting Atlantic Forest species of Psidium (Myrtaceae)

Abstract

Leaf anatomical features are widely used to better understand angiosperm taxonomy. However, such information is scarce for the family Myrtaceae. Aiming to fill this knowledge gap, we studied anatomical and micromorphological leaf characters of ten species of Psidium: P. cattleyanum, P. cauliflorum, P. corynanthum, P. guajava, P. guineense, P. macahense, P. myrtoides, P. oligospermum, P. ovale and P. sartorianum. Uniseriate epidermis, paracytic stomata, secretory cavities, and adaxial hypodermis are common among the studied species and are typical characteristics of Myrtaceae. The presence of three or more layers of palisade parenchyma and the absence of sclerenchyma are diagnostic characters of P. guajava. The abaxial epidermis of Psidium cattleyanum and P. macahense possess curved walls. Psidium corynanthum and P. macahense are the only species with sinuous anticlinal walls on both sides of the epidermis, with all other species having straight or curved walls. Open bicollateral vascular bundles are present in all the studied species except P. guineense. With the exception of P. cauliflorum, all the studied species possess druses. The absence of collenchyma in the adaxial face is exclusive to P. ovale. The leaf anatomy of P. macahense, P. corynanthum, P. oligospermum and P. ovale are described for the first time here.

Key words
anatomical features; angiosperm; quantitative characters; UPGMA; taxonomy

Resumo

As características anatômicas foliares são amplamente utilizadas para melhor compreender a taxonomia entre as angiospermas. No entanto, tais informação são escassas para a família Myrtaceae. Com o objetivo de preencher esta lacuna de conhecimento, estudamos a anatomia foliar de dez espécies do gênero Psidium: P. cattleyanum, P. cauliflorum, P. corynanthum, P. guajava, P. guineense, P. macahense, P. myrtoides, P. oligospermum, P. ovale e P. sartorianum. A epiderme unisseriada, os estômatos paracíticos, as cavidades secretoras e a hipoderme adaxial são comuns entre as espécies estudadas e são características típicas de Myrtaceae. A presença de três ou mais camadas de parênquima paliçádico e a ausência de esclerênquima são caracteres diagnósticos de P. guajava. A epiderme abaxial de Psidium cattleyanum e P. macahense possuem paredes curvas. Psidium corynanthum e P. macahense são as únicas espécies com paredes anticlinais sinuosas em ambos os lados da epiderme, sendo que todas as outras espécies têm paredes retas ou curvas. Os feixes vasculares bicolaterais abertos estão presentes em todas as espécies estudadas, exceto em P. guineense. Com exceção de P. cauliflorum, todas as espécies estudadas possuem drusas. A ausência de colênquima na face adaxial é exclusiva de P. ovale. A anatomia foliar de P. macahense, P. corynanthum, P. oligospermum e P. ovale é descrita pela primeira vez neste trabalho.

Palavras-chave
características anatômicas; angiospermas; caracteres quantitativos; UPGMA; taxonomia

Introduction

Psidium is the third largest genus of the angiosperm family Myrtaceae in Brazil, comprising about 65 species (Tuler et al. 2020Tuler AC, Proença CEB & Costa IR (2020) Psidium in Flora do Brasil 2020 (continuously updated). Jardim Botânico do Rio de Janeiro. Available at <http://reflora.jbrj.gov.br/reflora/floradobrasil/FB10853>. Access on 31 August 2021.
http://reflora.jbrj.gov.br/reflora/flora...
). Recent phylogenetic studies have demonstrated the genus to be monophyletic (Costa 2009Costa IR (2009) Estudos evolutivos em Myrtaceae: aspectos citotaxonômicos e filogenéticos em Myrteae, enfatizando Psidium e gêneros relacionados. PhD thesis. Universidade Estadual de Campinas, Campinas. 235p.; Vasconcelos et al. 2017Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, Campbell K, Costa IR, De-Carvalho PS, Faria JEQ, Giaretta A, Kooij PW, Lima DF, Mazine FF, Peguero B, Prenner G, Santos MF, Soewarto J, Wingler A & Lucas EJ (2017) Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution 109: 113-137.; Tuler et al. 2019Tuler AC, Carrijo TT, Sheu Y, Silva MF & Peixoto AL (2019) Re-establishment of Psidium macahense (Myrtaceae, Myrteae), an endemic species from the Brazilian Atlantic Forest. Phytotaxa 397: 34-44.), while recent taxonomic studies have improved species circumscription (e.g., Landrum & Sobral 2006Landrum LR & Sobral M (2006) Psidium cauliflorum (Myrtaceae), a new species from Bahia, Brazil. Sida 22: 927-929.; Landrum & Funch 2008Landrum LR & Funch LS (2008) Two new species of Psidium (Myrtaceae) from Bahia, Brazil. Novon 18: 74-77.; Soares-Silva & Proença 2011; Landrum & Proença 2015Landrum LR & Proença CEB (2015) A new species of Psidium (Myrtaceae) from Brazil. Brittonia 67: 324-327.; Landrum 2017Landrum LR (2017) The Genus Psidium (Myrtaceae) in the state of Bahia, Brazil. Canotia 13: 1-101.; Tuler et al. 2016Tuler AC, Peixoto AL & Proença CEB (2016) A new endangered species of Psidium (Myrtaceae, Myrteae) from Bahia, Brazil. Phytotaxa 288: 161-167., 2018Tuler AC, Proença CEB, Carrijo TT & Peixoto AL (2018) Typification and nomenclatural notes on Psidium cattleyanum (Myrtaceae). TAXON 67: 1194-1198. <https://doi.org/10.12705/676.17>.
https://doi.org/10.12705/676.17...
, 2019, 2020). However, many nomenclatural issues among species of the genus remain unclear. Although anatomical features are highly informative to taxonomic decisions among angiosperms (Metcalfe & Chalk 1979Metcalfe CR & Chalk L (1979) Anatomy of the dicotyledons. Clarendon Press, Oxford. 806p.; Dickison 2000Dickison WC (2000) Integrative plant anatomy. Academic, New York. 233p.; Olson 2005Olson ME (2005) Commentary: typology, homology, and homoplasy in comparative wood anatomy. IAWAJ 26: 507-522.), there exists little such information in the literature for species of Psidium (Gomes et al. 2009Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
https://doi.org/10.1590/S0102-3306200900...
; Al-Edany et al. 2012Al-Edany TY, Sahar AA & Al-Saadi M (2012) Taxonomic significance of anatomical characters in some species of the family Myrtaceae. American Journal of Plant Sciences 3: 572-581.; Oliveira et al. 2017Oliveira EF, Bezerra DG, Santos ML, Rezende MH & Paula JAM (2017) Leaf morphology and venation of Psidium species from the Brazilian Savanna. Revista Brasileira de Farmacognosia 27: 407-413.), especially considering the species richness of the genus.

Taxonomic revisions of Neotropical Eugenia (Hussin et al. 1992Hussin KH, Cutter DF & Moore DM (1992) Leaf Anatomical studies in Eugenia L. (Myrtaceae) species from Malay Peninsula. Botanical Journal of the Linnean Society 110: 137-156.; Cardoso & Sajo 2004Cardoso CMV & Sajo MG (2004) Vascularização foliar e a identificação de espécies de Eugenia L. (Myrtaceae) da bacia hidrográfica do Rio Tibagi, PR. Revista Brasileira de Botânica 27: 47-54.), Campomanesia (Oliveira et al. 2011Oliveira MIU, Funch LS, Santos FAR & Landrum LR (2011) Aplicação de caracteres morfoanatômicos foliares na taxonomia de Campomanesia Ruiz & Pavón (Myrtaceae). Acta Botanica Brasilica 25: 455-465.), and Myrcia, Myrceugenia and Plinia (González 2011González CC (2011) Arquitectura foliar de las especies de Myrtaceae nativas de la flora Argentina I: grupos “Myrcia”, “Myrceugenia” y “Plinia”. Boletín de la Sociedad Argentina de Botánica 46: 41-63.), briefly assessed leaf anatomical characters and indicated their significance for the systematics and taxonomy of these genera. The characteristics found to be most useful in distinguishing species of Myrtaceae are leaf venation pattern, vascular arch shape, presence and types of trichomes, form and arrangement of epidermal cells, and presence of secretory cavities.

Relatively few leaf anatomical studies have included species of Psidium (see Soares-Silva & Proença 2008Soares-Silva LH & Proença CEB (2008) A new species of Psidium L. (Myrtaceae) from southern, Brazil. Botanical Journal of the Linnean Society 158: 51-54.; Gomes et al. 2009Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
https://doi.org/10.1590/S0102-3306200900...
; Al-Edany et al. 2012Al-Edany TY, Sahar AA & Al-Saadi M (2012) Taxonomic significance of anatomical characters in some species of the family Myrtaceae. American Journal of Plant Sciences 3: 572-581.; Oliveira et al. 2017Oliveira EF, Bezerra DG, Santos ML, Rezende MH & Paula JAM (2017) Leaf morphology and venation of Psidium species from the Brazilian Savanna. Revista Brasileira de Farmacognosia 27: 407-413.). Amongst leaf anatomical characters common within the genus are uniseriate epidermis; hypostomatic leaves (amphistomatic in P. ratterianum; Proença et al. 2010Proença CEB, Soares-Silva LH, Tanno P & Fank-de-Carvalho SM (2010) Two new endemic species of Myrtaceae and an anatomical novelty from the Highlands of Brazil. Kew Bulletin 65: 466-468.), paracytic stomata and abundant tector trichomes on the abaxial surface and rare on the adaxial surface. Furthermore, the mesophyll is dorsiventral with one to three layers of palisade parenchyma and a compact arrangement of spongy parenchyma; the hypodermis is adaxial and formed by two continuous layers; the vascular bundle of the midvein is bicollateral and protected by lignified fibers; and subepidermal secretory cavities and prismatic crystals are present throughout the mesophyll.

Herein, we describe anatomical and micromorphological leaf characters of ten species of Psidium found in the Atlantic Forest of Brazil to determine whether anatomy can provide useful information for species taxonomy. Based on previous anatomical studies within Myrtaceae, we hypothesized that the arrangement of epidermal cells, vascular arch shape and the presence and type of trichomes to be the most distinctive characters among, but invariable within the studied species. Finally, we submitted the data to multivariate analysis to better determine those features that explain differences among species.

Material and Methods

The taxonomic sampling of this study included ten species of Psidium that occur in the Atlantic Forest of Brazil: P. cattleyanum Sabine, P. cauliflorum Landrum & Sobral, P. corynanthum (Kiaersk.) Burret, P. guajava L., P. guineense Sw., P. macahense O. Berg, P. myrtoides O. Berg, P. oligospermum Mart. ex DC., P. ovale (Spreng.) Burret., and P. sartorianum (O.Berg) Nied. (Tab. 1).

Table 1
The studied species of Psidium used in the epidermis analyses, and their respective collectors and collection numbers for the herbarium samples from which study material was obtained.

Study material was obtained from herbarium samples (VIES). Analyses were performed with completely expanded leaves of three different individuals per species (except to Psidium cauliflorum, P. oligospermum, P. sartorianum and P. corynanthum). The leaf samples were submitted to the reverse herborization process (Smith & Smith 1942Smith FH & Smith EC (1942) Anatomy of the inferior ovary of Darbya. American Journal of Botany 29: 464-471.) and boiled in distilled water for (ca.) 5 minutes. After cooling down to room temperature, the materials were distended in a 2% potassium hydroxide (KOH) solution (Smith & Smith 1942Smith FH & Smith EC (1942) Anatomy of the inferior ovary of Darbya. American Journal of Botany 29: 464-471.) for 2 hours, then washed 3 times in distilled water for 50 minutes, and stored in 70% ethanol (Johansen 1940Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co., New York. 523p.).

For analysis of the type of epidermis and stomata, the samples underwent diaphanization, for which they were clarified with 50% bleach and stained with alcoholic safranin (Johansen 1940Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co., New York. 523p.). The slides were mounted with glycerinated gelatin (Kaiser 1880Kaiser E (1880) Verfahren zur herstellung einer tadellosen glycerin-gelatine. Botanisch Zentralb, Stuttgart 180: 25-26.) and sealed with colorless enamels (Kraus & Arduin 1997Kraus JE & Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Seropédica. 111p.).

For the mesophyll analysis, transverse free-hand sections were cut from the apex, middle, and basal regions of the leaf blade, which were clarified in 50% sodium hypochlorite and stained with astrablue/safranin (9:1%) for 5 seconds. The sections were then mounted on slides using glycerinated gelatin and sealed with colorless nail polish (Kraus & Arduin 1997Kraus JE & Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Seropédica. 111p.). Morpho-anatomical analysis was performed using Leica DM2500 equipment with Leica MC170 HD image capture attached. The classification of structures followed the terminology of Metcalfe & Chalk (1979)Metcalfe CR & Chalk L (1979) Anatomy of the dicotyledons. Clarendon Press, Oxford. 806p..

Data analysis

A total of 31 leaf anatomical characters were used for statistical analysis (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>). A matrix was constructed using qualitative morphological (n = 23) and quantitative leaf characters (n = 8). Qualitative morphological character states were coded as 0 or 1 for absence and presence, respectively, since individuals of same species can possess different states. Each quantitative character represented the average of five measurements were expressed as recorded (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>).

The analysis was divided into three approaches. (1) Gower’s dissimilarity coefficient (Legendre & Legendre 2012Legendre R & Legendre L (2012) Numerical ecology. Elsevier, Amsterdam. 852p.) is used for mixed data and was applied here since it does not consider the absence of data as evidence of dissimilarity between taxa. (2) Cluster analysis was performed using the unweighted pair group method with arithmetic mean (UPGMA), with the Mantel test being used to compare the relationship between the original matrix and the distance matrix (Borcard et al. 2018Borcard D, Gillet F & Legendre P (2018) Ecologia numérica com R. Springer, Nova York. Pp. 313-315.; Legendre & Legendre 2012Legendre R & Legendre L (2012) Numerical ecology. Elsevier, Amsterdam. 852p.). (3) A heat map (Hummel et al. 2017Hummel M, Edelmann D & Kopp-Schneider A (2017) CluMix: clustering and visualization of mixed-type data. R package version 2.1. Available at <https://cran.r-project.org/web/packages/CluMix/index.html>. Access on 16 June 2021.
https://cran.r-project.org/web/packages/...
) was generated to represent clusters through the association between variables and species, represented on a numerical scale ranging from 0 (no association) to 1 (association), with stronger associations having darker colors. The heat map was produced using the distance matrix obtained with the Gower method and the morphological data matrix. All data analyses were developed in the R environment (R Core Team 2020R development core team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at <https://cran.r-project.org/>. Access on 16 June 2021.
https://cran.r-project.org/...
), using the packages Vegan (Oksanen et al. 2020Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P & McGlinn D (2020) Vegan: community ecology package. Version 2.5.7. Available at <https://cran.r-project.org/web/packages/vegan/index.html>. Access on 24 February 2020.
https://cran.r-project.org/web/packages/...
) and Cluster (Maechler et al. 2020Maechler M, Rousseeuw P, Struyf A, Hubert M & Hornik K (2020) Cluster analysis basics and extensions. R packageversion 2.0.7-1. Available at <https://cran.r-project.org/web/packages/cluster/index.html>. Access on 16 June 2021.
https://cran.r-project.org/web/packages/...
).

Results

The matrix of morphological character states (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>) is descriptive and provides a summary of the examined characters.

Leaf morphoanatomy

Psidium guajava, P. guineense and P. myrtoides have non-ramified unicellular tector trichomes (Fig. 1a) on both sides of the leaf (Fig. 1a); P. cattleyanum, P. cauliflorum and P. sartorianum only have non-ramified unicellular tector trichomes on the adaxial surface; P. oligospermum, P. corynanthum, P. ovale and P. macahense did not present trichomes or are glabrescent.

Figure 1
a-f. Epidermal cells (front view) of species of Psidium - a-b. Psidium guajava - a. abaxial surface with non-ramified unicellular tector trichomes and straight anticlinal cell walls; b. adaxial surface with non-ramified unicellular tector trichomes and straight anticlinal cell walls; c. P. cattleyanum - adaxial surface with straight anticlinal cell walls; d-e. P. ovale - adaxial surface with sinuous walls; f. P. myrtoides - abaxial surface with paracytic stomata (arrow) and sinuous walls, adaxial surface with straight walls. Scale bars = 50 µm.

In adaxial view, the epidermal cells of P. guajava and P. guineense have straight walls on both sides (Fig. 1b); P. cattleyanum has straight to curved walls on the adaxial surface and straight walls on the abaxial surface (Fig. 1c); P. sartorianum and P. ovale have straight walls on the adaxial surface (Fig. 1d-e) and straight slightly sinuous to sinuous walls on the abaxial surface; P. oligospermum and P. myrtoides have straight walls on the adaxial surface, and straight to slightly sinuous walls on the abaxial surface; P. corynanthum has slightly sinuous and sinuous anticlinal walls on both sides of the epidermis; P. cauliflorum has straight sinuous walls on the adaxial surface and slightly sinuous to sinuous walls on the abaxial surface; P. macahense has sinuous walls on the adaxial surface and curved to sinuous walls on the abaxial surface. All the analyzed leaves are hypostomatic and have paracytic stomata (Fig. 1f).

Mesophyll and midrib region

In transverse section, all the studied species have a uniseriate epidermis (Fig. 2). Below the epidermis on the adaxial face are two to three layers of cells with anticlinal walls that are higher than the other cells in the epidermis (Fig. 2a-d). The mesophyll is dorsiventral with one to three layers of palisade parenchyma and a compact arrangement of spongy parenchyma (Fig. 2a-d). Psidium oligospermum and P. myrtoides have one layer of palisade parenchyma (Fig. 2c); P. ovale varies between one and two layers (Fig. 2d); P. corynanthum, P. guineense, P. cauliflorum and P. sartorianum have two layers; and P. cattleyanum, P. guajava and P. macahense have three (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>).

Figure 2
a-f. Cross sections of leaf blade - a. Psidium guajava - three subepidermal layers (hypodermis) and three layers of palisade parenchyma and spongy parenchyma, secretory cavity in the abaxial face; b. P. sartorianum - two subepidermal layers (hypodermis), druse (arrow) and prismatic crystals; c. P. oligospermum - uniseriate hypodermis, druse (arrow); d. P. ovale - dorsiventral mesophyll, secretory cavity (arrow); e. P. myrtoides - vascular cylinder in the midrib region; f. P. guineense - detail of closed bicollateral vascular bundle (arrows). (hp = hypodermis; sp = spongy parenchyma; ph = phloem; pp = palisade parenchyma; sc = secretory cavity; xy = xylem. Scale bars: a-c = 100 µm; d, e, f = 200 µm.

All the studied species have secretory cavities in the epidermis (Fig. 2a-b,e,g) and prismatic crystals associated with the vascular bundle. Druses are present in the mesophyll of all species (Fig. 2a-b) except for P. cauliflorum.

The shape of the midrib of all the studied species is flat-convex (Fig. 2e). Some layers of angular collenchyma are found in both faces of all species (Fig. 2f) except for P. ovale, for which they are on the abaxial face. The collenchyma thickness varies among species (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>). Open bicollateral vascular bundle are present in all species (Fig. 2e) except for P. guineense it is closed (Fig. 2f).

Cluster analysis (UPGMA) and heat map

Cluster analysis based on presence/absence data (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>), followed by the partition test, revealed two distinct groups. Group 1, the larger group, includes P. cattleyanum, P. macahense, P. corynanthum, P. cauliflorum, P. sartorianum, P.ovale, P. oligospermum and P. myrtoides, whereas Group 2 includes P. guajava and P. guineense (Fig. 3).

Figure 3
Grouping of species of Psidium based on 31 leaf anatomical characters. (Pca = P. cauliflorum; Pcat = Psidium cattleyanum; Pcor = P. corynanthum; Pgua = P. guajava; Pgui = P. guineense; Pmac = P. macahense; Pmyr = P. myrtoides; Pol = P. oligospermum; Pov = P. ovale; Psa = P. sartorianum.

A binary data matrix of the qualitative and quantitative leaf characters was constructed and submitted to grouping analysis for the ten species (horizontal grouping) and for the characters (vertical grouping) in the heat map (Fig. 4). The resulting grouping of 31 characters (Fig. 4, vertical) revealed a group of characters conserved in all or almost all species.

Figure 4
Heat map of 31 leaf anatomical characters of Psidium. The lighter colors (orange) represent weaker associations, darker colors (edge) represent stronger associations. (Pca = P. cauliflorum; Pcat = Psidium cattleyanum; Pcor = P. corynanthum; Pgua = P. guajava; Pgui = P. guineense; Pmac = P. macahense; Pmyr = P. myrtoides; Pol = P. oligospermum; Pov = P. ovale; Psa = P. sartorianum.

The more variable characters were quantitative (epidermis, palisade parenchyma, spongy parenchyma, collenchyma, and hypoderm thickness), as represented in the heat map (Fig. 4).

The heat map showed identical profiles among the qualitative characters. Thus, no significant differences were found among species (number of layers of epidermis, presence of cuticle, presence of prismatic crystals, presence of secretory cavities, midrib flat-convex, bicollateral vascular bundles, paracytic stomata and hypostomatic leaves), while others have almost identical profiles but with exclusive characteristics in relation to the other species. Psidium guajava, P. cattleyanum and P. macahense are the only species to have three or more layers of palisade parenchyma. The absence of sclerenchyma is an exclusive characteristic of P. guajava.

Psidium cattleyanum, P. guajava and P. guineense have two or more layers of hypodermis on the adaxial face, whereas all other species have a single layer of hypodermis. Psidium cattleyanum and P. macahense have curved walls on the abaxial epidermis (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>).

Psidium oligospermum, P. corynanthum, P. ovale and P. macahense lack non-ramified unicellular tector trichomes in the adaxial epidermis, whereas all other species have them present. Psidium corynanthum and P. macahense are the only species that have slightly sinuous and sinuous anticlinal walls on both sides of the epidermis, with all other species having straight or curved walls.

Open bicollateral vascular bundle is present for all species except for P. guineense. All the studied species possess druses except P. cauliflorum. All species also have bicollateral collenchyma except Psidium ovale, which lacks it adaxially (Tab. S1, available on supplementary material <https://doi.org/10.6084/m9.figshare.22253401.v1>).

Discussion

Uniseriate epidermis, cuticle, hypodermis in the adaxial side, paracytic stomata and secretory cavities were found in all species of Psidium studied here and are common within other genera of Myrtaceae (Machado et al. 1987Machado RD, Costa CG & Fontenelle GB (1987) Anatomia foliar de Eugenia sulcata Spring ex Mart. (Myrtaceae). Acta Botanica Brasilica 1: 275-285.; Medeiros 2000Medeiros JD (2000) Anatomia foliar de Eugenia umbelliflora Berg. (Myrtaceae). Biotemas 13: 7-20.; Donato & Morretes 2009Donato AM & Morretes BL (2009) Anatomia foliar de Eugenia florida DC. (Myrtaceae). Revista Brasileira de Farmacognosia 19: 759-770., 2011Donato AM & Morretes BL (2011) Morfo-anatomia foliar de Myrcia multiflora (Lam.) DC. Myrtaceae. Revista Brasileira de plantas medicinais 13: 43-51., 2013Donato AM & Morretes BL (2013) Plinia edulis - leaf architecture and scanning electron micrographs. Revista Brasileira de Farmacognosia 23: 410-418.; Pacheco-Silva & Donato 2016Pacheco-Silva NV & Donato AM (2016) Morpho-anatomy of the leaf of Myrciaria glomerata. Revista Brasileira de Farmacognosia 26: 275-280.; et al. 2016Sá RD, Santana ASCO & Randau KP (2016) Caracterização anatômica e histoquímica das folhas de Eugenia uniflora L. Journal of Environmental Analysis and Progress 1: 96-105.).

Hypostomatic leaves (amphistomatic in P. ratterianum; Proença et al. 2010Proença CEB, Soares-Silva LH, Tanno P & Fank-de-Carvalho SM (2010) Two new endemic species of Myrtaceae and an anatomical novelty from the Highlands of Brazil. Kew Bulletin 65: 466-468.), and paracytic stomata are common within Myrtaceae, having been reported in Eugenia, (Behar 1971Behar L (1971) Dados sobre transpiração e anatomia foliar de Eugenia uniflora L. Ciência e Cultura 23: 273-284.; Palhares 2003Palhares D (2003) Caracterização farmacognóstica das folhas de Eugenia dysenterica DC. (Myrtaceae Jussieu). Revista Lecta 21: 29-36.; Alves et al. 2008Alves ES, Tresmondi F & Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Botanica Brasilica 22: 241-248.; Donato & Morretes 2009Donato AM & Morretes BL (2009) Anatomia foliar de Eugenia florida DC. (Myrtaceae). Revista Brasileira de Farmacognosia 19: 759-770.), Myrcia (Gomes et al. 2009Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
https://doi.org/10.1590/S0102-3306200900...
; Donato & Morretes 2011Donato AM & Morretes BL (2011) Morfo-anatomia foliar de Myrcia multiflora (Lam.) DC. Myrtaceae. Revista Brasileira de plantas medicinais 13: 43-51.) and Plinia (Donato & Morretes 2013Donato AM & Morretes BL (2013) Plinia edulis - leaf architecture and scanning electron micrographs. Revista Brasileira de Farmacognosia 23: 410-418.) and all the species of Psidium studied here. Our results confirm literature records of hypostomatic leaves, thus increasing the number of studied species. This trait was also found in species adapted to the interior of the Atlantic Forest (Barros et al. 1997Barros CF, Callado CH, Cunha M, Costa CG, Pugialli HRL, Marquete O & Machado RD (1997) Anatomia ecológica e micromorfologia foliar de espécies de floresta montana na Reserva Ecológica de Macaé de Cima. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 275-296.) and is recognized as a strategy related to luminosity and periods of water scarcity by reducing transpiration rates (Dickison 2000Dickison WC (2000) Integrative plant anatomy. Academic, New York. 233p.).

Dorsiventral mesophyll is typical of the family Myrtaceae (Keating 1984) and was found in most of the species of Psidium studied here. Duarte & Paula (2005)Duarte MR & Paula FM (2005) Morpho-diagnosis of Psidium guajava L., Myrtaceae. Visão Acadêmica, Curitiba 6: 53-60. and Gomes et al. (2009)Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
https://doi.org/10.1590/S0102-3306200900...
observed this same pattern of subepidermal cells in P. guajava and other species of Myrtaceae, respectively, and characterized them as hypodermis. However, the authors cite the need for ontogenetic study of this tissue to know its origin since, unlike epidermal cells, which originate from the protoderm, cells of the hypodermis originate from ground tissue (Esau 1965Esau K (1965) Plant Anatomy. 2nd ed. John Wiley & Sons, New York. 767p.).

Secretory cavities are abundant in all tissues and have variable dimensions. Volatile oils produced by secretory cavities in Myrtaceae have been identified as flavonoids and terpenoids (Wollenweber et al. 2000Wollenweber E, Wehde R, Dörr M, Lang GJ & Stevens JF (2000) C-Methyl-flavonoids from the leaf waxes of some Myrtaceae. Phytochemistry 55: 965-970.; Díaz-de-Cerio et al. 2017Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A & Segura-Carretero A (2017) Health effects of Psidium guajava L. leaves: an overview of the last decade. International Journal of Molecular Sciences 18: 897. DOI: 10.3390/ijms18040897
https://doi.org/10.3390/ijms18040897...
). They are important in the interaction between plants and their biotic environment, as they are involved in defense against herbivory (Van Poecke et al. 2001Van Poecke RMP, Posthumus MA & Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology 275: 1911-1928.; Matsuki et al. 2011Matsuki M, Kay N, Serin J & Scott JK (2011) Variation in the ability of larvae of phytophagous insects to develop on evolutionarily unfamiliar plants: a study with gypsy moth Lymantria dispar and Eucalyptus. Agricultural and Forest Entomology 13: 1-13.) and pathogens (Levin 1976Levin DA (1976) Alkaloid-bearing plants: an ecogeographic perspective. American Naturalist 110: 261-284.), in addition to attracting pollinators (Pichersky & Gershenzon 2002Pichersk E & Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5: 237-243.).

Druses occur throughout the palisade and spongy parenchyma of the studied species except for P. cauliforum. Druses are widely present in a diverse array of vegetative and reproductive structures in several genera of Myrtaceae, (Donato & Morretes 2007Donato AM & Morretes BL (2007) Anatomia foliar de Eugenia brasiliensis Lam. (Myrtaceae) proveniente de áreas de restinga e de floresta. Revista Brasileira de Farmacognosia 17: 426-443.; Alves et al. 2008Alves ES, Tresmondi F & Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Botanica Brasilica 22: 241-248.; Cardoso et al. 2009Cardoso C, Proença SL & Sajo MG (2009) Foliar anatomy of the subfamily Myrtoideae (Myrtaceae). Australian Journal of Botany 57: 148-161.; Gomes et al. 2009Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
https://doi.org/10.1590/S0102-3306200900...
). The presence of small crystals in vascular plants is related to the removal of oxalate from the metabolic system and the storage of calcium (Franceschi & Nakata 2005Franceschi VR & Nakata PA (2005) Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56: 41-71.; Korth et al. 2006Korth KL, Doege SJ, Park S, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L & Nakata PA (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiology 141: 188-195.).

Multivariate analysis revealed quantitative micromorphological leaf characteristics that were informative in differentiating almost all the studied species.

Group 1 gathered the largest number of species and although they share many characteristics they still have unique features that can be used for identification. Group 2 includes Psidium guajava and P. guineense, which are characterized by the combination of three layers of hypodermis on the adaxial face, tector trichomes on the abaxial face and the absence of an open vascular bundle. In addition, P. guajava is the only species that does not possess sclerenchyma, while the vascular bundles of P. guineense are completely circled by sclerenchyma.

The quantitative anatomical characters studied here varied more among species than the qualitative characters, making them more useful delimiting the genus. Phenotypic plasticity may have contributed to the variation found in tissue thickness, although this cannot be stated with certainty as no studies have evaluated this factor.

Quantitative leaf anatomical characters showed potential to segregate species of Psidium. Incorporating these morpho-anatomical findings into future studies, particularly phylogenetic analyses, may provide a better understanding of the evolution of the genus. Further studies, including a broader sampling of species, are needed towards this possibility.

Acknowledgements

We thank UFES, for logistical support. TT Carrijo thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for the research grant “Bolsa de Produtividade”; and Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES), for the research grant “Taxa de Pesquisa”. We also thank VIES herbaria (curator Valquíria Ferreira Dutra), for loaning material. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES) - Finance Code 001.

References

  • Al-Edany TY, Sahar AA & Al-Saadi M (2012) Taxonomic significance of anatomical characters in some species of the family Myrtaceae. American Journal of Plant Sciences 3: 572-581.
  • Alves ES, Tresmondi F & Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Botanica Brasilica 22: 241-248.
  • Barros CF, Callado CH, Cunha M, Costa CG, Pugialli HRL, Marquete O & Machado RD (1997) Anatomia ecológica e micromorfologia foliar de espécies de floresta montana na Reserva Ecológica de Macaé de Cima. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 275-296.
  • Behar L (1971) Dados sobre transpiração e anatomia foliar de Eugenia uniflora L. Ciência e Cultura 23: 273-284.
  • Borcard D, Gillet F & Legendre P (2018) Ecologia numérica com R. Springer, Nova York. Pp. 313-315.
  • Cardoso C, Proença SL & Sajo MG (2009) Foliar anatomy of the subfamily Myrtoideae (Myrtaceae). Australian Journal of Botany 57: 148-161.
  • Cardoso CMV & Sajo MG (2004) Vascularização foliar e a identificação de espécies de Eugenia L. (Myrtaceae) da bacia hidrográfica do Rio Tibagi, PR. Revista Brasileira de Botânica 27: 47-54.
  • Costa IR (2009) Estudos evolutivos em Myrtaceae: aspectos citotaxonômicos e filogenéticos em Myrteae, enfatizando Psidium e gêneros relacionados. PhD thesis. Universidade Estadual de Campinas, Campinas. 235p.
  • Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A & Segura-Carretero A (2017) Health effects of Psidium guajava L. leaves: an overview of the last decade. International Journal of Molecular Sciences 18: 897. DOI: 10.3390/ijms18040897
    » https://doi.org/10.3390/ijms18040897
  • Dickison WC (2000) Integrative plant anatomy. Academic, New York. 233p.
  • Donato AM & Morretes BL (2007) Anatomia foliar de Eugenia brasiliensis Lam. (Myrtaceae) proveniente de áreas de restinga e de floresta. Revista Brasileira de Farmacognosia 17: 426-443.
  • Donato AM & Morretes BL (2009) Anatomia foliar de Eugenia florida DC. (Myrtaceae). Revista Brasileira de Farmacognosia 19: 759-770.
  • Donato AM & Morretes BL (2011) Morfo-anatomia foliar de Myrcia multiflora (Lam.) DC. Myrtaceae. Revista Brasileira de plantas medicinais 13: 43-51.
  • Donato AM & Morretes BL (2013) Plinia edulis - leaf architecture and scanning electron micrographs. Revista Brasileira de Farmacognosia 23: 410-418.
  • Duarte MR & Paula FM (2005) Morpho-diagnosis of Psidium guajava L., Myrtaceae. Visão Acadêmica, Curitiba 6: 53-60.
  • Esau K (1965) Plant Anatomy. 2nd ed. John Wiley & Sons, New York. 767p.
  • Franceschi VR & Nakata PA (2005) Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56: 41-71.
  • Gomes SM, Somavilla NSDN, Gomes-Bezerra KM, Miranda SDC, Carvalho PS & Graciano-Ribeiro D (2009) Anatomia foliar de espécies de Myrtaceae: contribuições à taxonomia e filogenia. Acta Botanica Brasilica 23: 224-238. <https://doi.org/10.1590/S0102-33062009000100024>
    » https://doi.org/10.1590/S0102-33062009000100024
  • González CC (2011) Arquitectura foliar de las especies de Myrtaceae nativas de la flora Argentina I: grupos “Myrcia”, “Myrceugenia” y “Plinia”. Boletín de la Sociedad Argentina de Botánica 46: 41-63.
  • Hummel M, Edelmann D & Kopp-Schneider A (2017) CluMix: clustering and visualization of mixed-type data. R package version 2.1. Available at <https://cran.r-project.org/web/packages/CluMix/index.html>. Access on 16 June 2021.
    » https://cran.r-project.org/web/packages/CluMix/index.html
  • Hussin KH, Cutter DF & Moore DM (1992) Leaf Anatomical studies in Eugenia L. (Myrtaceae) species from Malay Peninsula. Botanical Journal of the Linnean Society 110: 137-156.
  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co., New York. 523p.
  • Kaiser E (1880) Verfahren zur herstellung einer tadellosen glycerin-gelatine. Botanisch Zentralb, Stuttgart 180: 25-26.
  • Korth KL, Doege SJ, Park S, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L & Nakata PA (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiology 141: 188-195.
  • Kraus JE & Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Seropédica. 111p.
  • Landrum LR (2017) The Genus Psidium (Myrtaceae) in the state of Bahia, Brazil. Canotia 13: 1-101.
  • Landrum LR & Funch LS (2008) Two new species of Psidium (Myrtaceae) from Bahia, Brazil. Novon 18: 74-77.
  • Landrum LR & Proença CEB (2015) A new species of Psidium (Myrtaceae) from Brazil. Brittonia 67: 324-327.
  • Landrum LR & Sobral M (2006) Psidium cauliflorum (Myrtaceae), a new species from Bahia, Brazil. Sida 22: 927-929.
  • Legendre R & Legendre L (2012) Numerical ecology. Elsevier, Amsterdam. 852p.
  • Levin DA (1976) Alkaloid-bearing plants: an ecogeographic perspective. American Naturalist 110: 261-284.
  • Machado RD, Costa CG & Fontenelle GB (1987) Anatomia foliar de Eugenia sulcata Spring ex Mart. (Myrtaceae). Acta Botanica Brasilica 1: 275-285.
  • Maechler M, Rousseeuw P, Struyf A, Hubert M & Hornik K (2020) Cluster analysis basics and extensions. R packageversion 2.0.7-1. Available at <https://cran.r-project.org/web/packages/cluster/index.html>. Access on 16 June 2021.
    » https://cran.r-project.org/web/packages/cluster/index.html
  • Matsuki M, Kay N, Serin J & Scott JK (2011) Variation in the ability of larvae of phytophagous insects to develop on evolutionarily unfamiliar plants: a study with gypsy moth Lymantria dispar and Eucalyptus Agricultural and Forest Entomology 13: 1-13.
  • Medeiros JD (2000) Anatomia foliar de Eugenia umbelliflora Berg. (Myrtaceae). Biotemas 13: 7-20.
  • Metcalfe CR & Chalk L (1979) Anatomy of the dicotyledons. Clarendon Press, Oxford. 806p.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P & McGlinn D (2020) Vegan: community ecology package. Version 2.5.7. Available at <https://cran.r-project.org/web/packages/vegan/index.html>. Access on 24 February 2020.
    » https://cran.r-project.org/web/packages/vegan/index.html
  • Olson ME (2005) Commentary: typology, homology, and homoplasy in comparative wood anatomy. IAWAJ 26: 507-522.
  • Oliveira MIU, Funch LS, Santos FAR & Landrum LR (2011) Aplicação de caracteres morfoanatômicos foliares na taxonomia de Campomanesia Ruiz & Pavón (Myrtaceae). Acta Botanica Brasilica 25: 455-465.
  • Oliveira EF, Bezerra DG, Santos ML, Rezende MH & Paula JAM (2017) Leaf morphology and venation of Psidium species from the Brazilian Savanna. Revista Brasileira de Farmacognosia 27: 407-413.
  • Pacheco-Silva NV & Donato AM (2016) Morpho-anatomy of the leaf of Myrciaria glomerata Revista Brasileira de Farmacognosia 26: 275-280.
  • Palhares D (2003) Caracterização farmacognóstica das folhas de Eugenia dysenterica DC. (Myrtaceae Jussieu). Revista Lecta 21: 29-36.
  • Pichersk E & Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5: 237-243.
  • Proença CEB, Soares-Silva LH, Tanno P & Fank-de-Carvalho SM (2010) Two new endemic species of Myrtaceae and an anatomical novelty from the Highlands of Brazil. Kew Bulletin 65: 466-468.
  • R development core team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at <https://cran.r-project.org/>. Access on 16 June 2021.
    » https://cran.r-project.org/
  • Smith FH & Smith EC (1942) Anatomy of the inferior ovary of Darbya American Journal of Botany 29: 464-471.
  • Sá RD, Santana ASCO & Randau KP (2016) Caracterização anatômica e histoquímica das folhas de Eugenia uniflora L. Journal of Environmental Analysis and Progress 1: 96-105.
  • Soares-Silva LH & Proença CEB (2008) A new species of Psidium L. (Myrtaceae) from southern, Brazil. Botanical Journal of the Linnean Society 158: 51-54.
  • Tuler AC, Peixoto AL & Proença CEB (2016) A new endangered species of Psidium (Myrtaceae, Myrteae) from Bahia, Brazil. Phytotaxa 288: 161-167.
  • Tuler AC, Carrijo TT, Sheu Y, Silva MF & Peixoto AL (2019) Re-establishment of Psidium macahense (Myrtaceae, Myrteae), an endemic species from the Brazilian Atlantic Forest. Phytotaxa 397: 34-44.
  • Tuler AC, Proença CEB & Costa IR (2020) Psidium in Flora do Brasil 2020 (continuously updated). Jardim Botânico do Rio de Janeiro. Available at <http://reflora.jbrj.gov.br/reflora/floradobrasil/FB10853>. Access on 31 August 2021.
    » http://reflora.jbrj.gov.br/reflora/floradobrasil/FB10853
  • Tuler AC, Proença CEB, Carrijo TT & Peixoto AL (2018) Typification and nomenclatural notes on Psidium cattleyanum (Myrtaceae). TAXON 67: 1194-1198. <https://doi.org/10.12705/676.17>.
    » https://doi.org/10.12705/676.17
  • Van Poecke RMP, Posthumus MA & Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology 275: 1911-1928.
  • Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, Campbell K, Costa IR, De-Carvalho PS, Faria JEQ, Giaretta A, Kooij PW, Lima DF, Mazine FF, Peguero B, Prenner G, Santos MF, Soewarto J, Wingler A & Lucas EJ (2017) Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution 109: 113-137.
  • Wollenweber E, Wehde R, Dörr M, Lang GJ & Stevens JF (2000) C-Methyl-flavonoids from the leaf waxes of some Myrtaceae. Phytochemistry 55: 965-970.

Edited by

Area Editor: Dr. João Paulo Basso-Alves

Publication Dates

  • Publication in this collection
    17 Apr 2023
  • Date of issue
    2023

History

  • Received
    07 Apr 2022
  • Accepted
    07 Oct 2022
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br