Acessibilidade / Reportar erro

Propriedades da madeira de reação

Properties of reaction wood

Resumos

A complexidade dos processos de formação, estruturação e orientação do lenho de reação origina estudos buscando relacionar implicações tecnológicas da madeira. Em coníferas e folhosas, a madeira de reação é reflexo das diferenças químicas, físicas e anatômicas, recebendo denominações específicas. As diferentes características peculiares ao lenho de reação influenciam nas propriedades físicas, químicas, anatômicas e mecânicas, podendo limitar seu uso, com tais implicações ainda sendo ignoradas.

madeira de compressão; madeira de tração; lenho


The complexity of the formation, structure and orientation of reaction wood is the reason for studying the interaction between technological properties. In both softwoods and hardwoods, reaction wood reflects the chemical, physical and anatomic differences, receiving specific denominations. The specific characteristics of reaction wood influence the physical, chemical, anatomical and mechanical properties of wood and may be a limiting utilization factor - this fact is still often ignored.

compression wood; tension wood; wood


  • Abdel-Aal MA, Nasser RA, Al-Mefarrej HA. Comparative Study on Tension and Opposite woods of some species grown under Saudia Arabia condition. Middle-East Journal of Scientific research 2011; 7(4): 490-496.
  • Aguayo MG, Quintupill L, Castillo R, Baeza J, Freer J, Mendonça RT. Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8-year old Eucalyptus globulus. Maderas, Ciencia y Tecnología 2010; 12(3): 241-252.
  • Albuquerque CEC, Latorraca JVF. Influência das características anatômicas da madeira na penetração e adesão de adesivos. Floresta e Ambiente 2000; 7(1): 158-166.
  • Badia MA, Mothe F, Constant T, Nepveu G. Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Forest Science 2005; (62): 43-49.
  • Bailléres H, Marielle C, Monties B, Pollet B, Lapierre C. Lignin structure in Buxus sempervirens reaction wood. Phytochemistry 1997; 44(1): 35-39. http://dx.doi.org/10.1016/S0031-9422(96)00499-2
  • Bamber RK. A general theory for the origin of growth stresses in reaction wood: how trees stay upright. International Association of Wood Anatomists Journal 2001; 22(3): 205-212.
  • Bleile K. Vorkommen und Analyse von Zugholz bei Buche (Fagus sylvatica L.) als Ursache von Spannungen im Rundholz und Verwerfungen des Schnittholzes [thesis]. Freiburg: Universidade de Freiburg; 2006. 174 p.
  • Bowling AJ, Vaughn KC. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. American Journal of Botany 2008; 95(6): 655-663. PMid:21632390. http://dx.doi.org/10.3732/ajb.2007368
  • Clair B, Alméras T, Pilate G, Jullien D, Sugiyama J, Riekel C. Maturation Stress Generation in Poplar Tension Wood studied by Synchrotron Radiation Microdiffraction. Plant Physiology 2010; 152(3): 1650-1658. PMid:20071605 PMCid:2832242. http://dx.doi.org/10.1104/pp.109.149542
  • Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M. Tension wood and opposite wood in 21 tropical rain forest species: occurrence and efficiency of the G-layer. International Association of Wood Anatomists Journal 2006; 27(3): 329-338.
  • Diaz-vaz JE, Ananías RA, Rodriguez S, Torres M, Fernández A, Poblete H. Compression wood in Pinus radiata II:density and chemical composition. Maderas, Ciencia y Tecnologia 2009; 11(2): 139-152.
  • Dunham RA, Cameron AD. Crow, Stem and Wood properties of Wind-damaged and undamaged Sitka spruce. Forest Ecology and Management 2000; (135): 73-81. http://dx.doi.org/10.1016/S0378-1127(00)00299-1
  • Ferreira S, Lima JT, Trugilho PF, Monteiro TC. Excentricidade da medula em clones de Eucalyptus cultivados em diferentes topografias. Cerne 2008; 14(4): 335-340.
  • Grosser D. Defeitos de Madeira Curitiba: Fupef; 1980. 62 p. (Série Técnica, n. 2).
  • Heinrich I, Gärtnert H. Variations in tension wood broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. International Journal of Plant Sciences 2008; 169(7): 928-936. http://dx.doi.org/10.1086/589695
  • Jin H, Kwon M. Mechanical bending induces tension wood formation with reduced lignin biosynthesis in Liriodendron tulipifera Journal of Wood Science 2009; 55.(6): 401-408. http://dx.doi.org/10.1007/s10086-009-1053-1
  • Klock U, Muñiz GIB, Hernandez JÁ, Andrade AS. Química da madeira 3. ed. Curitiba: FUPEF; 2005. 85 p.
  • Kollman FFP, Côté WA. Principles of wood science and technology New York: Springer-Verlag; 1968. v. 1, 592 p. http://dx.doi.org/10.1007/978-3-642-87928-9
  • Kübler H. Growth stresses in trees and related wood properties. Forestry-Abstracts 1987; 48(3): 131-189.
  • Kwon M. Lignan biosynthesis: implications for cell wall lignifications and secondary xylem formation in woody plants [thesis]. Washington State University; 2000. 246 p.
  • Latorraca JVF, Albuquerque CEC. Efeito do rápido crescimento sobre as propriedades da madeira. Floresta e Ambiente 2000; 7(1): 279-291.
  • Manso MM. Biomass estimation in the forest - a FONDEF project in Chile as a case of study [thesis]. Freiburg: Universidade de Freiburg; 2003.
  • Mattheck C, Kübler H. Wood - the internal optimization of trees. Berlin: Springer Verlag; 1998. v. 1, 129 p.
  • Monteiro TC, Silva RV, Lima JT, Baraúna EEP, Carvalho DM, Lima MT. Influência do lenho de tração nas propriedades físicas da madeira de Eucalyptus sp. Journal of Biotechnology and Biodiversity Gurupi 2010; 1(1): 6-11.
  • Morohoshi N, Sakakibara A. The chemical composition of reaction wood I. Mokuzai Gakkaishi 1971; 17: 393-399.
  • Oliveira JTS, Braz RL, Motta JP, Duarte APC, Rosado AM. Ações de ventos em povoamentos florestais. In: Chichorro JF, Garcia GO, Bauer MO, Caldeira MVW. Tópicos em Ciências Florestais. Alegre: Suprema, 2010. cap. 17, p. 443-476.
  • Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR . Growth stresses in tension wood - role of microfibrils and lignification. Annales des Science Forestière 1994; 51(3): 291-300. http://dx.doi.org/10.1051/forest:19940308
  • Pelz S. Eigenschaften und Verwendung des Holzes der Europäischen Lärche (Larix decidua Mill. ) unter besonderer Berücksichtigung des Reaktionsholzes [thesis]. Freiburg: Universidade de Freiburg; 2002. 279 p.
  • Panshin AJ, De Zeeuw C. Textbook of technology 4th ed. New York: McGraw Hill; 1980. 705 p.
  • Peña SV, Peris FJJ. Tecnología de la Madera Madrid: Ministerio de Agricultura Pesca y Alimentación - MAPA; 1996. 602 p.
  • Rodrigues J, Graça J, Pereira H. Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globules wood lignin assessed by analytical pyrolisis. Jounal of Analytical and Applied Pyrolysis 2001; (58-59): 481-489.
  • Sousa LC. Caracterização da madeira de tração em Eucalyptusgrandis e sua influência na produção de polpa celulósica [dissertação]. Viçosa: Universidade Federal de Viçosa; 2004. 2004. 77 p.
  • Tarmian A, Remond R, Faezipour M, Karimi A, Perré P. Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies Wood Science and Technology 2008; 43(1-2): 113-130. http://dx.doi.org/10.1007/s00226-008-0230-5
  • Timell TE. The chemical composition of tension wood New York; 1969. p. 173-181.
  • Timell TE. Compression Wood in Gyminosperms New York: Springer-Verlag; 1986. v. 1, 706 p.
  • Tisoumis GT. Wood as raw material: Source, Structure, Chemical Composition, Growth, Degradadion and Identification. New York: Pergamon Press; 1978. 276 p.
  • Tomazello Filho M. Análise da madeira de compressão em Pinus oocarpa: estrutura anatômica e quantificação. Boletim técnico IPEF 1987; (37): 61-68.
  • Tomazello Filho M, Silva DA. Formação e caracterização da madeira de compressão em Pinus caribaea var. hondurensis Boletim técnico IPEF 1987; (37): 51-59.
  • Wang Y, Gril J, Clair B, Minato K, Sugiyama J. Wood properties and chemical composition of the eccentric growth branch of Viburnum odoratissimum var. awabuki Trees 2010; 24(3): 541-549. http://dx.doi.org/10.1007/s00468-010-0425-x
  • Warensjö M. Compression wood in Scots pine and Norway spruce: distribution in relation to external geometry and the impact on the dimensional stability in sawn wood [thesis]. Swedish University of Agricultural Science; 2003.
  • Washusen R, Ades P, Evans R, Ilic J, Vinden P. Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulusLabill. Holzforschung 2001; 55: 176-182. http://dx.doi.org/10.1515/HF.2001.029
  • Washusen RK. The occurrence and characteristics of tension wood and associated wood properties in Eucalyptus globulus Labill [thesis]. Melbourne: University of Melbourne; 2000. 254 p.
  • Yasuda S, Sakakibara A. The chemical composition of lignin from compression wood. Mokuzai Gakkaishi 1975; 21: 363-369.
  • Zobel BJ, Van Buijtenen JP. Wood variation, its causes and control New York: Springer-Verlarg; 1989. 337 p. http://dx.doi.org/10.1007/978-3-642-74069-5

Datas de Publicação

  • Publicação nesta coleção
    04 Jul 2013
  • Data do Fascículo
    Mar 2013

Histórico

  • Recebido
    24 Jan 2012
  • Aceito
    25 Maio 2012
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br