Acessibilidade / Reportar erro

Behavior of the brown-rot fungus Gloeophyllum trabeum on thermally-modified Eucalyptus grandis wood

Comportamento do fungo de podridão parda Gloeophyllum trabeum na madeira de Eucalyptus grandis modificada termicamente

Abstracts

In this study, we aimed evaluate the behavior of the brown-rot fungus Gloeophylum trabeum and white-rot fungus Pycnoporus sanguineus on thermally-modified Eucalyptus grandis wood. To this end, boards from five-year-eleven-month-old E. grandis trees, taken from the Duratex-SA company stock, were thermally-modified between 180 ºC and 220 ºC in the Laboratory of Wood Drying and Preservation at Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo state Brazil. Samples of each treatment were tested according to the ASTM D-2017 (2008) technical norm. The accelerated decay caused by the brown-rot fungus G. trabeum was compared with the decay caused by the white-rot fungus P. sanguineus, studied by Calonego et al. (2010). The results showed that (1) brown-rot fungus caused greater decay than white-rot fungus; and (2) the increase in temperature from 180 to 220 ºC caused reductions between 28.2% and 70.0% in the weight loss of E. grandis samples incubated with G. trabeum.

decay resistance; G. trabeum; heat-treated wood; eucalypts; rot fungi


O objetivo deste estudo foi avaliar o comportamento do fungo de podridão parda Gloeophylum trabeum e do fungo de podridão branca Pycnoporus sanguineus sobre a madeira de Eucalyptus grandis modificada termicamente. Tábuas de árvores de E. grandis com cinco anos e 11 meses de idade, da empresa Duratex-SA, foram modificadas termicamente entre 180 ºC e 220 ºC no Laboratório de Secagem e Preservação de Madeiras da UNESP, Botucatu-SP, Brasil. Corpos de prova de cada tratamento foram testados, de acordo com a norma técnica ASTM D-2017 (2008). O apodrecimento acelerado causado pelo fungo de podridão parda G. trabeum foi comparado com o do fungo de podridão branca P. sanguineus, estudado por Calonego et al. (2010). Os resultados mostraram que (1) o apodrecimento causado pelo fungo de podridão parda foi maior que o de podridão branca e (2) o aumento da temperature de 180 para 220 ºC ocasionou reduções de 28,2% a 70,0% na perda de massa dos corpos de prova de E. grandis incubados com o G. trabeum.

resistência ao apodrecimento; G. trabeum; madeira tratada termicamente; eucalipto; fungos apodrecedores


  • Aguiar A, Ferraz A. Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. Química Nova 2011;34(10):1729-1738.
  • Alves MVS, Costa AF, Espig DS, Vale AT. Resistência natural de seis espécies de madeiras da região amazônica a fungos apodrecedores, em ensaios de laboratório. Ciência Florestal 2006;16(1):17-26.
  • Andrade FA, Calonego FW, Severo ETD, Furtado EL. Selection of fungi for accelerated decay in stumps of Eucalyptus spp. Bioresource Technology 2012;110:456-461. PMid:22336745. http://dx.doi.org/10.1016/j.biortech.2012.01.069
  • American Society for Testing and Materials - ASTM. ASTM D-1413: Standard test method for wood preservatives by laboratory soil-block cultures. West Conshohocken; 2007.
  • American Society for Testing and Materials - ASTM. ASTM D-2017: Standard method of accelerated laboratory test of natural decay resistance of wood. West Conshohocken; 2008.
  • Arantes V, Milagres AMF. Relevância de compostos de baixa massa molar produzidos por fungos e envolvidos na biodegradação da madeira. Química Nova 2009;32(6):1586-1595. http://dx.doi.org/10.1590/S0100-40422009000600043
  • Barreal JAR. Patología de la madera Madrid: Fundación Conde Del Valle de Salazar, Ediciones Mundi-Prensa; 1998.
  • Calonego FW, Severo ETD, Ballarin AW. Physical and mechanical properties of thermally modified wood from E. grandis. European Journal of Wood and Wood Products - Holz als Roh- und Werkstoff 2012;70(4):453-460. http://dx.doi.org/10.1007/s00107-011-0568-5
  • Calonego FW, Severo ETD, Furtado EL. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 ºC, 160 ºC, 180 ºC, 200 ºC and 220 ºC. Bioresource Technology 2010;101(23):9391-9394. PMid:20655200. http://dx.doi.org/10.1016/j.biortech.2010.06.119
  • Dutton MV, Evans CS, Atkey PT, Wood DA. Oxalate production by Basidiomycetes, including white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 1993;39:5-10.
  • Esposito E, Innocentini-Mei LH, Ferraz A, Canhos VP, Durán N. Phenoloxidases and hydrolases from Pycnoporus sanguineus (UEC-2050 strain): applications. Journal of Biotechnology 1993;29:219-228. http://dx.doi.org/10.1016/0168-1656(93)90054-Q
  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, et al. Low molecular weight chelator and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. Journal of Biotechnology 1997;53:133-162. http://dx.doi.org/10.1016/S0168-1656(97)01681-7
  • Hakkou M, Pétrissans M, El Bakali I, Gérardin P, Zoulalian A. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 2006;91(2):393-397. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.042
  • Homan W, Tjeerdsma B, Beckers E, Jorissen A. Structural and other properties of modified wood. In: World Conference on Timber Engineering; 2000; British Columbia. British Columbia; 2000. 8 p.
  • Kleman-Leyer K, Agosin E, Conner AH, Kirk TK. Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Applied and Environmental Microbiology 1992;58(4):1266-1270. PMid:16348694 PMCid:PMC195585.
  • Millitz H, Tjeerdsma B. Heat treatment of wood by the PLATO-process. In: Special Seminar: Environmental Optimisation of Wood Protection; 2001; Antibes, France. Antibes; 2001. p. 27-38
  • Momohara I, Ohmura W, Kato H, Kubojima Y. Effect of high-temperature treatment on wood durability against the Brown-rot fungus, Fomitopsis palustris, and the termite, Coptotermes formosanus In: International IUFRO Wood Drying Conference; 2003. p. 284-287
  • Oliveira AMF. Agentes destruidores da madeira. In: Lepage ES, editor. Manual de preservação de madeiras São Paulo: Instituto de Pesquisas Tecnológicas; 1986.
  • Severo ETD, Calonego FW. Processo de modificação térmica, por irradiação de calor, para a melhora da estabilidade dimensional e da durabilidade biológica de madeira sólida Patente n. BR PI0902/38-8A2; 2009.
  • Severo ETD, Calonego FW, Sansígolo CA. Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. European Journal of Wood and Wood Products - Holz als Roh- und Werkstoff 2012;70(5):741-747. http://dx.doi.org/10.1007/s00107-012-0611-1
  • Unsal O, Ayrilmis N. Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science 2005;51(4):405-409. http://dx.doi.org/10.1007/s10086-004-0655-x
  • Watanabe T, Shitan N, Suzuki S, Umezawa T, Shimada M, Yazaki K, et al. Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris. Applied and Environmental Microbiology 2010;76(23):7683-7690. PMid:20889782 PMCid:PMC2988596. http://dx.doi.org/10.1128/AEM.00829-10
  • Weiland JJ, Guyonnet R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. European Journal of Wood and Wood Products - Holz als Roh- und Werkstoff 2003;61(2):216-220.
  • Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. Journal of Biotechnology 2001;87:43-47. http://dx.doi.org/10.1016/S0168-1656(00)00430-2

Publication Dates

  • Publication in this collection
    24 Sept 2013
  • Date of issue
    Sept 2013

History

  • Received
    18 June 2013
  • Accepted
    01 Aug 2013
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br