Acessibilidade / Reportar erro

Crescimento de Eucalyptus urophylla em meio hidropônico com diferentes proporções de nitrato e amônio

Growth of Eucalyptus urophylla in hydroponic medium with different ratios of nitrate and ammonium

Resumos

Este estudo teve como objetivo avaliar respostas fisiológicas e crescimento de plantas jovens de Eucalyptus urophylla em meio hidropônico, num delineamento experimental inteiramente casualizado, com cinco proporções de NO3- e NH4+ (0/100, 25/75, 50/50, 75/25 e 100/0) e quatro repetições. As proporções NO3-/NH4+ afetaram o crescimento inicial, alterando o acúmulo de massa seca, o índice de qualidade de Dickson, o índice SPAD e os teores de macronutrientes foliares. A proporção 75/25 foi a que mais favoreceu o crescimento das plantas, com base na expansão dos tecidos e no acúmulo de massa seca. Contudo, as proporções de NO3-/NH4+ não causaram alterações significativas em alguns aspectos fisiológicos, tais como fotossíntese líquida e trocas gasosas. As proporções de NO3- e NH4+ alteraram o pH das soluções hidropônicas, a atividade da redutase do nitrato e o estado nutricional das plantas, sem, contudo, apresentar sintomas visíveis de carência ou excesso de macronutrientes nas folhas.

plantas lenhosas; nitrogênio; nutrição mineral


The aim of this study was to evaluate the physiological responses and growth of Eucalyptus urophylla young plants, clone AEC0144, in hydroponic medium, in a completely randomized experimental design with five different ratios of NO3- and NH4+ (0/100, 25/75, 50/50, 75/25 and 100/0) and four replications. The NO3-/NH4+ ratios analyzed affected the initial growth of plants by changing the dry mass accumulation, Dickson quality index, SPAD index, and leaf macronutrient content. Plant growth was particularly favored by the 75/25 NO3-/NH4+ ratio, based on tissue expansion and dry matter accumulation. However, the NO3-/NH4+ ratios didn't cause significant change in some physiological aspects, such as net photosynthesis and nitrogen assimilation metabolism. The NO3-/NH4+ ratios affected the pH of nutrient solutions, nitrate reductase activity and plant nutritional status, but no visible symptoms of deficiency or excess of macronutrients were detected in the leaves.

woody plants; nitrogen; mineral nutrition


  • Bartelheimer M, Poschlod P. The response of grassland species to nitrate versus ammonium coincides with their pH optima. Journal of Vegetation Science 2013:1-11. http://dx.doi.org/10.1111/jvs.12124
  • Bayala J, Dianda M, Wilson J, Ouedraogo SJ, Sanon K. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 2009;(38):309-322. http://doi.org/10.1007/s11056-009-9149-4
  • Bijlsma RJ, Lambers H, Kooijman S. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant and Soil 2000;220(1):49-69. http://dx.doi.org/10.1023/A:1004779019486
  • 4
    Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 2002;159(6):567-584. http://dx.doi.org/10.1078/0176-1617-0774
  • Britto DT, Kronzucker HJ. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant, Cell & Environment 2005;28:1396-1409. http://dx.doi.org/10.1111/j.1365-3040.2005.01372.x
  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Plant Biology 2001;98(7):4255-4258. http://dx.doi.org/10.1073/pnas.061034698
  • Cairo PAR, Oliveira LEM, Délu N Fº. Determinação das condições ótimas para o ensaio "in vivo" da redutase de nitrato em algumas espécies arbóreas. Revista Árvore 1994;18(1):87-95.
  • Carneiro JGA. Produção e controle de qualidade de mudas florestais Curitiba: UFPR, FUPEF; 1995.
  • Clark RB. Characterization of phosphatase of intact maize roots. Journal of Agricultural and Food Chemistry 1975;23(3):458-460. http://dx.doi.org/10.1021/jf60199a002
  • Dickson A, Leaf AL, Hosner JF. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle 1960;36(1):10-13.
  • Escobar MA, Geisler DA, Rasmusson AG. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant journal 2006;45(5):775-788. http://dx.doi.org/10.1111/j.1365-313X.2005.02640.x
  • Fernandes ET. Fotossíntese e crescimento inicial de clones de eucalipto sob diferentes regimes hídricos [dissertação]. Vitória da Conquista: Universidade Estadual do Sudoeste da Bahia; 2012.
  • Garnett TP, Shabala SN, Smethurst PJ, Newman IA. Kinetics of ammonium and nitrate uptake by eucalypt roots and associated proton fluxes measured using ion selective microelectrodes. Functional Plant Biology 2003;30(11):1165-1176. http://dx.doi.org/10.1071/FP03087
  • Garnett TP, Shabala SN, Smethurst PJ, Newman, IA. Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots. Plant and Soil 2001;236(1):55-62. http://dx.doi.org/10.1023/A:1011951413917
  • Garnett TP, Smethurst PJ. Ammonium and nitrate uptake by Eucalyptus nitens: the effect of pH and temperature. Plant and Soil 1999;2149(2):133-140. http://dx.doi.org/10.1023/A:1004740204876
  • Garnica M, Fabrice H, Claude YJ, Maria GMJ. Nitrate modifies urea root uptake and assimilation in wheat seedlings. Journal of the Science of Food and Agriculture 2009;89(1):55-62. http://dx.doi.org/10.1002/jsfa.3410
  • Grespan SL, Dias LE, Novais RF. Crescimento e parâmetros cinéticos de absorção de amônio e nitrato por mudas de Eucalyptus spp submetidas a diferentes relações amônio/nitrato na presença e ausência de fósforo. Revista Brasileira de Ciência do Solo 1998;22(4):667-674.
  • Guo XR, Zu YG, Tang ZH. Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiol Plant 2012;34:589-598. http://dx.doi.org/10.1007/s11738-011-0859-9
  • Hachiya T, Terashima I, Noguchi K. Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia x hybrida petals. Plant, Cell & Environment 2007;30(10):1269-1283. http://dx.doi.org/10.1111/j.1365-3040.2007.01701.x
  • Hachiya T, Watanabe CK, Fujimoto M, Ishikawa T, Takahara K, Kawai-Yamada M, et al. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant and Cell Physiology 2012;53(3):577-591. http://dx.doi.org/10.1093/pcp/pcs012
  • Helali SM, Nebli H, Kaddour R, Mahmoudi H, Lachaâl M, Ouerghi Z. Influence of nitrate-ammonium ratio on growth and nutrition of Arabidopsis thaliana. Plant and Soil 2010:(336);65-74. http://dx.doi.org/10.1007/s11104-010-0445-8
  • Ivanova M, Staden JV. Nitrogen source, concentration, and NH4+:NO3- ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell, Tissue and Organ Culture 2009;99(2):167-174. http://dx.doi.org/10.1007/s11240-009-9589-8
  • Jaworski EG. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications 1971;43(6):1274-1279. http://dx.doi.org/10.1016/S0006-291X(71)80010-4
  • Koyama L, Tokuchi N. Effects of NO3- availability on NO3- use in seedlings of three woody shrub species. Tree Physiology 2003;23(4):281-288. http://dx.doi.org/10.1093/treephys/23.4.281
  • Kronzucker HJ, Siddiqi MY, Glass ADM. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 1997;385:59-61. http://dx.doi.org/10.1038/385059a0
  • Malavolta E, Vitii GC, Oliveira SA. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato; 1997.
  • Malavolta E. Manual de calagem e adubação das principais culturas São Paulo: Ceres; 1987.
  • Meharg AA, Blatt MR. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. Journal of Membrane Biology 1995;145:49-66. http://dx.doi.org/10.1007/BF00233306
  • Miller AJ, Cramer MD. Root nitrogen acquisition and assimilation. Plant and Soil 2005;274:1-36. http://dx.doi.org/10.1007/s11104-004-0965-1
  • Mühling KH, Läuchli A. Influence of chemical form and concentration of nitrogen on apoplastic pH of leaves. Journal of Plant Nutrition 2001;24(3):399-411. http://dx.doi.org/10.1081/PLN-100104968
  • Oliveira Júnior OA, Cairo PAR, Novaes AB. Características morfofisiológicas associadas à qualidade de mudas de Eucalyptus urophylla produzidas em diferentes substratos. Revista Árvore 2011;35(6):1173-1180.
  • Pfautsch S, Rennenberg H, Bell TL, Adams MA. Nitrogen uptake by Eucalytpus regnans and Acacia spp. - preferences, resource overlap and energetic costs. Tree Physiology 2009;29(3):389-399. http://dx.doi.org/10.1093/treephys/tpn033
  • Rahayu YS, Walch-Liu P, Neumann G, Römheld V, Von WN, Bangerth, F. Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth. Journal of Experimental Botany 2005;56:1143-1152. http://dx.doi.org/10.1093/jxb/eri107
  • Roosta HR, Schjoerring JK. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition 2007;30(11):1933-1951. http://dx.doi.org/10.1080/01904160701629211
  • Ruan J, Gerendás J, Härdter R, Sattelmacher B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany 2007;99(2):301-310. http://dx.doi.org/10.1093/aob/mcl258
  • Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science 2006;11(2):440-448. http://dx.doi.org/10.1016/j.tplants.2006.07.004
  • Shedley E, Dell B, Grove T. Diagnosis of nitrogen deficiency and toxicity of Eucalyptus globulus seedlings by foliar analysis. Plant and Soil 1995;177(2):183-189. http://dx.doi.org/10.1007/BF00010124
  • Silveira RLVA, Moreira A, Takashi EN, Sgarbi F, Branco EF. Sintomas de deficiência de macronutrientes e de boro em clones híbridos de Eucalyptus grandis com Eucalyptus urophylla. Cerne 2002; 8(2):107-116.
  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiology 2004;45(8):1053-1062. http://dx.doi.org/10.1093/pcp/pch119
  • Walch-Liu P, Neumann G, Engels C. Response of shoot and root growth to supply of different nitrogen form is not related to carbohydrate and nitrogen status of tobacco plants. Journal of Plant Nutrition and Soil Science 2001;164(1):97-103. http://dx.doi.org/10.1002/1522-2624(200102)164:1<97::AID-JPLN97>3.0.CO;2-Z
  • Walecka-Hutchison CM, Walworth JL. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel. Biodegradation 2007;18(2):133-144. http://dx.doi.org/10.1007/s10532-006-9049-7
  • Warren CR. Potential organic and inorganic N uptake by six eucalyptus species. Functional Plant Biology 2006;33(7):653-660. http://dx.doi.org/10.1071/FP06045
  • Warren CR, Adams MA. Possible causes of slow growth of nitrate-supplied Pinus pinaster. Canadian Journal of Forest Research 2002;32(4):569-580. http://dx.doi.org/10.1139/x01-225?journalCode=cjfr#.UZbLg0rHbnY
  • Yao B, Cao J, Zhao C, Rengel Z. Influence of ammonium and nitrate supply on growth, nitrate reductase activity and N-use efficiency in a natural hybrid pine and its parents. Journal of Plant Ecology 2011;4:275-282. http://dx.doi.org/10.1093/jpe/rtq033

Datas de Publicação

  • Publicação nesta coleção
    21 Fev 2014
  • Data do Fascículo
    Mar 2014

Histórico

  • Aceito
    03 Dez 2013
  • Recebido
    23 Maio 2013
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br