SciELO - Scientific Electronic Library Online

 
vol.26 issue2Forest Fire Hazard in the Serra do Brigadeiro State Park (MG)Seed Quality Evaluation of Senegalia polyphylla (DC.) Britton & Rose author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Floresta e Ambiente

Print version ISSN 1415-0980On-line version ISSN 2179-8087

Floresta Ambient. vol.26 no.2 Seropédica  2019  Epub Apr 25, 2019

http://dx.doi.org/10.1590/2179-8087.060217 

Original Article

Conservation of Nature

Structure and Diversity In Ombrophilous Forest in the Zona da Mata of Pernambuco

Rosival Barros de Andrade Lima1 
http://orcid.org/0000-0001-7558-0917

Luiz Carlos Marangon1 
http://orcid.org/0000-0002-8637-2125

Fernando José Freire2 
http://orcid.org/0000-0002-3264-712X

Ana Licia Feliciano1 
http://orcid.org/0000-0001-8423-141X

Roseane Karla Soares de Silva1 
http://orcid.org/0000-0002-9354-3295

1Departamento de Ciências Florestais, Universidade Federal Rural de Pernambuco – UFRPE, Recife/PE, Brasil

2Departamento de Agronomia, Universidade Federal Rural de Pernambuco – UFRPE, Recife/PE, Brasil

ABSTRACT

The objective of this work was to evaluate the arboreal component of a Dense Ombrophilous Lowland Forest fragment through evaluations of richness, structure and diversity. For the sampling of this component, we implanted 40 sample units of 10 × 25 m. We measured all arboreal individuals who presented circumference at breast height ≥ 15 cm, 1.30 m from the ground level. The tree stratum presented 1324 individuals, 100 species, 64 genera and 38 families. The Fabaceae family had the highest wealth and Anacardiaceae was the most abundant. The Shannon index and Pielou equability were 3.60 nats.ind.–1 and 0.78, respectively, suggesting the existence of relevant ecological dominance in the community. The results of this work emphasize the ecological importance of this remnant for maintaining the local flora and fauna, also emphasizing the importance of preserving Atlantic Ombrophilous Forests, particularly in the Zona da Mata of Pernambuco.

Keywords:  phytosociology; atlantic forest; floristic

1. INTRODUCTION

Forests constantly change their structure, physiognomy and floristic composition until climax (Téo et al., 2014). A way to detect the current state of these forests is through floristic and vegetation structure analysis, which provides a necessary ecological basis for quantitative and qualitative inferences of the forest structure (Silva & Bentes-Gama, 2008). Studies of this nature provide us with important data for restoration, conservation and management of natural resources, contributing to the maintenance of the high diversity of species and habitats (Silva et al., 2011).

The situation of tropical forests is disturbing due to several factors that promote fragmentation, loss of habitat and biodiversity (Laurance et al., 2017), such as: logging, agricultural area expansion, extensive livestock production, and especially the increase in the population (Roa-Romero et al., 2009; Vega et al., 2016). As the population increases, the consumption standard rises, which increases the demand for natural resources, promoting the degradation of ecosystems with serious consequences for the present society and future generations (Philippi et al., 2012).

Such degradations cause important ecosystems to be decharacterized even before their original floristic composition is known (Silva et al., 2008). According to Cordeiro et al. (2011), floristic composition knowledge is the first step towards understanding the real dimensioning of local biodiversity.

In addition to assisting in ecosystem management and conservation, the information generated in floristic-structural studies also helps in planning management practices aimed at recovery of degraded areas (Hernández-Ramírez & García-Méndez, 2015). In this aspect, the objective of the present study was to characterize the floristic composition and the structure of an Atlantic Forest fragment in order to obtain basic information that will result in support tools for management and conservation of the Atlantic Forest, especially in the Zona da Mata of Pernambuco.

2. MATERIAL AND METHODS

2.1. Study area

The study was conducted in an Ombrophilous Lowland Forest fragment (Martins & Cavararo, 2012). This fragment has 42 ha called Coelhas and belongs to the Usina Trapiche S/A, municipality of Sirinhaém, located in the southern region of Pernambuco state (Figure 1).

Figure 1 Geographic location of the Coelha Forest, Usina Trapiche S/A, Sirinhaém, Pernambuco, Brazil. (Source: Walter Lucena). 

Forests in this region are currently circumvented by extensive sugar cane plantations or even by urban areas, clearly reducing the extent of areas with large forests. The fragment studied is in this situation and has already suffered deforestation, being surrounded by the sugar cane matrix, but currently it is well preserved.

According to the Köppen classification, the region presents an Am monsoon climate (Alvares et al., 2013) with annual average temperature of 25.6 °C. The average altitude is 60 m and the period of greatest rainfall begins in April and ends in September. The average annual rainfall of the region from March/2011 to April/2016 was approximately 1,860 mm (Oliveira et al., 2016). The predominant soils in the study area are: Yellow Latosol; Yellow, Red-Yellow and Greyish Argisols; Gleysol; Cambisol; and Flossic Neosols (Silva et al., 2001; Santos et al., 2013).

2.2. Data collection

For the tree component sampling we systematically implanted 40 sample units of 10 × 25 m (250 m2), the equivalent of 1 ha of sampled area and distance between 42 m plots. We georeferenced all sample units and sampled all tree individuals that presented circumference at breast height (CBH) ≥ 15 cm, at 1.30 m above ground level. We measured this using a tape measure, and estimated height with high pruning shears of six meters in length. All the sampled individuals received PVC plates (3 × 5 cm) with increasing numeration, which were nailed 15 cm above the measurement point.

We identified the species whenever possible in the field. When necessary, we collected plant material to help the identification by professionals from the Dárdano de Andrade Lima Herbarium of the Agronomic Institute of Pernambuco (IPA). We used the Angiosperm Phylogeny Group classification system to classify the families (APG IV, 2016). Spelling and the names of the species were checked through the Missouri Botanical Garden website (Tropicos.org, 2017).

2.3. Data analysis

2.3.1. Sample sufficiency

We evaluated the floristic sufficiency from the rarefaction curve using EstimateS 9.1.0 Software (Colwell, 2013). Sampling sufficiency was determined by considering the random sampling estimators based on three parameters: number of individuals, mean diameters and mean height, where we performed the calculations of sample errors (Ea%) at a 95% probability level, assuming a sample error of at most 15%.

2.3.2. Floristic composition and successional classification

After surveying and identifying the species, we compiled a list containing the species, genera, number of individuals and families of all individuals found in the tree component according to the APG IV classification system. We adopted the criterion suggested by Gandolfi et al. (1995) for species classification by successional group, in which the species were classified as pioneers, early secondary, late secondary or uncharacterized. We performed the classification through field observations and bibliographic research (Gandolfi et al., 1995; Brandão et al., 2009; Oliveira et al., 2011; Silva et al., 2010).

2.3.3. Phytosociological structure and diversity and equability indexes

We evaluated the following phytosociological parameters: Absolute Density (AD), Relative Density (RD), Absolute Frequency (AF), Relative Frequency (RF), Absolute Dominance (ADo), Relative Dominance (RDo), Coverage Value (CV), Importance Value (IV). These parameters were calculated using the Fitopac 2 software tool. We also calculated the Shannon diversity indexes (H') and the Pielou equability index (J) (Pielou, 1975), as proposed by Magurran (1988).

2.3.4. Diametric and hypsometric distribution

For the analysis of the diametric distribution, we plotted the number of individuals per diametric class center, where the number of class centers and their amplitude were calculated based on Sturges (1926), through Equations 1 and 2:

NC=1+3.322*LogNind. (1)
TA=Xx/NC (2)

Where: NC = number of classes; Nind. = number of individuals; TA = total amplitude; X = largest diameter and x = smallest diameter.

For analysing the hypsometric structure, we generated a graph with the number of individuals per height class center, with an amplitude of 5 m and the first class beginning at 2.5 m.

3. Results and discussion

3.1. Sample sufficiency

The floristic sufficiency was considered satisfactory as given by the asymptote and stability in the confidence intervals of the rarefaction curve calculated for species richness (Figure 2).

Figure 2 Species accumulation curve in the Coelha Forest, Usina Trapiche S/A, Sirinhaém, Pernambuco, Brazil (rarefaction method). Vertical bars represent the confidence interval (95%). 

The calculated sample errors were lower than the established error (15%). For the number of individuals, diameter means and height means, the sample error values were: Ea 6.79%, 4.59% and 3.76%, respectively. These results indicate that the sampling was sufficient to represent the plant community of the area.

3.2. Floristic composition and successional classification

Tree sampling recorded 1,324 individuals, belonging to 100 species, 64 genera and 38 families. Among these species, 81 were identified at the species level, 13 at the gender level, five at the family level and one was not identified (Table 1).

Table 1 Floristic composition of tree species (CBH ≥ 15 cm) registered in the Coelha Forest, Usina Trapiche S/A, Sirinhaém, Pernambuco. In alphabetical order of family, gender and species, where: Ni = Number of individuals and EG = Ecological group; P = Pioneer; IS = Initial secondary; LS = Late secondary; Nc = Not classified. 

Family Specie Ni EG
Anacardiaceae Tapirira guianensis Aubl. 68 IS
Thyrsodium spruceanum Benth. 246 IS
Annonaceae Guatteria pogonopus Mart. 17 Nc
Xylopia frutescens Aubl. 3 IS
Apocynaceae Himatanthus phagedaenicus (Mart.) Woodson 26 IS
Araliaceae Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 33 IS
Boraginaceae Cordia sellowiana Cham. 7 IS
Burseraceae Protium giganteum Engl.
Protium heptaphyllum (Aubl.) Marchand
7
134
LS
IS
Celastraceae Maytenus distichophylla Mart. ex Reissek 3 LS
Clusiaceae Rheedia gardneriana Planch. & Triana 1 LS
Symphonia globulifera L. f. 12 P
Tovomita mangle G. Mariz 3 IS
Combretaceae Buchenavia tetraphylla (Aubl.) R.A. Howard 1 LS
Elaeocarpaceae Sloanea garckeana K. Schum. 1 LS
Sloanea guianensis (Aubl.) Benth. 1 LS
Erythroxylaceae Erythroxylum citrifolium A. St.-Hil. 2 LS
Erythroxylum mucronatum Benth. 14 LS
Erythroxylum squamatum Sw. 1 LS
Euphorbiaceae Maprounea guianensis Aubl. 29 IS
Fabaceae Abarema sp. 3 Nc
Albizia pedicellaris (DC.) L. Rico 6 P
Andira ormosioides Benth. 2 IS
Bowdichia virgilioides Kunth 12 LS
Chamaecrista sp. 14 Sc
Dialium guianense (Aubl.) Sandwith 3 LS
Fabaceae 1 2 Nc
Fabaceae 2 4 Nc
Fabaceae 3 1 Nc
Fabaceae 4 5 Nc
Inga cayennensis Sagot ex Benth. 3 IS
Inga sp.1 2 Nc
Fabaceae Inga sp.2 1 Nc
Inga thibaudiana DC. 6 IS
Machaerium hirtum (Vell.) Stellfeld 1 IS
Parkia pendula (Willd.) Benth. ex Walp. 8 LS
Plathymenia foliolosa Benth. 3 IS
Sclerolobium densiflorum Benth. 3 P
Swartzia pickelii Killip ex Ducke 3 IS
Hypericaceae Vismia guianensis (Aubl.) Choisy 1 P
Lacistemataceae Lacistema robustum Schnizl. 5 IS
Lauraceae Nectandra cuspidata Nees & Mart. 10 LS
Ocotea gardneri (Meisn.) Mez 1 IS
Ocotea glomerata (Nees) Mez 10 IS
Ocotea sp.1 13 Nc
Ocotea sp.2 3 Nc
Ocotea sp.3 2 Nc
Lecythidaceae Eschweilera ovata (Cambess.) Miers 52 IS
Gustavia augusta L. 3 IS
Lecythis pisonis Cambess. 1 IS
Lecythis lurida (Miers) S.A. Mori 15 Nc
Malvaceae Eriotheca macrophylla (K. Schum.) A. Robyns 6 IS
Melastomataceae Henriettea succosa (Aubl.) DC. 16 Nc
Miconia affinis DC. 31 Nc
Miconia hypoleuca (Benth.) Triana 20 IS
Miconia minutiflora (Bonpl.) DC. 3 IS
Miconia prasina (Sw.) DC. 6 P
Miconia pyrifolia Naudin 9 IS
Miconia sp. 4 Nc
Miconia tomentosa (Rich.) D. Don ex DC. 11 IS
Moraceae Artocarpus heterophyllus Lam. 1 Nc
Brosimum guianense (Aubl.) Huber 55 IS
Brosimum rubescens Taub. 39 IS
Helicostylis tomentosa (Poepp. & Endl.) Rusby 36 IS
Sorocea hilarii Gaudich. 2 IS
Myristicaceae Virola gardneri (A. DC.) Warb. 12 LS
Myrtaceae Eugenia umbelliflora O. Berg 1 IS
Eugenia umbrosa O. Berg 2 IS
Myrcia guianensis (Aubl.) DC. 2 IS
Myrcia silvatica Barb. Rodr. 43 IS
Myrcia spectabilis DC. 11 IS
Myrcia splendens (Sw.) DC 6 IS
Myrtaceae 1 3 Nc
Nyctaginaceae Guapira opposita (Vell.) Reitz 2 IS
Ochnaceae Ouratea polygyna Engl. 15 IS
Peraceae Chaetocarpus myrsinites Baill. 4 Nc
Pera ferruginea (Schott) Müll. Arg. 16 IS
Pogonophora schomburgkiana Miers ex Benth. 13 LS
Phyllanthaceae Hyeronima alchorneoides Allemão 29 IS
Picramniaceae Picramnia sp. 4 Nc
Primulaceae Rapanea guianensis Aubl. 1 P
Rubiaceae Amaioua sp. 1 Nc
Coussarea andrei M.S. Pereira & M.R. Barbosa 1 Nc
Salicaceae Casearia arborea (Rich.) Urb. 3 IS
Casearia javitensis Kunth 35 LS
Sapindaceae Cupania emarginata Cambess. 2 IS
Cupania racemosa (Vell.) Radlk. 11 IS
Cupania revoluta Rolfe 5 IS
Cupania sp. 1 Nc
Talisia retusa R.S. Cowan 1 IS
Sapotaceae Pouteria bangii (Rusby) T.D. Penn. 11 LS
Pouteria sp. 1 Nc
Pouteria torta (Mart.) Radlk. 2 LS
Pradosia sp. 1 Nc
Schoepfiaceae Schoepfia brasiliensis A. DC. 5 IS
Simaroubaceae Simarouba amara Aubl. 12 IS
Siparunaceae Siparuna guianensis Aubl. 5 IS
Urticaceae Pourouma acutiflora Trécul 6 IS
Violaceae Paypayrola blanchetiana Tul. 2 Nc
Undetermined 1 Undetermined 1 9 Nc
Total 1,324

The families with the highest representativity of individuals were: Anacardiaceae (314 individuals), Burseraceae (141), Moraceae (133), Melastomataceae (100), Fabaceae (82), Lecythidaceae (71), Myrtaceae (68), Euphorbiaceae Lauraceae (39) and Salicaceae (38), added together totalled 1,044 individuals. These ten families represented 78.85% of the individuals sampled. The other families (28) accounted for 21.15% of the total, evidencing the low relative abundance of individuals in these families. The Anacardiaceae family, which obtained the largest number of individuals in this study, was also the most outstanding in a study by Costa et al. (2008) for the same typology. This higher representation may be related to the fact that this family has approximately 81 genera and 800 species, with occurrence in dry to humid environments, mainly in lowlands in tropical and subtropical regions around the world (Pell et al., 2011). Fruit from the Thyrsodium spruceanum species (Anacardiaceae) are drupe and are very appreciated by the fauna, suggesting that the high number of individuals of this species is justified by the wide zoochoric dispersion.

The Fabaceae family presented higher richness (19 species), and also being of greater wealth in works carried out in Pernambuco state (Guimarães et al., 2009; Silva et al., 2010). The Fabaceae family is one of the three most representative families of angiosperm flora mainly due to its wide dispersion, as well as its important ornamental and ecological role, mainly in atmospheric and soil nitrogen fixation, thus emphasizing its importance and necessary knowledge (Malczewski et al., 2014).

Twenty species were represented by only one individual (20% of the total species), being considered locally rare. According to Brandão et al. (2011), these species are only rare in the numerical concept for a given area, in a given moment, and not necessarily from the biological point of view, since they may occur in higher densities in close fragments.

Among the characterized species, the group of initial secondary is highlighted with 67%, the pioneers represented 8%, and the late secondary 25%. A predominance of initial succession species was verified, since the pioneer and secondary species represented 75% of the species inventoried in the tree stratum. The results are similar to those reported by Brandão et al. (2009) and Silva et al. (2010) for the same typology, inferring that the studied environment is in an intermediate succession stage. An evaluation of the parameters contained in CONAMA Resolution no. 31 of December 7, 1994 was also performed, proving that the fragment is in the middle successional stage.

3.3. Phytosociological structure and diversity and equability indexes

The density was estimated at 1324 ind ha–1. From the total, Thyrsodium spruceanum (246 individuals), Protium heptaphyllum (134) and Tapirira guianensis (68) species corresponded to 33.84% of the individuals sampled (Table 2). These species also stood out in number of individuals in other studies carried out in the Atlantic Forest of Pernambuco (Brandão et al., 2009; Silva et al., 2012).

Table 2 Phytosociological parameters of tree species inventoried in the Coelha Forest, Usina Trapiche S/A, Sirinhaém, Pernambuco. Data in descending order of IV, in which: AD = Absolute density in ind/ha; RD = Relative density in %; AF = Absolute frequency in %; RF = relative frequency in %; ADo = Absolute dominance in m2 ha–1; RDo = Relative dominance in %; CV = Coverage value; And IV = Importance value. 

Species AD RD AF RF ADo RDo CV IV
Thyrsodium spruceanum 246 18.58 97.50 5.72 2.8496 11.3285 29.91 35.63
Protium heptaphyllum 134 10.12 85.00 4.99 2.8481 11.3225 21.44 26.43
Tapirira guianensis 68 5.14 72.50 4.25 3.1792 12.6391 17.78 22.03
Maprounea guianensis 29 2.19 47.50 2.79 1.6629 6.6110 8.80 11.59
Eschweilera ovata 52 3.93 75.00 4.40 0.4767 1.8951 5.82 10.22
Brosimum guianense 55 4.15 72.50 4.25 0.4557 1.8116 5.97 10.22
Schefflera morototoni 33 2.49 57.50 3.37 0.9510 3.7805 6.27 9.65
Hyeronima alchorneoides 29 2.19 47.50 2.79 0.5798 2.3051 4.50 7.28
Myrcia silvatica 43 3.25 55.00 3.23 0.1820 0.7236 3.97 7.20
Fabaceae 1 2 0.15 5.00 0.29 1.6373 6.5091 6.66 6.95
Helicostylis tomentosa 36 2.72 45.00 2.64 0.3424 1.3611 4.08 6.72
Miconia affinis 31 2.34 47.50 2.79 0.3878 1.5418 3.88 6.67
Pera ferruginea 16 1.21 30.00 1.76 0.9105 3.6195 4.83 6.59
Casearia javitensis 35 2.64 52.50 3.08 0.1678 0.6671 3.31 6.39
Brosimum rubescens 39 2.95 42.50 2.49 0.2161 0.8591 3.80 6.30
Simarouba amara 12 0.91 25.00 1.47 0.8704 3.4604 4.37 5.83
Himatanthus phagedaenicus 26 1.96 37.50 2.20 0.1385 0.5504 2.51 4.71
Bowdichia virgilioides 12 0.91 25.00 1.47 0.5022 1.9965 2.90 4.37
Ouratea polygyna 15 1.13 27.50 1.61 0.2819 1.1209 2.25 3.87
Miconia hypoleuca 20 1.51 32.50 1.91 0.1044 0.4151 1.93 3.83
Ocotea glomerata 10 0.76 22.50 1.32 0.4078 1.6211 2.38 3.70
Albizia pedicellaris 6 0.45 10.00 0.59 0.6521 2.5924 3.05 3.63
Lecythis lurida 15 1.13 32.50 1.91 0.1065 0.4233 1.56 3.46
Ocotea sp.1 13 0.98 32.50 1.91 0.1400 0.5565 1.54 3.44
Henriettea succosa 16 1.21 32.50 1.91 0.0785 0.3121 1.52 3.43
Guatteria pogonopus 17 1.28 30.00 1.76 0.0492 0.1956 1.48 3.24
Pouteria bangii 11 0.83 20.00 1.17 0.2712 1.0781 1.91 3.08
Virola gardneri 12 0.91 20.00 1.17 0.2401 0.9545 1.86 3.03
Nectandra cuspidata 10 0.76 22.50 1.32 0.2176 0.8649 1.62 2.94
Eriotheca macrophylla 6 0.45 7.50 0.44 0.4605 1.8307 2.28 2.72
Symphonia globulifera 12 0.91 17.50 1.03 0.1960 0.7794 1.69 2.71
Pourouma acutiflora 6 0.45 12.50 0.73 0.3622 1.4398 1.89 2.63
Pogonophora schomburgkiana 13 0.98 17.50 1.03 0.1468 0.5837 1.57 2.59
Erythroxylum mucronatum 14 1.06 22.50 1.32 0.0438 0.1743 1.23 2.55
Parkia pendula 8 0.60 15.00 0.88 0.2183 0.8680 1.47 2.35
Undetermined 1 9 0.68 20.00 1.17 0.0917 0.3647 1.04 2.22
Chamaecrista sp.1 14 1.06 10.00 0.59 0.1244 0.4946 1.55 2.14
Myrcia spectabilis 11 0.83 15.00 0.88 0.0860 0.3419 1.17 2.05
Miconia tomentosa 11 0.83 17.50 1.03 0.0443 0.1759 1.01 2.03
Cupania racemosa 11 0.83 17.50 1.03 0.0336 0.1334 0.96 1.99
Miconia pyrifolia 9 0.68 15.00 0.88 0.0860 0.3418 1.02 1.90
Buchenavia tetraphylla 1 0.08 2.50 0.15 0.4111 1.6345 1.71 1.86
Cordia sellowiana 7 0.53 17.50 1.03 0.0642 0.2552 0.78 1.81
Plathymenia foliolosa 3 0.23 7.50 0.44 0.2197 0.8735 1.10 1.54
Protium giganteum 7 0.53 12.50 0.73 0.0477 0.1895 0.72 1.45
Inga thibaudiana 6 0.45 10.00 0.59 0.0906 0.3603 0.81 1.40
Ocotea sp.2 3 0.23 7.50 0.44 0.1710 0.6799 0.91 1.35
Siparuna guianensis 5 0.38 12.50 0.73 0.0377 0.1497 0.53 1.26
Myrcia splendens 6 0.45 12.50 0.73 0.0160 0.0636 0.52 1.25
Fabaceae 4 5 0.38 7.50 0.44 0.0968 0.3850 0.76 1.20
Cupania revoluta 5 0.38 7.50 0.44 0.0774 0.3076 0.69 1.13
Cupania emarginata 2 0.15 5.00 0.29 0.1590 0.6321 0.78 1.08
Lacistema robustum 5 0.38 10.00 0.59 0.0095 0.0379 0.42 1.00
Chaetocarpus myrsinites 4 0.30 7.50 0.44 0.0630 0.2505 0.55 0.99
Miconia prasina 6 0.45 7.50 0.44 0.0189 0.0751 0.53 0.97
Miconia sp.1 4 0.30 10.00 0.59 0.0190 0.0756 0.38 0.96
Schoepfia brasiliensis 5 0.38 7.50 0.44 0.0233 0.0928 0.47 0.91
Fabaceae 2 4 0.30 7.50 0.44 0.0386 0.1536 0.46 0.90
Inga cayennensis 3 0.23 7.50 0.44 0.0540 0.2148 0.44 0.88
Dialium guianense 3 0.23 2.50 0.15 0.1226 0.4872 0.71 0.86
Abarema sp.1 3 0.23 7.50 0.44 0.0343 0.1362 0.36 0.80
Tovomita mangle 3 0.23 7.50 0.44 0.0308 0.1225 0.35 0.79
Maytenus distichophylla 3 0.23 7.50 0.44 0.0286 0.1137 0.34 0.78
Sclerolobium densiflorum 3 0.23 2.50 0.15 0.0966 0.3841 0.61 0.76
Casearia arborea 3 0.23 7.50 0.44 0.0185 0.0734 0.30 0.74
Xylopia frutescens 3 0.23 2.50 0.15 0.0901 0.3581 0.58 0.73
Myrtaceae 1 3 0.23 7.50 0.44 0.0084 0.0333 0.26 0.70
Picramnia sp.1 4 0.30 5.00 0.29 0.0088 0.0348 0.34 0.63
Andira ormosioides 2 0.15 5.00 0.29 0.0385 0.1531 0.30 0.60
Gustavia augusta 3 0.23 5.00 0.29 0.0089 0.0356 0.26 0.56
Guapira opposita 2 0.15 5.00 0.29 0.0258 0.1024 0.25 0.55
Pouteria torta 2 0.15 5.00 0.29 0.0104 0.0413 0.19 0.49
Ocotea sp.3 2 0.15 5.00 0.29 0.0104 0.0413 0.19 0.49
Erythroxylum citrifolium 2 0.15 5.00 0.29 0.0081 0.0322 0.18 0.48
Myrcia guianensis 2 0.15 5.00 0.29 0.0057 0.0226 0.17 0.47
Sorocea hilarii 2 0.15 5.00 0.29 0.0051 0.0205 0.17 0.46
Eugenia umbrosa 2 0.15 5.00 0.29 0.0046 0.0184 0.17 0.46
Paypayrola blanchetiana 2 0.15 5.00 0.29 0.0046 0.0183 0.17 0.46
Miconia minutiflora 3 0.23 2.50 0.15 0.0209 0.0830 0.31 0.46
Swartzia pickelii 3 0.23 2.50 0.15 0.0088 0.0350 0.26 0.41
Machaerium hirtum 1 0.08 2.50 0.15 0.0239 0.0950 0.17 0.32
Inga sp.1 2 0.15 2.50 0.15 0.0047 0.0189 0.17 0.32
Rapanea guianensis 1 0.08 2.50 0.15 0.0231 0.0919 0.17 0.31
Rheedia gardneriana 1 0.08 2.50 0.15 0.0215 0.0855 0.16 0.31
Amaioua sp. 1 1 0.08 2.50 0.15 0.0137 0.0545 0.13 0.28
Pradosia sp.1 1 0.08 2.50 0.15 0.0097 0.0388 0.11 0.26
Sloanea guianensis 1 0.08 2.50 0.15 0.0060 0.0239 0.10 0.25
Artocarpus heterophyllus 1 0.08 2.50 0.15 0.0058 0.0231 0.10 0.25
Ocotea gardneri 1 0.08 2.50 0.15 0.0054 0.0214 0.10 0.24
Inga sp.2 1 0.08 2.50 0.15 0.0039 0.0153 0.09 0.24
Coussarea andrei 1 0.08 2.50 0.15 0.0033 0.0130 0.09 0.24
Erythroxylum squamatum 1 0.08 2.50 0.15 0.0032 0.0127 0.09 0.23
Talisia retusa 1 0.08 2.50 0.15 0.0030 0.0118 0.09 0.23
Vismia guianensis 1 0.08 2.50 0.15 0.0029 0.0115 0.09 0.23
Sloanea garckeana 1 0.08 2.50 0.15 0.0029 0.0114 0.09 0.23
Lecythis pisonis 1 0.08 2.50 0.15 0.0029 0.0114 0.09 0.23
Eugenia umbelliflora 1 0.08 2.50 0.15 0.0026 0.0104 0.09 0.23
Pouteria sp.1 1 0.08 2.50 0.15 0.0024 0.0095 0.08 0.23
Fabaceae 3 1 0.08 2.50 0.15 0.0022 0.0086 0.08 0.23
Cupania sp.1 1 0.08 2.50 0.15 0.0021 0.0084 0.08 0.23
Total 1,324 100 1,705 100 25.1541 100 200 300

The most frequent species in the sample area were Thyrsodium spruceanum, Protium heptaphyllum, Eschweilera ovata, Tapirira guianensis, Brosimum guianense, Schefflera morototoni and Myrcia silvatica. The species Thyrsodium spruceanum was recorded in 97.50% of the sample units, meaning it was present in 39 of the 40 plots. The occurrence of many individuals of species belonging to the Anacardiacea family is common in the Atlantic Forest. As previously mentioned, species of this family occur in different environments (dry and humid) from different regions around the world.

The wide distribution of these species is possibly related to the dispersion form, dormant seeds in the soil or seedlings, which indicates the conservation state of the ecosystem and its resilience capacity, meaning its capacity to regenerate even after having experienced strong anthropogenic actions in the past.

It was verified that the estimated basal area was 25.15 m2 ha–1, similar to that recorded by Silva et al. (2012) in a fragment close to the one studied where they registered 26.73 m2 ha–1, suggesting that the community is able to advance in terms of biomass accumulation as expressed by the accumulation of basal area, as the basal area tends to increase with the increase of forest age.

The species with the highest importance values (IV) were Thyrsodium spruceanum, Protium heptaphyllum and Tapirira guianensis, mainly being highlighted by the high number of sampled individuals and for having good distribution in the area.

Floristic diversity estimated by the Shannon index (H') resulted in 3.60 nats.ind.–1 and the Pielou (J) equation was 0.78, indicating high diversity and uniformity among individuals and species within the plant community.

3.4. Diametric and hypsometric distribution

The diameter distribution showed a 12 cm amplitude with 8 class centers being characterized by small trees, mainly in the first class center, indicating the regeneration capacity of the plant species (Figure 3). The area mainly presents young individuals, since 60.65% of the total sampled individuals are in the first class center. The maximum diameter found was 142.50 cm, belonging to an individual only identified as Fabaceae 1.

Figure 3 Diameter distribution of arboreal individuals in a Dense Ombrophylous Forest fragment located in the municipality of Sirinhaém, Pernambuco, Brazil. 

The centers of classes 4, 5 and 6 presented few individuals; however, these are well represented in the smaller class centers, which indicates occurrence of the successional process. Nevertheless, the centers of classes 7 (Buchenavia tetraphylla) and 8 (Fabaceae 1), which presented one individual, do not occur in the centers of previous classes. This fact may be related to some biotic or abiotic factors.

The vertical distribution of the tree stratum presented five height class centers varying from 2.0 to 20 m, with a mean of 8.29 m in height. The high number of individuals in the second lowest height class center (Figure 4A) is an important indicator of the forest renewal capacity due to the establishment of these individuals in smaller classes (Pinheiro & Monteiro, 2009).

Figure 4 Distribution of number of individuals (A) and Absolute Dominance (B) in relation to the height classes in a Dense Ombrophylous Forest fragment located in the municipality of Sirinhaém, Pernambuco, Brazil. 

Analyzing the basal area values between height classes, it was observed that individuals with height less than 10 meters corresponded to 76.28% of the total sampled individuals with mean DAB of 8 cm, representing 27.43% of the total basal area (Figure 4B). A similar result was recorded by Brandão et al. (2009) in studying an Atlantic Forest fragment in Igarassu, Pernambuco state, where 74% of the individuals presented height less than 10 m and DAB lower than 10 cm.

4. CONCLUSION

The studied fragment is very relevant for biodiversity conservation since it presents a significant diversity of species, indicating high uniformity between individuals and species within the plant community.

The diametric structure of the vegetation shows that most of the individuals are in classes with smaller diameters, indicating a community with potential for regeneration, where any anthropic intervention, even if occasional, may directly interfere with its recovery, emphasizing the need for the area’s conservation mainly for maintaining the local biodiversity.

The importance of preserving this fragment and others in the regions dominated by sugar cane cultivation must be emphasized, aiming at maintaining the flora and fauna associated with these forest environments.

ACKNOWLEDGEMENTS

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, pelo apoio financeiro, e à Usina Trapiche S/A, em especial ao Dr. Cauby, por permitir a pesquisa e dar suporte para realização da mesma.

REFERENCES

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6): 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507. [ Links ]

Angiosperm Phylogeny Group – APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 1: 1-20. [ Links ]

Brandão CFLS, Alves Júnior FT, Lana MD, Marangon LC, Feliciano ALP. Distribuição espacial, sucessão e dispersão do componente arbóreo em remanescente de floresta atlântica, Igarassu-Pernambuco. Revista Verde 2011; 6(2): 218-229. [ Links ]

Brandão CFLS, Marangon LC, Ferreira RLC, Silva ACBL. Estrutura fitossociológica e classificação sucessional do componente arbóreo em um fragmento de floresta atlântica em Igarassu-Pernambuco. Agrária 2009; 4(1): 55-61. http://dx.doi.org/10.5039/agraria.v4i1a9. [ Links ]

Colwell RK. EstimateS 9.1.0. Storrs: Department of Ecology & Evolutionary Biology, University of Connecticut; 2013. [ Links ]

Cordeiro J, Roderjan CV, Rodrigues WA. Plantas lenhosas da Floresta Ombrófila Mista do Parque Municipal das Araucárias - Guarapuava (PR). Ambiência 2011; 7(3): 441-460. http://dx.doi.org/10.5777/ambiencia.2011.03.03. [ Links ]

Costa RF Jr, Ferreira RLC, Rodal MJN, Feliciano ALP, Marangon LC, Silva WC. Estrutura fitossociológica do componente arbóreo de um fragmento de Floresta Ombrófila Densa na Mata Sul de Pernambuco, Nordeste do Brasil. Ciência Florestal 2008; 18(3): 173-183. http://dx.doi.org/10.5902/19805098455. [ Links ]

Gandolfi S, Leitão-Filho HF, Bezerra CLF. Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Revista Brasileira de Biologia 1995; 55(4): 753-767. [ Links ]

Guimarães FJP, Ferreira RLC, Marangon LC, Silva JAA, Aparício PS, Alves-Júnior FT. Estrutura de um fragmento florestal no Engenho Humaitá, Catende, Pernambuco, Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental 2009; 13(suppl): 940-947. http://dx.doi.org/10.1590/S1415-43662009000700017. [ Links ]

Hernández-Ramírez AM, García-Méndez S. Diversidad, estructura y regeneración de la selva tropical estacionalmente seca de la Península de Yucatán, México. Revista de Biología Tropical 2015; 63(3): 603-616. PMid:26666118. [ Links ]

Laurance WF, Camargo JLC, Fearnside PM, Lovejoy TE, Williamson GB, Mesquita RCG et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews of the Cambridge Philosophical Society 2017; 93(1): 223-247. http://dx.doi.org/10.1111/brv.12343. PMid:28560765. [ Links ]

Magurran AE. Ecological diversity and its measurement. London: Croom Helm; 1988. http://dx.doi.org/10.1007/978-94-015-7358-0. [ Links ]

Malczewski FL, Fritsch M, Povaluk M. Ocorrência de Fabaceae-Mimosoidea em APPs da faixa de domínio da rodovia BR-116, trecho Curitiba, PR a Capão Alto, SC. Saúde e meio ambiente: revista interdisciplinar 2014; 3(2): 102-117. [ Links ]

Martins L, Cavararo R. Manual Técnico da Vegetação Brasileira: sistema fitogeográfico, inventário das formações florestais e campestres, técnicas e manejo de coleções botânicas, procedimentos para mapeamentos. Rio de Janeiro: IBGE; 2012. [ Links ]

Oliveira LSB, Marangon LC, Feliciano ALP, Lima AS, Cardoso MO, Silva VF. Florística, classificação sucessional e síndromes de dispersão em um remanescente de Floresta Atlântica, Moreno-PE. Agrária 2011; 6(3): 502-507. http://dx.doi.org/10.5039/agraria.v6i3a1384. [ Links ]

Oliveira PRS, Guedes RVS, Silva CAWS, Santos EP, Oliveira FP, Silva-Júnior HD et al. Boletim do clima: síntese climática/Agência pernambucana de águas e clima. Recife: APAC; 2016. [ Links ]

Pell SK, Mitchell JD, Miller AJ, Lobova TA. Anacardiaceae. In: Kubitzki K, editor. The families and genera of vascular plants. X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtales. Berlin: Springer; 2011. [ Links ]

Pielou EC. Ecological diversity. New York: J. Wiley; 1975. [ Links ]

Pinheiro MH, Monteiro R. Análise estrutural e considerações sobre a dinâmica sucessional de dois fragmentos florestais semideciduais do Jardim Botânico Municipal de Bauru, SP, Brasil. Acta Botanica Brasílica 2009; 23(4): 968-975. http://dx.doi.org/10.1590/S0102-33062009000400007. [ Links ]

Philippi A Jr, Sampaio CAC, Fernandes V. Gestão de natureza pública e sustentabilidade. Barueri: Manole; 2012. [ Links ]

Roa-Romero HA, Salgado-Mora MG, Alvarez-Herrera J. Analysis of the Structure Arborea Agroforestry System Cocoa (Theobroma cacao L.) in Soconusco, Chiapas-Mexico. Acta Biologica Colombiana 2009; 14(3): 97-110. [ Links ]

Santos HG, Almeida JA, Oliveira JB, Lumbreras JF, Anjos LHC, Coelho MR et al. Sistema brasileiro de classificação de solos. Brasília: Embrapa; 2013. [ Links ]

Silva APFF, Bentes-Gama MM. Fitossociologia de uma Floresta Ombrófila Aberta em área de assentamento rural no distrito de Jaci Paraná, Porto Velho, Rondônia. Ambiência 2008; 4(3): 435-452. http://dx.doi.org/10.5777/ambiencia.2008.03.06. [ Links ]

Silva FBR, Santos JCP, Silva AB, Cavalcanti AC, Silva FHBB, Burgos N et al. Zoneamento agroecológico do Estado de Pernambuco. Recife: Embrapa Solos UEP Recife; 2001. [ Links ]

Silva KE, Martins SV, Ribeiro CA, Santos NT, Azevedo CP, Matos FD et al. Floristic composition and similarity of 15 hectares in Central Amazon, Brazil. Revista de Biología Tropical 2011; 59(4): 1927-1938. PMid:22208103. [ Links ]

Silva KE, Matos FDA, Ferreira MM. Composição florística e fitossociologia de espécies arbóreas do Parque Fenológico da Embrapa Amazônia Ocidental. Acta Amazonica 2008; 38(2): 213-222. http://dx.doi.org/10.1590/S0044-59672008000200004. [ Links ]

Silva RKS, Feliciano ALP, Marangon LC, Lima RBA, Santos WB. Estrutura e síndromes de dispersão de espécies arbóreas em um trecho de mata ciliar, Sirinhaém, Pernambuco, Brasil. Pesquisa Florestal Brasileira 2012; 32(69): 1-11. http://dx.doi.org/10.4336/2012.pfb.32.69.01. [ Links ]

Silva WC, Marangon LC, Ferreira RLC, Feliciano ALP, Aparício PS, Costa-Júnior RF. Estrutura horizontal e vertical do componente arbóreo em fase de regeneração natural na Mata Santa Luzia, no Município de Catende - PE. Revista Árvore 2010; 34(5): 863-869. http://dx.doi.org/10.1590/S0100-67622010000500011. [ Links ]

Sturges HA. The Choice of a Class Interval. Journal of the American Statistical Association 1926; 21(153): 65-66. http://dx.doi.org/10.1080/01621459.1926.10502161. [ Links ]

Tropicos.org. Tropicos [online]. Saint Louis: Missouri Botanical Garden; 2017 [cited 2017 Jan 10]. Available from: http://www.tropicos.orgLinks ]

Téo SJ, Fiorentin LD, Schneider CR, Costa RH, Batista S. Estrutura da regeneração natural sujeita à pecuária extensiva na região de Caçador-SC. Nativa (Sinop) 2014; 02(4): 199-207. http://dx.doi.org/10.14583/2318-7670.v02n04a03. [ Links ]

Vega H, Cetzal-ix W, Mó E, Romero-Soler K. Nuevos registros para la flora de Honduras y el Parque Nacional Montana de Celaque. Acta Biologica Colombiana 2016; 21(3): 635-644. http://dx.doi.org/10.15446/abc.v21n3.51020. [ Links ]

Received: May 14, 2017; Accepted: June 30, 2018

Rosival Barros de Andrade LimaDepartamento de Ciências Florestais, Universidade Federal Rural de Pernambuco – UFRPE, Rua Dom Manoel de Medeiros, CEP 52171-900, Recife, PE, Brasil e-mail: rosival_barros@yahoo.com.br

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.