Acessibilidade / Reportar erro

Inventory of Organic Carbon in a Pterogyne nitens Tul. Plantation in Southwest Bahia, Brazil

ABSTRACT

Carbon binding capacity varies between forest plantations, mainly in terms of species and climate and soil conditions. The objective of this study was to estimate the amount of organic carbon stored in aerial tree biomass in the litter and soil of a homogeneous planting of Pterogyne nitens Tul. located in the Southwest Bahia region of Brazil. The woody biomass was obtained by destructive method. Litter collection was carried out using a wooden template (0.25 m2). Soil samples were collected at four depths (0-5, 5-10, 10-20 and 20-40 cm). The carbon stored in all studied compartments totaled 47.1 Mg ha-1 with a greater contribution from the ground (31.4 t ha-1). The accumulated litter was the lowest carbon compartment, storing about 1.4% of the total. Among the different fractions of the biomass, the stem is the largest carbon reservoir, representing about 46% of fixed C biomass.

Keywords:
arboreal biomass; litter; soil; carbon dioxide; native species

1. INTRODUCTION

Carbon dioxide (CO2) concentration in the atmosphere has increased over the years, changing from 280 ppmv in 1750 to 367 ppmv in 1999 (Lal, 2004Lal R. Soil carbon sequestration to mitigate climate change. Geoderma 2004; 123(1-2): 1-22. 10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.geoderma.2004....
), and reaching the order of 390 ppmv nowadays (Pachauri & Meyer, 2014Pachauri RK, Meyer L, editors. Climate change 2014: synthesis report: contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.). CO2 is considered the most relevant among greenhouse gases due to the increase in its concentration in the atmosphere. Among the alternatives to reduce atmospheric emissions of CO2, to decrease burning of fossil fuels and deforestation for establishing low productivity farming systems may be highlighted, in addition to promoting large-scale reforestation (Watzlawick et al., 2012Watzlawick LF, Caldeira MVW, Viera M, Schumacher MV, Godinho TO, Balbinot R. Estoque de biomassa e carbono na floresta ombrófila mista Montana Paraná. Scientia Forestalis 2012 [cited 2019 May 17]; 40(95): 353-362. Available from: Available from: http://bit.ly/2w5358g
http://bit.ly/2w5358g...
).

The forest ecosystem can be a source of replenishing carbon (C) into the atmosphere due to reduced productivity, increased mortality rates and soil exposure as a consequence of anthropic or natural actions such as the use of fire and conventional techniques of soil preparation, suppression of native vegetation, and climate change, among others. On the other hand, it can also contribute to C draining, especially during soil repopulation with forest plantations (Hosokawa et al., 1998Hosokawa RT, Moura JB, Cunha US. Introdução ao manejo e economia de florestas. Curitiba: Editora UFPR; 1998.). These plantations have great capacity to fix CO2 in the atmosphere, and for this reason are considered an important strategy for long term C storage in plant biomass, as well as in litter and soil, which constitute reservoirs and potential atmospheric CO2 sinks (Castro, 1996Castro EA. Biomass, nutrient pools and response to fire in the Brazilian Cerrado [thesis]. Corvallis: Oregon State University; 1996.).

Carbon fixation capacity is highly variable among forest plantations, mainly in relation to the planted species and climate and soil conditions (Masera et al., 2003Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ et al. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2 FIX V.2 approach. Ecological Modeling 2003; 164(2-3): 177-199. 10.1016/S0304-3800(02)00419-2
https://doi.org/10.1016/S0304-3800(02)00...
). Several studies related to the quantification of biomass and carbon stocks have been developed in Brazil, both in native forests (Caldeira et al., 2004Caldeira MVW, Soares RV, Watzlawick LF. Estimativa de biomassa em espécies arbóreas da floresta ombrófila Mista Montana - General Carneiro-PR. Biomassa & Energia 2004; 1(3): 291-310.; Chambers et al., 2001Chambers JQ, Santos J, Ribeiro RJ, Higuchi N. Tree damage, allometric relationships, and above ground net primary production in central Amazon forest. Forest Ecology and Management 2001; 152(1-3): 73-84. 10.1016/S0378-1127(00)00591-0
https://doi.org/10.1016/S0378-1127(00)00...
; Higuchi et al., 2004Higuchi N, Chambers J, Santos J, Ribeiro RJ, Pinto ACM, Silva RP et al. Dinâmica e balanço do carbono da vegetação primária da Amazônia Central. Floresta 2004; 34(3): 295-304. 10.5380/rf.v34i3.2417
https://doi.org/10.5380/rf.v34i3.2417...
; Morais et al., 2013Morais VA, Scolforo JRS, Silva CA, Mello JM, Gomide LR, Oliveira AD. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 2013; 19(2): 237-245. 10.1590/S0104-77602013000200007
https://doi.org/10.1590/S0104-7760201300...
; Nelson et al., 1999Nelson BW, Mesquita R, Pereira JLG, Souza SGA, Batista GT, Couto LB. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 1999; 117(1-3): 149-167. 10.1016/S0378-1127(98)00475-7
https://doi.org/10.1016/S0378-1127(98)00...
; Sallis et al., 2006Sallis SM, Assis MA, Mattos PP, Pião ACS. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil Pantanal wetlands based on allometric correlations. Forest Ecology and Management 2006; 228(1-3): 61-68. 10.1016/j.foreco.2006.02.025
https://doi.org/10.1016/j.foreco.2006.02...
; Scolforo et al., 2016Scolforo HF, Scolforo JRS, Mello JM, Mello CR, Morais VA. Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and Savanna. Forest Ecology and Management 2016; 376: 24-35. 10.1016/j.foreco.2016.05.047
https://doi.org/10.1016/j.foreco.2016.05...
; Silva et al., 2015Silva KE, Souza CR, Azevedo CP, Rossi LMB. Dinâmica florestal, estoque de carbono e fitossociologia de uma floresta densa de terra-firme na Amazônia Central. Scientia Forestalis 2015 [cited 2019 May 17]; 43(105): 193-201. Available from: Available from: http://bit.ly/2Hn4tK0
http://bit.ly/2Hn4tK0...
) and in planted forests of exotic species, mainly of the genera Eucalyptus and Pinus (Balbinot et al., 2003Balbinot R, Schumacher MV, Watzlawick LF, Sanquetta CR. Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista Ciências Exatas e Naturais 2003 [cited 2019 May 17]; 5(1): 59-68. Available from: Available from: http://bit.ly/2W0t27R
http://bit.ly/2W0t27R...
; Barreto et al., 2014Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC. Carbono das frações da matéria orgânica em solos sob plantações de eucalipto de diferentes idades. Scientia Forestalis 2014 [cited 2019 May 17]; 42(104): 571-580. Available from: Available from: http://bit.ly/2VDlDMd
http://bit.ly/2VDlDMd...
; Dalla-Corte & Sanquetta, 2007Dalla-Corte AP, Sanquetta CR. Quantificação do estoque de carbono fixado em reflorestamentos de Pinus na área de domínio da Floresta Ombrófila Mista no Paraná. Cerne 2007; 13(1): 32-39.; Faria et al., 2008Faria GE, Barros NF, Novais RF, Silva IR, Neves JCL. Carbono orgânico total e frações da matéria orgânica do solo em diferentes distâncias do tronco de eucalipto. Scientia Forestalis 2008; 36(80): 265-277. Available from: http://bit.ly/2Vt5Rib
https://doi.org/http://bit.ly/2Vt5Rib...
; Gatto et al., 2010Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Leite FP et al. Estoques de carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciência do Solo 2010; 34(4): 1069-1079. 10.1590/S0100-06832010000400007
https://doi.org/10.1590/S0100-0683201000...
; Lima et al., 2016Lima MCD, Barreto-Garcia PAB, Sanquetta CR, Novaes AB, Melo LC. Biomass and carbon stock from Pinus caribaea var. hondurensis under homogenous stands in southwest Bahia, Brazil. Ciência Rural 2016; 46(6): 957-962. 10.1590/0103-8478cr20150493
https://doi.org/10.1590/0103-8478cr20150...
; Watzlawick et al., 2013Watzlawick LF, Caldeira MVW, Godinho TO, Balbinot R, Trautenmüller JW. Aboveground stock of biomass and organic carbon in stands of Pinus taeda L. Cerne 2013; 19(3): 509-515. 10.1590/S0104-77602013000300019
https://doi.org/10.1590/S0104-7760201300...
). However, the number of studies that quantify C-fixation capacity in forest plantations of native species is still limited (Caldeira et al., 2003Caldeira MVW, Schumacher MV, Barichello LR, Vogel HLM. Determinação de carbono orgânico em povoamentos de Acacia mearnsii de Wild. plantados no Rio Grande do Sul. Revista Acadêmica Ciências Animal 2003; 1(2): 47-54. 10.7213/cienciaanimal.v1i2.14913
https://doi.org/10.7213/cienciaanimal.v1...
; Gama-Rodrigues et al., 2008Gama-Rodrigues AC, Gama-Rodrigues EF, Barros NF. Balanço de carbono e nutrientes em plantio puro e misto de espécies florestais nativas no Sudeste da Bahia. Revista Brasileira de Ciência do Solo 2008; 32(3): 1165-1179. 10.1590/S0100-06832008000300025
https://doi.org/10.1590/S0100-0683200800...
; Thompson, 2009Thompson RM. Estimativas de volume, biomassa e carbono para o carvoeiro (Sclerolobium paniculatum Vog. var. subvelutinum Benth) [thesis]. Brasília, DF: Universidade de Brasília; 2009.; Watzlawick et al., 2003Watzlawick LF, Sanquetta CR, Arce JE, Balbinot R. Quantificação de biomassa total e carbono orgânico em povoamentos de Araucaria angustifolia (Bertol.) Kuntze no sul do estado do Paraná, Brasil. Revista Acadêmica Ciência Animal 2003; 1(2): 63-68. 10.7213/cienciaanimal.v1i2.14919
https://doi.org/10.7213/cienciaanimal.v1...
), in particular under the conditions of the Northeast region of the country.

Among the native species that present potential for use in reforestation programs in the Northeast region of Brazil, the Pterogyne nitens Tul., also popularly known as madeira-nova and amendoim-bravo, stands out for generating wood with economic value for diverse purposes, as it has fast growth and adapts well to the region’s environmental conditions (Lorenzi, 1998Lorenzi H. Árvores brasileiras: manual de cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum; 1998. v. 1.). Such adaptation is attributed to its ease of establishment in soils which are poor in nutrients and organic matter, due to its ability to fix nitrogen by symbiosis with diazotrophic bacteria and mycorrhizal fungi (Franco et al., 1995Franco AA, Dias LE, Faria SM, Campello EFC, Silva EMR. Uso de leguminosas florestais noduladas e micorrizadas como agentes de recuperação e manutenção da vida no solo: um modelo tecnológico. Oecologia Brasiliensis 1995; 1: 459-467.). Despite the proven importance of this species, little is known about its ability to fix carbon. In a study carried out in a homogeneous plantation of Pterogyne nitens at 6 years of age, Fraga et al. (2014Fraga MP, Barreto PAB, Paula A. Estimação de volume de Pterogyne nitens em plantio puro no sudoeste da Bahia. Pesquisa Florestal Brasileira 2014; 34(79): 207-215. 10.4336/2014.pfb.34.79.703
https://doi.org/10.4336/2014.pfb.34.79.7...
) reported a wood volume of approximately 51 m3 per hectare, which is an indicative of its biomass accumulation potential, and consequently of C storage.

Given this context, the objective of this study was to estimate the amount and distribution of organic C stored in aerial biomass components, litter and soil of a homogeneous 6-year-old plantation of P. nitens.

2. MATERIALS AND METHODS

2.1. Study area characterization

This study was carried out in a homogeneous 6-year-old plantation of Pterogyne nitens Tul. located in the experimental area of the Universidade Estadual do Sudoeste da Bahia (Uesb), municipality of Vitória da Conquista, BA, Brazil. The plantation was established according to 3 m × 3 m spacing, with seminal seedlings and fertilization located in the pit (100 g of simple superphosphate). Soil preparation consisted of trenching and opening the pits. Weeding the lines and between the lines was carried out for controlling spontaneous weeds at two, six and 12 months after planting.

The region has flat to slightly undulating relief (average altitude of 840 m). The climate is subtropical highland (Cwb) according to Köppen’s classification with average temperature and annual rainfall of 25 °C and 850 mm, respectively. The predominant vegetation in the region is classified as Semi-Deciduous Seasonal Forest Montana, known regionally as Liana Forest. The soil of the studied area is classified as Dystrophic Yellow Latosol (Santos et al., 2006Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR et al. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro: Embrapa Solos; 2006.), with a texture ranging from very clayey to clayey (Table 1). Table 1 presents the chemical and granulometric characterization of the soil at depth of 0-40 cm.

Table 1
Chemical and granulometric composition of soil under a homogeneous Pterogyne nitens plantation in Southwest Bahia, Brazil.

2.2. Biomass and carbon

Biomass and C stock quantification were performed in three compartments of the ecosystem: tree biomass, litter and soil.

In order to obtain the diametrical distribution of the trees, the stem diameter at the height of 1.30 m from the soil level (DBH) of all individuals of the stand was measured. Because the species present predominantly more than one stem, the DBH of all stems originating up to 1.30 m were included. The DBH measurements of the stems were grouped into six classes considering an amplitude of 2.1 cm, corresponding to the standard deviation of the obtained DBH measurements.

Eighteen trees were selected for quantifying tree biomass with representative stems from all diametric classes, totaling 54 sampled stems. The number of sampled trees was based on referenced literature studies, which adopted a sample number between 10 and 35 trees (Caldeira et al., 2011Caldeira MVW, Saidelles FLF, Schumacher MV, Godinho TO. Biomassa de plantio de Acacia mearnsii De Wild., Rio Grande do Sul, Brasil. Scientia Forestalis 2011 [cited 2019 May 17]; 39(90): 133-141. Available from: Available from: http://bit.ly/2JmkaDp
http://bit.ly/2JmkaDp...
; Melo et al., 2014Melo LC, Sanquetta CR, Dalla-Corte AP, Hentz AMK. Estimativa de biomassa e carbono total para árvores de caixeta no Paraná. Pesquisa Florestal Brasileira 2014; 34(77): 21-29. 10.4336/2014.pfb.34.77.592
https://doi.org/10.4336/2014.pfb.34.77.5...
; Moura et al., 2006Moura ON, Passos MAA, Ferreira RLC, Molica SG, Lira MA Jr, Lira MA et al. Distribuição de biomassa e nutrientes na parte aérea de Mimosa caesalpiniifolia Benth. Revista Árvore 2006; 30(6): 877-884. 10.1590/S0100-67622006000600002
https://doi.org/10.1590/S0100-6762200600...
; Saidelles et al., 2009Saidelles FLF, Caldeira MVW, Schumacher MV, Balbinot R. Uso de equações para estimar carbono orgânico em plantações de Acacia mearnsii de Wild. no Rio Grande do Sul - Brasil. Revista Árvore 2009; 33(5): 907-915. 10.1590/S0100-67622009000500013
https://doi.org/10.1590/S0100-6762200900...
; Sanquetta et al., 2003Sanquetta CR, Watzlawick LF, Schumacher MV, Mello AA. Relações individuais de biomassa e conteúdo de carbono em plantações de Araucaria angustifolia e Pinus taeda no sul do estado do Paraná, Brasil. Revista Acadêmica Ciência Animal 2003; 1(3): 33-40. 10.7213/cienciaanimal.v1i3.14937
https://doi.org/10.7213/cienciaanimal.v1...
; Vieira et al., 2009Vieira G, Sanquetta CR, Barbeiro LSS. Estoque individual de biomassa e carbono em Nectandra grandiflora Nees (Canela-amarela). Revista Floresta 2009; 39(3): 547-554. 10.5380/rf.v39i3.15354
https://doi.org/10.5380/rf.v39i3.15354...
).

After felling, the sample trees were fractionated considering the simple separation method (Sanquetta et al., 2004Sanquetta CR, Dalla-Corte AP, Balbinot R, Leal MCBS, Ziliotto MA. Proposta metodológica para quantificação e monitoramento do carbono estocado em florestas plantadas. In: Sanquetta CR, Ziliotto MAB, editors. Carbono: ciência e mercado global. Curitiba: Ecoplan; 2004. p. 240-265.). While still in the field, each tree component (leaves, branches and stem with the bark) was weighed using a mechanical scale with a capacity of 150 kg and a precision of 50 g to obtain the fresh biomass of each individual per compartment. After weighing, samples of about 300 g were taken from each tree compartment and taken to the laboratory where they were weighed and kept in a forced circulation drying oven at 60 °C until the stabilization of its dry mass was complete.

The dry biomass of the tree components was estimated by multiplying the wet biomass by the conversion factor (ratio between dry and wet mass of the samples). Thus, the total dry biomass of each tree was obtained by the sum of the dry biomass of all measured compartments. In turn, the total biomass per hectare of each component was calculated by multiplying the mean value of the trees by the estimated number of trees per hectare at 6 years of age (1,000 trees), taking into account the initial planting mortality.

Carbon content of the tree components’ biomass samples was determined using a Leco C-144 carbon analyzer at the Center for Excellence in Research on Biomass Carbon Fixation (Biofix) of the Universidade Federal do Paraná (UFPR). Carbon stocks per tree (kg) and area (Mg ha-1) were estimated based on the dry biomass values of the trees and their respective C contents.

For soil sample collection, four plots of 21 m × 21 m dimensions were established, which were randomly distributed within the plantation area. The sampling was performed at four depths (0-5, 5-10, 10-20 and 20-40 cm). Four trenches of 0.4 m × 0.4 m were randomly opened in each plot from which simple samples were collected and then gathered to form a composite sample of each depth. In addition, an undeformed sample was also taken by depth using a volumetric ring to determine soil density.

For the sampling of accumulated litter on the soil surface, 20 plots of 15 m × 15 m were demarcated according to a random walk through the stand. Collection was carried out in each plot with the aid of a wooden mold in 0.25 m2 of useful area (0.5 m × 0.5 m) which was randomly cast onto the soil with three repetitions that were then pooled to form a composite sample. The material circumscribed by the mold was carefully removed, avoiding collection of soil and live roots. All deciduous plant material deposited on the soil at different degrees of decomposition was considered litter. After collection, the sampled material was screened (five fractions were separated: leaves, branches, bark, reproductive structures and amorphous material), dried in a forced ventilation oven (at 60 °C until constant weight), weighed on a precision scale (0.01 g) and milled to the consistency of powder using a six-knife mill and metal sieves. The dry mass results (g) of the sum of the three samples from each plot were converted to Mg ha-1.

The determination of organic C from soil and litter was carried out by oxidation in acid medium using Na2Cr2O7 4 N (Embrapa, 1997Empresa Brasileira de Pesquisa Agropecuária - Embrapa. Manual de métodos de análise de solos. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação de Solos; 1997.) and K2Cr2O7 4 N (Anderson & Ingram, 1996Anderson JD, Ingram JSI. Tropical soil biology and fertility: a handbook of methods. Wallingford: CAB International; 1996.), respectively. Soil density was calculated based on the Kopecky ring method (Embrapa, 1997Empresa Brasileira de Pesquisa Agropecuária - Embrapa. Manual de métodos de análise de solos. Rio de Janeiro: Serviço Nacional de Levantamento e Conservação de Solos; 1997.).

Carbon stocks at each soil depth were estimated according to the equation CS = C × Sd × Tck × 10, in which CS represents C stock in Mg ha-1; C, the content of this element in g kg-1; Sd, soil density in kg dm3; and Tck, the thickness of the layer under analysis in meters. To verify trends of C increase or reduction in different soil depths, and considering that the analyzed layers presented variable thickness, an estimate of stored C per centimeter of depth was performed (Mg ha-1 cm-1) by dividing the C stock by the thickness (cm) of each layer, as adopted from Barreto et al. (2011Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC, Fontes AG, Polidoro JC, Moço MK et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agroforestry Systems 2011; 81(3): 213-220. 10.1007/s10457-010-9300-4
https://doi.org/10.1007/s10457-010-9300-...
).

3. RESULTS AND DISCUSSION

3.1. Diameter distribution

The studied stand had trees with a minimum diameter of 1.8 cm and a maximum of 13.6 cm. The frequency distribution of the individuals by grouping into six diametric classes with amplitude of 2.1 cm corresponded to normal distribution according to the Shapiro-Wilk normality test, with a higher concentration of individuals in more central classes (of 4.2 and 6.3 cm) (Figure 1), a characteristic pattern of even-aged forest stands (Machado & Figueiredo Filho, 2003Machado SA, Figueiredo Filho A. Dendrometria. Curitiba: Editora dos Autores; 2003.).

Figure 1
Diametric distribution of stems in a homogeneous Pterogyne nitens plantation.

3.2. Organic carbon in aerial biomass

The C stock of tree biomass in all components totaled approximately 15.0 Mg ha-1 (Table 2). The component with the highest participation was the stem, with 7.2 Mg ha-1, which represented about 46% of the total C stock in the biomass. This was followed by the branches (43%) and leaves (12%). This same distribution sequence was observed by Caldeira et al. (2003Caldeira MVW, Schumacher MV, Barichello LR, Vogel HLM. Determinação de carbono orgânico em povoamentos de Acacia mearnsii de Wild. plantados no Rio Grande do Sul. Revista Acadêmica Ciências Animal 2003; 1(2): 47-54. 10.7213/cienciaanimal.v1i2.14913
https://doi.org/10.7213/cienciaanimal.v1...
) in a 6-year-old Acacia mearnsii stand and by Watzlawick et al. (2003Watzlawick LF, Sanquetta CR, Arce JE, Balbinot R. Quantificação de biomassa total e carbono orgânico em povoamentos de Araucaria angustifolia (Bertol.) Kuntze no sul do estado do Paraná, Brasil. Revista Acadêmica Ciência Animal 2003; 1(2): 63-68. 10.7213/cienciaanimal.v1i2.14919
https://doi.org/10.7213/cienciaanimal.v1...
) in a 30-year-old Araucaria angustifolia plantation. The contribution proximity of the tree and branch components in the total biomass composition (both with a share of over 40%) is possibly related to the fact that the species exhibit several stems and bifurcations in virtually all stems. Therefore, this anatomical characteristic would be responsible for the high branch biomass (12.6 kg tree-1).

Table 2
Dry biomass, concentrations and amounts of organic carbon components of 6-year-old Pterogyne nitens trees.

Leaves presented the highest levels of C (48%) among the aerial biomass components, followed by branches and stems (46%) (Table 2). In analyzing several species of Dense Tropical “Terra Firme” Rainforest in the Amazon region, Higuchi & Carvalho (1994Higuchi N, Carvalho JA Jr. Fitomassa e conteúdo de carbono de espécies arbóreas da Amazônia. In: Anais do Seminário Emissão × Sequestro de CO2: Uma Nova Oportunidade de Negócios para o Brasil; 1994 May; Rio de Janeiro, RJ, Brasil. Rio de Janeiro: Companhia Vale do Rio Doce; 1994. p. 127-153.) found mean C contents of 48% for stem and branches and 39% for leaves. Dallagnol et al. (2011Dallagnol FS, Mognon F, Sanquetta CR, Dalla-Corte AP. Teores de carbono de cinco espécies florestais e seus compartimentos. Floresta e Ambiente 2011; 18(4): 410-416. 10.4322/floram.2011.060
https://doi.org/10.4322/floram.2011.060...
) found higher levels in Araucaria angustifolia needles (47%) and in Populus sp. branches (45%).

3.3. Organic carbon in litter

The total dry biomass of litter on the soil was 1.5 Mg ha-1 and it had 42% of C content, which corresponds to 0.7 Mg of C ha-1 (Table 3). This content is higher than that indicated by the Intergovernmental Panel on Climate Change (Eggleston et al., 2006Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Guidelines for national greenhouse gas inventories: agriculture, forestry and other land use. Geneva: Intergovernmental Panel on Climate Change; 2006. v. 4.), which suggests 37% for the litter. Torres et al. (2013Torres CMME, Jacovine LAG, Soares CPB, Oliveira Neto SN, Santos RD, Castro Neto F. Quantificação de biomassa e estocagem de carbono em uma floresta estacional semidecidual, no parque tecnológico de Viçosa, MG. Revista Árvore 2013; 37(4): 647-655. 10.1590/S0100-67622013000400008
https://doi.org/10.1590/S0100-6762201300...
) observed an average of 52% of C content in the litter in a Semi-Deciduous Seasonal Forest in Minas Gerais. On the other hand, Higuchi & Carvalho (1994Higuchi N, Carvalho JA Jr. Fitomassa e conteúdo de carbono de espécies arbóreas da Amazônia. In: Anais do Seminário Emissão × Sequestro de CO2: Uma Nova Oportunidade de Negócios para o Brasil; 1994 May; Rio de Janeiro, RJ, Brasil. Rio de Janeiro: Companhia Vale do Rio Doce; 1994. p. 127-153.), in a Tropical Forest in the Amazon Region, and Morais et al. (2017Morais VA, Santos CA, Mello JM, Dadid HC, Araújo EJG, Scolforo JRS. Spatial and vertical distribution of litter and belowground carbon in a Brazilian Cerrado vegetation. Cerne 2017; 23(1): 43-52. 10.1590/01047760201723012247
https://doi.org/10.1590/0104776020172301...
), in the Cerrado vegetation of the state of Minas Gerais, found mean C contents in the litter of 39% and 44%, respectively.

Table 3
Dry biomass levels and amounts of organic carbon components of accumulated plant litter in homogeneous 6-year-old Pterogyne nitens plantation.

The amount of C stored in the litter found in the present study (Table 3) was similar to the amount found by Gama-Rodrigues et al. (2008Gama-Rodrigues AC, Gama-Rodrigues EF, Barros NF. Balanço de carbono e nutrientes em plantio puro e misto de espécies florestais nativas no Sudeste da Bahia. Revista Brasileira de Ciência do Solo 2008; 32(3): 1165-1179. 10.1590/S0100-06832008000300025
https://doi.org/10.1590/S0100-0683200800...
) in Claraíba stands (Cordia trichotoma (Vell.) Arrab.) in the Southeast of Bahia at 22 years of age (1.4 Mg of C ha-1). However, higher values have been reported in other studies, such as those by Watzlawick et al. (2002Watzlawick LF, Kirchner FF, Sanquetta CR, Schumacher MV. Fixação de carbono em floresta ombrófila mista em diferentes estágios de regeneração. In: Sanquetta CR, Watzlawick LF, Balbinot R, Ziliotto MAB, Gomes FS et al., editors. As florestas e o carbono. Curitiba: Editora dos Autores ; 2002. p. 153-173.) in a Mixed Ombrophilous Forest Montana in Paraná (2.90 Mg ha-1), and by Schneider et al. (2005Schneider PR, Finger CAG, Sobrinho VG, Schneider PSP. Determinação indireta do estoque de biomassa e carbono em povoamentos de acácia-negra (Acacia mearnsii De Wild.). Ciência Florestal 2005; 15(4): 391-402. 10.5902/198050981876
https://doi.org/10.5902/198050981876...
) in 4-year-old A. mearnsii stands in Rio Grande do Sul (2.26 Mg ha-1).

The fraction that most contributed to the total litter composition were the branches (Table 3), which can be attributed to the fact that these components are made of woody materials which are more resistant to decomposition than non-lignified leaves and tender branches (Swift et al., 1979Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Oxford: Blackwell; 1979.). These results contrast with those found by Schumacher et al. (2004Schumacher MV, Brun EJ, Hernandes JI, König FG. Produção de serapilheira em uma floresta de Araucaria angustifolia (Bertol.) Kuntze no município de Pinhal Grande-RS. Revista Árvore 2004; 28(1): 29-37. 10.1590/S0100-67622004000100005
https://doi.org/10.1590/S0100-6762200400...
), Pires et al. (2006Pires LA, Britez RM, Martel G, Pagano SN. Produção, acúmulo e decomposição da serapilheira em uma restinga da Ilha do Mel, Paranaguá, PR, Brasil. Acta Botanica Brasilica 2006; 20(1): 173-184. 10.1590/S0102-33062006000100016
https://doi.org/10.1590/S0102-3306200600...
) and Ferreira et al. (2007Ferreira RLC, Lira MA Jr, Rocha MS, Santos MVF, Lira MA, Barreto LP. Deposição e acúmulo de matéria seca e nutrientes em serapilheira em um bosque de sabiá (Mimosa caesalpiniifolia Benth.). Revista Árvore 2007; 31(1): 7-12. 10.1590/S0100-67622007000100002
https://doi.org/10.1590/S0100-6762200700...
), who found a greater contribution of the leaves in the accumulated litter in Araucaria, Restinga and Sabia forests, respectively. It is probable that the lower participation of the leaves in the litter composition in this study has been determined by a low C/N ratio, and consequently a higher decomposition rate of the leaf component, since the studied species is a nitrogen fixation legume (Silva et al., 2004Silva GTA, Queiroz ROM, Nóbrega PO, Campello EFC, Resende AS. Caracterização dos teores de nitrogênio, polifenol e relação C:N no tecido foliar de diferentes espécies vegetais em um sistema silvipastoril. In: Anais da 14a Jornada Científica da Universidade Federal Rural do Rio de Janeiro; 2004; Seropédica, Rio de Janeiro, Brasil. Seropédica: Universidade Federal Rural do Rio de Janeiro; 2004. p. 55-59.).

Similarly to what was observed for dry biomass, the branches component had the highest amount of C fixed per hectare, representing more than 60% of the carbon stored in the litter (Table 3). However, the C content of this component (45%) was similar to that found in the leaves (46%), which contributed 37% of the litter C. The other components had small participation in the total C composition: bark (0.5%), reproductive structures (0.6%) and amorphous material (1.5%).

3.4. Organic carbon in soil

The amount of C stored in soil up to 40 cm was 31.4 Mg ha-1, with contents between 6.5 and 10.4 g kg-1 (Table 4). Caldeira et al. (2003Caldeira MVW, Schumacher MV, Barichello LR, Vogel HLM. Determinação de carbono orgânico em povoamentos de Acacia mearnsii de Wild. plantados no Rio Grande do Sul. Revista Acadêmica Ciências Animal 2003; 1(2): 47-54. 10.7213/cienciaanimal.v1i2.14913
https://doi.org/10.7213/cienciaanimal.v1...
) observed lower results for the same depth under 6-year-old A. mearnsii plantation soils in Rio Grande do Sul (19.7 Mg ha-1). However, Balbinot et al. (2003Balbinot R, Schumacher MV, Watzlawick LF, Sanquetta CR. Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista Ciências Exatas e Naturais 2003 [cited 2019 May 17]; 5(1): 59-68. Available from: Available from: http://bit.ly/2W0t27R
http://bit.ly/2W0t27R...
) observed superior results (148 Mg ha-1) in soils under 5-year-old Pinus taeda plantations.

Table 4
Organic C content (g kg-1) and stocks (Mg ha-1) from depths of 0-5, 5-10, 10-20 and 20-40 cm soil under homogeneous Pterogyne nitens plantation.

Variations between forest stands and their capacity to store carbon in the soil can be attributed to differences in the amount and quality of litter that contributed to the soil over the years, as well as to root turnover. Thus, the C stock of 10.2 Mg ha-1 found in the 0-10 cm layer of soil could be a consequence of an accumulation of 1.5 Mg ha-1 of litter (Table 4). In soils with similar granulometric composition, a more easily decomposable litter generally results in lower C accumulation when compared to a more recalcitrant litter composed of more resistant substances to decomposition (Gama-Rodrigues et al., 1999Gama-Rodrigues AC, Barros NF, Mendonça ES. Alterações edáficas sob plantios puros e misto de espécies florestais nativas do sudeste da Bahia, Brasil. Revista Brasileira de Ciência do Solo 1999; 23(3): 581-592. 10.1590/S0100-06831999000300011
https://doi.org/10.1590/S0100-0683199900...
).

The C soil stock was higher in the surface layers and decreased with increasing depths (Table 4). By adding carbon accumulations (Mg ha-1) of the first three soil layers, it can be noted that the 0-20 cm layer stores about 60% of the total stored in the 40 cm profile (Table 4), and that shows the strong influence of forest cover on C distribution in the soil. In evaluating the carbon stocks at 100 cm depth of soil under Pinus taeda planting, Balbinot et al. (2003Balbinot R, Schumacher MV, Watzlawick LF, Sanquetta CR. Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista Ciências Exatas e Naturais 2003 [cited 2019 May 17]; 5(1): 59-68. Available from: Available from: http://bit.ly/2W0t27R
http://bit.ly/2W0t27R...
) found that 37% of the carbon was accumulated in the 0-20 cm layer.

It was also possible to observe a higher fertility level in the soil surface layer (0-5 cm) and a decrease in higher depths (Table 1). This distribution corroborates previously discussed results, evidencing the important contribution of the vegetation cover to improve soil characteristics, given the continuous deposition of organic residues which favors C storage and nutrient cycling in the most superficial layers. Similar results were found by Neves et al. (2004Neves CMN, Silva MLN, Curi N, Macedo RLG, Tokura AM. Estoque de carbono em sistemas agrossilvopastoril, pastagem e eucalipto sob cultivo convencional na região Noroeste do estado de Minas Gerais. Ciência e Agrotecnologia 2004; 28(5): 1038-1046. 10.1590/S1413-70542004000500010
https://doi.org/10.1590/S1413-7054200400...
), Grimm et al. (2008Grimm R, Behrens T, Märker M, Elsenbeer H. Soil organic carbon concentrations and stocks on Barro Colorado Island: digital soil mapping using random forest analysis. Geoderma 2008; 146(1-2): 102-113. 10.1016/j.geoderma.2008.05.008
https://doi.org/10.1016/j.geoderma.2008....
), Qiji et al. (2008Qiji W, Shixiong L, Zengchun J, Wenying W. Response of carbon and nitrogen content in plants and soils to vegetation cover change in alpine Kobresia meadow of the source region of Lantsang, Yellow and Yangtze Rivers. Acta Ecologica Sinica 2008; 28(3): 885-894. 10.1016/S1872-2032(08)60031-1
https://doi.org/10.1016/S1872-2032(08)60...
) and Neumann-Cosel et al. (2011Neumann-Cosel L, Zimmermann B, Hall JS, Breugel MV, Elsenbeer H. Soil carbon dynamics under young tropical secondary forests on former pastures: a case study from Panama. Forest Ecology and Management 2011; 261(10): 1625-1633. 10.1016/j.foreco.2010.07.023
https://doi.org/10.1016/j.foreco.2010.07...
). According to Gama-Rodrigues et al. (2008Gama-Rodrigues EF, Gama-Rodrigues AC, Paulino GM, Franco AA. Atributos químicos e microbianos de solos sob diferentes coberturas vegetais no norte do estado do Rio de Janeiro. Revista Brasileira de Ciência do Solo 2008; 32: 1521-1530. 10.1590/S0100-06832008000400016
https://doi.org/10.1590/S0100-0683200800...
), it is common to verify the increase of the sum of bases in the superficial soil layers in tree legume plantations soon after the beginning of crop stabilization.

3.5. Total carbon stock

The C stored in all studied compartments totaled 47.1 Mg ha-1, with the highest contribution from soil (31.4 Mg ha-1), corresponding to 66.7%, followed by aerial biomass (15.0 Mg ha-1) (31.9%) and litter (0.7 Mg ha-1) (1.4%). These results confirm the premise that the soil compartment constitutes the main C sink of the atmosphere (Lal, 2004Lal R. Soil carbon sequestration to mitigate climate change. Geoderma 2004; 123(1-2): 1-22. 10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.geoderma.2004....
; Nair et al., 2009Nair PKR, Nair VD, Kumar BM, Haile SG. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy 2009; 12(8): 1099-1111. 10.1016/j.envsci.2009.01.010
https://doi.org/10.1016/j.envsci.2009.01...
) and are in agreement with results reported by several studies such as by Caldeira et al. (2003Caldeira MVW, Schumacher MV, Barichello LR, Vogel HLM. Determinação de carbono orgânico em povoamentos de Acacia mearnsii de Wild. plantados no Rio Grande do Sul. Revista Acadêmica Ciências Animal 2003; 1(2): 47-54. 10.7213/cienciaanimal.v1i2.14913
https://doi.org/10.7213/cienciaanimal.v1...
) in an A. mearnsii stand in Rio Grande Sul, by Gatto et al. (2010Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Leite FP et al. Estoques de carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciência do Solo 2010; 34(4): 1069-1079. 10.1590/S0100-06832010000400007
https://doi.org/10.1590/S0100-0683201000...
) in Eucalyptus plantations in the Central-West region of Minas Gerais and by Gama-Rodrigues et al. (2011Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR. Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar BM, Nair PKR, editors. Carbon sequestration potential of agroforestry systems. New York: Springer; 2011. p. 85-99.) in agroforestry systems in the South of Bahia, which verified C stocks in the soil on the order of 101, 122 and 300 Mg ha-1, respectively.

4. CONCLUSIONS

The carbon stocked in all studied compartments totaled 47.1 Mg ha-1, with greater contribution from soil (31.4 Mg ha-1 at 0-40 cm depth) and less from litter (0.7 Mg ha-1). The stem constitutes the largest C reservoir of aerial tree biomass, representing around 46% of total fixed C (15.0 Mg ha-1). A higher proportion of the total C stored in the soil up to 40 cm is in the 0-20 cm layer (about 60%).

REFERENCES

  • Anderson JD, Ingram JSI. Tropical soil biology and fertility: a handbook of methods Wallingford: CAB International; 1996.
  • Balbinot R, Schumacher MV, Watzlawick LF, Sanquetta CR. Inventário do carbono orgânico em um plantio de Pinus taeda aos 5 anos de idade no Rio Grande do Sul. Revista Ciências Exatas e Naturais 2003 [cited 2019 May 17]; 5(1): 59-68. Available from: Available from: http://bit.ly/2W0t27R
    » http://bit.ly/2W0t27R
  • Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC. Carbono das frações da matéria orgânica em solos sob plantações de eucalipto de diferentes idades. Scientia Forestalis 2014 [cited 2019 May 17]; 42(104): 571-580. Available from: Available from: http://bit.ly/2VDlDMd
    » http://bit.ly/2VDlDMd
  • Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC, Fontes AG, Polidoro JC, Moço MK et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agroforestry Systems 2011; 81(3): 213-220. 10.1007/s10457-010-9300-4
    » https://doi.org/10.1007/s10457-010-9300-4
  • Caldeira MVW, Saidelles FLF, Schumacher MV, Godinho TO. Biomassa de plantio de Acacia mearnsii De Wild., Rio Grande do Sul, Brasil. Scientia Forestalis 2011 [cited 2019 May 17]; 39(90): 133-141. Available from: Available from: http://bit.ly/2JmkaDp
    » http://bit.ly/2JmkaDp
  • Caldeira MVW, Schumacher MV, Barichello LR, Vogel HLM. Determinação de carbono orgânico em povoamentos de Acacia mearnsii de Wild. plantados no Rio Grande do Sul. Revista Acadêmica Ciências Animal 2003; 1(2): 47-54. 10.7213/cienciaanimal.v1i2.14913
    » https://doi.org/10.7213/cienciaanimal.v1i2.14913
  • Caldeira MVW, Soares RV, Watzlawick LF. Estimativa de biomassa em espécies arbóreas da floresta ombrófila Mista Montana - General Carneiro-PR. Biomassa & Energia 2004; 1(3): 291-310.
  • Castro EA. Biomass, nutrient pools and response to fire in the Brazilian Cerrado [thesis]. Corvallis: Oregon State University; 1996.
  • Chambers JQ, Santos J, Ribeiro RJ, Higuchi N. Tree damage, allometric relationships, and above ground net primary production in central Amazon forest. Forest Ecology and Management 2001; 152(1-3): 73-84. 10.1016/S0378-1127(00)00591-0
    » https://doi.org/10.1016/S0378-1127(00)00591-0
  • Dalla-Corte AP, Sanquetta CR. Quantificação do estoque de carbono fixado em reflorestamentos de Pinus na área de domínio da Floresta Ombrófila Mista no Paraná. Cerne 2007; 13(1): 32-39.
  • Dallagnol FS, Mognon F, Sanquetta CR, Dalla-Corte AP. Teores de carbono de cinco espécies florestais e seus compartimentos. Floresta e Ambiente 2011; 18(4): 410-416. 10.4322/floram.2011.060
    » https://doi.org/10.4322/floram.2011.060
  • Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Guidelines for national greenhouse gas inventories: agriculture, forestry and other land use Geneva: Intergovernmental Panel on Climate Change; 2006. v. 4.
  • Empresa Brasileira de Pesquisa Agropecuária - Embrapa. Manual de métodos de análise de solos Rio de Janeiro: Serviço Nacional de Levantamento e Conservação de Solos; 1997.
  • Faria GE, Barros NF, Novais RF, Silva IR, Neves JCL. Carbono orgânico total e frações da matéria orgânica do solo em diferentes distâncias do tronco de eucalipto. Scientia Forestalis 2008; 36(80): 265-277. Available from: http://bit.ly/2Vt5Rib
    » https://doi.org/http://bit.ly/2Vt5Rib
  • Ferreira RLC, Lira MA Jr, Rocha MS, Santos MVF, Lira MA, Barreto LP. Deposição e acúmulo de matéria seca e nutrientes em serapilheira em um bosque de sabiá (Mimosa caesalpiniifolia Benth.). Revista Árvore 2007; 31(1): 7-12. 10.1590/S0100-67622007000100002
    » https://doi.org/10.1590/S0100-67622007000100002
  • Franco AA, Dias LE, Faria SM, Campello EFC, Silva EMR. Uso de leguminosas florestais noduladas e micorrizadas como agentes de recuperação e manutenção da vida no solo: um modelo tecnológico. Oecologia Brasiliensis 1995; 1: 459-467.
  • Fraga MP, Barreto PAB, Paula A. Estimação de volume de Pterogyne nitens em plantio puro no sudoeste da Bahia. Pesquisa Florestal Brasileira 2014; 34(79): 207-215. 10.4336/2014.pfb.34.79.703
    » https://doi.org/10.4336/2014.pfb.34.79.703
  • Gama-Rodrigues AC, Barros NF, Mendonça ES. Alterações edáficas sob plantios puros e misto de espécies florestais nativas do sudeste da Bahia, Brasil. Revista Brasileira de Ciência do Solo 1999; 23(3): 581-592. 10.1590/S0100-06831999000300011
    » https://doi.org/10.1590/S0100-06831999000300011
  • Gama-Rodrigues AC, Gama-Rodrigues EF, Barros NF. Balanço de carbono e nutrientes em plantio puro e misto de espécies florestais nativas no Sudeste da Bahia. Revista Brasileira de Ciência do Solo 2008; 32(3): 1165-1179. 10.1590/S0100-06832008000300025
    » https://doi.org/10.1590/S0100-06832008000300025
  • Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR. Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar BM, Nair PKR, editors. Carbon sequestration potential of agroforestry systems New York: Springer; 2011. p. 85-99.
  • Gama-Rodrigues EF, Gama-Rodrigues AC, Paulino GM, Franco AA. Atributos químicos e microbianos de solos sob diferentes coberturas vegetais no norte do estado do Rio de Janeiro. Revista Brasileira de Ciência do Solo 2008; 32: 1521-1530. 10.1590/S0100-06832008000400016
    » https://doi.org/10.1590/S0100-06832008000400016
  • Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Leite FP et al. Estoques de carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciência do Solo 2010; 34(4): 1069-1079. 10.1590/S0100-06832010000400007
    » https://doi.org/10.1590/S0100-06832010000400007
  • Grimm R, Behrens T, Märker M, Elsenbeer H. Soil organic carbon concentrations and stocks on Barro Colorado Island: digital soil mapping using random forest analysis. Geoderma 2008; 146(1-2): 102-113. 10.1016/j.geoderma.2008.05.008
    » https://doi.org/10.1016/j.geoderma.2008.05.008
  • Higuchi N, Carvalho JA Jr. Fitomassa e conteúdo de carbono de espécies arbóreas da Amazônia. In: Anais do Seminário Emissão × Sequestro de CO2: Uma Nova Oportunidade de Negócios para o Brasil; 1994 May; Rio de Janeiro, RJ, Brasil. Rio de Janeiro: Companhia Vale do Rio Doce; 1994. p. 127-153.
  • Higuchi N, Chambers J, Santos J, Ribeiro RJ, Pinto ACM, Silva RP et al. Dinâmica e balanço do carbono da vegetação primária da Amazônia Central. Floresta 2004; 34(3): 295-304. 10.5380/rf.v34i3.2417
    » https://doi.org/10.5380/rf.v34i3.2417
  • Hosokawa RT, Moura JB, Cunha US. Introdução ao manejo e economia de florestas Curitiba: Editora UFPR; 1998.
  • Lal R. Soil carbon sequestration to mitigate climate change. Geoderma 2004; 123(1-2): 1-22. 10.1016/j.geoderma.2004.01.032
    » https://doi.org/10.1016/j.geoderma.2004.01.032
  • Lima MCD, Barreto-Garcia PAB, Sanquetta CR, Novaes AB, Melo LC. Biomass and carbon stock from Pinus caribaea var. hondurensis under homogenous stands in southwest Bahia, Brazil. Ciência Rural 2016; 46(6): 957-962. 10.1590/0103-8478cr20150493
    » https://doi.org/10.1590/0103-8478cr20150493
  • Lorenzi H. Árvores brasileiras: manual de cultivo de plantas arbóreas nativas do Brasil Nova Odessa: Plantarum; 1998. v. 1.
  • Machado SA, Figueiredo Filho A. Dendrometria Curitiba: Editora dos Autores; 2003.
  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ et al. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2 FIX V.2 approach. Ecological Modeling 2003; 164(2-3): 177-199. 10.1016/S0304-3800(02)00419-2
    » https://doi.org/10.1016/S0304-3800(02)00419-2
  • Melo LC, Sanquetta CR, Dalla-Corte AP, Hentz AMK. Estimativa de biomassa e carbono total para árvores de caixeta no Paraná. Pesquisa Florestal Brasileira 2014; 34(77): 21-29. 10.4336/2014.pfb.34.77.592
    » https://doi.org/10.4336/2014.pfb.34.77.592
  • Morais VA, Santos CA, Mello JM, Dadid HC, Araújo EJG, Scolforo JRS. Spatial and vertical distribution of litter and belowground carbon in a Brazilian Cerrado vegetation. Cerne 2017; 23(1): 43-52. 10.1590/01047760201723012247
    » https://doi.org/10.1590/01047760201723012247
  • Morais VA, Scolforo JRS, Silva CA, Mello JM, Gomide LR, Oliveira AD. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 2013; 19(2): 237-245. 10.1590/S0104-77602013000200007
    » https://doi.org/10.1590/S0104-77602013000200007
  • Moura ON, Passos MAA, Ferreira RLC, Molica SG, Lira MA Jr, Lira MA et al. Distribuição de biomassa e nutrientes na parte aérea de Mimosa caesalpiniifolia Benth. Revista Árvore 2006; 30(6): 877-884. 10.1590/S0100-67622006000600002
    » https://doi.org/10.1590/S0100-67622006000600002
  • Nair PKR, Nair VD, Kumar BM, Haile SG. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy 2009; 12(8): 1099-1111. 10.1016/j.envsci.2009.01.010
    » https://doi.org/10.1016/j.envsci.2009.01.010
  • Nelson BW, Mesquita R, Pereira JLG, Souza SGA, Batista GT, Couto LB. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 1999; 117(1-3): 149-167. 10.1016/S0378-1127(98)00475-7
    » https://doi.org/10.1016/S0378-1127(98)00475-7
  • Neumann-Cosel L, Zimmermann B, Hall JS, Breugel MV, Elsenbeer H. Soil carbon dynamics under young tropical secondary forests on former pastures: a case study from Panama. Forest Ecology and Management 2011; 261(10): 1625-1633. 10.1016/j.foreco.2010.07.023
    » https://doi.org/10.1016/j.foreco.2010.07.023
  • Neves CMN, Silva MLN, Curi N, Macedo RLG, Tokura AM. Estoque de carbono em sistemas agrossilvopastoril, pastagem e eucalipto sob cultivo convencional na região Noroeste do estado de Minas Gerais. Ciência e Agrotecnologia 2004; 28(5): 1038-1046. 10.1590/S1413-70542004000500010
    » https://doi.org/10.1590/S1413-70542004000500010
  • Pachauri RK, Meyer L, editors. Climate change 2014: synthesis report: contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC; 2014.
  • Pires LA, Britez RM, Martel G, Pagano SN. Produção, acúmulo e decomposição da serapilheira em uma restinga da Ilha do Mel, Paranaguá, PR, Brasil. Acta Botanica Brasilica 2006; 20(1): 173-184. 10.1590/S0102-33062006000100016
    » https://doi.org/10.1590/S0102-33062006000100016
  • Qiji W, Shixiong L, Zengchun J, Wenying W. Response of carbon and nitrogen content in plants and soils to vegetation cover change in alpine Kobresia meadow of the source region of Lantsang, Yellow and Yangtze Rivers. Acta Ecologica Sinica 2008; 28(3): 885-894. 10.1016/S1872-2032(08)60031-1
    » https://doi.org/10.1016/S1872-2032(08)60031-1
  • Saidelles FLF, Caldeira MVW, Schumacher MV, Balbinot R. Uso de equações para estimar carbono orgânico em plantações de Acacia mearnsii de Wild. no Rio Grande do Sul - Brasil. Revista Árvore 2009; 33(5): 907-915. 10.1590/S0100-67622009000500013
    » https://doi.org/10.1590/S0100-67622009000500013
  • Sallis SM, Assis MA, Mattos PP, Pião ACS. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil Pantanal wetlands based on allometric correlations. Forest Ecology and Management 2006; 228(1-3): 61-68. 10.1016/j.foreco.2006.02.025
    » https://doi.org/10.1016/j.foreco.2006.02.025
  • Sanquetta CR, Dalla-Corte AP, Balbinot R, Leal MCBS, Ziliotto MA. Proposta metodológica para quantificação e monitoramento do carbono estocado em florestas plantadas. In: Sanquetta CR, Ziliotto MAB, editors. Carbono: ciência e mercado global Curitiba: Ecoplan; 2004. p. 240-265.
  • Sanquetta CR, Watzlawick LF, Schumacher MV, Mello AA. Relações individuais de biomassa e conteúdo de carbono em plantações de Araucaria angustifolia e Pinus taeda no sul do estado do Paraná, Brasil. Revista Acadêmica Ciência Animal 2003; 1(3): 33-40. 10.7213/cienciaanimal.v1i3.14937
    » https://doi.org/10.7213/cienciaanimal.v1i3.14937
  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR et al. Sistema brasileiro de classificação de solos 2nd ed. Rio de Janeiro: Embrapa Solos; 2006.
  • Schneider PR, Finger CAG, Sobrinho VG, Schneider PSP. Determinação indireta do estoque de biomassa e carbono em povoamentos de acácia-negra (Acacia mearnsii De Wild.). Ciência Florestal 2005; 15(4): 391-402. 10.5902/198050981876
    » https://doi.org/10.5902/198050981876
  • Schumacher MV, Brun EJ, Hernandes JI, König FG. Produção de serapilheira em uma floresta de Araucaria angustifolia (Bertol.) Kuntze no município de Pinhal Grande-RS. Revista Árvore 2004; 28(1): 29-37. 10.1590/S0100-67622004000100005
    » https://doi.org/10.1590/S0100-67622004000100005
  • Scolforo HF, Scolforo JRS, Mello JM, Mello CR, Morais VA. Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and Savanna. Forest Ecology and Management 2016; 376: 24-35. 10.1016/j.foreco.2016.05.047
    » https://doi.org/10.1016/j.foreco.2016.05.047
  • Silva GTA, Queiroz ROM, Nóbrega PO, Campello EFC, Resende AS. Caracterização dos teores de nitrogênio, polifenol e relação C:N no tecido foliar de diferentes espécies vegetais em um sistema silvipastoril. In: Anais da 14a Jornada Científica da Universidade Federal Rural do Rio de Janeiro; 2004; Seropédica, Rio de Janeiro, Brasil. Seropédica: Universidade Federal Rural do Rio de Janeiro; 2004. p. 55-59.
  • Silva KE, Souza CR, Azevedo CP, Rossi LMB. Dinâmica florestal, estoque de carbono e fitossociologia de uma floresta densa de terra-firme na Amazônia Central. Scientia Forestalis 2015 [cited 2019 May 17]; 43(105): 193-201. Available from: Available from: http://bit.ly/2Hn4tK0
    » http://bit.ly/2Hn4tK0
  • Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems Oxford: Blackwell; 1979.
  • Thompson RM. Estimativas de volume, biomassa e carbono para o carvoeiro (Sclerolobium paniculatum Vog. var. subvelutinum Benth) [thesis]. Brasília, DF: Universidade de Brasília; 2009.
  • Torres CMME, Jacovine LAG, Soares CPB, Oliveira Neto SN, Santos RD, Castro Neto F. Quantificação de biomassa e estocagem de carbono em uma floresta estacional semidecidual, no parque tecnológico de Viçosa, MG. Revista Árvore 2013; 37(4): 647-655. 10.1590/S0100-67622013000400008
    » https://doi.org/10.1590/S0100-67622013000400008
  • Vieira G, Sanquetta CR, Barbeiro LSS. Estoque individual de biomassa e carbono em Nectandra grandiflora Nees (Canela-amarela). Revista Floresta 2009; 39(3): 547-554. 10.5380/rf.v39i3.15354
    » https://doi.org/10.5380/rf.v39i3.15354
  • Watzlawick LF, Caldeira MVW, Godinho TO, Balbinot R, Trautenmüller JW. Aboveground stock of biomass and organic carbon in stands of Pinus taeda L. Cerne 2013; 19(3): 509-515. 10.1590/S0104-77602013000300019
    » https://doi.org/10.1590/S0104-77602013000300019
  • Watzlawick LF, Caldeira MVW, Viera M, Schumacher MV, Godinho TO, Balbinot R. Estoque de biomassa e carbono na floresta ombrófila mista Montana Paraná. Scientia Forestalis 2012 [cited 2019 May 17]; 40(95): 353-362. Available from: Available from: http://bit.ly/2w5358g
    » http://bit.ly/2w5358g
  • Watzlawick LF, Kirchner FF, Sanquetta CR, Schumacher MV. Fixação de carbono em floresta ombrófila mista em diferentes estágios de regeneração. In: Sanquetta CR, Watzlawick LF, Balbinot R, Ziliotto MAB, Gomes FS et al., editors. As florestas e o carbono Curitiba: Editora dos Autores ; 2002. p. 153-173.
  • Watzlawick LF, Sanquetta CR, Arce JE, Balbinot R. Quantificação de biomassa total e carbono orgânico em povoamentos de Araucaria angustifolia (Bertol.) Kuntze no sul do estado do Paraná, Brasil. Revista Acadêmica Ciência Animal 2003; 1(2): 63-68. 10.7213/cienciaanimal.v1i2.14919
    » https://doi.org/10.7213/cienciaanimal.v1i2.14919

Publication Dates

  • Publication in this collection
    29 July 2019
  • Date of issue
    2019

History

  • Received
    13 Aug 2016
  • Accepted
    05 Dec 2017
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br