SciELO - Scientific Electronic Library Online

 
vol.26 issue4Thermal Requirements and Photoperiod Influence in the Leaf Development of Two Forest SpeciesCarbon and nitrogen distribution pattern in soil profile cultivated with Eucalyptus author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Floresta e Ambiente

Print version ISSN 1415-0980On-line version ISSN 2179-8087

Floresta Ambient. vol.26 no.4 Seropédica  2019  Epub Sep 30, 2019

http://dx.doi.org/10.1590/2179-8087.008517 

Original Article

Conservation of Nature

Mimosa scabrella Benth. as Facilitator of Forest Successional Advance in the South of Brazil

Paula Iaschitzki Ferreira1 
http://orcid.org/0000-0002-9768-3623

Juliano Pereira Gomes2 
http://orcid.org/0000-0002-3539-9862

Lilian Iara Bet Stedille2 
http://orcid.org/0000-0003-4160-7709

Roseli Lopes da Costa Bortoluzzi2 
http://orcid.org/0000-0002-7445-7244

Adelar Mantovani2 
http://orcid.org/0000-0003-2952-2171

1Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), Lages, SC, Brasil

2Universidade do Estado de Santa Catarina (Udesc), Lages, SC, Brasil

ABSTRACT

Pioneer species have the potential to colonize disturbed environments, contributing to the establishment of other species and driving the dynamics and advancement of the structure of forest communities. The aim of this study was to assess the evolution of floristic-structural composition in the regenerating stratum of communities formed in the Mimosa scabrella Benth. understory with different ages. The study was carried out in four municipalities located in the Santa Catarina State South Plateau, on communities with different successional ages. The plot method was applied to the survey of all arboreal individuals with height ≥ 10 cm. The floristic-structural patterns found were compatible with the expected trend of Araucaria Forest successional dynamic, showing higher richness and abundance of regenerating individuals in the older understories.

Keywords: bracatinga; forest succession; natural regeneration; facilitation; Araucaria Forest

1. INTRODUCTION

Tree species contribute directly and indirectly to improvements in the ecosystem and accelerate biodiversity restoration (Elliott et al., 2000). The natural regeneration of native populations of pioneer species is an important way to restore the functionality of altered environments, especially where propagules provided by the landscape matrix are available. Some authors have emphasized conducting natural regeneration as one of the most promising alternatives due to ecological and economic aspects (Alvarenga et al., 2006).

Studying natural regeneration represents an important factor for analysing successive evolutionary communities (Melo & Durigan, 2007), and may indicate the effectiveness of tree cover in forming habitat which is favourable for colonising new species (Kabakoff & Chazdon, 1996). Haggar et al. (1997) observed that trees with high growth rates generally stimulate higher levels of regeneration in their understory. Chada et al. (2004) verified that reforestation with tree legumes proved to be effective in activating natural succession mechanisms, and after seven years, 50 species of 25 botanical families have already colonized the understory of the study area.

Mimosa scabrella Benth., popularly known as bracatinga, is a tree species belonging to the Fabaceae family. It is native and endemic to Brazil (Dutra & Amorim, 2012), and represents an important function in the secondary succession of natural or anthropic clearings of Araucaria Forest, where it can form dense, almost pure nuclei (Reitz et al., 1978). Due to its high adaptability to the edaphic soil conditions of river banks and patches (Reitz et al., 1978), tolerance to physical soil conditions (Inoue et al., 1984), and also its high levels of interactions with micro-organisms of the soil, entomofauna and vertebrates Araucaria Forest, it is considered one of the main indicated species for environmental restoration programs (Reis & Kageyama, 2003).

Considering the adaptive potential of M. scabrella to colonise altered areas, it is expected that the regeneration existing in forest understories of populations of this species with different ages presents floristic-structural variations, following the patterns of forest succession dynamics. Thus, the objective was to evaluate the successional evolution of the regenerating arboreal stratum in understories of M. scabrella populations with different ages using analysis of floristic-structural patterns. Specifically, we sought to answer the following questions: (1) Are there variations in the diversity and richness of the regenerating stratum occurring in M. scabrella populations with different ages? (2) Does the floristic-structural pattern of the different M. scabrella understories reflect successional dynamics according to ecological groups?

2. MATERIALS AND METHODS

The study was conducted in an understory with natural Mimosa scabrella populations present in Montana Araucaria Forest remnants (IBGE, 2012) located in the Santa Catarina State South Plateau. Three populations were selected to cover different ages, which were defined by the succession time (natural regeneration) of the areas (Table 1). The average precipitation of the studied areas is 1,200 mm/year and the climate is Cfb by the Köppen classification (Alvares et al., 2014). The plots were located in gently undulating relief areas in the study sites.

Table 1 Description of the regenerating community areas in understory Mimosa scabrella Benth. populations, Santa Catarina State South Plateau.  

Characteristics Mimosa scabrella Benth. populations
Four years Seven years Nine years
Municipality Bocaina do Sul Ponte Alta Lages
Altitude (m) 850 880 916
Mean temperature (°C) 16.5 16.9 16.5
Soil type Aluminic Cambisol Humic Cambisol Lithic Neosol
Total area of population (ha) 389.7 88.0 13.4

The populations of four and seven years characterized areas destined to enlarging the riparian strips in silvicultural farms (Pinus and Eucalyptus genera). In the landscape context, the population of four years was located in a matrix with few conserved fragments, differing from the population of seven years (Figure 1).

Source: Google Earth (2018).

Figure 1 Location and landscape matrix of the study areas of the regenerating community in Mimosa scabrella Benth. understories located in Santa Catarina State South Plateau. 

The population of nine years colonised a natural environment after the last Merostachys multiramea Hack. reproductive event, occurring between 2006 and 2008 in the Santa Catarina mountain range (Santos et al., 2012). This area is located amid secondary forest fragments in medium-advanced successional stage and silvicultural plantations (Pinus spp.).

The regenerating shrub-arboreal vegetation in the understory of the M. scabrella populations was evaluated using the fixed plot method, two sample units per population, with dimensions of 40 × 20 m, totalling 800 m²/population. All individuals with height ≥ 10 cm were sampled, with diameter-at-breast-height (DBH) measurements taken for individuals with DBH ≥ 5 cm, and collar diameter (CD) for those with DBH < 5 cm.

For the floristic composition, all the species present in the sample units were identified in the field when possible, and botanical material was collected for those not identified for later identification in the LUSC Herbarium of the Santa Catarina State University.

The binomial nomenclature was verified using the List of Flora species of Brazil (Flora do Brasil 2020). Estimation and comparison of the richness among the study sites was performed by species/individual analysis using the rarefaction method with 1000 randomizations, generated based on the abundance data matrix in each sample unit. The Shannon diversity index (H’) and the Pielou evenness index (J’) were calculated for estimating floristic diversity, which enable representing the distribution uniformity of individuals among the existing species. The H’ value was compared between the areas using the Hutcheson t-test. A number of authors were consulted for characterising the species in relation to the ecological groups, using the data in works covering forests of the Atlantic Forest domain, especially consultations with Flora Ilustrada Catarinense (Reitz, 1971), where the nomenclature proposed by Budowski (1965) of pioneers (PI), early secondary (ES) and late secondary (LS) species were incorporated. The relative participation of the ecological groups (proportion of the individuals belonging to each ecological group in relation to the total sampled) for the three evaluated understories was analysed by a test of proportion (p ≤ 0.01). Phytosociological descriptors were calculated for analysing the structure of the communities (Martins, 1993). The data ordination concerning the floristic-structural pattern among the communities was evaluated by the Non-metric multidimensional scaling (NMDS) method from the abundance matrix of the species in each sampled site. All analyses were performed using RStudio statistical software (R Development Core Team, 2015).

3. RESULTS

In the Mimosa scabrella understories, 2692 individuals belonging to 27 botanical families and 74 species were sampled. Of these, two were identified at the family level and three at the gender level. The ecological indexes evaluated in the three studied areas are presented in Table 2. The lowest Shannon diversity index (H’) was recorded in the lesser understory (four years), presenting a significant difference from other sampled areas at a probability < 0.001 (Hutcheson t-test). No significant differences were observed in the H’ value for the areas of seven and nine years.

Table 2 Regeneration characteristics in communities of Mimosa scabrella understories Benth. located in Santa Catarina State South Plateau.  

Ecological indicators Mimosa scabrella Benth. populations
Four years Seven years Nine years
Total number of individuals 433 452 1807
Number of species 27 40 61
Rarefied richness (433 individuals*) 27 39 39
Number of families 14 20 27
Shannon diversity index (H’) 2.31 2.96 3.12
Pielou evenness index (J’) 0.71 0.80 0.76

* abundance limit for constructing the rarefaction curve using 1000 randomizations.

Considering the three areas studied, the total number of individuals, families and species was proportional to the regeneration time of each M. scabrella understory, being higher in the nine-year understory (Table 2).

In the younger area (four years), Asteraceae was noted for its richness and abundance, representing approximately 27% of the species and 34% of the sampled individuals. In the seven-year understory, Lauraceae and Solanaceae represented approximately 30% of the species and individuals. In the older understory (nine years), Myrtaceae stood out as the richest (18%) and most abundant (26%) family.

In relation to the structural analysis, three species represented more than 50% of the importance value index (IVI) in the four years area, namely: Vernonanthura discolor (Spreng.) H.Rob., Croton reitzii L.B.Sm. & Downs cf. and Baccharis uncinella DC. (Table 3).

Table 3 List of tree species sampled in the Mimosa scabrella Benth. understory regenerating four, seven and nine years ago with their respective phytosociological descriptors and ecological groups.  

Mimosa scabrella Benth. understory in regeneration for four years
Family Species N RD RF RDo IVI EG
Euphorbiaceae Croton reitzii L.B.Sm. & Downs 187 43.19 14.81 36.33 31.44 PI
Asteraceae Baccharis uncinella DC. 65 15.01 12.04 21.52 16.19 PI
Asteraceae Vernonanthura discolor (Spreng.) H.Rob. 64 14.78 11.11 9.56 11.82 PI
Asteraceae Baccharis semiserrata DC. 13 3 8.33 6.46 5.93 PI
Solanaceae Solanum lacerdae Dusén 19 4.39 6.48 5.57 5.48 PI
Lauraceae Cinnamomum amoenum (Nees & Mart.) Kosterm. 22 5.08 4.63 1.83 3.85 LS
Sapindaceae Matayba elaeagnoides Radlk. 12 2.77 4.63 3.5 3.63 LS
Asteraceae Piptocarpha angustifolia Dusén ex Malme 6 1.39 3.7 3.36 2.82 PI
Solanaceae Solanum variabile Mart. 6 1.39 4.63 0.87 2.29 PI
Primulaceae Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. 5 1.15 4.63 0.45 2.08 ES
Solanaceae Solanum mauritianum Scop. 3 0.69 2.78 1.6 1.69 PI
Fabaceae Dalbergia frutescens (Vell.) Britton 3 0.69 2.78 1.32 1.6 ES
Lauraceae Nectandra lanceolata Nees 6 1.39 1.85 0.61 1.28 ST
Aquifoliaceae Ilex paraguariensis A.St.-Hil. 1 0.23 0.93 2.3 1.15 LS
Lauraceae Ocotea puberula (Rich.) Nees 3 0.69 1.85 0.63 1.06 ES
Fabaceae Inga lentiscifolia Benth. 3 0.69 1.85 0.59 1.04 PI
Myrtaceae Eugenia pluriflora DC. 2 0.46 1.85 0.68 0.69 ES
Aquifoliaceae Ilex sp. 2 0.46 1.85 0.52 0.5 UN
Bignoniaceae Jacaranda puberula Cham. 2 0.46 1.85 0.47 0.5 ES
Clethraceae Clethra scabra Pers. 2 0.23 0.93 0.68 0.42 PI
Salicaceae Casearia obliqua Spreng. 1 0.23 0.93 0.35 0.42 LS
Aquifoliaceae Ilex microdonta Reissek 1 0.23 0.93 0.35 0.42 LS
Sapindaceae Cupania vernalis Cambess. 1 0.23 0.93 0.12 0.42 ES
Styracaceae Styrax leprosus Hook. & Arn. 1 0.23 0.93 0.12 0.42 ES
Lauraceae Cryptocarya aschersoniana Mez 1 0.23 0.93 0.09 0.42 LS
Rosaceae Prunus myrtifolia (L.) Urb. 1 0.23 0.93 0.09 0.42 ES
Annonaceae Annona rugulosa (Schltdl.) H.Rainer 1 0.23 0.93 0.05 0.4 LS
Total 433 100 100 100 100
Mimosa scabrella Benth. understory in regeneration for seven years
Family Species N RD RF RDo IVI EG
Clethraceae Clethra scabra Pers. 70 15.49 0.63 14.92 10.34 PI
Solanaceae Solanum variabile Mart. 49 10.84 0.63 17.18 9.55 PI
Lauraceae Ocotea puberula (Rich.) Nees 29 6.42 0.63 13.46 6.83 ES
Myrtaceae Myrcia splendens (Sw.) DC. 25 5.53 1.24 10.34 5.71 ES
Sapindaceae Matayba elaeagnoides Radlk. 40 8.85 0.63 6.94 5.47 LS
Dicksoniaceae Dicksonia sellowiana Hook. 46 10.18 1.25 0.82 4.08 LS
Primulaceae Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. 26 5.75 3.13 2.9 3.92 PI
Aquifoliaceae Ilex paraguariensis A.St.-Hil. 27 5.97 0.63 4.88 3.83 PI
Lauraceae Ocotea pulchella (Nees & Mart.) Mez 11 2.43 6.88 1.43 3.58 ES
Styracaceae Styrax leprosus Hook. & Arn. 6 1.33 8.75 0.35 3.48 ES
Rosaceae Prunus myrtifolia (L.) Urb 21 4.65 3.13 1.84 3.2 ES
Melastomataceae Miconia hyemalis A.St.-Hil. & Naudin 2 0.44 8.75 0.35 3.28 PI
Erythroxylaceae Erythroxylum deciduum A.St.-Hil. 1 0.22 8.13 0.05 2.8 ES
Asteraceae Baccharis semiserrata DC. 10 2.21 1.25 4.66 2.71 PI
Asteraceae Vernonanthura discolor (Spreng.) H.Rob. 11 2.43 1.25 4.12 2.6 PI
Fabaceae Dalbergia frutescens (Vell.) Britton 2 0.44 6.88 0.33 2.55 ES
Asteraceae Baccharis uncinella DC. 4 0.88 3.75 2.09 2.24 PI
Fabaceae Inga lentiscifolia Benth. 3 0.66 5.63 0.43 2.24 LS
Lauraceae Cinnamomum amoenum (Nees & Mart.) Kosterm. 18 3.98 1.25 1.46 2.23 LS
Lauraceae Nectandra grandiflora Nees 3 0.66 4.38 0.65 1.9 LS
Lauraceae Persea major (Meisn.) L.E.Kopp 2 0.44 3.75 0.25 1.48 LS
Euphorbiaceae Sapium glandulosum (L.) Morong 2 0.44 3.13 0.58 1.38 PI
Canellaceae Cinnamodendron dinisii Schwanke 1 0.22 3.75 0.03 1.33 ES
Asteraceae Piptocarpha angustifolia Dusén ex Malme 6 1.33 0.63 2.01 1.32 PI
Solanaceae Solanum mauritianum Scop. 3 0.66 0.63 2.39 1.23 PI
Euphorbiaceae Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 7 1.55 0.63 1.43 1.2 ES
Salicaceae Casearia decandra Jacq. 2 0.44 2.5 0.35 1.1 LS
Annonaceae Annona rugulosa (Schltdl.) H.Rainer 6 1.33 1.25 0.44 1.01 LS
Lauraceae Nectandra lanceolata Nees 5 1.11 1.25 0.48 0.94 LS
ceae Araucaria angustifolia (Bertol.) Kuntze 2 0.44 1.25 0.9 0.86 PI
Araucariaceae Solanum lacerdae Dusén 1 0.22 1.88 0.38 0.83 PI
Solanaceae Solanum sanctaecatharinae Dunal. 1 0.22 1.88 0.29 0.79 ES
Lauraceae Nectandra megapotamica (Spreng.) Mez 1 0.22 1.88 0.03 0.71 LS
Sapindaceae Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl. 2 0.44 1.25 0.37 0.69 ES
Lauraceae Persea willdenovii Kosterm. 1 0.22 1.25 0.35 0.61 UN
Anacardiaceae Schinus terebinthifolius Raddi 1 0.22 1.25 0.13 0.53 PI
Bignoniaceae Jacaranda puberula Cham. 1 0.22 1.25 0.02 0.5 ES
Aquifoliaceae Ilex microdonta Reissek 2 0.44 0.63 0.08 0.38 LS
Aquifoliaceae Ilex dumosa Reissek 1 0.22 0.63 0.17 0.34 ES
Myrtaceae Eugenia pluriflora DC. 1 0.22 0.63 0.16 0.33 ES
Total 452 100 100 100 100
Mimosa scabrella Benth. understory in regeneration for nine years
Family Species N RD RF RDo IVI EG
Myrtaceae Myrcia splendens (Sw.) DC. 418 23.13 4.56 14.51 14.07 ES
Solanaceae Solanum variabile Mart. 155 8.58 4.56 14.73 9.29 PI
Asteraceae Vernonanthura discolor (Spreng.) H.Rob. 109 6.03 3.70 14.76 8.17 PI
Bignoniaceae Jacaranda puberula Cham. 111 6.14 4.56 11.36 7.35 ES
Primulaceae Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. 202 11.18 4.27 3.88 6.44 ES
Asteraceae Piptocarpha angustifolia Dusén ex Malme 52 2.88 4.56 11.66 6.36 PI
Salicaceae Casearia decandra Jacq. 67 3.71 3.70 3.50 3.64 LS
Sapindaceae Matayba elaeagnoides Radlk. 61 3.38 4.56 2.36 3.43 LS
Sapindaceae Cupania vernalis Cambess. 55 3.04 3.99 1.91 2.98 ES
Primulaceae Myrsine parvula (Mez) Otegui 69 3.82 3.70 1.26 2.93 ES
Lauraceae Nectandra lanceolata Nees 59 3.27 3.42 1.61 2.77 LS
Proteaceae Roupala montana Aubl. 35 1.94 3.99 1.97 2.63 LS
Aquifoliaceae Ilex paraguariensis A.St.-Hil. 36 1.99 3.70 2.10 2.60 PI
Annonaceae Annona rugulosa (Schltdl.) H.Rainer 39 2.16 3.99 0.91 2.35 LS
Primulaceae Myrsine umbellata Mart. 53 2.93 3.13 0.80 2.29 PI
ceae Araucaria angustifolia (Bertol.) Kuntze 37 2.05 2.85 0.61 1.84 PI
Araucariaceae Ilex brevicuspis Reissek. 29 1.60 2.28 0.61 1.50 LS
Myrtaceae Myrtaceae sp 29 1.60 2.28 0.50 1.46 UN
Rutaceae Zanthoxylum rhoifolium Lam. 19 1.05 2.85 0.46 1.45 PI
Lauraceae Ocotea pulchella (Nees & Mart.) Mez 19 1.05 1.99 1.29 1.45 ES
Solanaceae Solanaceae 1 14 0.77 2.28 0.98 1.35 UN
Lauraceae Ocotea puberula (Rich.) Nees 24 1.33 1.99 0.36 1.23 ES
Meliaceae Cabralea canjerana (Vell.) Mart. 11 0.61 1.99 0.61 1.07 ES
Fabaceae Dalbergia frutescens (Vell.) Britton 15 0.83 1.14 0.78 0.92 ES
Myrtaceae Myrcia hatschbachii D. Legrand. 9 0.50 1.42 0.51 0.81 ES
Myrtaceae Myrcia hartwegiana (O.Berg) Kiaersk. 3 0.17 0.85 0.81 0.61 ES
Salicaceae Casearia obliqua Spreng. 4 0.22 1.14 0.31 0.56 LS
Lauraceae Nectandra megapotamica (Spreng.) Mez 5 0.28 1.14 0.22 0.55 LS
Euphorbiaceae Sapium glandulosum (L.) Morong 3 0.17 0.85 0.52 0.51 PI
Aquifoliaceae Ilex theezans Mart. ex Reissek 3 0.17 0.85 0.39 0.47 ES
Styracaceae Styrax leprosus Hook. & Arn. 6 0.33 0.57 0.35 0.42 ES
Cannabaceae Celtis iguanaea (Jacq.) Sarg. 4 0.22 0.85 0.13 0.40 PI
Myrtaceae Campomanesia xanthocarpa Berg 4 0.22 0.85 0.06 0.38 ES
Erythroxylacea Erythroxylum deciduum A.St.-Hil. 3 0.17 0.85 0.10 0.37 ES
Salicaceae Casearia sylvestris Sw. 4 0.22 0.85 0.04 0.37 PI
Cardiopteridaceae Citronella paniculata (Mart.) Howard. 1 0.06 0.28 0.72 0.35 ES
Euphorbiaceae Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 4 0.22 0.57 0.14 0.31 ES
Canellaceae Cinnamodendron dinisii Schwacke 1 0.06 0.28 0.59 0.31 PI
Myrtaceae Myrcia laruotteana Cambesse 4 0.22 0.57 0.09 0.29 ES
Solanaceae Solanum mauritianum Scop. 2 0.11 0.28 0.40 0.26 PI
Clethraceae Clethra scabra Pers. 3 0.17 0.57 0.04 0.26 PI
Meliaceae Cedrela fissilis Vell. 3 0.17 0.57 0.02 0.25 PI
Sapindaceae Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl. 2 0.11 0.57 0.06 0.25 ES
Salicaceae Xylosma ciliatifolia (Clos) Eichler 1 0.06 0.28 0.39 0.24 ES
Sapindaceae Allophylus guaraniticus (A. St.-Hil.) Radlk. 2 0.11 0.57 0.04 0.24 LS
Rosaceae Prunus myrtifolia (L.) Urb. 2 0.11 0.57 0.03 0.24 ES
Solanaceae Solanum sanctaecatharinae Dunal. 2 0.11 0.57 0.02 0.23 ES
Aquifoliaceae Ilex dumosa Reissek 1 0.06 0.28 0.10 0.15 LS
Solanaceae Solanum lacerdae Dusén 1 0.06 0.28 0.09 0.14 PI
Fabaceae Inga vera Willd. 1 0.06 0.28 0.08 0.14 LS
Elaeocarpaceae Sloanea hirsuta (Schott) Planch. ex Benth. 1 0.06 0.28 0.05 0.13 LS
Myrtaceae Calyptranthes concinna DC. 1 0.06 0.28 0.05 0.13 LS
Myrtaceae Myrciaria delicatula (DC.) O.Berg 1 0.06 0.28 0.03 0.12 LS
Cardiopteridaceae Citronella gongonha (Mart.) R.A.Howard 1 0.06 0.28 0.02 0.12 LS
Myrtaceae Eugenia pluriflora DC. 1 0.06 0.28 0.02 0.12 ES
Aquifoliaceae Ilex microdonta Reissek 1 0.06 0.28 0.02 0.12 LS
Melastomataceae Miconia sellowiana Naudim 1 0.06 0.28 0.01 0.12 UN
Solanaceae Solanum sp1 1 0.06 0.28 0.01 0.12 UN
Myrtaceae Myrciaria sp. 1 0.06 0.28 0.01 0.12 UN
Myrtaceae Myrcia palustris DC. 1 0.06 0.28 0.01 0.12 ES
Rhamnaceae Rhamnus sphaerosperma Sw. 1 0.06 0.28 0.00 0.11 ES
Total 1807 100 100 100 100

Legend: N: total number of individuals; RD: relative density (%); RF: relative frequency (%); RDo: relative dominance IVI: importance value index (%); EG: ecological group; PI: pioneer; ES: early secondary; LS: late secondary (%); UN: undetermined.

Among the species of higher IVI in the understory of seven years (Clethra scabra Pers., Solanum variabile Mart., Ocotea puberula (Rich.) Nees, Myrcia splendens (Sw.) DC. and Matayba elaeagnoides Radlk), three already belong to the secondary group (Table 3).

In the more advanced understory (nine years), the structure was represented by more than 50% of IVI by the following species: Myrcia splendens (Sw.) DC., S. variabile, V. discolor, Jacaranda puberula Cham., M. coriacea and Piptocarpha angustifolia (Table 3).

Regarding ecological group participation in the different succession times, it is observed that there is a significant difference by the test of proportions (< 0.001). The most representative group in the understory with four years of natural regeneration was the pioneer group (85.2%). For the environments in seven and nine years of regeneration, the early secondary group contributed with 24.1% and 53.7%, respectively. The seven-year understory had the highest abundance of late secondary species (28.4 %).

The data ordination produced by the NMDS presented a stress value of 14.34, indicating that the ordination is representative and adequate for the interpretation. From the ordination represented in the diagram (Figure 2), it was verified that the different understory ages of M. scabrella showed species substitution.

Figure 2 Ordination diagram produced by Non-metric Multidimensional Scaling analysis. (NMDS) of a regenerating tree community in Mimosa scabrella Benth. understories located in the Santa Catarina State South Plateau.Where: Ann.rug: Annona rugulosa; Ara.ang: angustifolia; Bac.sem: Baccharis semiserrata; Bac.unc: Baccharis uncinella; Cas.dec: Casearia decandra; Cas.obl: Casearia obliqua; Cle.sca: Clethra scabra; Cro.rei: Croton reitzii; Cup.ver: Cupania vernalis; Dal.fru: Dalbergia frutescens;Ile.par: Ilex paraguariensis; Jac.pub: Jacaranda puberula; Mat.ela: Matayba elaeagnoides; Myr.cor: Myrsine coriacea; Myr.par: Myrsine parvula; Myr.spl: Myrcia splendens; Nec.meg: Nectandra megapotamica; Oco.pub: Ocotea puberula; Oco.pul: Ocotea pulchella; Pip.ang: Piptocarpha angustifolia; Pru.myr: Prunus myrtifolia; Sap.gla: Sapium glandulosum; Sol.lac: Solanum lacerdae; Sol.mau: Solanum mauritianum; Sol.var: Solanum variabile; Ver.dis: Vernonanthura discolor

4. DISCUSSION

The lowest Shannon (H’) diversity index value was recorded in the younger understory (four years), with this value being higher than that found by Barbosa et al. (2009) who studied an Araucaria angustifolia (Bertol.) Kuntze understory for about 12 years. The community registered in the areas of seven and nine years showed low dominance according to the Pielou index values (J’). These results corroborate with those found in regeneration studies carried out in Araucaria Forest (Narvaes et al., 2005; Kanieski et al., 2012).

The short temporal scale between the studied sites (understories of seven and nine years) can be evidenced when the rarefied richness is analyzed. Still, the environments structure is characterized by an increase in abundance and wealth, evidencing the successional advance.

Species belonging to Asteraceae and Solanaceae were prominent in the lower understory (four years), as they preferentially occur in open environments and fragment edges (Tabarelli & Mantovani, 1999; Barroso & Bueno, 2002). This result suggests that the successional process is still in its initial phase, unlike the other studied environments (seven and nine years), where there was greater Lauraceae and Myrtaceae representation. These families are commonly registered in Araucaria Forest studies at more advanced stages in Southern Brazil (Jarenkow & Baptista, 1987; Narvaes et al., 2005; Herrera et al., 2009; Silva et al., 2012).

Based on the observation of the most representative species in the structural analysis in the area of four years, it was verified that they are pioneer species with characteristics of initial succession stages in Araucaria Forest, becoming abundant in altered environments (Barroso & Bueno, 2002; Machado et al., 2006; Herrera et al., 2009; Ferreira et al., 2012). In the seven years understory, the species with higher IVI (Ocotea puberula (Rich.) Nees, Myrcia splendens (Sw.) DC. and Matayba elaeagnoides Radlk) belong to the secondary group. This aspect shows that although the area is in the initial stage due to the short regeneration time, it is possible to verify the species substitution dynamics in relation to the ecological succession.

Some pioneers are still present in the more advanced understory (nine years), where early and late secondary species participation represent more than half of the registered individuals. The species with higher IVI in these areas were: M. splendens (ES), S. variabile (PI) and M. coriacea (ES), and are zoochorically dispersed, demonstrating the presence of interactions with the fauna and of this ecosystem’s functionality having returned.

The data ordination (NMDS) showed that the different ages of M. scabrella underwent species substitution, and this floristic-structural gradient is associated to the successional dynamics process. The predominance of species belonging to the pioneer ecological group is associated with the younger community (four years), as well as the higher occurrence of late secondary species in the seven and nine-year-old understories. Considering this aspect, it is possible to verify that M. scabrella presents as a potential facilitator species for altered areas, since the increase in diversity from the initial (four years) to medium (seven and nine years) can act in improving the soil and climatic conditions. In this way, it is possible to verify that, as the development of these populations occurs, the conditions for successional processes to occur can be expanded, enabling more species to be established. However, it is important to emphasize that this process will be conditioned by the presence of remnant fragments in the landscape, which directly act as propagule sources for the revegetation of these areas.

It is also worth noting the importance of preserving areas in the secondary succession process, since they are vegetation cover with potentially endangered species, such as Araucaria angustifolia and Cedrela fissilis, recorded in this study and included on the threatened species list of the International Union for Conservation of Nature and Natural Resources (IUCN, 2016).

5. CONCLUSIONS

The highest regenerant richness was recorded in the Mimosa scabrella understory at a more advanced age.

The areas under natural regeneration in Mimosa scabrella understories with different ages presented different floristic-structural patterns, which are compatible with the characteristic trends of successional dynamics of Araucaria Forest, mainly due to the effect of the landscape matrix.

The increase in diversity in the understories of the Mimosa scabrella populations in the early to middle stages suggests the potential of this species as a facilitator for restoring altered areas.

ACKNOWLEDGMENTS

The authors would like to thank Santa Catarina State University, the Maintenance Support Fund and the Development of Higher Education in Santa Catarina for the granting scholarships to Ferreira and Gomes, to the Coordination for the Improvement of Higher Education Personnel for granting the scholarship to Stedille, the Foundation for Support of Research and Innovation of Santa Catarina and Klabin S/A.

REFERENCES

Alvarenga AP, Botelho SA, Pereira IM. Avaliação da regeneração natural na recomposição de matas ciliares em nascentes na região Sul de Minas Gerais. Cerne 2006; 12(4): 360-372. 10.5902/19805098403 [ Links ]

Alvares CA, Luiz SJ, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2014; 22(6): 711-728. 10.1127/0941-2948/2013/0507 [ Links ]

Barbosa CEA, Benato T, Cavalheiro AL, Torezan JMD. Diversity of regenerating plants in reforestations with angustifolia (Bertol.) O. Kuntze of 12, 22, 35, and 43 years of age in Paraná state, Brazil. Restoration Ecology 2009; 17(1): 60-67. 10.1111/j.1526-100X.2007.00335.x [ Links ]

Barroso GM, Bueno OL. Compostas. In: Reitz R. Flora ilustrada catarinense. Itajaí: Herbário Barbosa Rodrigues; 2002. [ Links ]

Budowski GN. Distribution of tropical American rain forest species in the light of sucessional processes. Turrialba 1965; 15: 40-42. [ Links ]

Callaway RM. Positive interactions among plants. The Botanical Review 1995; 61(4): 306-349. 10.1007/BF02912621 [ Links ]

Chada SS, Campello EFC, Faria SM. Sucessão vegetal em uma encosta reflorestada com leguminosas arbóreas em Angra dos Reis, RJ. Revista Árvore 2004; 28(6): 801-809. 10.1590/S0100-67622004000600005 [ Links ]

Dutra VF, Amorim MP. Mimosa scabrella Benth. 2012 [cited 2013 May 11]. Available from: Available from: https://bit.ly/2yIoUMoLinks ]

Flora do Brasil 2020 [Internet]. Lista de espécies da flora do Brasil. 2019 [cited 2019 May 20]. Available from: Available from: http://floradobrasil.jbrj.gov.brLinks ]

Haggar J, Wightman K, Fisher R. The potential of plantations to foster woody regeneration within a deforested landscape in lowland Costa Rica. Forest Ecology and Management 1997; 99: 55-64. 10.1016/S0378-1127(97)00194-1 [ Links ]

Herrera HAR, Rosot NC, Rosot MAD, Oliveira EB. Análise florística e fitossociológica do componente arbóreo da Floresta Ombrófila Mista presente na reserva florestal EMBRAPA/EPAGRI, Caçador, SC - Brasil. Revista Floresta 2009; 39(3): 485-500. 10.5380/rf.v39i3.15349 [ Links ]

Instituto Brasileiro de Geografia e Estatística - IBGE. Manual técnico da vegetação brasileira. 2. ed. Rio de Janeiro: IBGE; 2012. [ Links ]

Inoue MT, Roderjan CV, Kuniyoshi YS. Projeto madeira do Paraná. Curitiba: Fundação de Pesquisas Florestais do Paraná; 1984. [ Links ]

International Union for Conservation of Nature - IUCN. The IUCN red list of threatened species. [cited 2016 June 16]. Available from: www.iucnredlist.org. [ Links ]

Jarenkow JA, Batista LRM. Composição florística e estrutura da Mata com Araucária na Estação Ecológica de Aracuri, Esmeralda, RS. Napaea 1987; 3: 9-18. [ Links ]

Kabakoff RP, Chazdon RL. Effects of canopy species dominance on understorey light avilability in low-elevation secondary forest stands in Costa Rica. Journal of Tropical Ecology 1996; 12(6): 779-788. 10.1017/S0266467400010038 [ Links ]

Kanieski MR, Longhi SJ, Narvaes IS, Soares PRC, Longhi-Santos T, Callegaro RM. Diversidade e padrões de distribuição espacial de espécies no estágio de regeneração natural em São Francisco de Paula, RS, Brasil. Revista Floresta 2012; 42(3): 509-518. 10.5380/rf.v42i3.25037 [ Links ]

Klein RM. Ecologia da flora e vegetação do Vale do Itajaí. Revista Sellowia 1980; 32: 164-369. [ Links ]

Martins FR. Estrutura de uma floresta mesófila. São Paulo: Editora Unicamp; 1993. [ Links ]

Melo ACG, Durigan G. Evolução estrutural de reflorestamentos de restauração de matas ciliares no Médio Vale do Paranapanema. Scientia Forestalis 2007 [cited 2019 July 3]; 73:101-111. Available from: Available from: https://bit.ly/2YxYWqeLinks ]

Narvaes IS, Brena DA, Longhi SJ. Estrutura da regeneração natural em Floresta Ombrófila Mista na Floresta Nacional de São Francisco de Paula, RS. Ciência Florestal 2005; 15(4): 331-342. 10.5902/198050981871 [ Links ]

R Development Core Team. The R Project for Statistical Computing [software]. 2015 [cited 2014 Mar. 1]. Available from: Available from: http://www.R-project.org . [ Links ]

Reis A, Kageyama PY. Restauração de áreas degradadas utilizando interações interespecíficas. In: Kageyama PY, Oliveira RE, Reitz R, Klein R, Reis A. Projeto Madeira de Santa Catarina: levantamento das espécies florestais nativas em Santa Catarina com a possibilidade de incremento e desenvolvimento. Itajaí: Herbário Barbosa Rodrigues; 1978. [ Links ]

Silva AC, Higuchi P, Aguiar MD, Negrini M, Neto JF, Hess AF. Relações florísticas e fitossociologia de uma Floresta Ombrófila Mista Montana secundária em Lages, SC. Ciência Florestal 2012; 22(1):193-206. 10.5902/198050985091 [ Links ]

Santos SC, Budke JC, Muller A. Regeneração de espécies arbóreas sob a influência de Merostachys multiramea Hack. (Poaceae) em uma floresta subtropical. Acta Botanica Brasilica 2012; 26(1): 218-229. 10.1590/S0102-33062012000100021 [ Links ]

Tabarelli M, Mantovani W. Clareiras naturais e a riqueza de espécies pioneiras em uma Floresta Atlântica Montana. Revista Brasileira de Biologia 1999; 59: 251-261. 10.1590/S0034-71081999000200009 [ Links ]

Received: January 31, 2017; Accepted: June 30, 2018

CORRESPONDENCE TO Lilian Iara Stedille Universidade do Estado de Santa Catarina, Av. Luiz de Camões, 2.090, CEP 88520-000, Lages, SC, Brasil e-mail: lilian.stedille@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License