Acessibilidade / Reportar erro

Quality of Briquettes Produced with Jatropha and Eucalyptus

Abstract

Our study aims to determine the energetic quality of residues from the manufacturing of jatropha and eucalyptus, as well as to evaluate the physical properties of the briquettes made with different proportions of these biomasses. The following proportions were used for this study: 100% eucalyptus; 75% eucalyptus; 50% jatropha and 50% eucalyptus; 75% jatropha; and 100% jatropha. The apparent density of the residues, the immediate chemical product, the highest calorific value (HCV), the apparent density, the energy density, the usable calorific value (UCV), the lowest calorific value (LCV), the breaking strength of the briquettes (FR) and the hydroscopic moisture balance (HMB) were verified. Although the energetic characteristics of the jatropha residues are not superior to those of eucalyptus, this biomass adds favorable mechanical characteristics to the briquettes comprised of greater proportions of jatropha to eucalyptus, guaranteeing the energetic properties of the briquette, as well as reducing the production cost.

Keywords:
combustible solid; biomass energy; manufacturing briquettes

1. INTRODUCTION AND OBJECTIVES

For some decades, most countries have found alternative energy sources that are economically competitive, environmentally acceptable and available on a large scale (Srivastava & Prasad, 2000Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 2000; 4(2): 111-133. 10.1016/S1364-0321(99)00013-1
https://doi.org/10.1016/S1364-0321(99)00...
). One of these sources is jatropha (Jatropha curcas L.), which presents advantages in the production such as quality oil, long productive period, resistance to pests and disease, as well as adaptability to diverse edaphoclimatic conditions recurrent in Brazil (Arruda et al., 2004Arruda FP, Beltrão NEM, Andrade AP, Pereira WE, Severino LS. Cultivo de pinhão-manso (Jatropha curcas L.) como alternativa para o Semiárido nordestino. Revista Brasileira de Oleaginosas e Fibrosas 2004; 8(1): 789-799.; Oliveira et al., 2009Oliveira JS, Leite PM, Souza LB, Mello VM, Silva EC, Rubim JC, et al. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oil and application for biodiesel production. Biomass and Bioenergy 2009; 33(3): 449-453. 10.1016/j.biombioe.2008.08.006
https://doi.org/10.1016/j.biombioe.2008....
; Teixeira, 2005Teixeira LC. Potencialidades de oleaginosas para produção de biodiesel. Informe Agropecuário 2005; 26(229): 18-27.).

Jatropha curcas L., more than other oleaginous species, has already been established in the field of energy sources, presenting a satisfactory seed production when irrigated (about 2,500 kg.ha-1 within the fourth year after planting) and yielding between 30 to 40% oil, which can later be transformed into biodiesel (Achten et al., 2007Achten WML, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B. Jatropha biodiesel fueling sustainability? Biofuels, Bioproducts & Biorefining 2007; 1(4): 283-291. 10.1002/bbb.39
https://doi.org/10.1002/bbb.39...
; Drummond et al., 1984Drummond OA, Purcino AAC, Cunha LHS, Veloso JM. Cultura do pinhão-manso. Belo Horizonte: Epamig; 1984.; Saturnino et al., 2005Saturnino HM, Pacheco DD, Kakida J, Tominaga N, Gonçalves NP. Cultura do pinhão-manso (Jatropha curcas L.). Informe agropecuário 2005; 26(229): 44-78.). Recent numbers indicate there is approximately 20,000 ha of plantations of jatropha in Brazil, distributed throughout different states, spreading gradually as studies on the management and improvement of the agronomy are developed (Durães et al., 2009Durães FOM, Laviola BG, Sundfeld E, Medonça S, Bhering LL. Pesquisa, desenvolvimento e inovação em pinhão-manso para produção de biocombustíveis. Brasília, DF: Embrapa; 2009. (Documentos; n. 1).).

Although jatropha encourages the intense manufacturing of biodiesel by being a solid competitor to its petroleum alternative, this activity produces great amount of residues, since the seeds total 53 to 79% of the fruit weight, and the remainders are discarded after oil extraction (Dias et al., 2007Dias LAS, Leme LP, Laviola BG, Pallini Filho A, Pereira OL, Dias DCFS, et al. Cultivo de pinhão-manso (Jatropha curcas L.) para produção de óleo combustível. Viçosa: L. A. S. Dias; 2007.). Thus, the fruit is more valued in terms of energy production, between 17 and 18% of the dry fruit, and the use of diverse residues and constituents is reduced (Singh et al., 2008Singh RN, Vyas DK, Srivastava NSL, Narra M. SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renewable Energy 2008; 33(8): 1868-1873. 10.1016/j.renene.2007.10.007
https://doi.org/10.1016/j.renene.2007.10...
).

While agricultural activities generate residues after extraction of the desired product (the cultivation of jatropha included), forestry activities such as the lumbering of eucalyptus wood notably generate passive residues that can be used as potential energy sources. During the eucalyptus wood harvest, the economically viable part (for the manufacture of paper, cellulose, charcoal, wood plank, the mechanical transformation of the trunks in planks, as well as wood artifacts and treated wood industries) is taken, leaving the remains, ends and branches to be potentially used as biomass and energy sources (Ricardo, 2014Ricardo BH. Análise das atividades florestais desenvolvidas em uma empresa produtora de Eucalyptus spp. no estado do Mato Grosso do Sul [undergraduate thesis]. Curitibanos: Universidade Federal de Santa Catarina; 2014.).

For Dias et al. (2012Dias JMCS, Souza DT, Braga M, Onoyama MM, Miranda CHB, Barbosa PFD, Rocha JD. Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustriais e florestais [Internet]. 2012 [cited 2020 Mar. 27]. Available from: Available from: https://bit.ly/2UnDCUI
https://bit.ly/2UnDCUI...
) the agroforestry sector (the biggest industry in Brazil) generates a significant amount of residues that can be transformed in pellets and briquettes. Several studies have examined the manufacturing and the quality of briquettes, in their total composition, as potential energy sources of biomass, obtained from agriculture or forestry, such as the one carried out by Tomeleri et al. (2017Tomeleri JOP, Valentim LB, Silva JP, Yamaji FM, Pádua FA. Caracterização química e energética de epicarpo residual do pinhão manso (Jatropha curcas L.) e briquete produzido. Revista Virtual de Química 2017; 9(3): 942-952. 10.21577/1984-6835.20170061
https://doi.org/10.21577/1984-6835.20170...
) which identified the potential of the briquettes produced with jatropha to create energy; as well as Silva et al. (2015Silva DA, Nakashima GT, Barros JL, Da Roz AL, Yamaji FM. Caracterização de biomassas para a briquetagem. Floresta 2015; 45(4): 713-722. 10.5380/rf.v45i4.39700
https://doi.org/10.5380/rf.v45i4.39700...
), who characterized briquettes produced with eucalyptus shavings. However, very few scientific studies on the manufacturing of these combustible solids consider different proportions of agroforestry sources or the advantages of the physical characteristics of the briquettes when using two biomass potential energy sources in the same combustible solid. Given this, the objective of this study is to investigate the quality of the energy of jatropha and eucalyptus residues, and the implication of the physical properties in the manufacturing of briquettes composed of different proportions of biomasses.

2. MATERIALS AND METHODS

2.1. Preparation and characterization of the materials

For this study, jatropha epicarp obtained from the manufacturing of biodiesel as well as leaves and tips of eucalyptus (with a maximum diameter of 3 cm) were used, with both residues originating from the region of Viçosa, Minas Gerais. In order to carry out the granulometry needed for the energy quality analysis, the biomass was ground in a hammer mill with a screen of 2 mm following the Tappi 257 om-52 (TAPPI, 1998Technical Association of the Pulp & Paper Industry - TAPPI. TAPPI test methods. Atlanta; 1998.) recommendations. The verification of the moisture of the material was carried out by a thermogravimetric scale (MB35 Halogen, Ohaus brand model). After trituration, the particles were classified in sifters with the 40 and 60 mesh screens, used in proportion to the final sifter.

Apparent density was measured using an analytic scale and beaker (0.001 m3), filling the glass container with the jatropha epicarp and the eucalyptus biomass to the top, adapted to the standard EN 15103: DIN (CEN, 2009Comité Européen de Normalisation - CEN. EN 15103: Solid biofuels - Determination of bulk density. DIN EN 15103. Brussels; 2009.). Based on the knowledge of the volume and mass of the recipient, as well as the biomass contained in it, the apparent density was determined (1):

B u l k d e n s i t y k g / m 3 = M a s s o f t h e b i o m a s s k g B e a k e r v o l u m e m 3

The biomass was characterized by its immediate chemical composition, its volatility level, ash content and fixed carbon according to the ABNT NBR 8112 (ABNT, 1986Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR 8112: análise química imediata do carvão vegetal. Rio de Janeiro; 1986.), while the highest calorific value was determined according to the ABNT NBR 8633 (ABNT, 1984Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR 8633: carvão vegetal: determinação do poder calorífico: método de ensaio. Rio de Janeiro; 1984.).

2.2. Briquette production

A total of 25 briquettes were produced with 18 g of biomass each, pre-determined temperature and pressure (120 °C and 1500 psi), during 5 minutes of compression and 5 minutes of cooling in the Lippel (LB-32) laboratorial briquetting model, according to procedures described in Freitas et al. (2016Freitas AJ, Costa ACS, Oliveira AC, Pereira BLC, Rocha MFV, Carneiro ACO. Efeito da pressão e do tempo de compactação nas propriedades de briquetes de resíduos madeireiros de paricá. Nativa 2016; 4(6): 380-385. 10.14583/2318-7670.v04n06a06
https://doi.org/10.14583/2318-7670.v04n0...
). The biomasses studied were briquetted at a moisture level of 7.7% for the jatropha epicarp and 8.2% for the eucalyptus residue.

2.2.1. Characterization of the briquettes

Using an analytic scale and a beaker of volume 1,000 m3 filled with mercury, the apparent density was determined by immerging the briquettes in the container according to the principle of the hydrostatic scale described by Vital (1984Vital BR. Métodos de determinação da densidade da madeira. Viçosa: Sociedade de Investigações Florestais; 1984. (Boletim Técnico; 1).). In addition, the energy density (MJ/m3) was defined according to the sum of the HCV by the apparent density of the briquettes. The HCV (3), was defined by the lowest calorific value (LCV) (2):

L C V k c a l / k g = H i g h e r H e a t i n g V a l u e - k c a l / k g - 324 H C V k c a l / k g = L C V × 1 - H - 600 U H = h u m i d i t y i n d r y b a s e %

The breaking strength was determined by the Losenhausen universal testing machine using the software Pavitest wood 2.7.0.7. Given that there is no specific standard to evaluate the resistance to breakage of the briquettes, a methodology adapted from the ABNT NBR ISO 11093-9 (ABNT, 2009Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR ISO 11093-9: papel e cartão: ensaio de tubetes. Rio de Janeiro; 2009.) standard was followed. In addition, the briquettes were inserted into a climatic chamber at 23 °C with 65% relative humidity until achieving constant weight, to determine the Hygroscopic Moisture Balance (HMB).

2.3 Data analysis

The experiment strictly followed a causal outline, with three repetitions for the analysis of the biomass and five treatments and repetitions (Table 1) for the analysis of the briquettes. Measurements on the energy density, the highest calorific value and the lowest calorific value were carried out only for the 100E and 100J treatments in order to characterize the biomasses, since the energy density is a variable dependent on the apparent density and HCV, and these characteristics are intrinsic to each residue. Similarly, the LCV depends on the HHV and the HCV depends on the LCV, which are variables intrinsic to each residue.

Table 1
Experimental design adopted in the study.

The Lilliefors test was used to verify the normality of the data and the homogeneity of the variances by Cochran. From this, the variance analysis was carried out using the F-test, with comparison of means by Tukey, at a 5% significance level. The statistical software used was Statistica 8.0 (StatSoft, 2009StatSoft. Statistica: data analysis software system, version 8. Berlin; 2009.).

3. RESULTS AND DISCUSSION

According to the analysis that qualifies the biomasses as energy sources, the residue of the eucalyptus showed characteristics that were superior in energy production than the jatropha residue (Table 2).

Table 2
Mean values of the apparent density (kg/m3), fixed carbon (%), volatile matter (%), ash content (%), and highest calorific value (kcal/kg) of eucalyptus and jatropha residues.

Among these characteristics, the apparent density of the eucalyptus residue is greater, making this biomass more workable as to the logistics, transportation and storing of these residues; given the data of the empty space in the biomass, the real volume can be determined (Garcia et al., 2013Garcia DP, Caraschi JC, Ventorim G. Caracterização energética de pellets de madeira. Revista da Madeira 2013; 24(135): 14-18.).

In general terms, the apparent density is related to the cost of transporting the residues to the site where they will be transformed into a combustible solid. In other words, the transportation of eucalyptus residue involves more mass per volume, greater calorific value and more energy per load when compared to the jatropha residue, which decreases the number of times this material need to be moved. Thus, an alternative to the use of the jatropha residue is its compression, whether through the briquetting or pelletizing process, in order to increase the energy density of the material.

During the combustion process, the organic constituents of the biomass are consumed, and the resulting fraction of this component, as well as the oxidation of the inorganic composts, is known as ash content (Nogueira & Rendeiro, 2008Nogueira MFM, Rendeiro G. Caracterização energética da biomassa vegetal. In: Barreto EJF, coordenador. Combustão e gaseificação da biomassa sólida: soluções energéticas para a Amazônia. Brasília, DF: Ministério de Minas e Energia; 2008. p. 52-63.). According to Carvalho (2010Carvalho JBR. Composto a partir de glicerina e biomassa para produção de energia [thesis]. Aracaju: Universidade Federal de Sergipe; 2010.), a potential energy source must have an ash content lower than 3%, as the calorific value of the biomass is reduced and, consequently, the energy production for the reaction.

Consequently, by obtaining a lower ash content, the eucalyptus presents superior energetic characteristics when compared to the jatropha and thus the frequent cleaning of the equipment in the combustion process is recommended when using the latter for energy generation. Oliveira et al. (2007Oliveira JB Jr, Marcela DN, Fraga AC, Castro Neto P. Determinação dos nutrientes presentes na casca e torta de pinhão-manso. In: 4º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; 2007; Varginha. p. 1763-1770.) explain the high ash content for the jatropha biomass by analyzing the epicarp and the residual press-cake of the jatropha, besides verifying high levels of ash content in the jatropha residue (15.9% and 7.4% in the press-cake and in the epicarp, respectively), justified by the presence of high concentrations of inorganic composts. This behavior is generally observed in the biomass originating from agricultural species that require frequent fertilization with micronutrients as opposed to forest species.

Therefore, the ash content obtained in each biomass influenced the result of the highest calorific value, in which the eucalyptus residue presented greater advantage. Rodrigues (2010Rodrigues VAJ. Valorização energética de lodo biológico da indústria de polpa celulósica através da briquetagem [thesis]. Viçosa: Universidade Federal de Viçosa; 2010.) confirmed the elementary chemical composition and the ash content are the main characteristics that interfere in the calorific value. The physical properties of briquettes produced with residues also influence the energy yield of the product, as shown in Table 3.

Table 3
Mean values of the diameters (mm), lengths (mm), highest calorific value (kcal/kg), the lowest calorific value (kcal/kg), energy density (MJ/m3), breaking strength (Kgf), and hygroscopic moisture balance (%) of the briquettes produced for each treatment.

The lowest calorific value and the usable calorific value differed significantly among the treatments analyzed (100E and 100J), with the former presenting greater calorific value. This behavior is caused by the highest calorific value of the eucalyptus biomass and its apparent density. Thus, the 100J treatment obtained a lower energy density that, according to Vale et al. (2011Vale AT, Mendes RM, Amorim MRS, Dantas VFS. Potencial energético da biomassa e carvão vegetal do epicarpo do pinhão manso (Jatropha curcas). Cerne 2011; 17(2): 267-273. 10.1590/S0104-77602011000200015
https://doi.org/10.1590/S0104-7760201100...
), can be explained by the low calorific value and low apparent density of the jatropha epicarp.

However, as the concentrations of the jatropha residues are increased in the composition of the briquettes, the apparent density also increases and consequently provides greater resistance in the breaking strength (75J25E and 100J). According to Manriquez Figueiroa & Moraes (2009Manriquez Figueiroa MJ, Moraes PD. Comportamento da madeira a temperaturas elevadas. Ambiente Construído 2009; 9(4): 157-174.), after the briquetting, the lignin contained in the biomass goes through a process known as glass transition, which promotes rigidity after being exposed to temperature and pressure, giving the briquette greater resistance.

The hygroscopicity is a tendency that some materials have of absorbing water in the air, raising the moisture of the composition. According to Yamaji et al. (2013Yamaji FM, Vendrasco L, Chrisostomo W, Flores WP. Análise do comportamento higroscópico de briquetes. Revista Energia na Agricultura 2013; 28(1): 11-15. 10.17224/EnergAgric.2013v28n1p11-15
https://doi.org/10.17224/EnergAgric.2013...
), the biomass with the greater hygroscopicity tends to absorb more moisture and therefore reduces its physicomechanical properties. As the quantity of jatropha residue is increased in the composition of the briquettes, the hygroscopic moisture balance also increases. Thus, the briquettes with the highest jatropha compositions (75J25E and 100J) present a greater capacity to absorb moisture, when compared to briquettes with large proportions of eucalyptus (100E and 25J75E). Therefore, the storing of the briquettes made with percentages of jatropha should be done in a controlled environment, to maintain the physicomechanical qualities of the briquettes produced.

4. CONCLUSIONS

By presenting greater concentrations of inorganic materials, the residue of jatropha has a high ash content, which influences its highest calorific value. However, the addition of this residue in concentrations of the briquette provides a gain in apparent density and increases the resistance of its breaking strength when stored in an environment with humidity control. Hence, the association of the jatropha residue in greater concentrations than the eucalyptus (according to the description of the treatments 50J50E and 75J25E) adds mechanical resistance to the briquettes. Besides providing favorable mechanical characteristics, this composition can also reduce production costs in the process of manufacturing eucalyptus briquettes.

REFERENCES

  • Achten WML, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B. Jatropha biodiesel fueling sustainability? Biofuels, Bioproducts & Biorefining 2007; 1(4): 283-291. 10.1002/bbb.39
    » https://doi.org/10.1002/bbb.39
  • Arruda FP, Beltrão NEM, Andrade AP, Pereira WE, Severino LS. Cultivo de pinhão-manso (Jatropha curcas L.) como alternativa para o Semiárido nordestino. Revista Brasileira de Oleaginosas e Fibrosas 2004; 8(1): 789-799.
  • Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR 8633: carvão vegetal: determinação do poder calorífico: método de ensaio. Rio de Janeiro; 1984.
  • Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR 8112: análise química imediata do carvão vegetal. Rio de Janeiro; 1986.
  • Associação Brasileira de Normas Técnicas - ABNT. ABNT NBR ISO 11093-9: papel e cartão: ensaio de tubetes. Rio de Janeiro; 2009.
  • Carvalho JBR. Composto a partir de glicerina e biomassa para produção de energia [thesis]. Aracaju: Universidade Federal de Sergipe; 2010.
  • Dias JMCS, Souza DT, Braga M, Onoyama MM, Miranda CHB, Barbosa PFD, Rocha JD. Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustriais e florestais [Internet]. 2012 [cited 2020 Mar. 27]. Available from: Available from: https://bit.ly/2UnDCUI
    » https://bit.ly/2UnDCUI
  • Dias LAS, Leme LP, Laviola BG, Pallini Filho A, Pereira OL, Dias DCFS, et al. Cultivo de pinhão-manso (Jatropha curcas L.) para produção de óleo combustível. Viçosa: L. A. S. Dias; 2007.
  • Drummond OA, Purcino AAC, Cunha LHS, Veloso JM. Cultura do pinhão-manso. Belo Horizonte: Epamig; 1984.
  • Durães FOM, Laviola BG, Sundfeld E, Medonça S, Bhering LL. Pesquisa, desenvolvimento e inovação em pinhão-manso para produção de biocombustíveis. Brasília, DF: Embrapa; 2009. (Documentos; n. 1).
  • Comité Européen de Normalisation - CEN. EN 15103: Solid biofuels - Determination of bulk density. DIN EN 15103. Brussels; 2009.
  • Freitas AJ, Costa ACS, Oliveira AC, Pereira BLC, Rocha MFV, Carneiro ACO. Efeito da pressão e do tempo de compactação nas propriedades de briquetes de resíduos madeireiros de paricá. Nativa 2016; 4(6): 380-385. 10.14583/2318-7670.v04n06a06
    » https://doi.org/10.14583/2318-7670.v04n06a06
  • Garcia DP, Caraschi JC, Ventorim G. Caracterização energética de pellets de madeira. Revista da Madeira 2013; 24(135): 14-18.
  • Manriquez Figueiroa MJ, Moraes PD. Comportamento da madeira a temperaturas elevadas. Ambiente Construído 2009; 9(4): 157-174.
  • Nogueira MFM, Rendeiro G. Caracterização energética da biomassa vegetal. In: Barreto EJF, coordenador. Combustão e gaseificação da biomassa sólida: soluções energéticas para a Amazônia. Brasília, DF: Ministério de Minas e Energia; 2008. p. 52-63.
  • Oliveira JB Jr, Marcela DN, Fraga AC, Castro Neto P. Determinação dos nutrientes presentes na casca e torta de pinhão-manso. In: 4º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; 2007; Varginha. p. 1763-1770.
  • Oliveira JS, Leite PM, Souza LB, Mello VM, Silva EC, Rubim JC, et al. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oil and application for biodiesel production. Biomass and Bioenergy 2009; 33(3): 449-453. 10.1016/j.biombioe.2008.08.006
    » https://doi.org/10.1016/j.biombioe.2008.08.006
  • Ricardo BH. Análise das atividades florestais desenvolvidas em uma empresa produtora de Eucalyptus spp. no estado do Mato Grosso do Sul [undergraduate thesis]. Curitibanos: Universidade Federal de Santa Catarina; 2014.
  • Rodrigues VAJ. Valorização energética de lodo biológico da indústria de polpa celulósica através da briquetagem [thesis]. Viçosa: Universidade Federal de Viçosa; 2010.
  • Saturnino HM, Pacheco DD, Kakida J, Tominaga N, Gonçalves NP. Cultura do pinhão-manso (Jatropha curcas L.). Informe agropecuário 2005; 26(229): 44-78.
  • Silva DA, Nakashima GT, Barros JL, Da Roz AL, Yamaji FM. Caracterização de biomassas para a briquetagem. Floresta 2015; 45(4): 713-722. 10.5380/rf.v45i4.39700
    » https://doi.org/10.5380/rf.v45i4.39700
  • Singh RN, Vyas DK, Srivastava NSL, Narra M. SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renewable Energy 2008; 33(8): 1868-1873. 10.1016/j.renene.2007.10.007
    » https://doi.org/10.1016/j.renene.2007.10.007
  • Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 2000; 4(2): 111-133. 10.1016/S1364-0321(99)00013-1
    » https://doi.org/10.1016/S1364-0321(99)00013-1
  • StatSoft. Statistica: data analysis software system, version 8. Berlin; 2009.
  • Technical Association of the Pulp & Paper Industry - TAPPI. TAPPI test methods. Atlanta; 1998.
  • Teixeira LC. Potencialidades de oleaginosas para produção de biodiesel. Informe Agropecuário 2005; 26(229): 18-27.
  • Tomeleri JOP, Valentim LB, Silva JP, Yamaji FM, Pádua FA. Caracterização química e energética de epicarpo residual do pinhão manso (Jatropha curcas L.) e briquete produzido. Revista Virtual de Química 2017; 9(3): 942-952. 10.21577/1984-6835.20170061
    » https://doi.org/10.21577/1984-6835.20170061
  • Vale AT, Mendes RM, Amorim MRS, Dantas VFS. Potencial energético da biomassa e carvão vegetal do epicarpo do pinhão manso (Jatropha curcas). Cerne 2011; 17(2): 267-273. 10.1590/S0104-77602011000200015
    » https://doi.org/10.1590/S0104-77602011000200015
  • Vital BR. Métodos de determinação da densidade da madeira. Viçosa: Sociedade de Investigações Florestais; 1984. (Boletim Técnico; 1).
  • Yamaji FM, Vendrasco L, Chrisostomo W, Flores WP. Análise do comportamento higroscópico de briquetes. Revista Energia na Agricultura 2013; 28(1): 11-15. 10.17224/EnergAgric.2013v28n1p11-15
    » https://doi.org/10.17224/EnergAgric.2013v28n1p11-15

Publication Dates

  • Publication in this collection
    08 May 2020
  • Date of issue
    2020

History

  • Received
    04 Oct 2017
  • Accepted
    13 Sept 2018
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br