Acessibilidade / Reportar erro

Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks

Abstract

The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.

Keywords:
Artificial intelligence; Forest inventory; Forest measurement; Forest technology; Hypsometry; Non-timber forest products

Trees of Copaifera L. (Leguminosae) genus secrete an oleoresinous substance (LPWG, 2017LPWG [The Legume Phylogeny Working Group]. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. TAXON 2017; 66(1):44-77. doi: 10.12705/661.3
https://doi.org/10.12705/661.3...
) with properties of interest to the pharmaceutical and chemical industries (Araújo et al., 2018Araújo LO, Fernandes RF, Antenor MC, Andrade JS, Galdino SM, Barros Filho MML. Mapeamento tecnológico da copaiba: análise prospectiva no Brasil e no mundo. Cad. Prospec. 2018; 11(1):146-157. doi: 109771/cp.v11i1.23225
https://doi.org/109771/cp.v11i1.23225...
; Medeiros et al., 2018Medeiros RS, Vieira G, Almeida DRA, Tomazello FM. New information for managing Copaifera multijuga Hayne for oleoresin yield. Forest Ecology and Management 2018; 414:5-98. doi: 10.1016/j.foreco.2018.02.009
https://doi.org/10.1016/j.foreco.2018.02...
; Heck et al., 2012Heck MC, Viana LA, Vicentini VEP. Importância do óleo de Copaifera sp. (Copaiba). SaBios: Revista de Saúde e Biologia 2012; 7(1): 82-90.). Angelo et al. (2018Angelo H, Calderon RA, Almeida AN, Paula MF, Meira M, Miguel EP, Vasconcelos PGA. Analysis of the non-timber forest products market in the Brazilian Amazon. Australiam Journal of Crop Science 2018; 12(10), 1640-1644. doi:10.21475/ajcs.18.12.10.pne1341
https://doi.org/10.21475/ajcs.18.12.10.p...
) analyzed the market for non-timber forest products in the Brazilian Amazon, between 1973 and 2011, indicated copaiba as one of the relevant products, and pointed out the need to modernize the extractive industry. One of the main problems of oleoresin exploitation is unpredictable productivity per individual, without an average reference value (Newton et al., 2011Newton P, Watkinson AR, Peres CA. Determinants of yield in a non-timber forest product: Copaifera oleoresin in Amazonian extractive reserves. Forest Ecology and Management 2011; 261(2): 255-264. doi: 10.1016/j.foreco.2010.10.014
https://doi.org/10.1016/j.foreco.2010.10...
; Veiga Junior & Pinto, 2002Veiga Junior VF, Pinto AC. O gênero Copaifera L. Química Nova 2002; 25(2): 273-286. available from: https://www.scielo.br/pdf/qn/v25n2/10455.pdf
https://www.scielo.br/pdf/qn/v25n2/10455...
). Using tree size as a parameter to estimate the amount of oleoresin to be obtained from a given population is the objective of many researchers and forest managers. Individual tree models are composed of submodels that generally estimate competition, mortality and growth in height and diameter of each tree (Vieira et al., 2018Vieira GC, Mendonça AR, Silva GFS, Zanetti SS, Silva MM, Santos AR. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of The Total Environment 2018; 619:1473-1481. doi: 10.1016/j.scitotenv.2017.11.138
https://doi.org/10.1016/j.scitotenv.2017...
). Variables that are difficult to obtain can be estimated by regression models, enabling the establishment of the functional relationship between two variables, using linear and non-linear models (Scolforo, 2005Scolforo JRS. Biometria florestal: Parte I: modelos de regressão linear e não-linear; Parte II: modelos para relação hipsométrica, volume, afilamento e peso de matéria seca. Lavras, Brasil: UFLA/FAEPE; 2005.). Also, Artificial Neural Networks (ANN) are used to estimate the height and volume of trees and can be used to obtain the potential of extractive production (Diamantopoulou, 2012Diamantopoulou MJ. Assessing a reliable modeling approach of features of trees through neural network models for sustainable forests. Sustainable Computing: Informatics and Systems 2012; 2(4): 190-197. doi: 10.1016/j.suscom.2012.10.002
https://doi.org/10.1016/j.suscom.2012.10...
). ANNs are computational systems with parallel layers, consisting of several simple processing units (artificial neurons) connected to each other in order to perform a certain task (Fleck et al., 2016Fleck L, Tavares MHF, Eyng E, Helmann AC, Andrade MAM. Redes Neurais Artificiais: princípios básicos. Revista Eletrônica Científica Inovação e Tecnologia 2016; 1(13): 47-57. available from: https://periodicos.utfpr.edu.br/recit/article/viewFile/4330/Leandro
https://periodicos.utfpr.edu.br/recit/ar...
). These “neurons” are mathematical models inspired by the functioning of biological neurons, which process the information received, weight it by synaptic weights and provide one or more responses (Haykin, 2001Haykin S. Redes neurais: princípios e prática. (2da. ed.). Tradução: Engel, P. M. Porto Alegre, Brasil: Bookman. 2001.; Silva, Spatti & Flauzino, 2010Silva IN, Spatti DH, Flauzino RA. Redes neurais artificiais para engenharia e ciências aplicadas: Fundamentos teóricos e aspectos práticos. (2da. ed.). São Paulo, Brasil: Artliber; 2010.). The measurement of the total height of the stem impacts the costs of the forest inventory, demonstrating the relevance of studies that correlate hypsometric characteristics using modern statistical techniques for the quantification of oleoresin productivity. This research tested hypsometric models and Artificial Neural Networks as estimators of the total height of the stem of Copaifera sp. of the Brazilian Western Amazon, at unknown ages. Thirty-one trees were analyzed from two sites in the state of Acre (10°28’ S; 67°55’ O (Remanso) e 7°44’ S; 72°32’ O (Croa). For each tree, the following variables were obtained: i) height (m), in the sections 0% (diameter at breast height - DBH - 1,30 m from the ground), 25%, 50%, 75% and 100% (1st trunk bifurcation - h100%); and ii) diameter at the respective heights (cm). Among these, 12 trees were measured at the base (20 cm above the soil surface), DBH, at 2-meter intervals and h100%, and the variables corresponding to the other heights were obtained through interpolation. To measure these variables, abseiling equipment and measuring taper segmentation, were used. Four regression models were selected to test the ability to estimate h100% as a function of DBH (Table 1).

Table 1
Hypsometric models used to verify the correlation value between diameter and tree height Copaifera sp. Source: Ré et al. (2015Ré DS, Engel VL, Ota LMS, Jorge LAB. Equações alométricas em plantios mistos visando à restauração da floresta estacional semidecidual. Cerne [online] 2015; 21(1): 133-140. doi: 10.1590/01047760201521011452
https://doi.org/10.1590/0104776020152101...
).

The hypsometric models were adjusted using the Microsoft Excel 2016 software and evaluated according to the following parameters: Correlation coefficients (r), Determination (R2) and Adjusted determination (Adjusted R2), Standard error, Calculated F and tabulated F. Subsequently, Artificial Neural Networks (ANN) of the type Multilayer Perceptron (MLP) ANN (Heidari et al., 2019Heidari E, Hossam F, Aljarah I, Mirjalili S. An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput 2019; 23: 7941-7958. doi: 10.1007/s00500-018-3424-2
https://doi.org/10.1007/s00500-018-3424-...
) were tested, with sigmoidal activation in the hidden and outgoing layers. The trained algorithm was the Resilient Propagation (RPROP+), with values of the learning rate varying between zero (0) and one (1), using the average error of 0.0001 and the limit of 3000 cycles as a stopping criterion. The general supervised learning architecture was used (Ludwig Jr. & Montgomery, 2007Ludwig Jr. O, Montgomery EM. Redes Neurais: Fundamentos e aplicações com programas em C. Rio de Janeiro, Brasil: Editora Ciência Moderna Ltda, 2007.). Five ANN were tested for three different architecture configurations (9x2x1, 9x4x1 and 9x8x1), respectively, two, four and eight artificial neurons in the hidden layer; nine variables in the input layer (h0%, h25%, h50%, h75% and respective diameters); and a variable in the output layer (h100%). The origin of the trees (sites) was used as a categorical variable. The NeuroDAP program was used for training, a System for Generation and Application of Artificial Neural Networks, version 4.0 (DAP Florestal, 2020DAP Florestal. Neuro - Sistema para Geração e Aplicação de Redes Neurais Artificiais: Neuro DAP 4.0.; 2021.; Bonete & Lanssanova, 2020Bonete IP, Lanssanova LR. Redes Neurais Artificiais na estimação de diâmetros de Tectona grandis L.f. Em: Senhoras EM. (Org.) A produção do conhecimento interdisciplinar nas ciências ambientais 3. Ponta Grossa, Paraná: Atena, 2020. doi: 10.22533/at.ed.089200203
https://doi.org/10.22533/at.ed.089200203...
). Due to the size of the studied population, all trees’ data were used in training 1 1 Copaibas are trees of rare occurrence, and, in the forests of Acre, it is expected to find a number of individuals ranging from 0,1 ha-1 a 1,5 ha-1 (Martins et al., 2016). . The selection of the ANN was carried out based on the quality criteria: Correlation (r e R 2 ); bias (additive junction or synaptic link); Residual Sum of Squares (RSS) and Variance (Var); Root of the Mean Square of Error (RMSE); Standard Error of Estimate (Syx) and Relative Standard Error of Estimate (Syx%). Also, a graphic analysis of the residues was realized. In general, trees predominated in classes that DBH varied between 34,70 and 112,39 cm, and h100% between 13,27 and 19,13 m. There was no significant correlation between: DBH and h100% (p-value = 0,727); h25% and diameter 25% (p-value = 0,059); h50% and diameter 50% (p-value = 0,445); h75% and diameter 75% (p-value = 0,101); h100% and diameter 100% (p-value = 0,065); and between DBH and h0% (p-value = 0,105). In a natural forest, the correlation between DBH and height is very weak, due to the different ages and environmental conditions (Scolforo, 2005Scolforo JRS. Biometria florestal: Parte I: modelos de regressão linear e não-linear; Parte II: modelos para relação hipsométrica, volume, afilamento e peso de matéria seca. Lavras, Brasil: UFLA/FAEPE; 2005.). Besides, studies show that variables such as topsoil and age are not significant for productivity, but the stem height is significant 2 2 These and other variables “most often have complex relationships and often non-linear trends” (Binoti et al., 2014, p.59). (Roquette, 2014Roquette JG. Produtividade de óleo-resina de Copaifera sp.: relações dendrométricas, edáficas e etática [dissertação]. Cuiabá: Faculdade de Engenharia Florestal, Universidade Federal do Mato Grosso; 2014. available from: http://bdtd.ibict.br/vufind/Record/UFMT_fa56083b900602ae4cb416f177e4fdc9
http://bdtd.ibict.br/vufind/Record/UFMT_...
). In the present study, the hypsometric equations tested were not appropriate for estimating the h100% (Table 2).

Table 2
Precision measurements of the regression statistics of hypsometric models, tested for native trees of Copaifera sp.

ANN 1 (9x2x1) provided the highest number of h100% values that reliable to real values (93,87%), followed by ANN 3 (9x2x1), ANN 2 (9x8x1) and ANN 4 (9x4x1) with, respectively, 72,26%, 70,68% and 70,00% (Table 3). However, the effective hit is not the most appropriate criterion for choosing the ANN.

Table 3
Estimates of h100%, by ANN training algorithms, with different numbers of neurons in the hidden layer, tested for native trees of Copaifera sp.

Correlations between input (real h100%) and output (estimated h100%) generated considered very good adjustments (r ≥ 0,99). However, ANN 2 (9x8x1) and ANN 3 (9x2x1) reached, in addition to an excellent correlation, the lowest Var associated with lower values RMSE and bias. Although ANN 1 (9x2x1) presented the best distribution of errors around the midline of the regression (Figure 1), it was found that this generated high RMSE, Syx and Syx (%), while ANN 3 (9x2x1) and ANN 2 (9x8x1) generated reduced RMSE, Syx e Syx (%) (Table 4).

Figure 1
Dispersion of percentage errors (y), as a function of estimated total trunk heights (x) for Copaifera sp. trees, native to Western Amazonia, Brazil, for Artificial Neural Networks with 9x2x1, 9x4x1 and 9x8x1 architectures.

Table 4
Adjustment quality criteria of ANN models with 9x2x1, 9x4x1 and 9x8x1 architectures, used to estimate the total stem length of Copaifera sp. trees, native to Western Amazonia, Brazil.

The numbers of neurons and hidden layer do not guarantee that the ANN will carry out an appropriate generalization, and overfitting and underfitting failures may occur, in both cases, the RMSE level is the parameter to be considered, in addition, the ANN selection must prioritize the lowest number of neurons in the hidden layer (Silva et al., 2010Silva IN, Spatti DH, Flauzino RA. Redes neurais artificiais para engenharia e ciências aplicadas: Fundamentos teóricos e aspectos práticos. (2da. ed.). São Paulo, Brasil: Artliber; 2010.). Training is the stage that teaches ANN, and learning occurs from the trained network, its architecture, and its topology (Furtado, 2019Furtado MIV. Redes neurais artificiais [recurso eletrônico]: uma abordagem para sala de aula. Ponta Grossa, Paraná: Atena Editora; 2019. [cited 2021 mar. 23]. doi: 10.22533/at.ed.262191504
https://doi.org/.22533/at.ed.262191504...
). However, ANN validation should not be ignored, as it allows verifying the performance of the network when applying it to new data (Silva et al., 2010Silva IN, Spatti DH, Flauzino RA. Redes neurais artificiais para engenharia e ciências aplicadas: Fundamentos teóricos e aspectos práticos. (2da. ed.). São Paulo, Brasil: Artliber; 2010.). ANN 3 (9x2x1) was selected as the best network for estimating the h100% of Copaifera sp. The lack of significant linear correlation between the dendrometric variables and the specificities of the sites did not prevent the predictive capacity of the ANN.

REFERENCES

  • Angelo H, Calderon RA, Almeida AN, Paula MF, Meira M, Miguel EP, Vasconcelos PGA. Analysis of the non-timber forest products market in the Brazilian Amazon. Australiam Journal of Crop Science 2018; 12(10), 1640-1644. doi:10.21475/ajcs.18.12.10.pne1341
    » https://doi.org/10.21475/ajcs.18.12.10.pne1341
  • Araújo LO, Fernandes RF, Antenor MC, Andrade JS, Galdino SM, Barros Filho MML. Mapeamento tecnológico da copaiba: análise prospectiva no Brasil e no mundo. Cad. Prospec. 2018; 11(1):146-157. doi: 109771/cp.v11i1.23225
    » https://doi.org/109771/cp.v11i1.23225
  • Binoti D, Binoti MLMS, Leite H. Configuração de redes neurais artificiais para estimação do volume de árvores. Ciência da Madeira (Braz. J. Wood Sci.) 2014; 5(1): 58-67. doi:10.12953/2177-6830.v05n01a06
    » https://doi.org/10.12953/2177-6830.v05n01a06
  • Bonete IP, Lanssanova LR. Redes Neurais Artificiais na estimação de diâmetros de Tectona grandis L.f. Em: Senhoras EM. (Org.) A produção do conhecimento interdisciplinar nas ciências ambientais 3. Ponta Grossa, Paraná: Atena, 2020. doi: 10.22533/at.ed.089200203
    » https://doi.org/10.22533/at.ed.089200203
  • DAP Florestal. Neuro - Sistema para Geração e Aplicação de Redes Neurais Artificiais: Neuro DAP 4.0.; 2021.
  • Diamantopoulou MJ. Assessing a reliable modeling approach of features of trees through neural network models for sustainable forests. Sustainable Computing: Informatics and Systems 2012; 2(4): 190-197. doi: 10.1016/j.suscom.2012.10.002
    » https://doi.org/10.1016/j.suscom.2012.10.002
  • Fleck L, Tavares MHF, Eyng E, Helmann AC, Andrade MAM. Redes Neurais Artificiais: princípios básicos. Revista Eletrônica Científica Inovação e Tecnologia 2016; 1(13): 47-57. available from: https://periodicos.utfpr.edu.br/recit/article/viewFile/4330/Leandro
    » https://periodicos.utfpr.edu.br/recit/article/viewFile/4330/Leandro
  • Furtado MIV. Redes neurais artificiais [recurso eletrônico]: uma abordagem para sala de aula. Ponta Grossa, Paraná: Atena Editora; 2019. [cited 2021 mar. 23]. doi: 10.22533/at.ed.262191504
    » https://doi.org/.22533/at.ed.262191504
  • Haykin S. Redes neurais: princípios e prática. (2da. ed.). Tradução: Engel, P. M. Porto Alegre, Brasil: Bookman. 2001.
  • Heck MC, Viana LA, Vicentini VEP. Importância do óleo de Copaifera sp. (Copaiba). SaBios: Revista de Saúde e Biologia 2012; 7(1): 82-90.
  • Heidari E, Hossam F, Aljarah I, Mirjalili S. An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput 2019; 23: 7941-7958. doi: 10.1007/s00500-018-3424-2
    » https://doi.org/10.1007/s00500-018-3424-2
  • LPWG [The Legume Phylogeny Working Group]. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. TAXON 2017; 66(1):44-77. doi: 10.12705/661.3
    » https://doi.org/10.12705/661.3
  • Ludwig Jr. O, Montgomery EM. Redes Neurais: Fundamentos e aplicações com programas em C. Rio de Janeiro, Brasil: Editora Ciência Moderna Ltda, 2007.
  • Martins K, Rigamonte-Azevedo C, Silva MGC, Wadt LHO. Copaiba: aspectos ecológicos e potencial de uso do oleorresina. Em: Siviero A, Ming LC, Silveira M, Daly D, Wallace R (Org.). Etnobotânica e Botânica Econômica do Acre. Rio Branco, Brasil: Edufac, 2016.
  • Medeiros RS, Vieira G, Almeida DRA, Tomazello FM. New information for managing Copaifera multijuga Hayne for oleoresin yield. Forest Ecology and Management 2018; 414:5-98. doi: 10.1016/j.foreco.2018.02.009
    » https://doi.org/10.1016/j.foreco.2018.02.009
  • Newton P, Watkinson AR, Peres CA. Determinants of yield in a non-timber forest product: Copaifera oleoresin in Amazonian extractive reserves. Forest Ecology and Management 2011; 261(2): 255-264. doi: 10.1016/j.foreco.2010.10.014
    » https://doi.org/10.1016/j.foreco.2010.10.014
  • Ré DS, Engel VL, Ota LMS, Jorge LAB. Equações alométricas em plantios mistos visando à restauração da floresta estacional semidecidual. Cerne [online] 2015; 21(1): 133-140. doi: 10.1590/01047760201521011452
    » https://doi.org/10.1590/01047760201521011452
  • Roquette JG. Produtividade de óleo-resina de Copaifera sp.: relações dendrométricas, edáficas e etática [dissertação]. Cuiabá: Faculdade de Engenharia Florestal, Universidade Federal do Mato Grosso; 2014. available from: http://bdtd.ibict.br/vufind/Record/UFMT_fa56083b900602ae4cb416f177e4fdc9
    » http://bdtd.ibict.br/vufind/Record/UFMT_fa56083b900602ae4cb416f177e4fdc9
  • Scolforo JRS. Biometria florestal: Parte I: modelos de regressão linear e não-linear; Parte II: modelos para relação hipsométrica, volume, afilamento e peso de matéria seca. Lavras, Brasil: UFLA/FAEPE; 2005.
  • Silva IN, Spatti DH, Flauzino RA. Redes neurais artificiais para engenharia e ciências aplicadas: Fundamentos teóricos e aspectos práticos. (2da. ed.). São Paulo, Brasil: Artliber; 2010.
  • Veiga Junior VF, Pinto AC. O gênero Copaifera L. Química Nova 2002; 25(2): 273-286. available from: https://www.scielo.br/pdf/qn/v25n2/10455.pdf
    » https://www.scielo.br/pdf/qn/v25n2/10455.pdf
  • Vieira GC, Mendonça AR, Silva GFS, Zanetti SS, Silva MM, Santos AR. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of The Total Environment 2018; 619:1473-1481. doi: 10.1016/j.scitotenv.2017.11.138
    » https://doi.org/10.1016/j.scitotenv.2017.11.138
  • 1
    Copaibas are trees of rare occurrence, and, in the forests of Acre, it is expected to find a number of individuals ranging from 0,1 ha-1 a 1,5 ha-1 (Martins et al., 2016Martins K, Rigamonte-Azevedo C, Silva MGC, Wadt LHO. Copaiba: aspectos ecológicos e potencial de uso do oleorresina. Em: Siviero A, Ming LC, Silveira M, Daly D, Wallace R (Org.). Etnobotânica e Botânica Econômica do Acre. Rio Branco, Brasil: Edufac, 2016.).
  • 2
    These and other variables “most often have complex relationships and often non-linear trends” (Binoti et al., 2014Binoti D, Binoti MLMS, Leite H. Configuração de redes neurais artificiais para estimação do volume de árvores. Ciência da Madeira (Braz. J. Wood Sci.) 2014; 5(1): 58-67. doi:10.12953/2177-6830.v05n01a06
    https://doi.org/10.12953/2177-6830.v05n0...
    , p.59).

Edited by

Associate editor:

Publication Dates

  • Publication in this collection
    03 June 2022
  • Date of issue
    2022

History

  • Received
    10 June 2021
  • Accepted
    30 Apr 2022
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br