Acessibilidade / Reportar erro

Is it possible to simplify environmental monitoring? Approaches with zooplankton in a hydroelectric reservoir

É possível simplificar o monitoramento ambiental? Abordagens com o zooplâncton em um reservatório hidroelétrico

Abstracts

Abstract

Aim: In order to contribute to the knowledge about the simplification of biological surveys, this study evaluated the use of substitute groups, numeric and taxonomic resolution for the three main groups of zooplankton (cladocerans, copepods and rotifers) in a Hydropower Plant (UHE). The following issues were addressed: (i) the patterns of spatial and/or temporal ordering generated between each zooplankton group are in concordance? (ii) The concordance is maintained using presence/absence data instead of density data? (iii) The identification of organisms to the species level can be replaced by genus or family level?

Methods

Samples were taken in seven sample units over five campaigns between 2009 and 2010 in the UHE Serra da Mesa (Goiás, Brazil). To evaluate the correlation between each pair of matrices was used the Mantel test.

Results

The results demonstrate that the replacements should not be made among the zooplanktonic groups, requiring the monitoring of three groups (copepods, cladocerans and rotifers). Furthermore, the results suggest the use of density data of individuals rather than just presence/absence of species. Finally, the results of this study indicate the possibility to use data at species level instead of data at genus or family level.

Conclusion

For zooplankton community monitoring purposes only the use of taxonomic resolution showed to be efficient for this area of study, not being recommended the use of surrogate groups or numerical resolution.

Keywords:
cladocera; copepoda; rotifera; numerical resolution; taxonomic resolution


Resumo

Objetivo: A fim de contribuir para o conhecimento a respeito da simplificação de levantamentos biológicos, o presente estudo avaliou o uso de grupos substitutos, resolução taxonômica e numérica para os três principais grupos da comunidade zooplanctônica (cladóceros, copépodes e rotíferos) em uma Usina Hidrelétrica (UHE). As seguintes questões foram abordadas: (i) Os padrões de ordenação espacial e/ou temporal gerados entre cada grupo zooplanctônico são concordantes? (ii) A concordância se mantém utilizando dados de presença e ausência em substituição a dados de densidade? (iii) A identificação dos organismos em nível de espécie pode ser substituída por gênero ou família?

Métodos

Foram realizadas coletas em sete unidades amostrais ao longo de cinco campanhas entre os anos de 2009 e 2010 na UHE de Serra da Mesa (Goiás, Brasil). Para avaliar a correlação entre cada par de matrizes foi utilizado o teste de Mantel.

Resultados

Não se deve realizar substituições entre os grupos zooplanctônicos, sendo necessário o monitoramento dos três grupos (copépodes, cladóceros e rotíferos). Além disso, sugerimos a utilização de dados de densidade de indivíduos ao invés de apenas dados de presença/ausência de espécies. Por fim, os resultados deste estudo indicam a possibilidade de dados em nível de espécies serem substituídos por dados em nível de gênero ou família.

Conclusão

Para fins de monitoramento da comunidade zooplanctônica, apenas o uso da resolução taxonômica mostrou-se eficiente para esta área de estudo, não sendo recomendado o uso de substitutos nem resolução numérica entre os grupos.

Palavras-chave:
cladocera; copepoda; rotifera; resolução numérica; resolução taxonômica


1. Introduction

The environmental impacts have been occurring faster than we can monitor and maintain biodiversity (Bini et al., 2007BINI, L.M., GALLI VIEIRA, L.C., MACHADO, J. and MACHADO VELHO, L.F. Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. International Review of Hydrobiology, 2007, 92(1), 9-22. http://dx.doi.org/10.1002/iroh.200610865.
http://dx.doi.org/10.1002/iroh.200610865...
; Landeiro et al., 2012LANDEIRO, V.L., BINI, L.M., COSTA, F.R.C., FRANKLIN, E., NOGUEIRA, A., DE SOUZA, J.L.P., MORAES, J. and MAGNUSSON, W.E. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 2012, 23, 366-373. http://dx.doi.org/10.1016/j.ecolind.2012.04.023.
http://dx.doi.org/10.1016/j.ecolind.2012...
; Martinelli et al., 2010MARTINELLI, L.A., JOLY, C.A., NOBRE, C.A. and SPAROVEK, G. The false dichotomy between preservation of the natural vegetation and food production in Brazil. Biota Neotropica, 2010, 10(4), 323-330.). The increase of impacted areas affects directly and indirectly the functioning of terrestrial and aquatic ecosystems, highly contributing to the extinction of species (Ceballos et al., 2015CEBALLOS, G., EHRLICH, P.R., BARNOSKY, A.D., GARCÍA, A., PRINGLE, R.M. and PALMER, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 2015, 1(5), e1400253. PMid:26601195. http://dx.doi.org/10.1126/sciadv.1400253.
http://dx.doi.org/10.1126/sciadv.1400253...
). In this way, the monitoring of the biological communities becomes an important practice to evaluate the level of environmental degradation, mainly through variations in richness, density, and functional traits (Harmon et al., 2009HARMON, J.P., MORAN, N.A. and IVES, A.R. Species response to environmental change: impacts of food web interactions and evolution. Science, 2009, 323(5919), 1347-1350. PMid:19265021. http://dx.doi.org/10.1126/science.1167396.
http://dx.doi.org/10.1126/science.116739...
; Ribeiro et al., 2016RIBEIRO, M.D., TERESA, F.B. and CASATTI, L. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology, 2016, 14(1), e140185. http://dx.doi.org/10.1590/1982-0224-20140185.
http://dx.doi.org/10.1590/1982-0224-2014...
).

Monitoring programs are most effective when they evaluate environmental and biological dimensions across space and time (Alahuhta & Aroviita, 2016ALAHUHTA, J. and AROVIITA, J. Quantifying the relative importance of natural variables, human disturbance and spatial processes in ecological status indicators of boreal lakes. Ecological Indicators, 2016, 63, 240-248. http://dx.doi.org/10.1016/j.ecolind.2015.12.003.
http://dx.doi.org/10.1016/j.ecolind.2015...
; Alahuhta et al., 2016ALAHUHTA, J., LUUKINOJA, J., TUKIAINEN, H. and HJORT, J. Importance of spatial scale in structuring emergent lake vegetation across environmental gradients and scales: GIS-based approach. Ecological Indicators, 2016, 60, 1164-1172. http://dx.doi.org/10.1016/j.ecolind.2015.08.045.
http://dx.doi.org/10.1016/j.ecolind.2015...
). However, the increase in sampling number brings cost growth, while evaluate biological dimension brings the need of specialists in different biological groups. To mitigate this problem is possible to use biological surrogate groups, which is the use of substitution between groups that present congruent patterns over time and space for biomonitoring purposes (Padial et al., 2012PADIAL, A.A., DECLERCK, S.A.J., DE MEESTER, L., BONECKER, C.C., LANSAC-TOHA, F.A., RODRIGUES, L.C., TAKEDA, A., TRAIN, S., VELHO, L.F.M. and BINI, L.M. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshwater Biology, 2012, 57(11), 2411-2423. http://dx.doi.org/10.1111/fwb.12008.
http://dx.doi.org/10.1111/fwb.12008...
) or to work with presence/absence of species (rather than density) at lower taxonomic resolutions (Gomes et al., 2015GOMES, L.F., VIEIRA, L.C.G. and BONNET, M.P. Two practical approaches to monitoring the zooplanktonic community at Lago Grande do Curuai, Para, Brazil. Acta Amazonica, 2015, 45(3), 293-298. http://dx.doi.org/10.1590/1809-4392201404453.
http://dx.doi.org/10.1590/1809-439220140...
; Machado et al., 2015MACHADO, K.B., BORGES, P.P., CARNEIRO, F.M., SANTANA, J.F., VIEIRA, L.C.G., HUSZAR, V.L.D. and NABOUT, J.C. Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia, 2015, 743(1), 255-267. http://dx.doi.org/10.1007/s10750-014-2042-y.
http://dx.doi.org/10.1007/s10750-014-204...
).

In aquatic environments, several studies seek to assess existing relations between different assemblies, mainly fish, benthic macroinvertebrates, zooplankton and phytoplankton (Gubiani et al., 2011GUBIANI, E.A., ANGELINI, R., VIEIRA, L.C.G., GOMES, L.C. and AGOSTINHO, A.A. Trophic models in Neotropical reservoirs: Testing hypotheses on the relationship between aging and maturity. Ecological Modelling, 2011, 222(23-24), 3838-3848. http://dx.doi.org/10.1016/j.ecolmodel.2011.10.007.
http://dx.doi.org/10.1016/j.ecolmodel.20...
; Padial et al., 2012PADIAL, A.A., DECLERCK, S.A.J., DE MEESTER, L., BONECKER, C.C., LANSAC-TOHA, F.A., RODRIGUES, L.C., TAKEDA, A., TRAIN, S., VELHO, L.F.M. and BINI, L.M. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshwater Biology, 2012, 57(11), 2411-2423. http://dx.doi.org/10.1111/fwb.12008.
http://dx.doi.org/10.1111/fwb.12008...
). Thus, if the community variation patterns are consistent between at least two groups, is possible to simplify monitoring programs by sampling only one group (Johnson & Hering 2010JOHNSON, R.K. and HERING, D. Spatial congruency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecological Applications, 2010, 20(4), 978-992. PMid:20597284. http://dx.doi.org/10.1890/08-1153.1.
http://dx.doi.org/10.1890/08-1153.1...
; Landeiro et al., 2012LANDEIRO, V.L., BINI, L.M., COSTA, F.R.C., FRANKLIN, E., NOGUEIRA, A., DE SOUZA, J.L.P., MORAES, J. and MAGNUSSON, W.E. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 2012, 23, 366-373. http://dx.doi.org/10.1016/j.ecolind.2012.04.023.
http://dx.doi.org/10.1016/j.ecolind.2012...
). Furthemore, higher taxonomic levels can be used, as information on family level or genus replacing species (taxonomic resolution) or species occurrence data (presence/absence) instead of organisms density (numerical resolution) would be sufficient (Carneiro et al., 2010CARNEIRO, F.M., BINI, L.M. and RODRIGUES, L.C. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators, 2010, 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004.
http://dx.doi.org/10.1016/j.ecolind.2009...
; Heino, 2014HEINO, J. Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: Are the inferences transferable among regions? Ecological Indicators, 2014, 36, 186-194. http://dx.doi.org/10.1016/j.ecolind.2013.07.022.
http://dx.doi.org/10.1016/j.ecolind.2013...
). The use of simplifications in biomonitoring of aquatic environments becomes extremely relevant given the growing need for global supplies that add to the anthropogenic effects on the water quality of many reservoirs, such as: land use, inadequate water management and climate variations (Peters & Meybeck, 2000PETERS, N.E. and MEYBECK, M. Water quality degradation effects on freshwater availability: impacts of human activities. Water International, 2000, 25(2), 185-193. http://dx.doi.org/10.1080/02508060008686817.
http://dx.doi.org/10.1080/02508060008686...
; Lee & Biggs, 2015LEE, R.M. and BIGGS, T.W. Impacts of land use, climate variability, and management on thermal structure, anoxia, and transparency in hypereutrophic urban water supply reservoirs. Hydrobiologia, 2015, 745(1), 263-284. http://dx.doi.org/10.1007/s10750-014-2112-1.
http://dx.doi.org/10.1007/s10750-014-211...
).

Among the main groups of aquatic organisms, zooplankton stands out for being able to react quickly to environmental and toxicological changes (Moreira et al., 2014MOREIRA, R.A., MANSANO, A.D.S., SILVA, L.C.D. and ROCHA, O. A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnologica Brasiliensia, 2014, 26(1), 1-8. http://dx.doi.org/10.1590/S2179-975X2014000100002.
http://dx.doi.org/10.1590/S2179-975X2014...
; Vieira et al., 2011VIEIRA, A.C.B., MEDEIROS, A.M.A., RIBEIRO, L.L. and CRISPIM, M.C. Population dynamics of Moina minuta Hansen (1899), Ceriodaphnia cornuta Sars (1886), and Diaphanosoma spinulosum Herbst (1967)(Crustacea: Branchiopoda) in different nutrients (N and P) concentration ranges. Acta Limnologica Brasiliensia, 2011, 23(1), 48-56. http://dx.doi.org/10.4322/actalb.2011.018.
http://dx.doi.org/10.4322/actalb.2011.01...
). In this sense, the zooplankton can be used as variable for environmental monitoring because, in addition to responding human impacts, it plays an important role in nutrient cycling and energy flow of food webs (Gagneten & Paggi, 2009GAGNETEN, A. and PAGGI, J. Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 2009, 198(1-4), 317-334. http://dx.doi.org/10.1007/s11270-008-9848-z.
http://dx.doi.org/10.1007/s11270-008-984...
; Oberhaus et al., 2007OBERHAUS, L., GÉLINAS, M., PINEL-ALLOUL, B., GHADOUANI, A. and HUMBERT, J.F. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research, 2007, 29(10), 827-838. http://dx.doi.org/10.1093/plankt/fbm062.
http://dx.doi.org/10.1093/plankt/fbm062...
; Vieira et al., 2011VIEIRA, A.C.B., MEDEIROS, A.M.A., RIBEIRO, L.L. and CRISPIM, M.C. Population dynamics of Moina minuta Hansen (1899), Ceriodaphnia cornuta Sars (1886), and Diaphanosoma spinulosum Herbst (1967)(Crustacea: Branchiopoda) in different nutrients (N and P) concentration ranges. Acta Limnologica Brasiliensia, 2011, 23(1), 48-56. http://dx.doi.org/10.4322/actalb.2011.018.
http://dx.doi.org/10.4322/actalb.2011.01...
).

The aim of this study was to investigate the possibility of using only one of three zooplankton component groups: copepods, cladocerans and rotifers. It was also evaluated the use of numerical and taxonomic resolutions in this community. Thus, we sought to answer the following questions: (i) Are the spatial and/or temporal ordering patterns generated between each zooplankton group concordant? (ii) Is the concordance maintained using presence/absence data as a substitute for density data? (iii) Can the identification of organisms to the species level be replaced by genus or family level? Our expectations are: i) copepods and cladocerans might exhibit higher concordance because they are phylogenetically closer (both crustaceans) and they have more similar ecological niches ii) that it is possible to replace density data for presence/absence species data and iii) the substitution of data at species level may be also possible, both for genus and family level.

2. Material and Methods

2.1. Study area

The Serra da Mesa reservoir is located in Brazilian Midwest region (Figure 1) and its main drainage basin is constituted by the Tocantins River (Caramaschi et al., 2012CARAMASCHI, E.P., MAZZONI, R. and IGLESIAS-RIO, R. Caracterização e dinâmica da área e métodos de amostragem. In R. MAZZONI, E. P. CARAMASCHI and R. IGLESIAS-RIOS, eds. Usina Hidrelétrica de Serra da Mesa – 15 anos de estudos da ictiofauna do alto Tocantins. Rio de Janeiro: Furnas, 2012, pp. 17-52.). The dam's Hydropower Plant (UHE) of Serra da Mesa was built in 1996 in the upper Tocantins River and became the largest reservoir of the country in water volume, with 54.4 billion m3 and an area of 1,784 km2 (Caramaschi et al., 2012CARAMASCHI, E.P., MAZZONI, R. and IGLESIAS-RIO, R. Caracterização e dinâmica da área e métodos de amostragem. In R. MAZZONI, E. P. CARAMASCHI and R. IGLESIAS-RIOS, eds. Usina Hidrelétrica de Serra da Mesa – 15 anos de estudos da ictiofauna do alto Tocantins. Rio de Janeiro: Furnas, 2012, pp. 17-52.). The climate is tropical rainy with dry periods and average temperature of 20 °C (Sousa, 2003SOUSA, D.R. História da Codemin. Goiânia: Terra, 2003.).

Figure 1
Serra da Mesa Reservoir and sampling points (Brazil).

2.2. Collection and identification

A total of 28 samples were obtained in the following months: August/2009 (5 samples, points 1, 2, 3, 5 and 6), November/2009 (6 samples, points 1, 2, 3, 4, 5 and 6), March/2010 (7 samples, points 1, 2, 3, 4, 5, 6 and 7), September/2010 (6 samples, points 1, 2, 3, 4, 5 and 6) and November/2010 (4 samples, points 2, 3, 5 and 6) (Figure 1).

The samples were collected with a motorized pump at a depth of 0.5 m, being filtered 1000 of water per sample through a 68 μm mesh plankton net. The collected material was conditioned in polyethylene flasks and fixed in 4% formaldehyde solution. Samples were concentrated into a volume of 100 mL and the survey of density was conducted with 10 mL of downsampling in Sedgewick-Rafter chambers, taken with the Hensen-Stempel pippete and then analyzed using an optical microscope (Bottrell et al., 1976BOTTRELL, H.H., DUNCAN, A., GLIWICZ, Z.M., GRYGIEREK, E., HERZIG, A., HILLBRICHTILKOWSKA, A., KURASAWA, H., LARSSON, P. and WEGLENSKA, T. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 1976, 24(4), 419-456.). After the counts, qualitative analyzes were performed, taking sub-samples until no new species were found. The final density was expressed in individuals * m-3.

2.3. Data analysis

Firstly, all data were separated by species, genus, families and zooplanktonic groups (copepods, cladocerans and rotifers) and transformed into logarithmic scale (x + 1). Subsequently, the data set was converted into distance matrices using Bray-Curtis for density data and Jaccard index for presence/absence species (Legendre & Legendre, 2012LEGENDRE, P. and LEGENDRE, L. Numerical ecology. Amsterdam: Elsevier, 2012.).

To evaluate the correlation between each pair of matrices was used the Mantel test (Legendre & Legendre, 2012LEGENDRE, P. and LEGENDRE, L. Numerical ecology. Amsterdam: Elsevier, 2012.), which calculates the correlation between two distance matrices. The correlation strength was measured using the value of r (ranging from -1 to +1) and its significance was measured using 999 randomizations.

All analyzes were performed using vegdist and mantel functions of vegan package (Oksanen et al., 2013OKSANEN, J., BLANCHET, F. G., KINDT, R., LEGENDRE, P., MINCHIN, P.R., O’HARA, R., SIMPSON, G.L., SOLYMOS, P., STEVENS, M.H.H. and WAGNER, H. Package ‘vegan’. Community ecology package, version 2 (9). Vienna: R Foundation for Statistical Computing, 2013.) in the statistical software R (R Core Team, 2016R CORE TEAM. R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2016.).

3. Results

A total of 45 taxa were sampled, being distributed as follows: 27 taxa of rotifers, 12 of cladocerans and six of copepods (Table 1). Regarding density, 354,320 individuals were sampled, with 210,359 rotifers, 97,289 copepods and 46,672 cladocerans, comprising respectively: 59.4%, 27.4% and 13.2% of all occurrences. The rotifers had the highest species richness in all campaigns and higher densities in Aug/09 and Nov/09 (Figure 2).

Table 1
Density (Dens), Mean and Standard Deviation (SD) of the zooplankton species density sampled in reservoir Serra da Mesa-GO (Brazil).
Figure 2
Species richness and density of rotifers, cladocerans and copepods in Serra da Mesa Reservoir (Brazil).

Only copepods and rotifers presented spatial distribution patterns concordant being the high level of concordance in Nov/09 and medium in Aug/09 and Sep/10 (Table 2).

Table 2
Correlation coefficients among rotifers, cladocerans and copepods in Serra da Mesa Reservoir (Brazil).

The results of the numerical resolution ranged between the campaigns in a way that significant values were observed for all groups in Nov/09 and only for copepods in March/10 and cladocerans in Sep/10 (Table 3). On the other hand, the taxonomic resolution showed high values and homogeneous in all campaigns, indicating that the use of data on genus or family level is equivalent to the use of species (Table 3). The copepods were not included in this analysis because it presented a small number of species and genera.

Table 3
Numerical resolution.

4. Discussion

The results showed that the three zooplanktonic groups (copepods, cladocerans and rotifers) should not be used as substitutes for each other, due to high variability over time with relatively low levels of concordance (<0.7) (Heino, 2010HEINO, J. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators, 2010, 10(2), 112-117. http://dx.doi.org/10.1016/j.ecolind.2009.04.013.
http://dx.doi.org/10.1016/j.ecolind.2009...
). Therefore, our expectations were not corroborated, since (i) the correlation was higher among copepods and rotifers and (ii) the few significant concordance levels were low.

Even among taxonomically different biological groups, such as macrophytes and macroinvertebrates (Traversetti et al., 2015TRAVERSETTI, L., CESCHIN, S., MANFRIN, A. and SCALICI, M. Co-occurrence between macrophytes and macroinvertebrates: towards a new approach for the running waters quality evaluation? Journal of Limnology, 2015, 74(1), 133-142.), vascular plants, bryophytes and birds (Rooney & Azeria, 2015ROONEY, R.C. and AZERIA, E.T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. Journal of Biogeography, 2015, 42(3), 439-451. http://dx.doi.org/10.1111/jbi.12400.
http://dx.doi.org/10.1111/jbi.12400...
), concordant distribution patterns has been found. However, Our results do not indicate concordance between the zooplanktonic community groups. This absence of concordance was also observed in other studies related to zooplankton community (Bessa et al., 2011BESSA, G.F., VIEIRA, L.C.G., BINI, L.M., REIS, D.F.D. and MORAIS, P.B.D. Concordance patterns in zooplankton assemblages in the UHE-Luís Eduardo Magalhães reservoir in the Mid-Tocantins river, Tocantins State, Brazil. Acta Scientiarum: Biological Sciences, 2011, 33(2), 179-184.; Bini et al., 2008BINI, L.M., SILVA, L.C.F., VELHO, L.F.M., BONECKER, C.C. and LANSAC-TÔHA, F.A. Zooplankton assemblage concordance patterns in Brazilian reservoirs. Hydrobiologia, 2008, 598(1), 247-255. http://dx.doi.org/10.1007/s10750-007-9157-3.
http://dx.doi.org/10.1007/s10750-007-915...
; Vieira et al., 2015VIEIRA, L.C.G., PADIAL, A.A., VELHO, L.F.M., CARVALHO, P. and BINI, L.M. Concordance among zooplankton groups in a near-pristine floodplain system. Ecological Indicators, 2015, 58, 374-381. http://dx.doi.org/10.1016/j.ecolind.2015.05.049.
http://dx.doi.org/10.1016/j.ecolind.2015...
). Although the species of each group may respond differently to environmental gradients (Adamczuk et al., 2015ADAMCZUK, M., MIECZAN, T., TARKOWSKA-KUKURYK, M. and DEMETRAKI-PALEOLOG, A. Rotatoria-Cladocera-Copepoda relations in the long-term monitoring of water quality in lakes with trophic variation (E. Poland). Environmental Earth Sciences, 2015, 73(12), 8189-8196. http://dx.doi.org/10.1007/s12665-014-3977-z.
http://dx.doi.org/10.1007/s12665-014-397...
) the absence of concordance among copepods, cladocerans and rotifers is interesting, once they are part of the same assembly. This result reinforces the need to incorporate all zooplanktonic groups (copepods, cladoceran e rotifers) in environmental monitoring programs.

The numerical resolution also showed that the use of presence/absence values of species as substitute of density data is not indicated, which is similar to results found by other authors (Bessa et al., 2011BESSA, G.F., VIEIRA, L.C.G., BINI, L.M., REIS, D.F.D. and MORAIS, P.B.D. Concordance patterns in zooplankton assemblages in the UHE-Luís Eduardo Magalhães reservoir in the Mid-Tocantins river, Tocantins State, Brazil. Acta Scientiarum: Biological Sciences, 2011, 33(2), 179-184.; Giehl et al., 2014GIEHL, N.F.S., DIAS-SILVA, K., JUEN, L., BATISTA, J.D. and CABETTE, H.S.R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One, 2014, 9(8), e103623. PMid:25083770. http://dx.doi.org/10.1371/journal.pone.0103623.
http://dx.doi.org/10.1371/journal.pone.0...
; Heino, 2008HEINO, J. Influence of taxonomic resolution and data transformation on biotic matrix concordance and assemblage-environment relationships in stream macroinvertebrates. Boreal Environment Research, 2008, 13(4), 359-369.; Valente-Neto et al., 2016VALENTE-NETO, F., ROQUE, F.D., RODRIGUES, M.E., JUEN, L. and SWAN, C.M. Toward a practical use of Neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators, 2016, 61, 952-959. http://dx.doi.org/10.1016/j.ecolind.2015.10.052.
http://dx.doi.org/10.1016/j.ecolind.2015...
). However, some studies indicate the use of numerical resolution for zooplanktonic community (Gomes et al., 2015GOMES, L.F., VIEIRA, L.C.G. and BONNET, M.P. Two practical approaches to monitoring the zooplanktonic community at Lago Grande do Curuai, Para, Brazil. Acta Amazonica, 2015, 45(3), 293-298. http://dx.doi.org/10.1590/1809-4392201404453.
http://dx.doi.org/10.1590/1809-439220140...
) and other groups (Carneiro et al., 2010CARNEIRO, F.M., BINI, L.M. and RODRIGUES, L.C. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators, 2010, 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004.
http://dx.doi.org/10.1016/j.ecolind.2009...
; Ribas & Padial, 2015RIBAS, L.G.D. and PADIAL, A.A. The use of coarser data is an effective strategy for biological assessments. Hydrobiologia, 2015, 747(1), 83-95. http://dx.doi.org/10.1007/s10750-014-2128-6.
http://dx.doi.org/10.1007/s10750-014-212...
).

Our results indicate that the use of genus level for zooplankton groups of Serra da Mesa hydroelectric reservoir would be equivalent to the use of the species. Similar results were found for different groups (Giehl et al., 2014GIEHL, N.F.S., DIAS-SILVA, K., JUEN, L., BATISTA, J.D. and CABETTE, H.S.R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One, 2014, 9(8), e103623. PMid:25083770. http://dx.doi.org/10.1371/journal.pone.0103623.
http://dx.doi.org/10.1371/journal.pone.0...
; Souza et al., 2016SOUZA, J.L.P., BACCARO, F.B., LANDEIRO, V.L., FRANKLIN, E., MAGNUSSON, W.E., PEQUENO, P. and FERNANDES, I.O. Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity & Distributions, 2016, 22(1), 111-122. http://dx.doi.org/10.1111/ddi.12371.
http://dx.doi.org/10.1111/ddi.12371...
; Valente-Neto et al., 2016VALENTE-NETO, F., ROQUE, F.D., RODRIGUES, M.E., JUEN, L. and SWAN, C.M. Toward a practical use of Neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators, 2016, 61, 952-959. http://dx.doi.org/10.1016/j.ecolind.2015.10.052.
http://dx.doi.org/10.1016/j.ecolind.2015...
) including zooplankton (Carneiro et al., 2013CARNEIRO, F.M., NABOUT, J.C., VIEIRA, L.C.G., LODI, S. and BINI, L.M. Higher taxa predict plankton beta-diversity patterns across an eutrophication gradient. Natureza & Conservação, 2013, 11(1), 43-47. http://dx.doi.org/10.4322/natcon.2013.006.
http://dx.doi.org/10.4322/natcon.2013.00...
). The concordance with higher taxonomic levels can be justified by the low number of species found by genus and family, which creates a higher similarity between the more and less specific data sets (Giehl et al., 2014GIEHL, N.F.S., DIAS-SILVA, K., JUEN, L., BATISTA, J.D. and CABETTE, H.S.R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One, 2014, 9(8), e103623. PMid:25083770. http://dx.doi.org/10.1371/journal.pone.0103623.
http://dx.doi.org/10.1371/journal.pone.0...
). This approach is acceptable when there is not a major loss of information between the data sets (high concordance level), thus resulting in lower effort for taxonomic identification of taxa (Carneiro et al., 2010CARNEIRO, F.M., BINI, L.M. and RODRIGUES, L.C. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators, 2010, 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004.
http://dx.doi.org/10.1016/j.ecolind.2009...
; Heino & Soininen, 2007HEINO, J. and SOININEN, J. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation, 2007, 137(1), 78-89. http://dx.doi.org/10.1016/j.biocon.2007.01.017.
http://dx.doi.org/10.1016/j.biocon.2007....
; Khan, 2006KHAN, S.A.J. Is species level identification essential for environmental impact studies? Current Science, 2006, 91(1), 29-34.). A study using ants, for example, revealed that the reduction of actual costs for the use of taxonomic resolution at genus level could reach 40% (Souza et al., 2016SOUZA, J.L.P., BACCARO, F.B., LANDEIRO, V.L., FRANKLIN, E., MAGNUSSON, W.E., PEQUENO, P. and FERNANDES, I.O. Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity & Distributions, 2016, 22(1), 111-122. http://dx.doi.org/10.1111/ddi.12371.
http://dx.doi.org/10.1111/ddi.12371...
).

Finally, for zooplankton community monitoring purposes, only the use of taxonomic resolution showed to be efficient for this area of study, not being recommended the use of substitutes or numerical resolution. It is clear that this strategy (identifying organisms only at the genus level) should not be used indiscriminately. Even with the high values found for Mantel r, only in extreme situations, such as the absence of taxonomists, the need for immediate assessments and/or a significant financial shortfall, the taxonomic resolution at the genus level would be an interesting alternative.

  • Cite as: Missias, A.C.A. et al. Is it possible to simplify environmental monitoring? Approaches with zooplankton in a hydroelectric reservoir. Acta Limnologica Brasiliensia, 2017, vol. 29, e8.

References

  • ADAMCZUK, M., MIECZAN, T., TARKOWSKA-KUKURYK, M. and DEMETRAKI-PALEOLOG, A. Rotatoria-Cladocera-Copepoda relations in the long-term monitoring of water quality in lakes with trophic variation (E. Poland). Environmental Earth Sciences, 2015, 73(12), 8189-8196. http://dx.doi.org/10.1007/s12665-014-3977-z
    » http://dx.doi.org/10.1007/s12665-014-3977-z
  • ALAHUHTA, J. and AROVIITA, J. Quantifying the relative importance of natural variables, human disturbance and spatial processes in ecological status indicators of boreal lakes. Ecological Indicators, 2016, 63, 240-248. http://dx.doi.org/10.1016/j.ecolind.2015.12.003
    » http://dx.doi.org/10.1016/j.ecolind.2015.12.003
  • ALAHUHTA, J., LUUKINOJA, J., TUKIAINEN, H. and HJORT, J. Importance of spatial scale in structuring emergent lake vegetation across environmental gradients and scales: GIS-based approach. Ecological Indicators, 2016, 60, 1164-1172. http://dx.doi.org/10.1016/j.ecolind.2015.08.045
    » http://dx.doi.org/10.1016/j.ecolind.2015.08.045
  • BESSA, G.F., VIEIRA, L.C.G., BINI, L.M., REIS, D.F.D. and MORAIS, P.B.D. Concordance patterns in zooplankton assemblages in the UHE-Luís Eduardo Magalhães reservoir in the Mid-Tocantins river, Tocantins State, Brazil. Acta Scientiarum: Biological Sciences, 2011, 33(2), 179-184.
  • BINI, L.M., GALLI VIEIRA, L.C., MACHADO, J. and MACHADO VELHO, L.F. Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. International Review of Hydrobiology, 2007, 92(1), 9-22. http://dx.doi.org/10.1002/iroh.200610865
    » http://dx.doi.org/10.1002/iroh.200610865
  • BINI, L.M., SILVA, L.C.F., VELHO, L.F.M., BONECKER, C.C. and LANSAC-TÔHA, F.A. Zooplankton assemblage concordance patterns in Brazilian reservoirs. Hydrobiologia, 2008, 598(1), 247-255. http://dx.doi.org/10.1007/s10750-007-9157-3
    » http://dx.doi.org/10.1007/s10750-007-9157-3
  • BOTTRELL, H.H., DUNCAN, A., GLIWICZ, Z.M., GRYGIEREK, E., HERZIG, A., HILLBRICHTILKOWSKA, A., KURASAWA, H., LARSSON, P. and WEGLENSKA, T. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 1976, 24(4), 419-456.
  • CARAMASCHI, E.P., MAZZONI, R. and IGLESIAS-RIO, R. Caracterização e dinâmica da área e métodos de amostragem. In R. MAZZONI, E. P. CARAMASCHI and R. IGLESIAS-RIOS, eds. Usina Hidrelétrica de Serra da Mesa – 15 anos de estudos da ictiofauna do alto Tocantins Rio de Janeiro: Furnas, 2012, pp. 17-52.
  • CARNEIRO, F.M., BINI, L.M. and RODRIGUES, L.C. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators, 2010, 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004
    » http://dx.doi.org/10.1016/j.ecolind.2009.05.004
  • CARNEIRO, F.M., NABOUT, J.C., VIEIRA, L.C.G., LODI, S. and BINI, L.M. Higher taxa predict plankton beta-diversity patterns across an eutrophication gradient. Natureza & Conservação, 2013, 11(1), 43-47. http://dx.doi.org/10.4322/natcon.2013.006
    » http://dx.doi.org/10.4322/natcon.2013.006
  • CEBALLOS, G., EHRLICH, P.R., BARNOSKY, A.D., GARCÍA, A., PRINGLE, R.M. and PALMER, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 2015, 1(5), e1400253. PMid:26601195. http://dx.doi.org/10.1126/sciadv.1400253
    » http://dx.doi.org/10.1126/sciadv.1400253
  • GAGNETEN, A. and PAGGI, J. Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 2009, 198(1-4), 317-334. http://dx.doi.org/10.1007/s11270-008-9848-z
    » http://dx.doi.org/10.1007/s11270-008-9848-z
  • GIEHL, N.F.S., DIAS-SILVA, K., JUEN, L., BATISTA, J.D. and CABETTE, H.S.R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One, 2014, 9(8), e103623. PMid:25083770. http://dx.doi.org/10.1371/journal.pone.0103623
    » http://dx.doi.org/10.1371/journal.pone.0103623
  • GOMES, L.F., VIEIRA, L.C.G. and BONNET, M.P. Two practical approaches to monitoring the zooplanktonic community at Lago Grande do Curuai, Para, Brazil. Acta Amazonica, 2015, 45(3), 293-298. http://dx.doi.org/10.1590/1809-4392201404453
    » http://dx.doi.org/10.1590/1809-4392201404453
  • GUBIANI, E.A., ANGELINI, R., VIEIRA, L.C.G., GOMES, L.C. and AGOSTINHO, A.A. Trophic models in Neotropical reservoirs: Testing hypotheses on the relationship between aging and maturity. Ecological Modelling, 2011, 222(23-24), 3838-3848. http://dx.doi.org/10.1016/j.ecolmodel.2011.10.007
    » http://dx.doi.org/10.1016/j.ecolmodel.2011.10.007
  • HARMON, J.P., MORAN, N.A. and IVES, A.R. Species response to environmental change: impacts of food web interactions and evolution. Science, 2009, 323(5919), 1347-1350. PMid:19265021. http://dx.doi.org/10.1126/science.1167396
    » http://dx.doi.org/10.1126/science.1167396
  • HEINO, J. and SOININEN, J. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation, 2007, 137(1), 78-89. http://dx.doi.org/10.1016/j.biocon.2007.01.017
    » http://dx.doi.org/10.1016/j.biocon.2007.01.017
  • HEINO, J. Influence of taxonomic resolution and data transformation on biotic matrix concordance and assemblage-environment relationships in stream macroinvertebrates. Boreal Environment Research, 2008, 13(4), 359-369.
  • HEINO, J. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators, 2010, 10(2), 112-117. http://dx.doi.org/10.1016/j.ecolind.2009.04.013
    » http://dx.doi.org/10.1016/j.ecolind.2009.04.013
  • HEINO, J. Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: Are the inferences transferable among regions? Ecological Indicators, 2014, 36, 186-194. http://dx.doi.org/10.1016/j.ecolind.2013.07.022
    » http://dx.doi.org/10.1016/j.ecolind.2013.07.022
  • JOHNSON, R.K. and HERING, D. Spatial congruency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecological Applications, 2010, 20(4), 978-992. PMid:20597284. http://dx.doi.org/10.1890/08-1153.1
    » http://dx.doi.org/10.1890/08-1153.1
  • KHAN, S.A.J. Is species level identification essential for environmental impact studies? Current Science, 2006, 91(1), 29-34.
  • LANDEIRO, V.L., BINI, L.M., COSTA, F.R.C., FRANKLIN, E., NOGUEIRA, A., DE SOUZA, J.L.P., MORAES, J. and MAGNUSSON, W.E. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 2012, 23, 366-373. http://dx.doi.org/10.1016/j.ecolind.2012.04.023
    » http://dx.doi.org/10.1016/j.ecolind.2012.04.023
  • LEE, R.M. and BIGGS, T.W. Impacts of land use, climate variability, and management on thermal structure, anoxia, and transparency in hypereutrophic urban water supply reservoirs. Hydrobiologia, 2015, 745(1), 263-284. http://dx.doi.org/10.1007/s10750-014-2112-1
    » http://dx.doi.org/10.1007/s10750-014-2112-1
  • LEGENDRE, P. and LEGENDRE, L. Numerical ecology Amsterdam: Elsevier, 2012.
  • MACHADO, K.B., BORGES, P.P., CARNEIRO, F.M., SANTANA, J.F., VIEIRA, L.C.G., HUSZAR, V.L.D. and NABOUT, J.C. Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia, 2015, 743(1), 255-267. http://dx.doi.org/10.1007/s10750-014-2042-y
    » http://dx.doi.org/10.1007/s10750-014-2042-y
  • MARTINELLI, L.A., JOLY, C.A., NOBRE, C.A. and SPAROVEK, G. The false dichotomy between preservation of the natural vegetation and food production in Brazil. Biota Neotropica, 2010, 10(4), 323-330.
  • MOREIRA, R.A., MANSANO, A.D.S., SILVA, L.C.D. and ROCHA, O. A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnologica Brasiliensia, 2014, 26(1), 1-8. http://dx.doi.org/10.1590/S2179-975X2014000100002
    » http://dx.doi.org/10.1590/S2179-975X2014000100002
  • OBERHAUS, L., GÉLINAS, M., PINEL-ALLOUL, B., GHADOUANI, A. and HUMBERT, J.F. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research, 2007, 29(10), 827-838. http://dx.doi.org/10.1093/plankt/fbm062
    » http://dx.doi.org/10.1093/plankt/fbm062
  • OKSANEN, J., BLANCHET, F. G., KINDT, R., LEGENDRE, P., MINCHIN, P.R., O’HARA, R., SIMPSON, G.L., SOLYMOS, P., STEVENS, M.H.H. and WAGNER, H. Package ‘vegan’. Community ecology package, version 2 (9) Vienna: R Foundation for Statistical Computing, 2013.
  • PADIAL, A.A., DECLERCK, S.A.J., DE MEESTER, L., BONECKER, C.C., LANSAC-TOHA, F.A., RODRIGUES, L.C., TAKEDA, A., TRAIN, S., VELHO, L.F.M. and BINI, L.M. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshwater Biology, 2012, 57(11), 2411-2423. http://dx.doi.org/10.1111/fwb.12008
    » http://dx.doi.org/10.1111/fwb.12008
  • PETERS, N.E. and MEYBECK, M. Water quality degradation effects on freshwater availability: impacts of human activities. Water International, 2000, 25(2), 185-193. http://dx.doi.org/10.1080/02508060008686817
    » http://dx.doi.org/10.1080/02508060008686817
  • R CORE TEAM. R: a Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing, 2016.
  • RIBAS, L.G.D. and PADIAL, A.A. The use of coarser data is an effective strategy for biological assessments. Hydrobiologia, 2015, 747(1), 83-95. http://dx.doi.org/10.1007/s10750-014-2128-6
    » http://dx.doi.org/10.1007/s10750-014-2128-6
  • RIBEIRO, M.D., TERESA, F.B. and CASATTI, L. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology, 2016, 14(1), e140185. http://dx.doi.org/10.1590/1982-0224-20140185
    » http://dx.doi.org/10.1590/1982-0224-20140185
  • ROONEY, R.C. and AZERIA, E.T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. Journal of Biogeography, 2015, 42(3), 439-451. http://dx.doi.org/10.1111/jbi.12400
    » http://dx.doi.org/10.1111/jbi.12400
  • SOUSA, D.R. História da Codemin Goiânia: Terra, 2003.
  • SOUZA, J.L.P., BACCARO, F.B., LANDEIRO, V.L., FRANKLIN, E., MAGNUSSON, W.E., PEQUENO, P. and FERNANDES, I.O. Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity & Distributions, 2016, 22(1), 111-122. http://dx.doi.org/10.1111/ddi.12371
    » http://dx.doi.org/10.1111/ddi.12371
  • TRAVERSETTI, L., CESCHIN, S., MANFRIN, A. and SCALICI, M. Co-occurrence between macrophytes and macroinvertebrates: towards a new approach for the running waters quality evaluation? Journal of Limnology, 2015, 74(1), 133-142.
  • VALENTE-NETO, F., ROQUE, F.D., RODRIGUES, M.E., JUEN, L. and SWAN, C.M. Toward a practical use of Neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators, 2016, 61, 952-959. http://dx.doi.org/10.1016/j.ecolind.2015.10.052
    » http://dx.doi.org/10.1016/j.ecolind.2015.10.052
  • VIEIRA, A.C.B., MEDEIROS, A.M.A., RIBEIRO, L.L. and CRISPIM, M.C. Population dynamics of Moina minuta Hansen (1899), Ceriodaphnia cornuta Sars (1886), and Diaphanosoma spinulosum Herbst (1967)(Crustacea: Branchiopoda) in different nutrients (N and P) concentration ranges. Acta Limnologica Brasiliensia, 2011, 23(1), 48-56. http://dx.doi.org/10.4322/actalb.2011.018
    » http://dx.doi.org/10.4322/actalb.2011.018
  • VIEIRA, L.C.G., PADIAL, A.A., VELHO, L.F.M., CARVALHO, P. and BINI, L.M. Concordance among zooplankton groups in a near-pristine floodplain system. Ecological Indicators, 2015, 58, 374-381. http://dx.doi.org/10.1016/j.ecolind.2015.05.049
    » http://dx.doi.org/10.1016/j.ecolind.2015.05.049

Publication Dates

  • Publication in this collection
    2017

History

  • Received
    04 Oct 2016
  • Accepted
    25 Apr 2017
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com