Acessibilidade / Reportar erro

Autecology of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju

Autecologia de Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju

Abstract:

Aim

Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju, also called Raphidiopsis raciborskii, is a diazotrophic and filamentous cyanobacterium with terminal heterocytes, belonging to the order Nostocales. It has been the focus of several studies due to its toxicity and wide geographic distribution.

Methods

To understand its autecology and to identify the key factors that control its dominance, the present review discusses, based on recent publications, whether the expansion of this species is a result of a high metabolic plasticity or the existence of distinct ecotypes.

Results

Among the factors influencing C. raciborskii growth are its ability to survive in wide temperature, light intensity and pH ranges; to dominate in both stratified and mixed environments; to tolerate oligohaline conditions; to produce and secrete allelopathic substances; suffer little herbivore pressure; and although associated with a eutrophic environment, to tolerate low concentration of phosphorus and nitrogen with a high affinity for ammonia.

Conclusions

Due to these differences in the environmental conditions of growth and development found in various studies, we suggest the existence of different ecotypes that will predominate under specific environmental conditions as the most appropriate hypothesis.

Keywords:
Nostocales; metabolic plasticity; ecotypes; environmental factors

Resumo:

Objetivo

Cylindrospermopsis raciborskii (Woloszynska) Seenayya e Subba Raju, também chamada de Raphidiopsis raciborskii, é uma cianobactéria diazotrófica e filamentosa com heterócitos terminais, pertencente à ordem Nostocales, que tem sido foco de vários estudos por conta da sua toxicidade e ampla distribuição geográfica.

Métodos

Para compreender a sua autoecologia e identificar os fatores-chave que controlam sua dominância, a presente revisão discute, com base em publicações recentes, se a expansão dessa espécie é resultado de uma elevada plasticidade metabólica ou a existência de ecótipos distintos.

Resultados

Dentre os principais fatores ambientais sobre o crescimento de C. raciborskii estão sua capacidade de sobreviver em um amplo intervalo de temperatura, intensidade luminosa e pH, dominar tanto em ambientes estratificados quanto misturados, preferir condições oligohalinas, produzir e secretar substâncias alelopáticas, sofrer pequena pressão de herbivoria, e, apesar de associada a ambiente eutróficos, tolerar baixa concentração de fósforo e de nitrogênio com alta afinidade a amônio

Conclusões

Devido a estas diferenças significativas relacionadas às condições ambientais de crescimento e desenvolvimento apontadas nos diversos estudos, sugerimos como hipótese mais apropriada a existência de diferentes ecótipos que predominarão em condições ambientais específicas.

Palavras-chave:
Nostocales; plasticidade metabólica; ecótipos; fatores ambientais

1. Introduction

Cylindrospermopsis (or Raphidiopsis) is a cyanobacterial genus belonging to the order Nostocales and the family Nostocaceae, found in the planktic community of continental waters (Hauer & Komárek, 2019HAUER, T. and KOMÁREK, J. CyanoDB.cz 2.0: on-line database of cyanobacterial genera [online]. Czech Republic: University of South Bohemia, 2019 [viewed 4 Sept. 2019]. Available from: http://www.cyanodb.cz
http://www.cyanodb.cz...
). The most widely distributed species of the genus is Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju (Alster et al., 2010ALSTER, A., KAPLAN-LEVY, R.N., SUKENIK, A. and ZOHARY, T. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 2010, 639(1), 115-128. http://dx.doi.org/10.1007/s10750-009-0044-y.
http://dx.doi.org/10.1007/s10750-009-004...
; Wojciechowski, 2013WOJCIECHOWSKI, J. Efeitos da Temperatura, Fósforo e Luz no crescimento da cianobactéria Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju do reservatório de Alagados, Paraná [Dissertação de Mestrado em Botânica]. Curitiba: Universidade Federal de Paraná, 2013, 123 p.).

Recent studies using molecular methods (Li et al., 2017LI, X.-C., HUO, S.-L., CAI, F.-F., YANG, Y.-M., XI, B.-D. and LI, R.-H. The taxonomy and phylogeny of the genus Cylindrospermopsis (Cyanobacterium) evaluated by adding five new records from China. Phytotaxa, 2017, 316(3), 15. http://dx.doi.org/10.11646/phytotaxa.316.3.2.
http://dx.doi.org/10.11646/phytotaxa.316...
; Aguilera et al., 2018AGUILERA, A., GÓMEZ, E.B., KAŠTOVSKÝ, J., ECHENIQUE, R.O. and SALERNO, G.L. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia, 2018, 57(2), 130-146. http://dx.doi.org/10.2216/17-2.1.
http://dx.doi.org/10.2216/17-2.1...
; Abreu et al., 2018ABREU, V.A.C., POPIN, R.V., ALVARENGA, D.O., SCHAKER, P.D.C., HOFF-RISSETI, C., VARANI, A.M. and FIORE, M.F. Genomic and genotypic characterization of Cylindrospermopsis raciborskii: toward an intraspecific phylogenetic evaluation by comparative genomics. Frontiers in Microbiology, 2018, 9, 979. http://dx.doi.org/10.3389/fmicb.2018.00979. PMid:29795803.
http://dx.doi.org/10.3389/fmicb.2018.009...
; Duval et al., 2018DUVAL, C., THOMAZEAU, S., DRELIN, Y., YÉPRÉMIAN, C., BOUVY, M., COULOUX, A., TROUSSELLIER, M., ROUSSEAU, F. and BERNARD, C. Phylogeny and salt-tolerance of freshwater Nostocales strains: contribution to their systematics and evolution. Harmful Algae, 2018, 73, 58-71. http://dx.doi.org/10.1016/j.hal.2018.01.008. PMid:29602507.
http://dx.doi.org/10.1016/j.hal.2018.01....
; Fuentes-Valdés et al., 2018FUENTES-VALDÉS, J.J., SOTO-LIEBE, K., PÉREZ-PANTOJA, D., TAMAMES, J., BELMAR, L., PEDRÓS-ALIÓ, C., GARRIDO, D. and VÁSQUEZ, M. Draft genome sequences of Cylindrospermopsis raciborskii strains CS-508 and MVCC14, isolated from freshwater bloom events in Australia and Uruguay. Standards in Genomic Sciences, 2018, 13(1), 26. http://dx.doi.org/10.1186/s40793-018-0323-1. PMid:30344889.
http://dx.doi.org/10.1186/s40793-018-032...
; Xie et al., 2018XIE, J., YU, G., XU, X., LI, S. and LI, R. The morphological and molecular detection for the presence of toxic Cylindrospermopsis (Nostocales, Cyanobacteria) in Beijing city, China. Journal of Oceanology and Limnology, 2018, 36(2), 263-272. http://dx.doi.org/10.1007/s00343-018-6283-x.
http://dx.doi.org/10.1007/s00343-018-628...
) have demonstrated the genetic similarity between the Cylindrospermopsis and Raphidiopsis genera: a finding that would justify the terms being used synonymously, with temporal prerogative given to the latter. Accepting this taxonomic evidence, the species Cylindrospermopsis raciborskii would be called Raphidiopsis raciborskii. However, in this work we use C. raciborskii as it is the best-known name for the species.

This species is characterized by presenting isopolar trichomes – solitary, spiral or straight, cylindrical cells with slight attenuation towards the ends, and little or no constriction at the cross walls. They form terminal heterocytes with akinetes located internally within the trichomes (Alster et al., 2010ALSTER, A., KAPLAN-LEVY, R.N., SUKENIK, A. and ZOHARY, T. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 2010, 639(1), 115-128. http://dx.doi.org/10.1007/s10750-009-0044-y.
http://dx.doi.org/10.1007/s10750-009-004...
; Komarek, 2013; Wojciechowski et al., 2016WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
; Guiry & Guiry, 2019GUIRY, M.D. and GUIRY, G.M. AlgaeBase [online]. Galway: National University of Ireland, 2019 [viewed 4 Sept. 2019]. Available from: http://www.algaebase.org
http://www.algaebase.org...
; Hauer & Komárek, 2019HAUER, T. and KOMÁREK, J. CyanoDB.cz 2.0: on-line database of cyanobacterial genera [online]. Czech Republic: University of South Bohemia, 2019 [viewed 4 Sept. 2019]. Available from: http://www.cyanodb.cz
http://www.cyanodb.cz...
). Reproduction is by fragmentation of the trichome or by akinete formation.

In the last decade, C. raciborskii has received remarkable attention because of its ability to form blooms, which, in turn, can result in ecological and public health problems in aquatic ecosystems (Leonard & Paerl, 2005LEONARD, J.A. and PAERL, H.W. Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2005, 537(1), 89-97. http://dx.doi.org/10.1007/s10750-004-2483-9.
http://dx.doi.org/10.1007/s10750-004-248...
; Willis et al., 2017WILLIS, A., POSSELT, A.J. and BURFORD, M.A. Variations in carbon-to-phosphorus ratios of two Australian strains of Cylindrospermopsis raciborskii. European Journal of Phycology, 2017, 52(3), 303-310. http://dx.doi.org/10.1080/09670262.2017.1286524.
http://dx.doi.org/10.1080/09670262.2017....
), by changing the water quality through the production of different cyanotoxins (Hawkins et al., 1997HAWKINS, P.R., CHANDRASENA, N.R., JONES, G.J., HUMPAGE, A.R. and FALCONER, I.R. Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon, 1997, 35(3), 341-346. http://dx.doi.org/10.1016/S0041-0101(96)00185-7. PMid:9080590.
http://dx.doi.org/10.1016/S0041-0101(96)...
; Padisák & Reynolds, 2003PADISÁK, J. and REYNOLDS, C.S. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia, 2003, 506-509(1-3), 1-11. http://dx.doi.org/10.1023/B:HYDR.0000008630.49527.29.
http://dx.doi.org/10.1023/B:HYDR.0000008...
; Vehovszky et al., 2015VEHOVSZKY, Á., KOVÁCS, A.W., FARKAS, A., GYŐRI, J., SZABÓ, H. and VASAS, G. Pharmacological studies confirm neurotoxic metabolite(s) produced by the bloom-forming Cylindrospermopsis raciborskii in Hungary. Environmental Toxicology, 2015, 30(5), 501-512. http://dx.doi.org/10.1002/tox.21927. PMid:24293352.
http://dx.doi.org/10.1002/tox.21927...
).

According to Wojciechowski et al. (2016)WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
and Zhang et al. (2014)ZHANG, W., LOU, I., UNG, W.K., KONG, Y. and MOK, K.M. Analysis of cylindrospermopsin- and microcystin-producing genotypes and cyanotoxin concentrations in the Macau storage reservoir. Hydrobiologia, 2014, 741(1), 51-68. http://dx.doi.org/10.1007/s10750-013-1776-2.
http://dx.doi.org/10.1007/s10750-013-177...
, toxin production varies among strains, and the production of two alkaloid variants has been recorded so far in Brazil. Cylindrospermopsin (CYN) (Wiedner et al., 2007WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
; Hoff-Risseti et al., 2013HOFF-RISSETI, C., DORR, F.A., SCHAKER, P.D.C., PINTO, E., WERNER, V.R. and FIORE, M.F. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater. PLoS One, 2013, 8(8), e74238. http://dx.doi.org/10.1371/journal.pone.0074238. PMid:24015317.
http://dx.doi.org/10.1371/journal.pone.0...
; Babanazarova et al., 2015BABANAZAROVA, O.V., SIDELEV, S.I. and FASTNER, J. Northern expansion of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) observed in shallow highly eutrophic Lake Nero (Russia). International Journal on Algae, 2015, 17(2), 131-141. http://dx.doi.org/10.1615/InterJAlgae.v17.i2.20.
http://dx.doi.org/10.1615/InterJAlgae.v1...
; Noyma et al., 2015NOYMA, N.P., SILVA, T.P., CHIARINI-GARCIA, H., AMADO, A.M., ROLAND, F. and MELO, R.C. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Frontiers in Microbiology, 2015, 6, 1202. http://dx.doi.org/10.3389/fmicb.2015.01202. PMid:26579108.
http://dx.doi.org/10.3389/fmicb.2015.012...
; Vehovszky et al., 2015VEHOVSZKY, Á., KOVÁCS, A.W., FARKAS, A., GYŐRI, J., SZABÓ, H. and VASAS, G. Pharmacological studies confirm neurotoxic metabolite(s) produced by the bloom-forming Cylindrospermopsis raciborskii in Hungary. Environmental Toxicology, 2015, 30(5), 501-512. http://dx.doi.org/10.1002/tox.21927. PMid:24293352.
http://dx.doi.org/10.1002/tox.21927...
; Willis et al., 2015WILLIS, A., ADAMS, M.P., CHUANG, A.W., ORR, P.T., O’BRIEN, K.R. and BURFORD, M.A. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34. http://dx.doi.org/10.1016/j.hal.2015.05.011.
http://dx.doi.org/10.1016/j.hal.2015.05....
; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
) and saxitoxin (STX) (Alster et al., 2010ALSTER, A., KAPLAN-LEVY, R.N., SUKENIK, A. and ZOHARY, T. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 2010, 639(1), 115-128. http://dx.doi.org/10.1007/s10750-009-0044-y.
http://dx.doi.org/10.1007/s10750-009-004...
; Hoff-Risseti et al., 2013HOFF-RISSETI, C., DORR, F.A., SCHAKER, P.D.C., PINTO, E., WERNER, V.R. and FIORE, M.F. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater. PLoS One, 2013, 8(8), e74238. http://dx.doi.org/10.1371/journal.pone.0074238. PMid:24015317.
http://dx.doi.org/10.1371/journal.pone.0...
; Lopes et al., 2015LOPES, I.K.C., BARROS, M.U.G., PESTANA, C.J. and CAPELO NETO, J. Prevalence of paralytic shellfish poison-producing Planktothrix agardhii and Cylindrospermopsis raciborskii in a Brazilian semi-arid reservoir. Acta Limnologica Brasiliensia, 2015, 27(2), 238-246. http://dx.doi.org/10.1590/S2179-975X5014.
http://dx.doi.org/10.1590/S2179-975X5014...
; Beamud et al., 2016BEAMUD, G., VICO, P., HAAKONSSON, S., DE LA ESCALERA, G.M., PICCINI, C., BRENA, B.M., PIREZ, M. and BONILLA, S. Influence of UV-B radiation on the fitness and toxin expression of the cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2016, 763(1), 161-172. http://dx.doi.org/10.1007/s10750-015-2370-6.
http://dx.doi.org/10.1007/s10750-015-237...
; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
) are produced by C. raciborskii, but in distinct lineages (Hawkins et al., 1985HAWKINS, P.R., RUNNEGAR, M.T.C., JACKSON, A.R.B. and FALCONER, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green-alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water-supply reservoir. Applied and Environmental Microbiology, 1985, 50(5), 1292-1295. http://dx.doi.org/10.1128/AEM.50.5.1292-1295.1985. PMid:3937492.
http://dx.doi.org/10.1128/AEM.50.5.1292-...
; Lagos et al., 1999LAGOS, N., ONODERA, H., ZAGATTO, P.A., ANDRINOLO, D., AZEVEDO, S.M.F.Q. and OSHIMA, Y. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon, 1999, 37(10), 1359-1373. http://dx.doi.org/10.1016/S0041-0101(99)00080-X. PMid:10414862.
http://dx.doi.org/10.1016/S0041-0101(99)...
). Both cyanotoxins are considered a potential risk to human health. CYN has been shown to cause cell necrosis and lesions, especially in the liver, kidneys, thymus and heart of vertebrates (Humpage et al., 2000HUMPAGE, A.R., FENECH, M., THOMAS, P. and FALCONER, I.R. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutation Research, 2000, 472(1-2), 155-161. http://dx.doi.org/10.1016/S1383-5718(00)00144-3. PMid:11113708.
http://dx.doi.org/10.1016/S1383-5718(00)...
; Froscio et al., 2003FROSCIO, S.M., HUMPAGE, A.R., BURCHAM, P.C. and FALCONER, I.R. Cylindrospermopsin induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environmental Toxicology, 2003, 18(4), 243-251. http://dx.doi.org/10.1002/tox.10121. PMid:12900943.
http://dx.doi.org/10.1002/tox.10121...
;), and SXT acts as a neurotoxin that affects the propagation of nerve impulses, resulting in neuromuscular paralysis (Wang et al., 2003WANG, J., SALATA, J.J. and BENNETT, P.B. Saxitoxin is a gating modifier of HERG K channels. The Journal of General Physiology, 2003, 121(6), 583-598. http://dx.doi.org/10.1085/jgp.200308812. PMid:12771193.
http://dx.doi.org/10.1085/jgp.200308812...
; Su et al., 2004SU, Z., SHEETS, M., ISHIDA, H., LI, F. and BARRY, W.H. Saxitoxin blocks L-type Ica. The Journal of Pharmacology and Experimental Therapeutics, 2004, 308(1), 324-329. http://dx.doi.org/10.1124/jpet.103.056564. PMid:14566004.
http://dx.doi.org/10.1124/jpet.103.05656...
).

Although the physiological ecology of C. raciborskii has been studied extensively, several aspects have only recently been investigated. These include the distribution and dispersion of the species (Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.; Alster et al., 2010ALSTER, A., KAPLAN-LEVY, R.N., SUKENIK, A. and ZOHARY, T. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 2010, 639(1), 115-128. http://dx.doi.org/10.1007/s10750-009-0044-y.
http://dx.doi.org/10.1007/s10750-009-004...
; Bolius et al., 2017BOLIUS, S., WIEDNER, C. and WEITHOFF, G. High local trait variability in a globally invasive cyanobacterium. Freshwater Biology, 2017, 62(11), 1879-1890. http://dx.doi.org/10.1111/fwb.13028.
http://dx.doi.org/10.1111/fwb.13028...
; Weithoff et al., 2017WEITHOFF, G., TAUBE, A. and BOLIUS, S. The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms: genetic identity, grazing loss, competition and biotic resistance. Aquatic Invasions, 2017, 12(3), 333-341. http://dx.doi.org/10.3391/ai.2017.12.3.07.
http://dx.doi.org/10.3391/ai.2017.12.3.0...
), the number and size of akinetes (Padisák, 2003PADISÁK, J. Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia, 2003, 502(1), 389-394. http://dx.doi.org/10.1023/B:HYDR.0000004296.49074.0a.
http://dx.doi.org/10.1023/B:HYDR.0000004...
), and the causes of toxin production (Babanazarova et al., 2015BABANAZAROVA, O.V., SIDELEV, S.I. and FASTNER, J. Northern expansion of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) observed in shallow highly eutrophic Lake Nero (Russia). International Journal on Algae, 2015, 17(2), 131-141. http://dx.doi.org/10.1615/InterJAlgae.v17.i2.20.
http://dx.doi.org/10.1615/InterJAlgae.v1...
; Beamud et al., 2016BEAMUD, G., VICO, P., HAAKONSSON, S., DE LA ESCALERA, G.M., PICCINI, C., BRENA, B.M., PIREZ, M. and BONILLA, S. Influence of UV-B radiation on the fitness and toxin expression of the cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2016, 763(1), 161-172. http://dx.doi.org/10.1007/s10750-015-2370-6.
http://dx.doi.org/10.1007/s10750-015-237...
; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
; Casali et al., 2017CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
).

Hoff-Risseti et al. (2013)HOFF-RISSETI, C., DORR, F.A., SCHAKER, P.D.C., PINTO, E., WERNER, V.R. and FIORE, M.F. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater. PLoS One, 2013, 8(8), e74238. http://dx.doi.org/10.1371/journal.pone.0074238. PMid:24015317.
http://dx.doi.org/10.1371/journal.pone.0...
suggested a shift over time in the type of cyanotoxins produced by South American strains of C. raciborskii. This is supported by the presence of SXT and CYN genes identified and sequenced from the Brazilian planktonic C. raciborskii strains CENA302, CENA303, CENA305 and T3.

This paper is a review of the most recent publications regarding C. raciborskii occurring in natural environments and lab conditions. We aim to discuss if the wide distribution of C. raciborskii is the result of high metabolic plasticity or the existence of different ecotypes. This understanding may have implications for control measures for this species and will summarize knowledge about its function in aquatic ecosystems.

2. Geographical Distribution and Environmental Requirements of C. raciborskii

According to Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., C. raciborskii is widely distributed throughout the Earth. Its presence in varied environments, such as oligotrophic reservoirs, shallow and hypereutrophic lakes, rivers, and other environments with high water flow, has been increasingly reported (Maia-Barbosa et al., 2010MAIA-BARBOSA, P., BARBOSA, L., BRITO, S., GARCIA, F., BARROS, C., SOUZA, M., MELLO, N., GUIMARÃES, A. and BARBOSA, F. Limnological changes in Dom Helvécio Lake (South-East Brazil): natural and anthropogenic causes. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2010, 70(3), 795-802, Supplement. http://dx.doi.org/10.1590/S1519-69842010000400010. PMid:21085784.
http://dx.doi.org/10.1590/S1519-69842010...
; Bittencourt-Oliveira et al., 2012BITTENCOURT-OLIVEIRA, M., BUCH, B., HEREMAN, T., ARRUDA-NETO, J., MOURA, A. and ZOCCHI, S. Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes: growth rate and morphology. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2012, 72(2), 343-351. http://dx.doi.org/10.1590/S1519-69842012000200016. PMid:22735143.
http://dx.doi.org/10.1590/S1519-69842012...
; Kokociński & Soininen, 2012KOKOCIŃSKI, M. and SOININEN, J. Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology, 2012, 47(1), 12-21. http://dx.doi.org/10.1080/09670262.2011.645216.
http://dx.doi.org/10.1080/09670262.2011....
; Medeiros et al., 2015MEDEIROS, L.D.C., MATTOS, A., LÜRLING, M. and BECKER, V. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology, 2015, 49(3), 293-307. http://dx.doi.org/10.1007/s10452-015-9524-5.
http://dx.doi.org/10.1007/s10452-015-952...
; Willis et al., 2017WILLIS, A., POSSELT, A.J. and BURFORD, M.A. Variations in carbon-to-phosphorus ratios of two Australian strains of Cylindrospermopsis raciborskii. European Journal of Phycology, 2017, 52(3), 303-310. http://dx.doi.org/10.1080/09670262.2017.1286524.
http://dx.doi.org/10.1080/09670262.2017....
; Rzymski et al., 2018RZYMSKI, P., HORYN, O., BUDZYŃSKA, A., JURCZAK, T., KOKOCIŃSKI, M., NIEDZIELSKI, P., KLIMASZYK, P. and FALFUSHYNSKA, H. A report of Cylindrospermopsis raciborskii and other cyanobacteria in the water reservoirs of power plants in Ukraine. Environmental Science and Pollution Research International, 2018, 25(15), 15245-15252. http://dx.doi.org/10.1007/s11356-018-2010-6. PMid:29680888.
http://dx.doi.org/10.1007/s11356-018-201...
; Walter et al., 2018WALTER, J.M., LOPES, F.A.C., LOPES-FERREIRA, M., VIDAL, L.M., LEOMIL, L., MELO, F., DE AZEVEDO, G.S., OLIVEIRA, R.M.S., MEDEIROS, A.J., MELO, A.S.O., DE REZENDE, C.E., TANURI, A. and THOMPSON, F.L. Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Frontiers in Microbiology, 2018, 9(FEB), 176. http://dx.doi.org/10.3389/fmicb.2018.00176. PMid:29541063.
http://dx.doi.org/10.3389/fmicb.2018.001...
).

Cylindrospermopsis raciborskii has been recorded in tropical and subtropical regions of Africa, Australia, Cuba, India, Indonesia, Oceania and South America. The species is also found in temperate regions of Europe, Central Asia and North America. It forms extensive toxic proliferations in water bodies throughout the world, except in Antarctica (Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., 2003PADISÁK, J. Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia, 2003, 502(1), 389-394. http://dx.doi.org/10.1023/B:HYDR.0000004296.49074.0a.
http://dx.doi.org/10.1023/B:HYDR.0000004...
; Wiedner et al., 2007WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
; Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
). Palmer (1969)PALMER, C.M. Report on the algae in relation to water quality of Paranoa Lake. Brasilia, 1969. reported the first occurrence of this species in Brazil, and its blooms have subsequently been recorded in several Brazilian reservoirs (Branco & Senna, 1994BRANCO, C.W.C. and SENNA, P.A.C. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasilia, Brazil. Algological Studies, 1994, 75, 85-96.; Souza et al., 1998SOUZA, R.C.R., CARVALHO, M.C. and TRUZZI, A.C. Cylindrospermopsis raciborskii (Wolosz.) Seenayya and Subba Raju (Cyanophyceae) dominance and a contribution to the knowledge of Rio Pequeno Arm, Billings Reservoir, Brazil. Environmental Toxicology and Water Quality, 1998, 13(1), 73-81. http://dx.doi.org/10.1002/(SICI)1098-2256(1998)13:1<73::AID-TOX5>3.0.CO;2-4.
http://dx.doi.org/10.1002/(SICI)1098-225...
, Bouvy et al., 1999BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285.
http://dx.doi.org/10.3354/ame020285...
, 2000BOUVY, M., FALCÃO, D., MARINHO, M., PAGANO, M. and MOURA, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 2000, 23(1), 13-27. http://dx.doi.org/10.3354/ame023013.
http://dx.doi.org/10.3354/ame023013...
; Molica et al., 2002MOLICA, R., ONODERA, H., GARCÍA, C., RIVAS, M., ANDRINOLO, D., NASCIMENTO, S., MEGURO, H., OSHIMA, Y., AZEVEDO, S. and LAGOS, N. Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia, 2002, 41(6), 606-611. http://dx.doi.org/10.2216/i0031-8884-41-6-606.1.
http://dx.doi.org/10.2216/i0031-8884-41-...
; Tucci & Sant’Anna, 2003TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
; Gemelgo et al., 2008GEMELGO, M.C.P., SANT'ANNA, C.L., TUCCI, A. and BARBOSA, H.R. Population dynamics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju, a Cyanobacteria toxic species, in watersupply reservoirs in São Paulo, Brazil. Hoehnea, 2008, 35(2), 297-307. http://dx.doi.org/10.1590/S2236-89062008000200011.
http://dx.doi.org/10.1590/S2236-89062008...
; Figueredo & Giani, 2009FIGUEREDO, C.C. and GIANI, A. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica - Ecology and Management of Inland Waters, 2009, 39(4), 264-272. http://dx.doi.org/10.1016/j.limno.2009.06.009.
http://dx.doi.org/10.1016/j.limno.2009.0...
; Gomes et al., 2013GOMES, A.M.A., MARINHO, M.M. and AZEVEDO, S.M.F.O. Which factors are related to the success of Cylindrospermopsis raciborskii in brazilian aquatic systems? In A.S. FERRÃO-FILHO, ed. Cyanobacteria: ecology, toxicology and management. New York: Nova Science Publishers, 2013, pp. 73-94.; Casali et al., 2017CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
).

The success of C. raciborskii in aquatic environments worldwide is attributed to its tolerance to broad ranges of various environmental factors (discussed below). To date, the factors most strongly suggested as contributors to flowering and expansion of Cyanobacteria blooms, including C. raciborskii, are eutrophication (Soranno, 1997SORANNO, P.A. Factors affecting the timing of surface scums and epilimnetic blooms of blue-green algae in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1965-1975.; Paerl, 1997PAERL, H.W. Coastal eutrophication and harmful algal blooms: importance of anthropogenic deposition and groundwater as view of its ecology. ions. Limnology and Oceanography, 1997, 42(5), 154997. http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1154.
http://dx.doi.org/10.4319/lo.1997.42.5_p...
; Saker & Griffiths, 2001SAKER, M.L. and GRIFFITHS, D.J. Occurence of blooms of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Ruju in a North Queensland domestic water supply. Marine and Freshwater Research, 2001, 52(6), 907. http://dx.doi.org/10.1071/MF00110.
http://dx.doi.org/10.1071/MF00110...
; Landsberg, 2002LANDSBERG, J.H. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 2002, 10(2), 113-390. http://dx.doi.org/10.1080/20026491051695.
http://dx.doi.org/10.1080/20026491051695...
; Huisman & Hulot, 2005HUISMAN, J. and HULOT, F.D. Population dynamics of harmful cyanobacteira. In: J. HUISMAN, H.C.P. MATTHIJS and P.M. VISSER, eds. Harmful Cyanobacteria. Dordrecht: Springer, 2005, pp. 143-176. Aquatic Ecology Series. http://dx.doi.org/10.1007/1-4020-3022-3_7.
http://dx.doi.org/10.1007/1-4020-3022-3_...
;) and climate change (Peperzak, 2003PEPERZAK, L. Climate change and harmful algal blooms in the North Sea. Acta Oecologica, 2003, 24, S139-S144. http://dx.doi.org/10.1016/S1146-609X(03)00009-2.
http://dx.doi.org/10.1016/S1146-609X(03)...
; Paerl & Huisman, 2008PAERL, H.W. and HUISMAN, J. Blooms like it hot. Science, 2008, 320(5872), 57-58. http://dx.doi.org/10.1126/science.1155398. PMid:18388279.
http://dx.doi.org/10.1126/science.115539...
; Paul, 2008PAUL, V.J. Global warming and cyanobacterial harmful algal booms. In: K.H. HUDNELL, ed. Cyanobacterial harmful algal blooms: state of the science and research needs. New York: Springer Science+Business Media, 2008. Advances in Experimental Medicine and Biology, no. 619.; Sinha et al., 2012SINHA, R., PEARSON, L.A., DAVIS, T.W., BURFORD, M.A., ORR, P.T. and NEILAN, B.A. Increased incidence of Cylindrospermopsis raciborskii in temperate zones: is climate change responsible? Water Research, 2012, 46(5), 1408-1419. http://dx.doi.org/10.1016/j.watres.2011.12.019. PMid:22284981.
http://dx.doi.org/10.1016/j.watres.2011....
; Kokociński et al., 2017KOKOCIŃSKI, M., GAGALA, I., JASSER, I., KAROSIENE, J., KASPEROVIČIENE, J., KOBOS, J., KOREIVIENE, J., SOININEN, J., SZCZUROWSKA, A., WOSZCZYK, M. and MANKIEWICZ-BOCZEK, J. Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiology Ecology, 2017, 93(4). http://dx.doi.org/10.1093/femsec/fix035. PMid:28334256.
http://dx.doi.org/10.1093/femsec/fix035...
; Panou et al., 2018PANOU, M., ZERVOU, S.-K., KALOUDIS, T., HISKIA, A. and GKELIS, S. A Greek Cylindrospermopsis raciborskii strain: missing link in tropic invader’s phylogeography tale. Harmful Algae, 2018, 80, 96-106. http://dx.doi.org/10.1016/j.hal.2018.10.002. PMid:30502817.
http://dx.doi.org/10.1016/j.hal.2018.10....
).

3. Abiotic Factors

Studies of phytoplankton communities have traditionally begun with a survey of the abiotic factors that influence the growth of a given species, in order to then identify determining or influencing factors at the population-level. Following this approach, this work will discuss a number of abiotic factors including light, temperature, pH, nutrients and thermal stability of the water column, in order to understand the growth and predominance of C. raciborskii in aquatic environments.

3.1. Temperature

In temperate climates, C. raciborskii has been observed at maximum temperature of 35ºC and minimum temperature of 11 °C, with variation among countries: Portugal (11 °C to 35 °C; Saker et al., 2003SAKER, M.L., NOGUEIRA, I.C.G. and VASCONCELOS, V.M. Distribution and toxicity of Cylindrospermopsis raciborskii (cyanobacteria) in Portuguese freshwaters. Limnetica, 2003, 2(3-4), 129-136.; Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
), Australia (19.1 °C to 32 °C; Everson et al., 2011EVERSON, S., FABBRO, L., KINNEAR, S. and WRIGHT, P. Extreme differences in akinete, heterocyte and cylindrospermopsin concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. Harmful Algae, 2011, 10(3), 265-276. http://dx.doi.org/10.1016/j.hal.2010.10.006.
http://dx.doi.org/10.1016/j.hal.2010.10....
; Recknagel et al., 2014RECKNAGEL, F., ORR, P.T. and CAO, H. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae, 2014, 31, 26-34. http://dx.doi.org/10.1016/j.hal.2013.09.004. PMid:28040108.
http://dx.doi.org/10.1016/j.hal.2013.09....
; Kehoe et al., 2015KEHOE, M., O’BRIEN, K., GRINHAM, A. and BURFORD, M. Primary production of lake phytoplankton, dominated by the cyanobacterium Cylindrospermopsis raciborskii, in response to irradiance and temperature. Inland Waters, 2015, 5(2), 93-100. http://dx.doi.org/10.5268/IW-5.2.778.
http://dx.doi.org/10.5268/IW-5.2.778...
), France (14.1 °C to 25.7 °C; Briand et al., 2002BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7. PMid:12188114.
http://dx.doi.org/10.1016/S0043-1354(02)...
), Switzerland (≤ 12 °C; Dokulil, 2016DOKULIL, M.T. Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia, 2016, 764(1), 241-247. http://dx.doi.org/10.1007/s10750-015-2228-y.
http://dx.doi.org/10.1007/s10750-015-222...
), Finland (19 °C to 20 °C; Engstrom-Ost et al., 2015), southern Canada (22 °C to 24 °C; Hamilton et al., 2005HAMILTON, P.B., LEY, L.M., DEAN, S. and PICK, F.R. The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia, 2005, 44(1), 17-25. http://dx.doi.org/10.2216/0031-8884(2005)44[17:TOOTCC]2.0.CO;2.
http://dx.doi.org/10.2216/0031-8884(2005...
), and Hungary, Netherlands and Argentina (11 °C to 20 °C; Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
). These data indicate that C. raciborskii proliferation occurs, regardless of the season, but that growth and dominance is favored out of the winter period in temperate climates (when the temperature falls below 8 °C). Due to the wide distribution at different temperatures, Chonudomkul et al. (2004)CHONUDOMKUL, D., YONGMANITCHAI, W., THEERAGOOL, G., KAWACHI, M., KASAI, F., KAYA, K. and WATANABE, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology, 2004, 48(3), 345-355. http://dx.doi.org/10.1016/j.femsec.2004.02.014. PMid:19712304.
http://dx.doi.org/10.1016/j.femsec.2004....
concluded that the expansion of this species in temperate climates may result from the selection of clones with different requirements.

The water temperature in subtropical climates, where this species dominates, ranges from 11.2 °C to 35 °C. Fabre et al. (2010)FABRE, A., CARBALLO, C., HERNÁNDEZ, E., PIRIZ, P., BERGAMINO, L., MELLO, L., GONZÁLEZ, S., PÉREZ, G., LEÓN, J.G., AUBRIOT, L., BONILLA, S. and KRUK, C. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences, 2010, 5(1), 112-125. and Bonilla et al. (2012)BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
observed Cylindrospermopsis raciborskii at temperatures of 11.2 °C to 19 °C in Uruguay; Chonudomkul et al. (2004)CHONUDOMKUL, D., YONGMANITCHAI, W., THEERAGOOL, G., KAWACHI, M., KASAI, F., KAYA, K. and WATANABE, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology, 2004, 48(3), 345-355. http://dx.doi.org/10.1016/j.femsec.2004.02.014. PMid:19712304.
http://dx.doi.org/10.1016/j.femsec.2004....
at 15 °C to 35 °C, in Thailand and southern Japan; Fuentes et al. (2010)FUENTES, M.S., RICK, J.J. and HASENSTEIN, K.H. Occurrence of a Cylindrospermopsis bloom in Louisiana. Journal of Great Lakes Research, 2010, 36(3), 458-464. http://dx.doi.org/10.1016/j.jglr.2010.05.006.
http://dx.doi.org/10.1016/j.jglr.2010.05...
above 25 °C, in Louisiana; Jones & Sauter (2005)JONES, W.W. and SAUTER, S. Distribution and abundance of Cylindrospermopsis raciborskii in Indiana lakes and reservoirs. Indianapolis: Indiana Department of Environmental Management, 2005. at 18.2 °C to 26.5 °C, in Indiana; and Thomas & Litchman (2016)THOMAS, M.K. and LITCHMAN, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia, 2016, 763(1), 357-369. http://dx.doi.org/10.1007/s10750-015-2390-2.
http://dx.doi.org/10.1007/s10750-015-239...
at 20 °C to 33 °C, in Florida. Therefore, C. raciborskii was not observed only during the winter, when temperatures can reach 0 °C.

The temperature in tropical climates, where this cyanobacterium dominates, varied from 13 °C to 35 °C. Berger et al. (2006)BERGER, C., BA, N., GUGGER, M., BOUVY, M., RUSCONI, F., COUTÉ, A., TROUSSELLIER, M. and BERNARD, C. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology, 2006, 57(3), 355-366. http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x. PMid:16907750.
http://dx.doi.org/10.1111/j.1574-6941.20...
and Dufour et al. (2006)DUFOUR, P., SARAZIN, G., QUIBLIER, C., SANE, S. and LEBOULANGER, C. Cascading nutrient limitation of the cyanobacterium Cylindrospermopsis raciborskii in a Sahelian lake (North Senegal). Aquatic Microbial Ecology, 2006, 44(3), 219-230. http://dx.doi.org/10.3354/ame044219.
http://dx.doi.org/10.3354/ame044219...
observed a temperature range from 20 °C to 35 °C, in Senegal, Africa; Bouvy et al. (1999)BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285.
http://dx.doi.org/10.3354/ame020285...
, Bouvy et al. (2000)BOUVY, M., FALCÃO, D., MARINHO, M., PAGANO, M. and MOURA, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 2000, 23(1), 13-27. http://dx.doi.org/10.3354/ame023013.
http://dx.doi.org/10.3354/ame023013...
, and Bittencourt-Oliveira et al. (2011)BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
from 21.6 °C to 23 °C in the rainy season (summer) and from 23.1 °C to 29.1 °C in the dry season in Pernambuco State, Brazil; Maia-Barbosa et al. (2010)MAIA-BARBOSA, P., BARBOSA, L., BRITO, S., GARCIA, F., BARROS, C., SOUZA, M., MELLO, N., GUIMARÃES, A. and BARBOSA, F. Limnological changes in Dom Helvécio Lake (South-East Brazil): natural and anthropogenic causes. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2010, 70(3), 795-802, Supplement. http://dx.doi.org/10.1590/S1519-69842010000400010. PMid:21085784.
http://dx.doi.org/10.1590/S1519-69842010...
and Figueredo et al. (2014)FIGUEREDO, C.C., VON RÜCKERT, G., CUPERTINO, A., PONTES, M.A., FERNANDES, L.A., RIBEIRO, S.G. and MARAN, N.R.C. Lack of nitrogen as a causing agent of Cylindrospermopsis raciborskii intermittent blooms in a small tropical reservoir. FEMS Microbiology Ecology, 2014, 87(3), 557-567. http://dx.doi.org/10.1111/1574-6941.12243. PMid:24329601.
http://dx.doi.org/10.1111/1574-6941.1224...
from 20 °C to 35 °C, in Minas Gerais State, Brazil; Souza et al. (1998)SOUZA, R.C.R., CARVALHO, M.C. and TRUZZI, A.C. Cylindrospermopsis raciborskii (Wolosz.) Seenayya and Subba Raju (Cyanophyceae) dominance and a contribution to the knowledge of Rio Pequeno Arm, Billings Reservoir, Brazil. Environmental Toxicology and Water Quality, 1998, 13(1), 73-81. http://dx.doi.org/10.1002/(SICI)1098-2256(1998)13:1<73::AID-TOX5>3.0.CO;2-4.
http://dx.doi.org/10.1002/(SICI)1098-225...
, Tucci & Sant’Anna (2003)TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
, Gemelgo et al. (2008)GEMELGO, M.C.P., SANT'ANNA, C.L., TUCCI, A. and BARBOSA, H.R. Population dynamics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju, a Cyanobacteria toxic species, in watersupply reservoirs in São Paulo, Brazil. Hoehnea, 2008, 35(2), 297-307. http://dx.doi.org/10.1590/S2236-89062008000200011.
http://dx.doi.org/10.1590/S2236-89062008...
and Bonilla et al. (2012)BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
from 13 °C to 28 °C in São Paulo State, Brazil; Soares et al. (2013)SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycological Research, 2013, 61(1), 61-67. http://dx.doi.org/10.1111/pre.12001.
http://dx.doi.org/10.1111/pre.12001...
from 12 °C to 32 °C in Rio de Janeiro State, Brazil; and Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
observed a temperature range of 16.8 to 21.8 °C in a mesotrophic subtropical reservoir dominated by C. raciborskii, in São Paulo, Brazil.

Proliferations of the species have never been observed in polar climates (Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.), corroborating the statements made by Chonudomkul et al. (2004)CHONUDOMKUL, D., YONGMANITCHAI, W., THEERAGOOL, G., KAWACHI, M., KASAI, F., KAYA, K. and WATANABE, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology, 2004, 48(3), 345-355. http://dx.doi.org/10.1016/j.femsec.2004.02.014. PMid:19712304.
http://dx.doi.org/10.1016/j.femsec.2004....
, Mehnert et al. (2010)MEHNERT, G., LEUNERT, F., CIRÉS, S., JÖHNK, K.D., RÜCKER, J., NIXDORF, B. and WIEDNER, C. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. Journal of Plankton Research, 2010, 32(7), 1009-1021. http://dx.doi.org/10.1093/plankt/fbq033.
http://dx.doi.org/10.1093/plankt/fbq033...
and Engström-Öst et al. (2015)ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
, that C. raciborskii does not dominate at temperatures below 10 °C.

According to Recknagel et al. (2019)RECKNAGEL, F., ZOHARY, T., RÜCKER, J., ORR, P.T., BRANCO, C.C. and NIXDORF, B. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling. Harmful Algae, 2019, 84, 222-232. http://dx.doi.org/10.1016/j.hal.2019.04.005. PMid:31128807.
http://dx.doi.org/10.1016/j.hal.2019.04....
, C. raciborskii growth is directly related to high temperatures (> 24 °C) in temperate and Mediterranean environments and poorly correlated to them in tropical and subtropical environments.

According to a laboratory study by Xiao et al. (2017)XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008. PMid:28118895.
http://dx.doi.org/10.1016/j.hal.2016.12....
, Cylindrospermopsis raciborskii cells become smaller under higher temperatures. On the other hand, under lower temperatures, the cells become larger with a lower cell concentration. In addition, Bonilla et al. (2016)BONILLA, S., GONZÁLEZ-PIANA, M., SOARES, M.C.S., HUSZAR, V.L.M., BECKER, V., SOMMA, A., MARINHO, M.M., KOKOCINSKI, M., DOKULIL, M., ANTONIADES, D. and AUBRIOT, L. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters in enhanced by the combined effects of light intensity and temperature. Journal of Limnology, 2016, 75(3), 606-617. http://dx.doi.org/10.4081/jlimnol.2016.1479.
http://dx.doi.org/10.4081/jlimnol.2016.1...
argued that temperature-derived effects, such as the mixing of regime changes, were the factors that affected the distribution of the species, rather than temperature itself.

Thus, regardless the region and climate, this species can dominate in a wide temperature range from 11 °C to 35 °C. These temperatures are found in most aquatic environments in temperate, subtropical and tropical regions. However, several studies indicate that temperature 2increasing in temperate regions is one of the causes of invasion of European aquatic environments by this species (Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Recknagel et al., 2019RECKNAGEL, F., ZOHARY, T., RÜCKER, J., ORR, P.T., BRANCO, C.C. and NIXDORF, B. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling. Harmful Algae, 2019, 84, 222-232. http://dx.doi.org/10.1016/j.hal.2019.04.005. PMid:31128807.
http://dx.doi.org/10.1016/j.hal.2019.04....
; Kokocinski et al., 2017).

3.2. Light

Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., Burford & Davis (2011)BURFORD, M.A. and DAVIS, T.W. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese Journal of Oceanology and Limnology, 2011, 29(4), 883-891. http://dx.doi.org/10.1007/s00343-011-0517-5.
http://dx.doi.org/10.1007/s00343-011-051...
, Engström-Öst et al., 2015 and Beamud et al. (2016)BEAMUD, G., VICO, P., HAAKONSSON, S., DE LA ESCALERA, G.M., PICCINI, C., BRENA, B.M., PIREZ, M. and BONILLA, S. Influence of UV-B radiation on the fitness and toxin expression of the cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2016, 763(1), 161-172. http://dx.doi.org/10.1007/s10750-015-2370-6.
http://dx.doi.org/10.1007/s10750-015-237...
argued that Cylindrospermopsis raciborskii is tolerant to low light intensity as it does not require intense radiation to grow. Furthermore, it has a wide shade tolerance due to chromatic adaptation and the ability to increase the concentration of phycobiliproteins, widening the spectrum of light it can absorb. Because of this shade tolerance, it has an increased competitiveness in highly turbid waters, supporting an ability to grow with little underwater light (Brasil et al. 2017BRASIL, J., HUSZAR, V.L.M., ATTAYDE, J.L., MARINHO, M.M., VAN OOSTERHOUT, F. and LÜRLING, M. Effect of suspended clay on growth rates of the cyanobacterium Cylindrospermopsis raciborskii. Fundamental and Applied Limnology, 2017, 191(1), 13-23. http://dx.doi.org/10.1127/fal/2017/1096.
http://dx.doi.org/10.1127/fal/2017/1096...
; Engström-Öst et al., 2015ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
).

Yamamoto & Shiah (2012)YAMAMOTO, Y. and SHIAH, F.K. Factors Related to the Dominance of Cylindrospermopsis raciborskii (Cyanobacteria) in a Shallow Pond in Northern Taiwan(1). Journal of Phycology, 2012, 48(4), 984-991. http://dx.doi.org/10.1111/j.1529-8817.2012.01184.x. PMid:27009008.
http://dx.doi.org/10.1111/j.1529-8817.20...
, Bonilla et al. (2012)BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
and Noyma et al. (2015)NOYMA, N.P., SILVA, T.P., CHIARINI-GARCIA, H., AMADO, A.M., ROLAND, F. and MELO, R.C. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Frontiers in Microbiology, 2015, 6, 1202. http://dx.doi.org/10.3389/fmicb.2015.01202. PMid:26579108.
http://dx.doi.org/10.3389/fmicb.2015.012...
suggested that the adaptation of C. raciborskii to a wide range of irradiance is one of its most important ecological advantages and could have facilitated its dominance. In laboratory conditions, the saturating irradiance (Ik), defined as the ratio of light-saturated growth rate to the initial slope of de growth versus irradiance curve, ranges from 8.5 µmol photons.m-2.s-1 (Bonilla et al. 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
) to 19 µmol photons.m-2.s-1 (Wojciechowski et al. 2016WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
) and 16 to 26 µmol photons.m-2.s-1 (Briand et al., 2004BRIAND, J.-F., LEBOULANGER, C., HUMBERT, J.-F., BERNARD, C. and DUFOUR, P. Cylindrospermopsis raciborskii (Cyanobacteria) Invasion At Mid-Latitudes: Selection, Wide Physiological Tolerance, Orglobalwarming? Journal of Phycology, 2004, 40(2), 231-238. http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x.
http://dx.doi.org/10.1111/j.1529-8817.20...
).

A number of authors have recognized the ability of C. raciborskii to grow at low light intensities, however several studies suggest that the difference between strains is very significant. Bouvy et al. (1999)BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285.
http://dx.doi.org/10.3354/ame020285...
in field studies noted the dominance of C. raciborskii in reservoirs with irradiance ranging from 63 to 140 µmol photons.m-2.s-1. In laboratory experiments, Wojciechowski et al. (2016)WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
observed maximum growth above 50 µmol photons.m-2.s-1; Briand et al. (2004)BRIAND, J.-F., LEBOULANGER, C., HUMBERT, J.-F., BERNARD, C. and DUFOUR, P. Cylindrospermopsis raciborskii (Cyanobacteria) Invasion At Mid-Latitudes: Selection, Wide Physiological Tolerance, Orglobalwarming? Journal of Phycology, 2004, 40(2), 231-238. http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x.
http://dx.doi.org/10.1111/j.1529-8817.20...
in 80 µmol photons.m-2.s-1; Carneiro et al. (2009)CARNEIRO, R.L., SANTOS, M.E.V., PACHECO, A.B.F. and AZEVEDO, S.M.F.O. Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). Journal of Plankton Research, 2009, 31(5), 481-488. http://dx.doi.org/10.1093/plankt/fbp006.
http://dx.doi.org/10.1093/plankt/fbp006...
above 100 µmol photons.m-2.s-1; Brasil et al. (2017)BRASIL, J., HUSZAR, V.L.M., ATTAYDE, J.L., MARINHO, M.M., VAN OOSTERHOUT, F. and LÜRLING, M. Effect of suspended clay on growth rates of the cyanobacterium Cylindrospermopsis raciborskii. Fundamental and Applied Limnology, 2017, 191(1), 13-23. http://dx.doi.org/10.1127/fal/2017/1096.
http://dx.doi.org/10.1127/fal/2017/1096...
and Bolius et al. (2017)BOLIUS, S., WIEDNER, C. and WEITHOFF, G. High local trait variability in a globally invasive cyanobacterium. Freshwater Biology, 2017, 62(11), 1879-1890. http://dx.doi.org/10.1111/fwb.13028.
http://dx.doi.org/10.1111/fwb.13028...
in 130 µmol photons.m-2.s-1; and Bonilla et al. (2012)BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
in 135 µmol photons.m-2.s-1. Burford et al. (2016)BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
claimed that the optimal intensity for growth varies between 50 and 150 µmol photons.m-2.s-1.

Burford et al. (2016)BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
also claimed that Australian strains suffer photoinhibition at intensities above 100 µmol photons.m-2.s-1 in laboratory experiments and between 200 and 400 µmol photons.m-2.s-1 under field conditions. However, both Burford et al. (op cit.) as other researchers (Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Marinho et al., 2013MARINHO, M.M., SOUZA, M.B.G. and LÜRLING, M. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial Ecology, 2013, 66(3), 479-488. http://dx.doi.org/10.1007/s00248-013-0232-1. PMid:23636583.
http://dx.doi.org/10.1007/s00248-013-023...
; Willis et al., 2015WILLIS, A., ADAMS, M.P., CHUANG, A.W., ORR, P.T., O’BRIEN, K.R. and BURFORD, M.A. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34. http://dx.doi.org/10.1016/j.hal.2015.05.011.
http://dx.doi.org/10.1016/j.hal.2015.05....
, 2016WILLIS, A., CHUANG, A.W., WOODHOUSE, J.N., NEILAN, B.A. and BURFORD, M.A. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon, 2016, 119, 307-310. http://dx.doi.org/10.1016/j.toxicon.2016.07.005. PMid:27390039.
http://dx.doi.org/10.1016/j.toxicon.2016...
; Wojciechowski et al., 2016WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
; Xiao et al., 2017XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008. PMid:28118895.
http://dx.doi.org/10.1016/j.hal.2016.12....
) emphasized the great intraspecific variation in light requirements and other environmental factors. Kokociński et al (2017)KOKOCIŃSKI, M., GAGALA, I., JASSER, I., KAROSIENE, J., KASPEROVIČIENE, J., KOBOS, J., KOREIVIENE, J., SOININEN, J., SZCZUROWSKA, A., WOSZCZYK, M. and MANKIEWICZ-BOCZEK, J. Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiology Ecology, 2017, 93(4). http://dx.doi.org/10.1093/femsec/fix035. PMid:28334256.
http://dx.doi.org/10.1093/femsec/fix035...
analyzing C. raciborskii invasion and dominance in European aquatic environments, found no correlation with light availability and justifies it because of the great variability among strains in light requirements.

Pierangelini et al. (2014a)PIERANGELINI, M., STOJKOVIC, S., ORR, P.T. and BEARDALL, J. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. Journal of Plant Physiology, 2014a, 171(12), 1091-1098. http://dx.doi.org/10.1016/j.jplph.2014.04.003. PMid:24878143.
http://dx.doi.org/10.1016/j.jplph.2014.0...
, testing two strains isolated from Australia with different morphology (coiled and streng) and toxin production capacity at different light exposures, found 2.6 times higher Ik for coiled and toxic strains. Bittencourt-Oliveira et al. (2011BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
, 2012BITTENCOURT-OLIVEIRA, M., BUCH, B., HEREMAN, T., ARRUDA-NETO, J., MOURA, A. and ZOCCHI, S. Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes: growth rate and morphology. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2012, 72(2), 343-351. http://dx.doi.org/10.1590/S1519-69842012000200016. PMid:22735143.
http://dx.doi.org/10.1590/S1519-69842012...
) have asserted that species morphology is directly related to light intensity, with a predominance of straight trichomes at intensities higher than 30 µmol photons.m-2.s-1, indicating that the spiraled morphotype is more susceptible to higher light intensities.

Despite the availability of light does not seem to be fundamental to the dominance of C. raciborskii, adaptation to this factor can change its ability to compete with other species of cyanobacteria (Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Marinho et al., 2013MARINHO, M.M., SOUZA, M.B.G. and LÜRLING, M. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial Ecology, 2013, 66(3), 479-488. http://dx.doi.org/10.1007/s00248-013-0232-1. PMid:23636583.
http://dx.doi.org/10.1007/s00248-013-023...
; Xiao et al., 2017XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008. PMid:28118895.
http://dx.doi.org/10.1016/j.hal.2016.12....
). Moore et al. (2003)MOORE, D., O’DONOHUE, M., SHAW, G. and CRITCHLEY, C. Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia, 2003, 506(1), 175-180. http://dx.doi.org/10.1023/B:HYDR.0000008536.01716.1a.
http://dx.doi.org/10.1023/B:HYDR.0000008...
claim that the formation of akinetes occurs in organisms growing only at light intensity higher than 25 µmol photons.m-2.s-1 and Wojciechowski et al. (2016)WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
observed a significant variation in the size of trichomes in strains submitted to different light intensities.

3.3. Water column stability

According to Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., Tucci & Sant’Anna (2003)TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
, Bonilla et al. (2016)BONILLA, S., GONZÁLEZ-PIANA, M., SOARES, M.C.S., HUSZAR, V.L.M., BECKER, V., SOMMA, A., MARINHO, M.M., KOKOCINSKI, M., DOKULIL, M., ANTONIADES, D. and AUBRIOT, L. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters in enhanced by the combined effects of light intensity and temperature. Journal of Limnology, 2016, 75(3), 606-617. http://dx.doi.org/10.4081/jlimnol.2016.1479.
http://dx.doi.org/10.4081/jlimnol.2016.1...
and Dalu & Wasserman (2018)DALU, T. and WASSERMAN, R.J. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. The Science of the Total Environment, 2018, 643, 835-841. http://dx.doi.org/10.1016/j.scitotenv.2018.06.256. PMid:29958171.
http://dx.doi.org/10.1016/j.scitotenv.20...
, stratification can be a key factor for the dominance of C. raciborskii, given that higher cell densities correlate with periods of water column stratification. Although these authors have identified an increasing in density under stratification conditions, they also suggest that growth can happen under mixing conditions. There remain contradictions in the evidence regarding the role of stratification in the dominance of this species. For example, in Brazil, C. raciborskii also dominates in shallow and mixed systems (Bouvy et al., 1999BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285.
http://dx.doi.org/10.3354/ame020285...
; Moura et al., 2015MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., CHIA, M.A. and SEVERIANO, J.S. Co-occurrence of Cylindrospermopsis raciborskii (Woloszynska) Seenaya & Subba Raju and Microcystis panniformis Komárek et al. in Mundaú reservoir, a semiarid Brazilian ecosystem. Acta Limnologica Brasiliensia, 2015, 27(3), 322-329. http://dx.doi.org/10.1590/S2179-975X3814.
http://dx.doi.org/10.1590/S2179-975X3814...
).

Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593. recorded C. raciborskii occurring at various depths within the epilimnion. Authors like Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
stated that stratified waters are favorable for this cyanobacterium, as it predominates under such conditions with low concentrations of dissolved nutrients. Based on the monitoring of a reservoir in Pernambuco, Brazil, Bittencourt-Oliveira et al. (2011)BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
also concluded that stable stratification conditions during dry periods favor the growth of this species. However, Garcia (2007)GARCIA, F.C. Estudos ecológicos da cianobactéria Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju no Lago Dom Helvecio, Parque Estadual do Rio Doce [Tese de Doutorado em Ecologia]. Belo Horizonte: Universidade Federal de Minas Gerais, 2007, 89 p. and Bittencourt-Oliveira et al. (2011)BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
did not observe significant reduction in the abundance of C. raciborskii in the phytoplankton community during the period of circulation.

Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
and Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
noted a variation across the water depth gradient, as C. raciborskii are dominant at the surface but not in the bottom water. On the other hand, the substantial floating capability allows daytime migration between hypolimnium and epilimnion and prevents accumulation on the surface shading the deeper layers (Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.). Corroborating this, Bittencourt-Oliveira et al. (2011)BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031.
http://dx.doi.org/10.4236/jwarp.2011.340...
showed a negative correlation with depth. The greater water density at lower layers of the water column favors the coiled trichome form and is most suitable for its development.

In most publications we found that stratified environments favor the prevalence of C. raciborskii, but as this species may also predominate in non-stratified or polymictic environments (Barros et al., 2006BARROS, C.F.A., SOUZA, M.B.G. and BARBOSA, F.A.R. Seasonal mechanisms driving phytoplankton size structure in a tropical deep lake (Dom Helvécio Lake, South-East Brazil). Acta Limnologica Brasiliensia, 2006, 18(1), 55-66.; Von Sperling et al., 2008VON SPERLING, E., DA SILVA FERREIRA, A.C. and NUNES LUDOLF GOMES, L. Comparative eutrophication development in two Brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth. Desalination, 2008, 226(1), 169-174. http://dx.doi.org/10.1016/j.desal.2007.02.105.
http://dx.doi.org/10.1016/j.desal.2007.0...
; Casali et al., 2017CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
), this condition may not be as important as it is to other cyanobacteria such as Microcystis sp. (Calijuri et al., 2002CALIJURI, M.C., SANTOS, A.C.A. and JATI, S. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP-Brazil). Journal of Plankton Research, 2002, 24(7), 617-634. http://dx.doi.org/10.1093/plankt/24.7.617.
http://dx.doi.org/10.1093/plankt/24.7.61...
).

3.4. pH and CO2

Another important factor considered responsible for the dominance of C. raciborskii is the tolerance to high pH. This may be due to a direct effect of pH, since the percentage of CO2 decreases as the pH rises, which may limit CO2 availability for phytoplankton. Cyanobacteria, including Cylindrospermopsis raciborskii, have the ability to use other carbon sources when present, such as HCO3. They are therefore good competitors in low CO2 and high pH conditions. (Holland et al., 2012HOLLAND, D.P., PANTORNO, A., ORR, P.T., STOJKOVIC, S. and BEARDALL, J. The impacts of a high CO2 environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii. Water Research, 2012, 46(5), 1430-1437. http://dx.doi.org/10.1016/j.watres.2011.11.015. PMid:22119367.
http://dx.doi.org/10.1016/j.watres.2011....
; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
).

According Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., C. raciborskii is found between pH 6 to 10. Bouvy et al. (1999)BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285.
http://dx.doi.org/10.3354/ame020285...
observed a dominance of this species in waters with a pH range of 8.1 to 9.4. Others pH values were found by Saker et al. (2003)SAKER, M.L., NOGUEIRA, I.C.G. and VASCONCELOS, V.M. Distribution and toxicity of Cylindrospermopsis raciborskii (cyanobacteria) in Portuguese freshwaters. Limnetica, 2003, 2(3-4), 129-136., Hamilton et al. (2005)HAMILTON, P.B., LEY, L.M., DEAN, S. and PICK, F.R. The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia, 2005, 44(1), 17-25. http://dx.doi.org/10.2216/0031-8884(2005)44[17:TOOTCC]2.0.CO;2.
http://dx.doi.org/10.2216/0031-8884(2005...
, Gemelgo et al. (2008)GEMELGO, M.C.P., SANT'ANNA, C.L., TUCCI, A. and BARBOSA, H.R. Population dynamics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju, a Cyanobacteria toxic species, in watersupply reservoirs in São Paulo, Brazil. Hoehnea, 2008, 35(2), 297-307. http://dx.doi.org/10.1590/S2236-89062008000200011.
http://dx.doi.org/10.1590/S2236-89062008...
, Marinho et al. (2013)MARINHO, M.M., SOUZA, M.B.G. and LÜRLING, M. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial Ecology, 2013, 66(3), 479-488. http://dx.doi.org/10.1007/s00248-013-0232-1. PMid:23636583.
http://dx.doi.org/10.1007/s00248-013-023...
, Recknagel et al. (2014)RECKNAGEL, F., ORR, P.T. and CAO, H. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae, 2014, 31, 26-34. http://dx.doi.org/10.1016/j.hal.2013.09.004. PMid:28040108.
http://dx.doi.org/10.1016/j.hal.2013.09....
and Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
, all between 6.9 and 10.

On the other hand, different pH ranges have been observed in Brazilian aquatic systems with dominance of C. raciborskii by Tucci & Sant’Anna (2003)TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
, Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
and Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
; these were 5.8 to 7.6, 5.5 to 9.9, and 3.9 to 7.1, respectively, showing the ability of the species to survive in both slightly acidic and extremely alkaline waters.

Using laboratory cultures, Holland et al. (2012)HOLLAND, D.P., PANTORNO, A., ORR, P.T., STOJKOVIC, S. and BEARDALL, J. The impacts of a high CO2 environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii. Water Research, 2012, 46(5), 1430-1437. http://dx.doi.org/10.1016/j.watres.2011.11.015. PMid:22119367.
http://dx.doi.org/10.1016/j.watres.2011....
observed species death under pH 4.2, and an increased growth rate at higher pH values and HCO3 concentrations. Wiedner et al. (2007)WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
, Yamamoto & Shiah (2012)YAMAMOTO, Y. and SHIAH, F.K. Factors Related to the Dominance of Cylindrospermopsis raciborskii (Cyanobacteria) in a Shallow Pond in Northern Taiwan(1). Journal of Phycology, 2012, 48(4), 984-991. http://dx.doi.org/10.1111/j.1529-8817.2012.01184.x. PMid:27009008.
http://dx.doi.org/10.1111/j.1529-8817.20...
and Karadžić et al. (2013)KARADŽIĆ, V., SIMIĆ, G.S., NATIĆ, D., RŽANIČANIN, A., ĆIRIĆ, M. and GAČIĆ, Z. Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia, 2013, 711(1), 43-60. http://dx.doi.org/10.1007/s10750-013-1460-6.
http://dx.doi.org/10.1007/s10750-013-146...
argued that the increasing in pH reflects intense photosynthetic cyanobacterial activity, due to proliferations, that remove H+ ions from the water. Therefore, these organisms will be adapted to environments with higher pH.

Pierangelini et al. (2014a)PIERANGELINI, M., STOJKOVIC, S., ORR, P.T. and BEARDALL, J. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. Journal of Plant Physiology, 2014a, 171(12), 1091-1098. http://dx.doi.org/10.1016/j.jplph.2014.04.003. PMid:24878143.
http://dx.doi.org/10.1016/j.jplph.2014.0...
stated that C. raciborskii presents major reorganization of its photosynthetic apparatus, in both function and structure, in response to increased CO2 concentrations. According to Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
, since the species can also grow in high concentrations of CO2, increased CO2 levels will probably not have a significant effect on its environmental performance. Therefore, Cylindrospermopsis raciborskii can optimize resources, such as carbon, when there are changes in their availability.

3.5. Salinity

The species has a preference for low-salinity conditions, with optimal growth in oligohaline water conditions (0.5-5 ppm) (Chapman & Schelske, 1997CHAPMAN, A.D. and SCHELSKE, C.L. Recent Appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida Lakes. Journal of Phycology, 1997, 33(2), 191-195. http://dx.doi.org/10.1111/j.0022-3646.1997.00191.x.
http://dx.doi.org/10.1111/j.0022-3646.19...
; Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.; Karadžić et al., 2013KARADŽIĆ, V., SIMIĆ, G.S., NATIĆ, D., RŽANIČANIN, A., ĆIRIĆ, M. and GAČIĆ, Z. Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia, 2013, 711(1), 43-60. http://dx.doi.org/10.1007/s10750-013-1460-6.
http://dx.doi.org/10.1007/s10750-013-146...
; Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
; Duval et al., 2018DUVAL, C., THOMAZEAU, S., DRELIN, Y., YÉPRÉMIAN, C., BOUVY, M., COULOUX, A., TROUSSELLIER, M., ROUSSEAU, F. and BERNARD, C. Phylogeny and salt-tolerance of freshwater Nostocales strains: contribution to their systematics and evolution. Harmful Algae, 2018, 73, 58-71. http://dx.doi.org/10.1016/j.hal.2018.01.008. PMid:29602507.
http://dx.doi.org/10.1016/j.hal.2018.01....
). Higher values of salinity (≥ 30 ppm) are considered limiting to its growth (Moisander et al., 2012MOISANDER, P.H., CHESHIRE, L.A., BRADDY, J., CALANDRINO, E.S., HOFFMAN, M., PIEHLER, M.F. and PAERL, H.W. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012, 79(3), 800-811. http://dx.doi.org/10.1111/j.1574-6941.2011.01264.x. PMid:22126519.
http://dx.doi.org/10.1111/j.1574-6941.20...
); however, C. raciborskii has the capacity to dominate in brackish waters, particularly when there are enriched nutrient conditions (Calandrino & Paerl, 2011CALANDRINO, E.S. and PAERL, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9. http://dx.doi.org/10.1016/j.hal.2011.04.003.
http://dx.doi.org/10.1016/j.hal.2011.04....
; Engström-Öst et al., 2015ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
), or high concentrations of dissolved minerals, especially high sulfate concentrations (Briand et al., 2002BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7. PMid:12188114.
http://dx.doi.org/10.1016/S0043-1354(02)...
). According to Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
, climate conditions that cause changes in precipitation can alter the salinity of estuarine systems and contribute to the dominance of the species in those ecosystems.

However, Chapman & Schelske (1997)CHAPMAN, A.D. and SCHELSKE, C.L. Recent Appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida Lakes. Journal of Phycology, 1997, 33(2), 191-195. http://dx.doi.org/10.1111/j.0022-3646.1997.00191.x.
http://dx.doi.org/10.1111/j.0022-3646.19...
, Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593. and Moisander et al. (2012)MOISANDER, P.H., CHESHIRE, L.A., BRADDY, J., CALANDRINO, E.S., HOFFMAN, M., PIEHLER, M.F. and PAERL, H.W. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012, 79(3), 800-811. http://dx.doi.org/10.1111/j.1574-6941.2011.01264.x. PMid:22126519.
http://dx.doi.org/10.1111/j.1574-6941.20...
reported the salinity tolerance threshold for the growth of the species as being between 0.5 and 5 ppm. Calandrino & Paerl (2011)CALANDRINO, E.S. and PAERL, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9. http://dx.doi.org/10.1016/j.hal.2011.04.003.
http://dx.doi.org/10.1016/j.hal.2011.04....
reported that the species can withstand mesohaline conditions, with values between 7 and 8 ppm, only reducing its growth at concentrations higher than 8 ppm. Furthermore, Engström-Öst et al. (2015)ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
indicated C. raciborskii tolerance in salinity conditions ranging from 4.5 to 8 ppm.

3.6. Nutrients

The growth of C. raciborskii, in particular its ability to form blooms, is reported to be influenced by the concentrations of some nutrients that are typically observed in eutrophic environments (Yang et al., 2017YANG, J.R., LV, H., ISABWE, A., LIU, L., YU, X., CHEN, H. and YANG, J. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 2017, 120, 52-63. http://dx.doi.org/10.1016/j.watres.2017.04.062. PMid:28478295.
http://dx.doi.org/10.1016/j.watres.2017....
). The biomass changes of most species of cyanobacteria are related to nutrient content in aquatic ecosystems and are summarized in Table 1.

Table 1
Some abiotic environmental factors that influence C. raciborskii dominance.

3.6.1. Nitrogen concentrations

Tolerance to low environmental nitrogen concentrations is related to the presence of specialized cells called heterocytes. These cells have a thick cell wall providing an anaerobic intracellular environment. This is required for fixation of atmospheric nitrogen (N2) and allows C. raciborskii to survive in environments with dissolved nitrogen deficiency (Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.; Moustaka-Gouni et al., 2007MOUSTAKA-GOUNI, M., VARDAKA, E. and TRYFON, E. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia, 2007, 575(1), 129-140. http://dx.doi.org/10.1007/s10750-006-0360-4.
http://dx.doi.org/10.1007/s10750-006-036...
; Wiedner et al., 2007WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
; Everson et al., 2011EVERSON, S., FABBRO, L., KINNEAR, S. and WRIGHT, P. Extreme differences in akinete, heterocyte and cylindrospermopsin concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. Harmful Algae, 2011, 10(3), 265-276. http://dx.doi.org/10.1016/j.hal.2010.10.006.
http://dx.doi.org/10.1016/j.hal.2010.10....
; Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
; Barros et al., 2015BARROS, M.U.G., LOPES, I.K.C., FARIAS, W.R.L. and CAPELO NETO, J. Efeitos da depleção de nutrientes no crescimento e na densidade de células da espécie Cylindrospermopsis raciborskii. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 2015, 8(1), 71-83.; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
).

In addition, this species has a high affinity for the ammonium ion that represents a more available nitrogen source (Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
; Barros et al., 2015BARROS, M.U.G., LOPES, I.K.C., FARIAS, W.R.L. and CAPELO NETO, J. Efeitos da depleção de nutrientes no crescimento e na densidade de células da espécie Cylindrospermopsis raciborskii. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 2015, 8(1), 71-83.; Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.). Nevertheless, it is possible to find C. raciborskii in environments with low concentrations of ammonia (Casali et al., 2017CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
; Engström-Öst et al., 2015ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
). Experiments by Barros et al. (2015)BARROS, M.U.G., LOPES, I.K.C., FARIAS, W.R.L. and CAPELO NETO, J. Efeitos da depleção de nutrientes no crescimento e na densidade de células da espécie Cylindrospermopsis raciborskii. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 2015, 8(1), 71-83. and Lima (2015)LIMA, V.F.M. Dinâmica do fitoplâncton e assimilação de nitrato, amônio e ureia em reservatórios subtropicais com diferentes graus de trofia [Dissertação de Mestrado em Engenharia Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo, 2015, 138 p. in Brazilian reservoirs, showed that C. raciborskii prefers and grows faster using ammonium ions, followed by nitrate and urea.

Ammar et al. (2014)AMMAR, M., COMTE, K., CHI TRAN, T.D. and BOUR, M.E. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions. Annales de Limnologie, 2014, 50(3), 231-240. http://dx.doi.org/10.1051/limn/2014096.
http://dx.doi.org/10.1051/limn/2014096...
argued that in the absence of nitrate the species declines rapidly and at higher nitrate concentrations the species continues to have a low biomass. As such, C. raciborskii loses its rapid growth advantage when nitrate forms the sole source of nitrogen. Moreover, Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
found C. raciborskii heterocytes to be fewer or absent in high concentrations of NO3, thereby indicating the consumption of NO3 as a source of nitrogen. However, Briand et al. (2002)BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7. PMid:12188114.
http://dx.doi.org/10.1016/S0043-1354(02)...
explained the low percentage of heterocytes in lower nitrate concentrations by the species’ preference for ammonium ion as nitrogen source. Additionally, Casali (2014)CASALI, S.P. A comunidade fitoplanctônica no reservatório de Itupararanga (Bacia do Rio Sorocaba, SP) [Tese de Doutorado em Engenharia Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo, 2014, 195 p. noted the presence of heterocytes in most trichomes, even without nitrogen limitation, in a sub-tropical reservoir.

Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593. argued that nitrogen fixation is a factor that contributes to the dominance of C. raciborskii. However, Tucci & Sant’Anna (2003)TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
, Burford et al. (2006)BURFORD, M.A., MCNEALE, K.L. and MCKENZIE-SMITH, F.J. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshwater Biology, 2006, 51(11), 2143-2153. http://dx.doi.org/10.1111/j.1365-2427.2006.01630.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
, Moustaka-Gouni et al. (2007)MOUSTAKA-GOUNI, M., VARDAKA, E. and TRYFON, E. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia, 2007, 575(1), 129-140. http://dx.doi.org/10.1007/s10750-006-0360-4.
http://dx.doi.org/10.1007/s10750-006-036...
and Karadžić et al. (2013)KARADŽIĆ, V., SIMIĆ, G.S., NATIĆ, D., RŽANIČANIN, A., ĆIRIĆ, M. and GAČIĆ, Z. Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia, 2013, 711(1), 43-60. http://dx.doi.org/10.1007/s10750-013-1460-6.
http://dx.doi.org/10.1007/s10750-013-146...
dismissed the importance of this strategy for the intensive development of the species. They argued that, at a number of study sites, only a small number of trichomes with heterocytes have been observed. At these sites, nitrogen was never a limiting factor, primarily due to the presence of ammonium ion. In these same studies, the species was found in large quantities when NH4+ and NO3 were present in high concentration.

Ammar et al. (2014)AMMAR, M., COMTE, K., CHI TRAN, T.D. and BOUR, M.E. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions. Annales de Limnologie, 2014, 50(3), 231-240. http://dx.doi.org/10.1051/limn/2014096.
http://dx.doi.org/10.1051/limn/2014096...
showed that C. raciborskii has the capacity to grow in NH4+ free conditions and at low concentrations of ammonium ion; however, low growth rates were demonstrated under conditions of NH4 shortage, whereas under high concentrations there was a constant increase in biovolume. This finding was corroborated by Briand et al. (2002)BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7. PMid:12188114.
http://dx.doi.org/10.1016/S0043-1354(02)...
, Calandrino and Paerl (2011)CALANDRINO, E.S. and PAERL, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9. http://dx.doi.org/10.1016/j.hal.2011.04.003.
http://dx.doi.org/10.1016/j.hal.2011.04....
, Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
and Lima (2015)LIMA, V.F.M. Dinâmica do fitoplâncton e assimilação de nitrato, amônio e ureia em reservatórios subtropicais com diferentes graus de trofia [Dissertação de Mestrado em Engenharia Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo, 2015, 138 p.. These authors suggest that cyanobacteria have a greater affinity for ammonium ion as the sole source of nitrogen, giving them a competitive advantage.

3.6.2. Phosphorus concentrations

Tolerance to low phosphorus concentration is due to a higher absorption capacity and affinity compared to other photoautotrophic organisms. This suggests that C. raciborskii is opportunistic with respect to dissolved inorganic phosphorus (Isvánovics et al., 2000ISVÁNOVICS, V., SHAFIK, H.M., PRÉSING, M. and JUHOS, S. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology, 2000, 43(2), 257-275. http://dx.doi.org/10.1046/j.1365-2427.2000.00549.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
). Both inorganic phosphorus and total phosphorus concentrations vary widely in aquatic environments dominated by C. raciborskii (Burford & Davis, 2011BURFORD, M.A. and DAVIS, T.W. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese Journal of Oceanology and Limnology, 2011, 29(4), 883-891. http://dx.doi.org/10.1007/s00343-011-0517-5.
http://dx.doi.org/10.1007/s00343-011-051...
; Wu et al., 2012WU, Z., ZENG, B., LI, R. and SONG, L. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation. Harmful Algae, 2012, 15, 53-58. http://dx.doi.org/10.1016/j.hal.2011.11.005.
http://dx.doi.org/10.1016/j.hal.2011.11....
; Wojciechowski, 2013WOJCIECHOWSKI, J. Efeitos da Temperatura, Fósforo e Luz no crescimento da cianobactéria Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju do reservatório de Alagados, Paraná [Dissertação de Mestrado em Botânica]. Curitiba: Universidade Federal de Paraná, 2013, 123 p.; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
), and this ability can be important for the formation of akinetes (Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
; Tonetta et al., 2015TONETTA, D., HENNEMANN, M.C., BRENTANO, D.M. and PETRUCIO, M.M. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake. Acta Botanica Brasílica, 2015, 29(3), 448-451. http://dx.doi.org/10.1590/0102-33062015abb0039.
http://dx.doi.org/10.1590/0102-33062015a...
).

Padisák (1997)PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593., Bai et al. (2014)BAI, F., LIU, R., YANG, Y., RAN, X., SHI, J. and WU, Z. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae, 2014, 39, 112-120. http://dx.doi.org/10.1016/j.hal.2014.06.015.
http://dx.doi.org/10.1016/j.hal.2014.06....
and Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
have observed that C. raciborskii, under conditions of limited environmental phosphate, displays high affinity absorption and an ability to store different sources of organic phosphorus in the cytoplasm in the form of polyphosphates to support their growth. In addition, Willis et al. (2017WILLIS, A., POSSELT, A.J. and BURFORD, M.A. Variations in carbon-to-phosphorus ratios of two Australian strains of Cylindrospermopsis raciborskii. European Journal of Phycology, 2017, 52(3), 303-310. http://dx.doi.org/10.1080/09670262.2017.1286524.
http://dx.doi.org/10.1080/09670262.2017....
, 2019WILLIS, A., CHUANG, A.W., DYHRMAN, S. and BURFORD, M.A. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains. Harmful Algae, 2019, 82, 19-25. http://dx.doi.org/10.1016/j.hal.2018.12.003. PMid:30928007.
http://dx.doi.org/10.1016/j.hal.2018.12....
) evaluated the ability of different strains of C. raciborskii to obtain and reserve phosphorus. They showed that this ability may differ between strains, implying that growth may occur under conditions of widely varying phosphorus availability.

Briand et al. (2002)BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7. PMid:12188114.
http://dx.doi.org/10.1016/S0043-1354(02)...
, Fuentes et al. (2010)FUENTES, M.S., RICK, J.J. and HASENSTEIN, K.H. Occurrence of a Cylindrospermopsis bloom in Louisiana. Journal of Great Lakes Research, 2010, 36(3), 458-464. http://dx.doi.org/10.1016/j.jglr.2010.05.006.
http://dx.doi.org/10.1016/j.jglr.2010.05...
, Wu et al. (2012)WU, Z., ZENG, B., LI, R. and SONG, L. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation. Harmful Algae, 2012, 15, 53-58. http://dx.doi.org/10.1016/j.hal.2011.11.005.
http://dx.doi.org/10.1016/j.hal.2011.11....
, Marinho et al. (2013)MARINHO, M.M., SOUZA, M.B.G. and LÜRLING, M. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial Ecology, 2013, 66(3), 479-488. http://dx.doi.org/10.1007/s00248-013-0232-1. PMid:23636583.
http://dx.doi.org/10.1007/s00248-013-023...
, Bai et al. (2014)BAI, F., LIU, R., YANG, Y., RAN, X., SHI, J. and WU, Z. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae, 2014, 39, 112-120. http://dx.doi.org/10.1016/j.hal.2014.06.015.
http://dx.doi.org/10.1016/j.hal.2014.06....
, Antunes et al. (2015)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
, Barros et al. (2015)BARROS, M.U.G., LOPES, I.K.C., FARIAS, W.R.L. and CAPELO NETO, J. Efeitos da depleção de nutrientes no crescimento e na densidade de células da espécie Cylindrospermopsis raciborskii. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 2015, 8(1), 71-83. and Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
considered C. raciborskii to be opportunistic regarding dissolved inorganic phosphorus (DIP) use. They cite its apparent ability to regulate its physiologic metabolism and to adapt to low environmental DIP concentrations with increased alkaline phosphatase production. This adjustment mechanism reduces phosphorus limitation to the cell.

Jones & Sauter (2005)JONES, W.W. and SAUTER, S. Distribution and abundance of Cylindrospermopsis raciborskii in Indiana lakes and reservoirs. Indianapolis: Indiana Department of Environmental Management, 2005. observed that the presence of C. raciborskii was closely related to high concentrations of total phosphorus (TP). However, Bouvy et al. (2000)BOUVY, M., FALCÃO, D., MARINHO, M., PAGANO, M. and MOURA, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 2000, 23(1), 13-27. http://dx.doi.org/10.3354/ame023013.
http://dx.doi.org/10.3354/ame023013...
found that the abundance of the species was not directly dependent on TP concentrations. The Brazilian reservoirs they studied present phosphorus deficiency but dominance of the species.

3.6.3. N:P ratio

Kim et al. (2007)KIM, H.-S., HWANG, S.-J., SHIN, J.-K., AN, K.-G. and YOON, C.G. AN, K.-G. and YOON, C.G. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia, 2007, 581(1), 255-267. http://dx.doi.org/10.1007/s10750-006-0501-9.
http://dx.doi.org/10.1007/s10750-006-050...
reported that the N:P ratio is a determinant of cyanobacteria proliferation. In bioassays conducted on the addition of phosphorus and nitrogen to phytoplankton, they found that the increasing from 4:1 to 30:1 N:P ratio did not result in increasing in the growth of C. raciborskii. On the other hand, Burford et al. (2016)BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
showed higher concentrations of C. raciborskii cells in high N:P ratios.

Vargas & Calijuri (2013)VARGAS, S.R. and CALIJURI, M.C. Simulação de níveis tróficos de um reservatório subtropical brasileiro na interação entre duas espécies fitoplanctônicas. In: Anais do XIV Congresso Brasileiro de Limnologia. Rio Claro: ABLimno, 2013. observed that in laboratory experiments with strains of C. raciborskii isolated from the Itupararanga reservoir, a high N:P ratio (28:1) was not associated with reduced growth when interacting with M. contortum. Chislock et al. (2014)CHISLOCK, M.F., SHARP, K.L. and WILSON, A.E. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Research, 2014, 49, 207-214. http://dx.doi.org/10.1016/j.watres.2013.11.022. PMid:24333522.
http://dx.doi.org/10.1016/j.watres.2013....
found C. raciborskii comprising 100% of the total biomass of phytoplankton in a lake in the US under low (7:1) and high (122:1) N:P ratios.

Kenesi et al. (2009)KENESI, G., SHAFIK, H., KOVÁCS, A., HERODEK, S. and PRÉSING, M. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia, 2009, 623(1), 191-202. http://dx.doi.org/10.1007/s10750-008-9657-9.
http://dx.doi.org/10.1007/s10750-008-965...
proposed that C. raciborskii has the capacity to grow faster and maintain high biomass in phosphorus-limited conditions if NH4 or NO3 are available. Recknagel et al. (2019)RECKNAGEL, F., ZOHARY, T., RÜCKER, J., ORR, P.T., BRANCO, C.C. and NIXDORF, B. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling. Harmful Algae, 2019, 84, 222-232. http://dx.doi.org/10.1016/j.hal.2019.04.005. PMid:31128807.
http://dx.doi.org/10.1016/j.hal.2019.04....
have also demonstrated rapid growth in tropical nitrogen-limited environments. Cunha & Calijuri (2011)CUNHA, D.G.F. and CALIJURI, M.D. Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake and Reservoir Management, 2011, 27(2), 162-172. http://dx.doi.org/10.1080/07438141.2011.574974.
http://dx.doi.org/10.1080/07438141.2011....
and Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
observed the species in the Itupararanga reservoir under phosphorus limitation, but nitrate availability.

4. Biotic Factors

4.1. Allelopathy

The ability to produce and secrete allelopathic substance1s has recently been suggested to have contributed to the geographic expansion of C. raciborskii. This was first demonstrated in a study of a lake in southeastern Brazil, where this species had become dominant (Figueredo et al., 2007FIGUEREDO, C.C., GIANI, A. and BIRD, D.F. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? Journal of Phycology, 2007, 43(2), 256-265. http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x.
http://dx.doi.org/10.1111/j.1529-8817.20...
). Exudates from different strains resulted in strong inhibitory effects on the photosynthetic activity of other algae (Antunes et al., 2012ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Influence of biotic and abiotic factors on the allelopathic activity of the Cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microbial Ecology, 2012, 64(3), 584-592. http://dx.doi.org/10.1007/s00248-012-0061-7. PMid:22562107.
http://dx.doi.org/10.1007/s00248-012-006...
). Allelopathy was considered by the authors to be a useful competitive mechanism, and a potentially significant factor in C. raciborskii’s propagation in bodies of water in temperate climates (Figueredo et al., 2007FIGUEREDO, C.C., GIANI, A. and BIRD, D.F. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? Journal of Phycology, 2007, 43(2), 256-265. http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x.
http://dx.doi.org/10.1111/j.1529-8817.20...
; Figueredo & Giani, 2009FIGUEREDO, C.C. and GIANI, A. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica - Ecology and Management of Inland Waters, 2009, 39(4), 264-272. http://dx.doi.org/10.1016/j.limno.2009.06.009.
http://dx.doi.org/10.1016/j.limno.2009.0...
; Leão et al., 2009LEÃO, P.N., VASCONCELOS, M.T.S.D. and VASCONCELOS, V.M. Allelopathic activity of cyanobacteria on green microalgae at low cell densities. European Journal of Phycology, 2009, 44(3), 347-355. http://dx.doi.org/10.1080/09670260802652156.
http://dx.doi.org/10.1080/09670260802652...
).

The success of allelopathic activity in invasive species can be explained by the fact that native species have not had long periods of coexistence with them, and therefore have not evolved to tolerate the allelochemicals produced (Fistarol et al., 2004FISTAROL, G.O., LEGRAND, C., SELANDER, E., HUMMERT, C., STOLTE, W. and GRANÉLI, E. Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 2004, 35(1), 45-56. http://dx.doi.org/10.3354/ame035045.
http://dx.doi.org/10.3354/ame035045...
). Leão et al. (2009)LEÃO, P.N., VASCONCELOS, M.T.S.D. and VASCONCELOS, V.M. Allelopathic activity of cyanobacteria on green microalgae at low cell densities. European Journal of Phycology, 2009, 44(3), 347-355. http://dx.doi.org/10.1080/09670260802652156.
http://dx.doi.org/10.1080/09670260802652...
tested the allelopathic effects of several strains of C. raciborskii in Portuguese reservoirs. The LEGE 99043 strain was shown to significantly inhibit the growth of the microalgae Ankistrodemsus falcatus. A later study by Antunes et al. (2012)ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Influence of biotic and abiotic factors on the allelopathic activity of the Cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microbial Ecology, 2012, 64(3), 584-592. http://dx.doi.org/10.1007/s00248-012-0061-7. PMid:22562107.
http://dx.doi.org/10.1007/s00248-012-006...
showed that the activity of the allelopathic LEGE 99043 strain was influenced by different environmental parameters. Phosphorus deprivation, high temperature and light intensity resulted in greater allelopathic activity, suggesting that ecophysiological allelopathy may have a high degree of relevance. In particular, the increasing in allelopathic activity at high temperatures may be important considering the role of climate warming in the spread of the species in temperate climates.

Dantas et al. (2008)DANTAS, Ê.W., MOURA, A.D.N., BITTENCOURT-OLIVEIRA, M.D.C., ARRUDA NETO, J.D.D.T. and CAVALCANTI, A.D.D.C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Botanica Brasílica, 2008, 22(4), 970-982. http://dx.doi.org/10.1590/S0102-33062008000400008.
http://dx.doi.org/10.1590/S0102-33062008...
and Soares et al. (2009)SOARES, M.C.S., LÜRLING, M., PANOSSO, R. and HUSZAR, V. Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicology and Environmental Safety, 2009, 72(4), 1183-1189. http://dx.doi.org/10.1016/j.ecoenv.2008.09.004. PMid:18951629.
http://dx.doi.org/10.1016/j.ecoenv.2008....
analyzed samples from a tropical reservoir, where populations of this species and Microcystis aeruginosa coexisted naturally. Inhibition of M. aeruginosa growth was observed after exposure to exudates from mixed cultures with a high proportion of C. raciborskii (Mello et al., 2012MELLO, M.M.E., SOARES, M.C.S., ROLAND, F. and LÜRLING, M. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. Journal of Plankton Research, 2012, 34(11), 987-994. http://dx.doi.org/10.1093/plankt/fbs056.
http://dx.doi.org/10.1093/plankt/fbs056...
). This result demonstrates that allelopathy may also be important in explaining the seasonal dynamics of the species. On the other hand, C. raciborskii showed the ability to overcome Microcystis sp. in a mixed culture by producing compounds, not yet characterized as allelopathic, that mimic the action cylindrospermopsin (Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
; Rzymski et al., 2014RZYMSKI, P., PONIEDZIAŁEK, B., KOKOCIŃSKI, M., JURCZAK, T., LIPSKI, D. and WIKTOROWICZ, K. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae, 2014, 35, 1-8. http://dx.doi.org/10.1016/j.hal.2014.03.002.
http://dx.doi.org/10.1016/j.hal.2014.03....
).

Laboratory experiments performed by Vargas & Calijuri (2013)VARGAS, S.R. and CALIJURI, M.C. Simulação de níveis tróficos de um reservatório subtropical brasileiro na interação entre duas espécies fitoplanctônicas. In: Anais do XIV Congresso Brasileiro de Limnologia. Rio Claro: ABLimno, 2013. regarding the interaction between C. raciborskii and the Chlorophyceae Monoraphidium contortum, in which environments with varying degrees of nutrient concentration were simulated, demonstrated that C. raciborskii growth was not inhibited by the presence of M. contortum. Furthermore, as showed by Casali et al. (2017)CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
in a mesotrophic subtropical reservoir, these cyanobacteria were capable of coexisting with M. contortum. According to the authors, despite the coexistence, the C. raciborskii biomass was on average 500 times greater than that of M. contortum.

4.2. Herbivory

The consumption by zooplankton can limit the growth of cyanobacteria. However, cyanobacteria display a number of mechanisms that reduce this predation, including size and shape of the cell, nutritional quality and toxicity. Because of low levels of polyunsaturated fatty acids compared to other phytoplanktic groups – an important nutrient for zooplankton development – the consumption of these cyanobacteria can be disadvantageous, reducing the growth, reproduction and, consequently, the survival of its predator (Tucci & Sant’Anna, 2003TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
; Leonard & Paerl, 2005LEONARD, J.A. and PAERL, H.W. Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2005, 537(1), 89-97. http://dx.doi.org/10.1007/s10750-004-2483-9.
http://dx.doi.org/10.1007/s10750-004-248...
; Magalhães, 2014MAGALHÃES, R.A. Herbivoria de Bosmina freyi e suas relações ecológicas no Reservatório de Itupararanga - Votorantim/SP [Dissertação de Mestrado em Diversidade Biológica e Conservação]. Sorocaba: Universidade Federal de São Carlos, 2014, 84 p.; Burford et al., 2016BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012. PMid:28073481.
http://dx.doi.org/10.1016/j.hal.2015.10....
).

The earliest study about herbivory of C. raciborskii was conducted by Seenayya (1971)SEENAYYA, G. Ecological studies in the plankton of certain freshwater ponds of hyderabad - India I. Physico-chemical complexes. Hydrobiologia, 1971, 37(1), 7-31. http://dx.doi.org/10.1007/BF00016365.
http://dx.doi.org/10.1007/BF00016365...
, who noted zooplankton peaks preceded by phytoplankton growth in a shallow pond in India. A setback in the development of zooplankton was identified particularly in the presence of C. raciborskii. The same was observed by Branco & Senna (1994)BRANCO, C.W.C. and SENNA, P.A.C. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasilia, Brazil. Algological Studies, 1994, 75, 85-96., a zooplanktic species from the Paranoá reservoir in Brazil was shown to be generally incapable of consuming this permanently occurring C. raciborskii at high densities.

Studies by Berger et al. (2006)BERGER, C., BA, N., GUGGER, M., BOUVY, M., RUSCONI, F., COUTÉ, A., TROUSSELLIER, M. and BERNARD, C. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology, 2006, 57(3), 355-366. http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x. PMid:16907750.
http://dx.doi.org/10.1111/j.1574-6941.20...
in a lake in Senegal, Africa, showed that the proliferation of C. raciborskii consists of toxic and non-toxic clones and the authors concluded that the low presence of toxic strains in environmental samples was due to low herbivory pressure. Wiedner et al. (2007)WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
concluded that herbivores do not play an important role in population control of C. raciborskii, but noted that large species such as Daphnia magna or D. pulex, which are capable of ingesting C. raciborskii, were not present in the lakes they studied. However, Weithoff et al. (2017)WEITHOFF, G., TAUBE, A. and BOLIUS, S. The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms: genetic identity, grazing loss, competition and biotic resistance. Aquatic Invasions, 2017, 12(3), 333-341. http://dx.doi.org/10.3391/ai.2017.12.3.07.
http://dx.doi.org/10.3391/ai.2017.12.3.0...
have demonstrated, in experiments on mesocosms, that top-down control can occur under specific conditions.

In experiments conducted by Fabre et al. (2017)FABRE, A., LACEROT, G., DE PAIVA, R.R., SOARES, M.C.S., DE MAGALHÃES, V.F. and BONILLA, S. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia, 2017, 785(1), 61-69. http://dx.doi.org/10.1007/s10750-016-2903-7.
http://dx.doi.org/10.1007/s10750-016-290...
, where highly toxic strains of C. raciborskii were ingested by Neothyris iheringi, toxicity was shown to play a more important role than morphology in determining clearance rates of this zooplankton. In addition, subtropical species of zooplankton, such as Cladocera and Copepoda, demonstrate a weak potential for predatory control of C. raciborskii, thus favoring the growth and dispersion of this cyanobacterium in aquatic ecosystems. Biotic factors related to dominance of C. raciborskii are summarized in Table 2

Table 2
Some biotic factors that influence C. raciborskii dominance.

5. Ecotypes or Metabolic Plasticity?

An analysis of C. raciborskii’s environmental requirements demonstrates its great ability to survive in different conditions. The ecological success of Cylindrospermopsis can be attributed to ability to tolerate a range of enviromental conditions. Ecophysiologic plasticity, or the existence of ecotypes with different preferences and environmental tolerances (Berger et al., 2006BERGER, C., BA, N., GUGGER, M., BOUVY, M., RUSCONI, F., COUTÉ, A., TROUSSELLIER, M. and BERNARD, C. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology, 2006, 57(3), 355-366. http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x. PMid:16907750.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
), has been noted by several authors (Chonudomkul et al., 2004CHONUDOMKUL, D., YONGMANITCHAI, W., THEERAGOOL, G., KAWACHI, M., KASAI, F., KAYA, K. and WATANABE, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology, 2004, 48(3), 345-355. http://dx.doi.org/10.1016/j.femsec.2004.02.014. PMid:19712304.
http://dx.doi.org/10.1016/j.femsec.2004....
; Fuentes et al., 2010FUENTES, M.S., RICK, J.J. and HASENSTEIN, K.H. Occurrence of a Cylindrospermopsis bloom in Louisiana. Journal of Great Lakes Research, 2010, 36(3), 458-464. http://dx.doi.org/10.1016/j.jglr.2010.05.006.
http://dx.doi.org/10.1016/j.jglr.2010.05...
; Bonilla et al., 2012BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x. PMid:22092489.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Gomes et al., 2013GOMES, A.M.A., MARINHO, M.M. and AZEVEDO, S.M.F.O. Which factors are related to the success of Cylindrospermopsis raciborskii in brazilian aquatic systems? In A.S. FERRÃO-FILHO, ed. Cyanobacteria: ecology, toxicology and management. New York: Nova Science Publishers, 2013, pp. 73-94.; Soares et al., 2013SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycological Research, 2013, 61(1), 61-67. http://dx.doi.org/10.1111/pre.12001.
http://dx.doi.org/10.1111/pre.12001...
; Pierangelini et al., 2014bPIERANGELINI, M., STOJKOVIC, S., ORR, P.T. and BEARDALL, J. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. Journal of Phycology, 2014b, 50(2), 292-302. http://dx.doi.org/10.1111/jpy.12157. PMid:26988186.
http://dx.doi.org/10.1111/jpy.12157...
; Antunes et al., 2015ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473. PMid:26042108.
http://dx.doi.org/10.3389/fmicb.2015.004...
; Wojciechowski et al., 2016WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322.
http://dx.doi.org/10.1590/0102-33062015a...
; Casali et al., 2017CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266. PMid:28771148.
http://dx.doi.org/10.2166/wh.2017.266...
; Fabre et al., 2017FABRE, A., LACEROT, G., DE PAIVA, R.R., SOARES, M.C.S., DE MAGALHÃES, V.F. and BONILLA, S. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia, 2017, 785(1), 61-69. http://dx.doi.org/10.1007/s10750-016-2903-7.
http://dx.doi.org/10.1007/s10750-016-290...
; Xiao et al., 2017XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008. PMid:28118895.
http://dx.doi.org/10.1016/j.hal.2016.12....
).

Metabolic plasticity is the process by which a single genotype is capable of producing different phenotypes (organisms with different morphological and physiological characteristics) under changing environmental conditions (Pigliucci, 2001PIGLIUCCI, M. Phenotypic plasticity: beyond nature and nurture. Baltimore: Johns Hopkins University Press, 2001.). This may be the result of change in expressed gene activity or rearrangement of information contained within a genotype (Morales et al., 2002MORALES, E.A., TRAINOR, F.R. and SCHLICHTING, C.D. Evolutionary and ecological implications of plastic responses of algae. Constancea, 2002, 83(4), 1-24.; Comte et al., 2013COMTE, J., FAUTEUX, L. and GIORGIO, P.A. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Frontiers in Microbiology, 2013, 4, 112. http://dx.doi.org/10.3389/fmicb.2013.00112. PMid:23675372.
http://dx.doi.org/10.3389/fmicb.2013.001...
).

Although plasticity should lead to the expression of a more appropriate phenotype in a given environment, there are costs to this strategy (Morales et al., 2002MORALES, E.A., TRAINOR, F.R. and SCHLICHTING, C.D. Evolutionary and ecological implications of plastic responses of algae. Constancea, 2002, 83(4), 1-24.). According to Pigliucci (2001)PIGLIUCCI, M. Phenotypic plasticity: beyond nature and nurture. Baltimore: Johns Hopkins University Press, 2001., the costs relate to five concepts: the maintenance of the genetic infrastructure capable of responding to the need for plasticity; the production of a phenotype by way of plasticity mechanisms; the acquisition of information from the environment; the developmental instability that results from the ability to modulate the phenotype; and the interference with the binding and interaction of plasticity genes.

By contrast, ecotypes are defined as groups that are genetically and phenotypically distinct from a major population and adapted to local climatic conditions (Hufford & Mazer, 2003HUFFORD, K.M. and MAZER, S.J. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology & Evolution, 2003, 18(3), 147-155. http://dx.doi.org/10.1016/S0169-5347(03)00002-8.
http://dx.doi.org/10.1016/S0169-5347(03)...
). They have the potential to become a single species, provided that there is some sort of barrier preventing the exchange of genes (Morales et al., 2002MORALES, E.A., TRAINOR, F.R. and SCHLICHTING, C.D. Evolutionary and ecological implications of plastic responses of algae. Constancea, 2002, 83(4), 1-24.; DeLong & Karl, 2005DELONG, E.F. and KARL, D.M. Genomic perspectives in microbial oceanography. Nature, 2005, 437(7057), 336-342. http://dx.doi.org/10.1038/nature04157. PMid:16163343.
http://dx.doi.org/10.1038/nature04157...
; Wiedner et al., 2007WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
; Willis et al., 2015WILLIS, A., ADAMS, M.P., CHUANG, A.W., ORR, P.T., O’BRIEN, K.R. and BURFORD, M.A. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34. http://dx.doi.org/10.1016/j.hal.2015.05.011.
http://dx.doi.org/10.1016/j.hal.2015.05....
, 2016WILLIS, A., CHUANG, A.W., WOODHOUSE, J.N., NEILAN, B.A. and BURFORD, M.A. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon, 2016, 119, 307-310. http://dx.doi.org/10.1016/j.toxicon.2016.07.005. PMid:27390039.
http://dx.doi.org/10.1016/j.toxicon.2016...
). Thus, ecotypes describe a discrete set of defined strains according to the sequence of core genes. This provides a stable basis for taxonomy (Kumar et al., 2015KUMAR, N., LAD, G., GIUNTINI, E., KAYE, M.E., UDOMWONG, P., SHAMSANI, N.J., YOUNG, J.P. and BAILLY, X. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biology, 2015, 5(1), 140133. http://dx.doi.org/10.1098/rsob.140133. PMid:25589577.
http://dx.doi.org/10.1098/rsob.140133...
). Metabolic plasticity refers to a species that has several genes for a specific factor (Comte et al., 2013COMTE, J., FAUTEUX, L. and GIORGIO, P.A. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Frontiers in Microbiology, 2013, 4, 112. http://dx.doi.org/10.3389/fmicb.2013.00112. PMid:23675372.
http://dx.doi.org/10.3389/fmicb.2013.001...
), and ecotype refers to a species that may (or may not) have active genes for a specific factor (Kumar et al., 2015KUMAR, N., LAD, G., GIUNTINI, E., KAYE, M.E., UDOMWONG, P., SHAMSANI, N.J., YOUNG, J.P. and BAILLY, X. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biology, 2015, 5(1), 140133. http://dx.doi.org/10.1098/rsob.140133. PMid:25589577.
http://dx.doi.org/10.1098/rsob.140133...
).

The bacterial genome is characterized by diversity and can be extremely dynamic. It may acquire and lose genes, forming a genomic assembly adapted to each specific habitat (Kashtan et al., 2014KASHTAN, N., ROGGENSACK, S.E., RODRIGUE, S., THOMPSON, J.W., BILLER, S.J., COE, A., DING, H., MARTTINEN, P., MALMSTROM, R.R., STOCKER, R., FOLLOWS, M.J., STEPANAUSKAS, R. and CHISHOLM, S.W. Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus. Science, 2014, 344(6182), 416-420. http://dx.doi.org/10.1126/science.1248575. PMid:24763590.
http://dx.doi.org/10.1126/science.124857...
; Kümmerli et al., 2009KÜMMERLI, R., JIRICNY, N., CLARKE, L.S., WEST, S.A. and GRIFFIN, A.S. Phenotypic plasticity of a cooperative behaviour in bacteria. Journal of Evolutionary Biology, 2009, 22(3), 589-598. http://dx.doi.org/10.1111/j.1420-9101.2008.01666.x. PMid:19170825.
http://dx.doi.org/10.1111/j.1420-9101.20...
; Lima-Bittencourt et al., 2007LIMA-BITTENCOURT, C.I., ASTOLFI-FILHO, S., CHARTONE-SOUZA, E., SANTOS, F.R. and NASCIMENTO, A.M. Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC Microbiology, 2007, 7(1), 58. http://dx.doi.org/10.1186/1471-2180-7-58. PMid:17584942.
http://dx.doi.org/10.1186/1471-2180-7-58...
). Changes responsible for the plasticity of the genome mostly result from horizontal gene transfer. Point mutations in enzymes that represent the metabolic bottlenecks increase the diversity of substrates or change the enzymes’ specificities. However, increased diversity can also occur via vertical transfer, where enzymes are incorporated that transform novel compounds already used in another metabolism (Tooming-Klunderud et al., 2013TOOMING-KLUNDERUD, A., SOGGE, H., ROUNGE, T.B., NEDERBRAGT, A.J., LAGESEN, K., GLÖCKNER, G., HAYES, P.K., ROHRLACK, T. and JAKOBSEN, K.S. From green to red: horizontal gene transfer of the phycoerythrin gene cluster between Planktothrix Strains. Applied and Environmental Microbiology, 2013, 79(21), 6803-6812. http://dx.doi.org/10.1128/AEM.01455-13. PMid:23995927.
http://dx.doi.org/10.1128/AEM.01455-13...
).

Corno & Jürgens (2006)CORNO, G. and JÜRGENS, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology, 2006, 72(1), 78-86. http://dx.doi.org/10.1128/AEM.72.1.78-86.2006. PMid:16391028.
http://dx.doi.org/10.1128/AEM.72.1.78-86...
suggested that general mechanisms of direct grazing and size selection, as well as chemical induction of morphotypes, can determine the size structure of the population of a bacterial strain with high phenotypic plasticity. Huber et al. (2017)HUBER, P., DIOVISALVI, N., FERRARO, M., METZ, S., LAGOMARSINO, L., LLAMES, M.E., ROYO-LLONCH, M., BUSTINGORRY, J., ESCARAY, R., ACINAS, S.G., GASOL, J.M. and UNREIN, F. Phenotypic plasticity in freshwater picocyanobacteria. Environmental Microbiology, 2017, 19(3), 1120-1133. http://dx.doi.org/10.1111/1462-2920.13638. PMid:27943603.
http://dx.doi.org/10.1111/1462-2920.1363...
, analyzing populations of picocyanobacteria, described great phenotypic plasticity (formation of aggregations) influenced by environmental factors and predation.

In bacteria, there are also some examples of the existence of different ecotypes. Sher et al. (2011)SHER, D., THOMPSON, J.W., KASHTAN, N., CROAL, L. and CHISHOLM, S.W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. The ISME Journal, 2011, 5(7), 1125-1132. http://dx.doi.org/10.1038/ismej.2011.1. PMid:21326334.
http://dx.doi.org/10.1038/ismej.2011.1...
studied the Prochlorococcus marinus and observed that this species is divided into at least two ecotypes, with different capacities for using light, nitrogen and phosphorus. Koops et al. (1991)KOOPS, H.P., BÖTTCHER, B., MÖLLER, U.C., POMMERENING-RÖSER, A. and STEHR, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Microbiology, 1991, 137(7), 1689-1699. studied 96 Nitrosomonas sp. strains – a type of ammonia-oxidizing bacteria – and suggested the existence of at least seven ecotypes. Moreover, Fabre et al. (2017)FABRE, A., LACEROT, G., DE PAIVA, R.R., SOARES, M.C.S., DE MAGALHÃES, V.F. and BONILLA, S. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia, 2017, 785(1), 61-69. http://dx.doi.org/10.1007/s10750-016-2903-7.
http://dx.doi.org/10.1007/s10750-016-290...
showed differences in the morphological and toxicological profiles of two different strains of C. raciborskii producing paralytic shellfish poison. This supports the hypothesis that these species have multiple ecotypes. Hoffmann et al. (2017)HOFFMANN, L., RAMOS, R.J.T., GUEDES, I.A., COSTA, P.F., MIGUEL, C.R.D., AZEVEDO, S.M.F.O.E. and SILVA, R. Draft genome sequences of two Brazilian cyanobacterial strains of Cylindrospermopsis raciborskii: Differences in membrane transporters, saxitoxin production, and antioxidant activities. Genome Announcements, 2017, 5(43), e00879-17. http://dx.doi.org/10.1128/genomeA.00879-17. PMid:29074674.
http://dx.doi.org/10.1128/genomeA.00879-...
studied a set of genes from two strains of C. raciborskii isolated in Brazil. The genetic differences identified pointed to two different ecotypes.

It is not yet entirely possible to determine whether the distribution of C. raciborskii in different climates is the result of high metabolic plasticity, allowing it to explore various environments differently, or the existence of different ecotypes that will predominate in specific conditions. To clarify this issue, we suggest further studies on environmental needs with isolated strains, differentiated by molecular biology, from several different ecosystems. One option would be to compare the genetic material of species from different environments. If metabolic plasticity was the underlying factor, DNA differences would be small (Corno and Jürgens, 2006CORNO, G. and JÜRGENS, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology, 2006, 72(1), 78-86. http://dx.doi.org/10.1128/AEM.72.1.78-86.2006. PMid:16391028.
http://dx.doi.org/10.1128/AEM.72.1.78-86...
), but if they are different or show a greater degree of difference between the environments the hypothesis of ecotype would better explain the predominance of this species (Kumar et al., 2015KUMAR, N., LAD, G., GIUNTINI, E., KAYE, M.E., UDOMWONG, P., SHAMSANI, N.J., YOUNG, J.P. and BAILLY, X. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biology, 2015, 5(1), 140133. http://dx.doi.org/10.1098/rsob.140133. PMid:25589577.
http://dx.doi.org/10.1098/rsob.140133...
). The problem is that a large amount of data is needed to make this comparison, including large studies of gene markers.

Another approach would be to test strains isolated from a given environment under conditions found in a different environment. This could demonstrate whether strains can adapt to different conditions by metabolic plasticity or survive and grow only under the conditions in which they were selected (ecotypes). Due to large differences, mainly related to the limits of growth and development found in some studies (Chapman and Schelske, 1997CHAPMAN, A.D. and SCHELSKE, C.L. Recent Appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida Lakes. Journal of Phycology, 1997, 33(2), 191-195. http://dx.doi.org/10.1111/j.0022-3646.1997.00191.x.
http://dx.doi.org/10.1111/j.0022-3646.19...
; Padisák, 1997PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.; Tucci & Sant’Anna, 2003TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011.
http://dx.doi.org/10.1590/S0100-84042003...
; O’Brien et al., 2009O’BRIEN, K.R., BURFORD, M.A. and BROOKES, J.D. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii. Freshwater Biology, 2009, 54(2), 272-282. http://dx.doi.org/10.1111/j.1365-2427.2008.02106.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Calandrino & Paerl, 2011CALANDRINO, E.S. and PAERL, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9. http://dx.doi.org/10.1016/j.hal.2011.04.003.
http://dx.doi.org/10.1016/j.hal.2011.04....
; Bittencourt-Oliveira et al., 2012BITTENCOURT-OLIVEIRA, M., BUCH, B., HEREMAN, T., ARRUDA-NETO, J., MOURA, A. and ZOCCHI, S. Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes: growth rate and morphology. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2012, 72(2), 343-351. http://dx.doi.org/10.1590/S1519-69842012000200016. PMid:22735143.
http://dx.doi.org/10.1590/S1519-69842012...
; Moisander et al., 2012MOISANDER, P.H., CHESHIRE, L.A., BRADDY, J., CALANDRINO, E.S., HOFFMAN, M., PIEHLER, M.F. and PAERL, H.W. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012, 79(3), 800-811. http://dx.doi.org/10.1111/j.1574-6941.2011.01264.x. PMid:22126519.
http://dx.doi.org/10.1111/j.1574-6941.20...
; Engström-Öst et al., 2015ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062.
http://dx.doi.org/10.1139/er-2014-0062...
), the possibility of different ecotypes seems the most appropriate hypothesis, with important implications for the modeling and use of organisms as bioindicators (Xiao et al., 2017XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008. PMid:28118895.
http://dx.doi.org/10.1016/j.hal.2016.12....
). Wiedner et al. (2007)WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5. PMid:17375336.
http://dx.doi.org/10.1007/s00442-007-068...
, Wu et al. (2011)WU, Z., SHI, J., XIAO, P., LIU, Y. and LI, R. Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences. Harmful Algae, 2011, 10(5), 419-425. http://dx.doi.org/10.1016/j.hal.2010.05.001.
http://dx.doi.org/10.1016/j.hal.2010.05....
, Zhang et al. (2014)ZHANG, W., LOU, I., UNG, W.K., KONG, Y. and MOK, K.M. Analysis of cylindrospermopsin- and microcystin-producing genotypes and cyanotoxin concentrations in the Macau storage reservoir. Hydrobiologia, 2014, 741(1), 51-68. http://dx.doi.org/10.1007/s10750-013-1776-2.
http://dx.doi.org/10.1007/s10750-013-177...
and Willis et al. (2015WILLIS, A., ADAMS, M.P., CHUANG, A.W., ORR, P.T., O’BRIEN, K.R. and BURFORD, M.A. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34. http://dx.doi.org/10.1016/j.hal.2015.05.011.
http://dx.doi.org/10.1016/j.hal.2015.05....
, 2016WILLIS, A., CHUANG, A.W., WOODHOUSE, J.N., NEILAN, B.A. and BURFORD, M.A. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon, 2016, 119, 307-310. http://dx.doi.org/10.1016/j.toxicon.2016.07.005. PMid:27390039.
http://dx.doi.org/10.1016/j.toxicon.2016...
, 2018WILLIS, A., WOODHOUSE, J.N., ONGLEY, S.E., JEX, A.R., BURFORD, M.A. and NEILAN, B.A. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains. Harmful Algae, 2018, 73, 157-166. http://dx.doi.org/10.1016/j.hal.2018.03.001. PMid:29602504.
http://dx.doi.org/10.1016/j.hal.2018.03....
) found major genetic differences between C. raciborskii strains from different bodies of fresh water, thereby suggesting the presence of ecotypes.

6. Conclusions

From a detailed analysis of the recent literature on the key factors responsible for the dominance and widespread distribution of C. raciborskii in natural environments throughout the world supplemented by knowledge from laboratory experiments, we conclude that:

  • The optimal temperature is about 23 °C, but may be dominant in environments with temperatures between 11 to 35 °C;

  • The optimal light intensity is between 50 and 150 µmol photons.m-2.s-1. Low Ik indicates a good ability to survive and grow in aquatic environments with very low light intensities;

  • C. raciborskii prefers stable environments, but this is not essential;

  • The ability to optimize carbon use when there are changes in its availability, and to survive in alkaline environments, is important;

  • C. raciborskii prefers oligohaline conditions and interferes in the photosynthetic activity of different algae by producing allelopathic substances;

  • Herbivory does not play an important role in the control of the C. raciborskii population, but it may be important in the selection of ecotypes;

  • Nutrients have a different influence: different concentrations of different sources of nitrogen are supported, with a preference for ammonia. In relation to phosphorus, the species can grow in conditions of high or low concentrations due to its capacity to reserve phosphorus in the cell. However, C. raciborskii is always associated with eutrophic environments.

It is clear that a better understanding of this cyanobacterium will have implications for the methods of species control, as well as complementing the knowledge about their function in aquatic ecosystems. It is not entirely possible to determine if the distribution of Cylindrospermopsis raciborskii in different climates is a result of high metabolic plasticity, allowing it to explore various environments in different ways, or of the existence of distinct ecotypes that predominate under specific conditions. However, due to the large variations in the limits of growth and development found in some studies, the possibility of distinct ecotypes seems to be the most appropriate hypothesis.

  • Cite as: Pagni, R.L., Falco, P.B. and Santos, A.C.A. Autecology of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Acta Limnologica Brasiliensia, 2020, vol. 32, e24.

References

  • ABREU, V.A.C., POPIN, R.V., ALVARENGA, D.O., SCHAKER, P.D.C., HOFF-RISSETI, C., VARANI, A.M. and FIORE, M.F. Genomic and genotypic characterization of Cylindrospermopsis raciborskii: toward an intraspecific phylogenetic evaluation by comparative genomics. Frontiers in Microbiology, 2018, 9, 979. http://dx.doi.org/10.3389/fmicb.2018.00979 PMid:29795803.
    » http://dx.doi.org/10.3389/fmicb.2018.00979
  • AGUILERA, A., GÓMEZ, E.B., KAŠTOVSKÝ, J., ECHENIQUE, R.O. and SALERNO, G.L. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia, 2018, 57(2), 130-146. http://dx.doi.org/10.2216/17-2.1
    » http://dx.doi.org/10.2216/17-2.1
  • ALSTER, A., KAPLAN-LEVY, R.N., SUKENIK, A. and ZOHARY, T. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 2010, 639(1), 115-128. http://dx.doi.org/10.1007/s10750-009-0044-y
    » http://dx.doi.org/10.1007/s10750-009-0044-y
  • AMMAR, M., COMTE, K., CHI TRAN, T.D. and BOUR, M.E. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions. Annales de Limnologie, 2014, 50(3), 231-240. http://dx.doi.org/10.1051/limn/2014096
    » http://dx.doi.org/10.1051/limn/2014096
  • ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 2015, 6, 473. http://dx.doi.org/10.3389/fmicb.2015.00473 PMid:26042108.
    » http://dx.doi.org/10.3389/fmicb.2015.00473
  • ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Influence of biotic and abiotic factors on the allelopathic activity of the Cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microbial Ecology, 2012, 64(3), 584-592. http://dx.doi.org/10.1007/s00248-012-0061-7 PMid:22562107.
    » http://dx.doi.org/10.1007/s00248-012-0061-7
  • BABANAZAROVA, O.V., SIDELEV, S.I. and FASTNER, J. Northern expansion of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) observed in shallow highly eutrophic Lake Nero (Russia). International Journal on Algae, 2015, 17(2), 131-141. http://dx.doi.org/10.1615/InterJAlgae.v17.i2.20
    » http://dx.doi.org/10.1615/InterJAlgae.v17.i2.20
  • BAI, F., LIU, R., YANG, Y., RAN, X., SHI, J. and WU, Z. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae, 2014, 39, 112-120. http://dx.doi.org/10.1016/j.hal.2014.06.015
    » http://dx.doi.org/10.1016/j.hal.2014.06.015
  • BARROS, C.F.A., SOUZA, M.B.G. and BARBOSA, F.A.R. Seasonal mechanisms driving phytoplankton size structure in a tropical deep lake (Dom Helvécio Lake, South-East Brazil). Acta Limnologica Brasiliensia, 2006, 18(1), 55-66.
  • BARROS, M.U.G., LOPES, I.K.C., FARIAS, W.R.L. and CAPELO NETO, J. Efeitos da depleção de nutrientes no crescimento e na densidade de células da espécie Cylindrospermopsis raciborskii Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 2015, 8(1), 71-83.
  • BEAMUD, G., VICO, P., HAAKONSSON, S., DE LA ESCALERA, G.M., PICCINI, C., BRENA, B.M., PIREZ, M. and BONILLA, S. Influence of UV-B radiation on the fitness and toxin expression of the cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2016, 763(1), 161-172. http://dx.doi.org/10.1007/s10750-015-2370-6
    » http://dx.doi.org/10.1007/s10750-015-2370-6
  • BERGER, C., BA, N., GUGGER, M., BOUVY, M., RUSCONI, F., COUTÉ, A., TROUSSELLIER, M. and BERNARD, C. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology, 2006, 57(3), 355-366. http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x PMid:16907750.
    » http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x
  • BITTENCOURT-OLIVEIRA, M., BUCH, B., HEREMAN, T., ARRUDA-NETO, J., MOURA, A. and ZOCCHI, S. Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes: growth rate and morphology. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2012, 72(2), 343-351. http://dx.doi.org/10.1590/S1519-69842012000200016 PMid:22735143.
    » http://dx.doi.org/10.1590/S1519-69842012000200016
  • BITTENCOURT-OLIVEIRA, M.C., MOURA, A.N., HEREMAN, T.C. and DANTAS, E.W. Increase in straight and coiled Cylindrospermopsis raciborskii (Cyanobacteria) populations under conditions of thermal de-stratification in a shallow tropical reservoir. Journal of Water and Protection, 2011, 3(4), 245-252. http://dx.doi.org/10.4236/jwarp.2011.34031
    » http://dx.doi.org/10.4236/jwarp.2011.34031
  • BOLIUS, S., WIEDNER, C. and WEITHOFF, G. High local trait variability in a globally invasive cyanobacterium. Freshwater Biology, 2017, 62(11), 1879-1890. http://dx.doi.org/10.1111/fwb.13028
    » http://dx.doi.org/10.1111/fwb.13028
  • BONILLA, S., AUBRIOT, L., SOARES, M.C.S., GONZÁLEZ-PIANA, M., FABRE, A., HUSZAR, V.L.M., LÜRLING, M., ANTONIADES, D., PADISÁK, J. and KRUK, C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 2012, 79(3), 594-607. http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x PMid:22092489.
    » http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x
  • BONILLA, S., GONZÁLEZ-PIANA, M., SOARES, M.C.S., HUSZAR, V.L.M., BECKER, V., SOMMA, A., MARINHO, M.M., KOKOCINSKI, M., DOKULIL, M., ANTONIADES, D. and AUBRIOT, L. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters in enhanced by the combined effects of light intensity and temperature. Journal of Limnology, 2016, 75(3), 606-617. http://dx.doi.org/10.4081/jlimnol.2016.1479
    » http://dx.doi.org/10.4081/jlimnol.2016.1479
  • BOUVY, M., FALCÃO, D., MARINHO, M., PAGANO, M. and MOURA, A. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 2000, 23(1), 13-27. http://dx.doi.org/10.3354/ame023013
    » http://dx.doi.org/10.3354/ame023013
  • BOUVY, M., MOLICA, R., OLIVEIRA, S., MARINHO, M. and BEKER, B. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquatic Microbial Ecology, 1999, 20(3), 285-297. http://dx.doi.org/10.3354/ame020285
    » http://dx.doi.org/10.3354/ame020285
  • BRANCO, C.W.C. and SENNA, P.A.C. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasilia, Brazil. Algological Studies, 1994, 75, 85-96.
  • BRASIL, J., HUSZAR, V.L.M., ATTAYDE, J.L., MARINHO, M.M., VAN OOSTERHOUT, F. and LÜRLING, M. Effect of suspended clay on growth rates of the cyanobacterium Cylindrospermopsis raciborskii. Fundamental and Applied Limnology, 2017, 191(1), 13-23. http://dx.doi.org/10.1127/fal/2017/1096
    » http://dx.doi.org/10.1127/fal/2017/1096
  • BRIAND, J.-F., LEBOULANGER, C., HUMBERT, J.-F., BERNARD, C. and DUFOUR, P. Cylindrospermopsis raciborskii (Cyanobacteria) Invasion At Mid-Latitudes: Selection, Wide Physiological Tolerance, Orglobalwarming? Journal of Phycology, 2004, 40(2), 231-238. http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x
    » http://dx.doi.org/10.1111/j.1529-8817.2004.03118.x
  • BRIAND, J.F., ROBILLOT, C., QUIBLIER-LLOBÉRAS, C., HUMBERT, J.F., COUTÉ, A. and BERNARD, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 2002, 36(13), 3183-3192. http://dx.doi.org/10.1016/S0043-1354(02)00016-7 PMid:12188114.
    » http://dx.doi.org/10.1016/S0043-1354(02)00016-7
  • BURFORD, M.A. and DAVIS, T.W. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese Journal of Oceanology and Limnology, 2011, 29(4), 883-891. http://dx.doi.org/10.1007/s00343-011-0517-5
    » http://dx.doi.org/10.1007/s00343-011-0517-5
  • BURFORD, M.A., BEARDALL, J., WILLIS, A., ORR, P.T., MAGALHAES, V.F., RANGEL, L.M., AZEVEDO, S.M.F.O.E. and NEILAN, B.A. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53. http://dx.doi.org/10.1016/j.hal.2015.10.012 PMid:28073481.
    » http://dx.doi.org/10.1016/j.hal.2015.10.012
  • BURFORD, M.A., MCNEALE, K.L. and MCKENZIE-SMITH, F.J. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshwater Biology, 2006, 51(11), 2143-2153. http://dx.doi.org/10.1111/j.1365-2427.2006.01630.x
    » http://dx.doi.org/10.1111/j.1365-2427.2006.01630.x
  • CALANDRINO, E.S. and PAERL, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9. http://dx.doi.org/10.1016/j.hal.2011.04.003
    » http://dx.doi.org/10.1016/j.hal.2011.04.003
  • CALIJURI, M.C., SANTOS, A.C.A. and JATI, S. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP-Brazil). Journal of Plankton Research, 2002, 24(7), 617-634. http://dx.doi.org/10.1093/plankt/24.7.617
    » http://dx.doi.org/10.1093/plankt/24.7.617
  • CARNEIRO, R.L., SANTOS, M.E.V., PACHECO, A.B.F. and AZEVEDO, S.M.F.O. Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). Journal of Plankton Research, 2009, 31(5), 481-488. http://dx.doi.org/10.1093/plankt/fbp006
    » http://dx.doi.org/10.1093/plankt/fbp006
  • CASALI, S.P. A comunidade fitoplanctônica no reservatório de Itupararanga (Bacia do Rio Sorocaba, SP) [Tese de Doutorado em Engenharia Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo, 2014, 195 p.
  • CASALI, S.P., SANTOS, A.C.A., DE FALCO, P.B. and CALIJURI, M.C. Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. Journal of Water and Health, 2017, 15(4), 509-518. http://dx.doi.org/10.2166/wh.2017.266 PMid:28771148.
    » http://dx.doi.org/10.2166/wh.2017.266
  • CHAPMAN, A.D. and SCHELSKE, C.L. Recent Appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida Lakes. Journal of Phycology, 1997, 33(2), 191-195. http://dx.doi.org/10.1111/j.0022-3646.1997.00191.x
    » http://dx.doi.org/10.1111/j.0022-3646.1997.00191.x
  • CHISLOCK, M.F., SHARP, K.L. and WILSON, A.E. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Research, 2014, 49, 207-214. http://dx.doi.org/10.1016/j.watres.2013.11.022 PMid:24333522.
    » http://dx.doi.org/10.1016/j.watres.2013.11.022
  • CHONUDOMKUL, D., YONGMANITCHAI, W., THEERAGOOL, G., KAWACHI, M., KASAI, F., KAYA, K. and WATANABE, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology, 2004, 48(3), 345-355. http://dx.doi.org/10.1016/j.femsec.2004.02.014 PMid:19712304.
    » http://dx.doi.org/10.1016/j.femsec.2004.02.014
  • COMTE, J., FAUTEUX, L. and GIORGIO, P.A. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Frontiers in Microbiology, 2013, 4, 112. http://dx.doi.org/10.3389/fmicb.2013.00112 PMid:23675372.
    » http://dx.doi.org/10.3389/fmicb.2013.00112
  • CORNO, G. and JÜRGENS, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology, 2006, 72(1), 78-86. http://dx.doi.org/10.1128/AEM.72.1.78-86.2006 PMid:16391028.
    » http://dx.doi.org/10.1128/AEM.72.1.78-86.2006
  • CUNHA, D.G.F. and CALIJURI, M.D. Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake and Reservoir Management, 2011, 27(2), 162-172. http://dx.doi.org/10.1080/07438141.2011.574974
    » http://dx.doi.org/10.1080/07438141.2011.574974
  • DALU, T. and WASSERMAN, R.J. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. The Science of the Total Environment, 2018, 643, 835-841. http://dx.doi.org/10.1016/j.scitotenv.2018.06.256 PMid:29958171.
    » http://dx.doi.org/10.1016/j.scitotenv.2018.06.256
  • DANTAS, Ê.W., MOURA, A.D.N., BITTENCOURT-OLIVEIRA, M.D.C., ARRUDA NETO, J.D.D.T. and CAVALCANTI, A.D.D.C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Botanica Brasílica, 2008, 22(4), 970-982. http://dx.doi.org/10.1590/S0102-33062008000400008
    » http://dx.doi.org/10.1590/S0102-33062008000400008
  • DELONG, E.F. and KARL, D.M. Genomic perspectives in microbial oceanography. Nature, 2005, 437(7057), 336-342. http://dx.doi.org/10.1038/nature04157 PMid:16163343.
    » http://dx.doi.org/10.1038/nature04157
  • DOKULIL, M.T. Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia, 2016, 764(1), 241-247. http://dx.doi.org/10.1007/s10750-015-2228-y
    » http://dx.doi.org/10.1007/s10750-015-2228-y
  • DUFOUR, P., SARAZIN, G., QUIBLIER, C., SANE, S. and LEBOULANGER, C. Cascading nutrient limitation of the cyanobacterium Cylindrospermopsis raciborskii in a Sahelian lake (North Senegal). Aquatic Microbial Ecology, 2006, 44(3), 219-230. http://dx.doi.org/10.3354/ame044219
    » http://dx.doi.org/10.3354/ame044219
  • DUVAL, C., THOMAZEAU, S., DRELIN, Y., YÉPRÉMIAN, C., BOUVY, M., COULOUX, A., TROUSSELLIER, M., ROUSSEAU, F. and BERNARD, C. Phylogeny and salt-tolerance of freshwater Nostocales strains: contribution to their systematics and evolution. Harmful Algae, 2018, 73, 58-71. http://dx.doi.org/10.1016/j.hal.2018.01.008 PMid:29602507.
    » http://dx.doi.org/10.1016/j.hal.2018.01.008
  • ENGSTRÖM-ÖST, J., RASIC, I.S., BRUTEMARK, A., RANCKEN, R., SIMIĆ, G.S. and LAUGEN, A.T. Can Cylindrospermopsis raciborskii invade the Baltic Sea? Environmental Reviews, 2015, 23(2), 161-169. http://dx.doi.org/10.1139/er-2014-0062
    » http://dx.doi.org/10.1139/er-2014-0062
  • EVERSON, S., FABBRO, L., KINNEAR, S. and WRIGHT, P. Extreme differences in akinete, heterocyte and cylindrospermopsin concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. Harmful Algae, 2011, 10(3), 265-276. http://dx.doi.org/10.1016/j.hal.2010.10.006
    » http://dx.doi.org/10.1016/j.hal.2010.10.006
  • FABRE, A., CARBALLO, C., HERNÁNDEZ, E., PIRIZ, P., BERGAMINO, L., MELLO, L., GONZÁLEZ, S., PÉREZ, G., LEÓN, J.G., AUBRIOT, L., BONILLA, S. and KRUK, C. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences, 2010, 5(1), 112-125.
  • FABRE, A., LACEROT, G., DE PAIVA, R.R., SOARES, M.C.S., DE MAGALHÃES, V.F. and BONILLA, S. South American PSP toxin-producing Cylindrospermopsis raciborskii (Cyanobacteria) decreases clearance rates of cladocerans more than copepods. Hydrobiologia, 2017, 785(1), 61-69. http://dx.doi.org/10.1007/s10750-016-2903-7
    » http://dx.doi.org/10.1007/s10750-016-2903-7
  • FIGUEREDO, C.C. and GIANI, A. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica - Ecology and Management of Inland Waters, 2009, 39(4), 264-272. http://dx.doi.org/10.1016/j.limno.2009.06.009
    » http://dx.doi.org/10.1016/j.limno.2009.06.009
  • FIGUEREDO, C.C., GIANI, A. and BIRD, D.F. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? Journal of Phycology, 2007, 43(2), 256-265. http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x
    » http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x
  • FIGUEREDO, C.C., VON RÜCKERT, G., CUPERTINO, A., PONTES, M.A., FERNANDES, L.A., RIBEIRO, S.G. and MARAN, N.R.C. Lack of nitrogen as a causing agent of Cylindrospermopsis raciborskii intermittent blooms in a small tropical reservoir. FEMS Microbiology Ecology, 2014, 87(3), 557-567. http://dx.doi.org/10.1111/1574-6941.12243 PMid:24329601.
    » http://dx.doi.org/10.1111/1574-6941.12243
  • FISTAROL, G.O., LEGRAND, C., SELANDER, E., HUMMERT, C., STOLTE, W. and GRANÉLI, E. Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 2004, 35(1), 45-56. http://dx.doi.org/10.3354/ame035045
    » http://dx.doi.org/10.3354/ame035045
  • FROSCIO, S.M., HUMPAGE, A.R., BURCHAM, P.C. and FALCONER, I.R. Cylindrospermopsin induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environmental Toxicology, 2003, 18(4), 243-251. http://dx.doi.org/10.1002/tox.10121 PMid:12900943.
    » http://dx.doi.org/10.1002/tox.10121
  • FUENTES, M.S., RICK, J.J. and HASENSTEIN, K.H. Occurrence of a Cylindrospermopsis bloom in Louisiana. Journal of Great Lakes Research, 2010, 36(3), 458-464. http://dx.doi.org/10.1016/j.jglr.2010.05.006
    » http://dx.doi.org/10.1016/j.jglr.2010.05.006
  • FUENTES-VALDÉS, J.J., SOTO-LIEBE, K., PÉREZ-PANTOJA, D., TAMAMES, J., BELMAR, L., PEDRÓS-ALIÓ, C., GARRIDO, D. and VÁSQUEZ, M. Draft genome sequences of Cylindrospermopsis raciborskii strains CS-508 and MVCC14, isolated from freshwater bloom events in Australia and Uruguay. Standards in Genomic Sciences, 2018, 13(1), 26. http://dx.doi.org/10.1186/s40793-018-0323-1 PMid:30344889.
    » http://dx.doi.org/10.1186/s40793-018-0323-1
  • GARCIA, F.C. Estudos ecológicos da cianobactéria Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju no Lago Dom Helvecio, Parque Estadual do Rio Doce [Tese de Doutorado em Ecologia]. Belo Horizonte: Universidade Federal de Minas Gerais, 2007, 89 p.
  • GEMELGO, M.C.P., SANT'ANNA, C.L., TUCCI, A. and BARBOSA, H.R. Population dynamics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju, a Cyanobacteria toxic species, in watersupply reservoirs in São Paulo, Brazil. Hoehnea, 2008, 35(2), 297-307. http://dx.doi.org/10.1590/S2236-89062008000200011
    » http://dx.doi.org/10.1590/S2236-89062008000200011
  • GOMES, A.M.A., MARINHO, M.M. and AZEVEDO, S.M.F.O. Which factors are related to the success of Cylindrospermopsis raciborskii in brazilian aquatic systems? In A.S. FERRÃO-FILHO, ed. Cyanobacteria: ecology, toxicology and management New York: Nova Science Publishers, 2013, pp. 73-94.
  • GUIRY, M.D. and GUIRY, G.M. AlgaeBase [online]. Galway: National University of Ireland, 2019 [viewed 4 Sept. 2019]. Available from: http://www.algaebase.org
    » http://www.algaebase.org
  • HAMILTON, P.B., LEY, L.M., DEAN, S. and PICK, F.R. The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia, 2005, 44(1), 17-25. http://dx.doi.org/10.2216/0031-8884(2005)44[17:TOOTCC]2.0.CO;2
    » http://dx.doi.org/10.2216/0031-8884(2005)44[17:TOOTCC]2.0.CO;2
  • HAUER, T. and KOMÁREK, J. CyanoDB.cz 2.0: on-line database of cyanobacterial genera [online]. Czech Republic: University of South Bohemia, 2019 [viewed 4 Sept. 2019]. Available from: http://www.cyanodb.cz
    » http://www.cyanodb.cz
  • HAWKINS, P.R., CHANDRASENA, N.R., JONES, G.J., HUMPAGE, A.R. and FALCONER, I.R. Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon, 1997, 35(3), 341-346. http://dx.doi.org/10.1016/S0041-0101(96)00185-7 PMid:9080590.
    » http://dx.doi.org/10.1016/S0041-0101(96)00185-7
  • HAWKINS, P.R., RUNNEGAR, M.T.C., JACKSON, A.R.B. and FALCONER, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green-alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water-supply reservoir. Applied and Environmental Microbiology, 1985, 50(5), 1292-1295. http://dx.doi.org/10.1128/AEM.50.5.1292-1295.1985 PMid:3937492.
    » http://dx.doi.org/10.1128/AEM.50.5.1292-1295.1985
  • HOFFMANN, L., RAMOS, R.J.T., GUEDES, I.A., COSTA, P.F., MIGUEL, C.R.D., AZEVEDO, S.M.F.O.E. and SILVA, R. Draft genome sequences of two Brazilian cyanobacterial strains of Cylindrospermopsis raciborskii: Differences in membrane transporters, saxitoxin production, and antioxidant activities. Genome Announcements, 2017, 5(43), e00879-17. http://dx.doi.org/10.1128/genomeA.00879-17 PMid:29074674.
    » http://dx.doi.org/10.1128/genomeA.00879-17
  • HOFF-RISSETI, C., DORR, F.A., SCHAKER, P.D.C., PINTO, E., WERNER, V.R. and FIORE, M.F. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater. PLoS One, 2013, 8(8), e74238. http://dx.doi.org/10.1371/journal.pone.0074238 PMid:24015317.
    » http://dx.doi.org/10.1371/journal.pone.0074238
  • HOLLAND, D.P., PANTORNO, A., ORR, P.T., STOJKOVIC, S. and BEARDALL, J. The impacts of a high CO2 environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii. Water Research, 2012, 46(5), 1430-1437. http://dx.doi.org/10.1016/j.watres.2011.11.015 PMid:22119367.
    » http://dx.doi.org/10.1016/j.watres.2011.11.015
  • HUBER, P., DIOVISALVI, N., FERRARO, M., METZ, S., LAGOMARSINO, L., LLAMES, M.E., ROYO-LLONCH, M., BUSTINGORRY, J., ESCARAY, R., ACINAS, S.G., GASOL, J.M. and UNREIN, F. Phenotypic plasticity in freshwater picocyanobacteria. Environmental Microbiology, 2017, 19(3), 1120-1133. http://dx.doi.org/10.1111/1462-2920.13638 PMid:27943603.
    » http://dx.doi.org/10.1111/1462-2920.13638
  • HUFFORD, K.M. and MAZER, S.J. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology & Evolution, 2003, 18(3), 147-155. http://dx.doi.org/10.1016/S0169-5347(03)00002-8
    » http://dx.doi.org/10.1016/S0169-5347(03)00002-8
  • HUISMAN, J. and HULOT, F.D. Population dynamics of harmful cyanobacteira. In: J. HUISMAN, H.C.P. MATTHIJS and P.M. VISSER, eds. Harmful Cyanobacteria Dordrecht: Springer, 2005, pp. 143-176. Aquatic Ecology Series. http://dx.doi.org/10.1007/1-4020-3022-3_7
    » http://dx.doi.org/10.1007/1-4020-3022-3_7
  • HUMPAGE, A.R., FENECH, M., THOMAS, P. and FALCONER, I.R. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutation Research, 2000, 472(1-2), 155-161. http://dx.doi.org/10.1016/S1383-5718(00)00144-3 PMid:11113708.
    » http://dx.doi.org/10.1016/S1383-5718(00)00144-3
  • ISVÁNOVICS, V., SHAFIK, H.M., PRÉSING, M. and JUHOS, S. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology, 2000, 43(2), 257-275. http://dx.doi.org/10.1046/j.1365-2427.2000.00549.x
    » http://dx.doi.org/10.1046/j.1365-2427.2000.00549.x
  • JONES, W.W. and SAUTER, S. Distribution and abundance of Cylindrospermopsis raciborskii in Indiana lakes and reservoirs Indianapolis: Indiana Department of Environmental Management, 2005.
  • KARADŽIĆ, V., SIMIĆ, G.S., NATIĆ, D., RŽANIČANIN, A., ĆIRIĆ, M. and GAČIĆ, Z. Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia, 2013, 711(1), 43-60. http://dx.doi.org/10.1007/s10750-013-1460-6
    » http://dx.doi.org/10.1007/s10750-013-1460-6
  • KASHTAN, N., ROGGENSACK, S.E., RODRIGUE, S., THOMPSON, J.W., BILLER, S.J., COE, A., DING, H., MARTTINEN, P., MALMSTROM, R.R., STOCKER, R., FOLLOWS, M.J., STEPANAUSKAS, R. and CHISHOLM, S.W. Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus. Science, 2014, 344(6182), 416-420. http://dx.doi.org/10.1126/science.1248575 PMid:24763590.
    » http://dx.doi.org/10.1126/science.1248575
  • KEHOE, M., O’BRIEN, K., GRINHAM, A. and BURFORD, M. Primary production of lake phytoplankton, dominated by the cyanobacterium Cylindrospermopsis raciborskii, in response to irradiance and temperature. Inland Waters, 2015, 5(2), 93-100. http://dx.doi.org/10.5268/IW-5.2.778
    » http://dx.doi.org/10.5268/IW-5.2.778
  • KENESI, G., SHAFIK, H., KOVÁCS, A., HERODEK, S. and PRÉSING, M. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia, 2009, 623(1), 191-202. http://dx.doi.org/10.1007/s10750-008-9657-9
    » http://dx.doi.org/10.1007/s10750-008-9657-9
  • KIM, H.-S., HWANG, S.-J., SHIN, J.-K., AN, K.-G. and YOON, C.G. AN, K.-G. and YOON, C.G. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia, 2007, 581(1), 255-267. http://dx.doi.org/10.1007/s10750-006-0501-9
    » http://dx.doi.org/10.1007/s10750-006-0501-9
  • KOKOCIŃSKI, M. and SOININEN, J. Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology, 2012, 47(1), 12-21. http://dx.doi.org/10.1080/09670262.2011.645216
    » http://dx.doi.org/10.1080/09670262.2011.645216
  • KOKOCIŃSKI, M., GAGALA, I., JASSER, I., KAROSIENE, J., KASPEROVIČIENE, J., KOBOS, J., KOREIVIENE, J., SOININEN, J., SZCZUROWSKA, A., WOSZCZYK, M. and MANKIEWICZ-BOCZEK, J. Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiology Ecology, 2017, 93(4). http://dx.doi.org/10.1093/femsec/fix035 PMid:28334256.
    » http://dx.doi.org/10.1093/femsec/fix035
  • KOMÁREK, J. Süsswasserflora von Mitteleuropa: Cyanoprokaryota: 3rd part: heterocytous genera Heidelberg: Springer Spektrum, 2013. vol. 19.
  • KOOPS, H.P., BÖTTCHER, B., MÖLLER, U.C., POMMERENING-RÖSER, A. and STEHR, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Microbiology, 1991, 137(7), 1689-1699.
  • KUMAR, N., LAD, G., GIUNTINI, E., KAYE, M.E., UDOMWONG, P., SHAMSANI, N.J., YOUNG, J.P. and BAILLY, X. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biology, 2015, 5(1), 140133. http://dx.doi.org/10.1098/rsob.140133 PMid:25589577.
    » http://dx.doi.org/10.1098/rsob.140133
  • KÜMMERLI, R., JIRICNY, N., CLARKE, L.S., WEST, S.A. and GRIFFIN, A.S. Phenotypic plasticity of a cooperative behaviour in bacteria. Journal of Evolutionary Biology, 2009, 22(3), 589-598. http://dx.doi.org/10.1111/j.1420-9101.2008.01666.x PMid:19170825.
    » http://dx.doi.org/10.1111/j.1420-9101.2008.01666.x
  • LAGOS, N., ONODERA, H., ZAGATTO, P.A., ANDRINOLO, D., AZEVEDO, S.M.F.Q. and OSHIMA, Y. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon, 1999, 37(10), 1359-1373. http://dx.doi.org/10.1016/S0041-0101(99)00080-X PMid:10414862.
    » http://dx.doi.org/10.1016/S0041-0101(99)00080-X
  • LANDSBERG, J.H. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 2002, 10(2), 113-390. http://dx.doi.org/10.1080/20026491051695
    » http://dx.doi.org/10.1080/20026491051695
  • LEÃO, P.N., VASCONCELOS, M.T.S.D. and VASCONCELOS, V.M. Allelopathic activity of cyanobacteria on green microalgae at low cell densities. European Journal of Phycology, 2009, 44(3), 347-355. http://dx.doi.org/10.1080/09670260802652156
    » http://dx.doi.org/10.1080/09670260802652156
  • LEONARD, J.A. and PAERL, H.W. Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 2005, 537(1), 89-97. http://dx.doi.org/10.1007/s10750-004-2483-9
    » http://dx.doi.org/10.1007/s10750-004-2483-9
  • LI, X.-C., HUO, S.-L., CAI, F.-F., YANG, Y.-M., XI, B.-D. and LI, R.-H. The taxonomy and phylogeny of the genus Cylindrospermopsis (Cyanobacterium) evaluated by adding five new records from China. Phytotaxa, 2017, 316(3), 15. http://dx.doi.org/10.11646/phytotaxa.316.3.2
    » http://dx.doi.org/10.11646/phytotaxa.316.3.2
  • LIMA, V.F.M. Dinâmica do fitoplâncton e assimilação de nitrato, amônio e ureia em reservatórios subtropicais com diferentes graus de trofia [Dissertação de Mestrado em Engenharia Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo, 2015, 138 p.
  • LIMA-BITTENCOURT, C.I., ASTOLFI-FILHO, S., CHARTONE-SOUZA, E., SANTOS, F.R. and NASCIMENTO, A.M. Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC Microbiology, 2007, 7(1), 58. http://dx.doi.org/10.1186/1471-2180-7-58 PMid:17584942.
    » http://dx.doi.org/10.1186/1471-2180-7-58
  • LOPES, I.K.C., BARROS, M.U.G., PESTANA, C.J. and CAPELO NETO, J. Prevalence of paralytic shellfish poison-producing Planktothrix agardhii and Cylindrospermopsis raciborskii in a Brazilian semi-arid reservoir. Acta Limnologica Brasiliensia, 2015, 27(2), 238-246. http://dx.doi.org/10.1590/S2179-975X5014
    » http://dx.doi.org/10.1590/S2179-975X5014
  • MAGALHÃES, R.A. Herbivoria de Bosmina freyi e suas relações ecológicas no Reservatório de Itupararanga - Votorantim/SP [Dissertação de Mestrado em Diversidade Biológica e Conservação]. Sorocaba: Universidade Federal de São Carlos, 2014, 84 p.
  • MAIA-BARBOSA, P., BARBOSA, L., BRITO, S., GARCIA, F., BARROS, C., SOUZA, M., MELLO, N., GUIMARÃES, A. and BARBOSA, F. Limnological changes in Dom Helvécio Lake (South-East Brazil): natural and anthropogenic causes. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2010, 70(3), 795-802, Supplement. http://dx.doi.org/10.1590/S1519-69842010000400010 PMid:21085784.
    » http://dx.doi.org/10.1590/S1519-69842010000400010
  • MARINHO, M.M., SOUZA, M.B.G. and LÜRLING, M. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microbial Ecology, 2013, 66(3), 479-488. http://dx.doi.org/10.1007/s00248-013-0232-1 PMid:23636583.
    » http://dx.doi.org/10.1007/s00248-013-0232-1
  • MEDEIROS, L.D.C., MATTOS, A., LÜRLING, M. and BECKER, V. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology, 2015, 49(3), 293-307. http://dx.doi.org/10.1007/s10452-015-9524-5
    » http://dx.doi.org/10.1007/s10452-015-9524-5
  • MEHNERT, G., LEUNERT, F., CIRÉS, S., JÖHNK, K.D., RÜCKER, J., NIXDORF, B. and WIEDNER, C. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. Journal of Plankton Research, 2010, 32(7), 1009-1021. http://dx.doi.org/10.1093/plankt/fbq033
    » http://dx.doi.org/10.1093/plankt/fbq033
  • MELLO, M.M.E., SOARES, M.C.S., ROLAND, F. and LÜRLING, M. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. Journal of Plankton Research, 2012, 34(11), 987-994. http://dx.doi.org/10.1093/plankt/fbs056
    » http://dx.doi.org/10.1093/plankt/fbs056
  • MOISANDER, P.H., CHESHIRE, L.A., BRADDY, J., CALANDRINO, E.S., HOFFMAN, M., PIEHLER, M.F. and PAERL, H.W. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012, 79(3), 800-811. http://dx.doi.org/10.1111/j.1574-6941.2011.01264.x PMid:22126519.
    » http://dx.doi.org/10.1111/j.1574-6941.2011.01264.x
  • MOLICA, R., ONODERA, H., GARCÍA, C., RIVAS, M., ANDRINOLO, D., NASCIMENTO, S., MEGURO, H., OSHIMA, Y., AZEVEDO, S. and LAGOS, N. Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia, 2002, 41(6), 606-611. http://dx.doi.org/10.2216/i0031-8884-41-6-606.1
    » http://dx.doi.org/10.2216/i0031-8884-41-6-606.1
  • MOORE, D., O’DONOHUE, M., SHAW, G. and CRITCHLEY, C. Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia, 2003, 506(1), 175-180. http://dx.doi.org/10.1023/B:HYDR.0000008536.01716.1a
    » http://dx.doi.org/10.1023/B:HYDR.0000008536.01716.1a
  • MORALES, E.A., TRAINOR, F.R. and SCHLICHTING, C.D. Evolutionary and ecological implications of plastic responses of algae. Constancea, 2002, 83(4), 1-24.
  • MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., CHIA, M.A. and SEVERIANO, J.S. Co-occurrence of Cylindrospermopsis raciborskii (Woloszynska) Seenaya & Subba Raju and Microcystis panniformis Komárek et al. in Mundaú reservoir, a semiarid Brazilian ecosystem. Acta Limnologica Brasiliensia, 2015, 27(3), 322-329. http://dx.doi.org/10.1590/S2179-975X3814
    » http://dx.doi.org/10.1590/S2179-975X3814
  • MOUSTAKA-GOUNI, M., VARDAKA, E. and TRYFON, E. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia, 2007, 575(1), 129-140. http://dx.doi.org/10.1007/s10750-006-0360-4
    » http://dx.doi.org/10.1007/s10750-006-0360-4
  • NOYMA, N.P., SILVA, T.P., CHIARINI-GARCIA, H., AMADO, A.M., ROLAND, F. and MELO, R.C. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Frontiers in Microbiology, 2015, 6, 1202. http://dx.doi.org/10.3389/fmicb.2015.01202 PMid:26579108.
    » http://dx.doi.org/10.3389/fmicb.2015.01202
  • O’BRIEN, K.R., BURFORD, M.A. and BROOKES, J.D. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii. Freshwater Biology, 2009, 54(2), 272-282. http://dx.doi.org/10.1111/j.1365-2427.2008.02106.x
    » http://dx.doi.org/10.1111/j.1365-2427.2008.02106.x
  • PADISÁK, J. and REYNOLDS, C.S. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia, 2003, 506-509(1-3), 1-11. http://dx.doi.org/10.1023/B:HYDR.0000008630.49527.29
    » http://dx.doi.org/10.1023/B:HYDR.0000008630.49527.29
  • PADISÁK, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 1997, 107, 563-593.
  • PADISÁK, J. Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia, 2003, 502(1), 389-394. http://dx.doi.org/10.1023/B:HYDR.0000004296.49074.0a
    » http://dx.doi.org/10.1023/B:HYDR.0000004296.49074.0a
  • PADISÁK, J., TÓTH, L.G. and VÖRÖS, L. Anabaenopsis raciborskii Wolosz. bloom in lake Balaton in the summer and autumn of 1982. BFB-BERICHT, 1984, 51, 77-81.
  • PAERL, H.W. and HUISMAN, J. Blooms like it hot. Science, 2008, 320(5872), 57-58. http://dx.doi.org/10.1126/science.1155398 PMid:18388279.
    » http://dx.doi.org/10.1126/science.1155398
  • PAERL, H.W. Coastal eutrophication and harmful algal blooms: importance of anthropogenic deposition and groundwater as view of its ecology. ions. Limnology and Oceanography, 1997, 42(5), 154997. http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1154
    » http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1154
  • PALMER, C.M. Report on the algae in relation to water quality of Paranoa Lake Brasilia, 1969.
  • PANOU, M., ZERVOU, S.-K., KALOUDIS, T., HISKIA, A. and GKELIS, S. A Greek Cylindrospermopsis raciborskii strain: missing link in tropic invader’s phylogeography tale. Harmful Algae, 2018, 80, 96-106. http://dx.doi.org/10.1016/j.hal.2018.10.002 PMid:30502817.
    » http://dx.doi.org/10.1016/j.hal.2018.10.002
  • PAUL, V.J. Global warming and cyanobacterial harmful algal booms. In: K.H. HUDNELL, ed. Cyanobacterial harmful algal blooms: state of the science and research needs New York: Springer Science+Business Media, 2008. Advances in Experimental Medicine and Biology, no. 619.
  • PEPERZAK, L. Climate change and harmful algal blooms in the North Sea. Acta Oecologica, 2003, 24, S139-S144. http://dx.doi.org/10.1016/S1146-609X(03)00009-2
    » http://dx.doi.org/10.1016/S1146-609X(03)00009-2
  • PIERANGELINI, M., STOJKOVIC, S., ORR, P.T. and BEARDALL, J. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. Journal of Plant Physiology, 2014a, 171(12), 1091-1098. http://dx.doi.org/10.1016/j.jplph.2014.04.003 PMid:24878143.
    » http://dx.doi.org/10.1016/j.jplph.2014.04.003
  • PIERANGELINI, M., STOJKOVIC, S., ORR, P.T. and BEARDALL, J. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. Journal of Phycology, 2014b, 50(2), 292-302. http://dx.doi.org/10.1111/jpy.12157 PMid:26988186.
    » http://dx.doi.org/10.1111/jpy.12157
  • PIGLIUCCI, M. Phenotypic plasticity: beyond nature and nurture Baltimore: Johns Hopkins University Press, 2001.
  • RECKNAGEL, F., ORR, P.T. and CAO, H. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae, 2014, 31, 26-34. http://dx.doi.org/10.1016/j.hal.2013.09.004 PMid:28040108.
    » http://dx.doi.org/10.1016/j.hal.2013.09.004
  • RECKNAGEL, F., ZOHARY, T., RÜCKER, J., ORR, P.T., BRANCO, C.C. and NIXDORF, B. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling. Harmful Algae, 2019, 84, 222-232. http://dx.doi.org/10.1016/j.hal.2019.04.005 PMid:31128807.
    » http://dx.doi.org/10.1016/j.hal.2019.04.005
  • RZYMSKI, P., HORYN, O., BUDZYŃSKA, A., JURCZAK, T., KOKOCIŃSKI, M., NIEDZIELSKI, P., KLIMASZYK, P. and FALFUSHYNSKA, H. A report of Cylindrospermopsis raciborskii and other cyanobacteria in the water reservoirs of power plants in Ukraine. Environmental Science and Pollution Research International, 2018, 25(15), 15245-15252. http://dx.doi.org/10.1007/s11356-018-2010-6 PMid:29680888.
    » http://dx.doi.org/10.1007/s11356-018-2010-6
  • RZYMSKI, P., PONIEDZIAŁEK, B., KOKOCIŃSKI, M., JURCZAK, T., LIPSKI, D. and WIKTOROWICZ, K. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae, 2014, 35, 1-8. http://dx.doi.org/10.1016/j.hal.2014.03.002
    » http://dx.doi.org/10.1016/j.hal.2014.03.002
  • SAKER, M.L. and GRIFFITHS, D.J. Occurence of blooms of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Ruju in a North Queensland domestic water supply. Marine and Freshwater Research, 2001, 52(6), 907. http://dx.doi.org/10.1071/MF00110
    » http://dx.doi.org/10.1071/MF00110
  • SAKER, M.L., NOGUEIRA, I.C.G. and VASCONCELOS, V.M. Distribution and toxicity of Cylindrospermopsis raciborskii (cyanobacteria) in Portuguese freshwaters. Limnetica, 2003, 2(3-4), 129-136.
  • SEENAYYA, G. Ecological studies in the plankton of certain freshwater ponds of hyderabad - India I. Physico-chemical complexes. Hydrobiologia, 1971, 37(1), 7-31. http://dx.doi.org/10.1007/BF00016365
    » http://dx.doi.org/10.1007/BF00016365
  • SHER, D., THOMPSON, J.W., KASHTAN, N., CROAL, L. and CHISHOLM, S.W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. The ISME Journal, 2011, 5(7), 1125-1132. http://dx.doi.org/10.1038/ismej.2011.1 PMid:21326334.
    » http://dx.doi.org/10.1038/ismej.2011.1
  • SINHA, R., PEARSON, L.A., DAVIS, T.W., BURFORD, M.A., ORR, P.T. and NEILAN, B.A. Increased incidence of Cylindrospermopsis raciborskii in temperate zones: is climate change responsible? Water Research, 2012, 46(5), 1408-1419. http://dx.doi.org/10.1016/j.watres.2011.12.019 PMid:22284981.
    » http://dx.doi.org/10.1016/j.watres.2011.12.019
  • SOARES, M.C.S., LÜRLING, M. and HUSZAR, V.L.M. Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycological Research, 2013, 61(1), 61-67. http://dx.doi.org/10.1111/pre.12001
    » http://dx.doi.org/10.1111/pre.12001
  • SOARES, M.C.S., LÜRLING, M., PANOSSO, R. and HUSZAR, V. Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicology and Environmental Safety, 2009, 72(4), 1183-1189. http://dx.doi.org/10.1016/j.ecoenv.2008.09.004 PMid:18951629.
    » http://dx.doi.org/10.1016/j.ecoenv.2008.09.004
  • SORANNO, P.A. Factors affecting the timing of surface scums and epilimnetic blooms of blue-green algae in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1965-1975.
  • SOUZA, R.C.R., CARVALHO, M.C. and TRUZZI, A.C. Cylindrospermopsis raciborskii (Wolosz.) Seenayya and Subba Raju (Cyanophyceae) dominance and a contribution to the knowledge of Rio Pequeno Arm, Billings Reservoir, Brazil. Environmental Toxicology and Water Quality, 1998, 13(1), 73-81. http://dx.doi.org/10.1002/(SICI)1098-2256(1998)13:1<73::AID-TOX5>3.0.CO;2-4
    » http://dx.doi.org/10.1002/(SICI)1098-2256(1998)13:1<73::AID-TOX5>3.0.CO;2-4
  • SU, Z., SHEETS, M., ISHIDA, H., LI, F. and BARRY, W.H. Saxitoxin blocks L-type Ica. The Journal of Pharmacology and Experimental Therapeutics, 2004, 308(1), 324-329. http://dx.doi.org/10.1124/jpet.103.056564 PMid:14566004.
    » http://dx.doi.org/10.1124/jpet.103.056564
  • THOMAS, M.K. and LITCHMAN, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia, 2016, 763(1), 357-369. http://dx.doi.org/10.1007/s10750-015-2390-2
    » http://dx.doi.org/10.1007/s10750-015-2390-2
  • TONETTA, D., HENNEMANN, M.C., BRENTANO, D.M. and PETRUCIO, M.M. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake. Acta Botanica Brasílica, 2015, 29(3), 448-451. http://dx.doi.org/10.1590/0102-33062015abb0039
    » http://dx.doi.org/10.1590/0102-33062015abb0039
  • TOOMING-KLUNDERUD, A., SOGGE, H., ROUNGE, T.B., NEDERBRAGT, A.J., LAGESEN, K., GLÖCKNER, G., HAYES, P.K., ROHRLACK, T. and JAKOBSEN, K.S. From green to red: horizontal gene transfer of the phycoerythrin gene cluster between Planktothrix Strains. Applied and Environmental Microbiology, 2013, 79(21), 6803-6812. http://dx.doi.org/10.1128/AEM.01455-13 PMid:23995927.
    » http://dx.doi.org/10.1128/AEM.01455-13
  • TUCCI, A. and SANT'ANNA, C.L. Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): variação semanal e relações com fatores ambientais em um reservatório eutrófico, São Paulo, SP, Brasil. Brazilian Journal of Botany, 2003, 26(1), 97-112. http://dx.doi.org/10.1590/S0100-84042003000100011
    » http://dx.doi.org/10.1590/S0100-84042003000100011
  • VARGAS, S.R. and CALIJURI, M.C. Simulação de níveis tróficos de um reservatório subtropical brasileiro na interação entre duas espécies fitoplanctônicas. In: Anais do XIV Congresso Brasileiro de Limnologia Rio Claro: ABLimno, 2013.
  • VEHOVSZKY, Á., KOVÁCS, A.W., FARKAS, A., GYŐRI, J., SZABÓ, H. and VASAS, G. Pharmacological studies confirm neurotoxic metabolite(s) produced by the bloom-forming Cylindrospermopsis raciborskii in Hungary. Environmental Toxicology, 2015, 30(5), 501-512. http://dx.doi.org/10.1002/tox.21927 PMid:24293352.
    » http://dx.doi.org/10.1002/tox.21927
  • VON SPERLING, E., DA SILVA FERREIRA, A.C. and NUNES LUDOLF GOMES, L. Comparative eutrophication development in two Brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth. Desalination, 2008, 226(1), 169-174. http://dx.doi.org/10.1016/j.desal.2007.02.105
    » http://dx.doi.org/10.1016/j.desal.2007.02.105
  • WALTER, J.M., LOPES, F.A.C., LOPES-FERREIRA, M., VIDAL, L.M., LEOMIL, L., MELO, F., DE AZEVEDO, G.S., OLIVEIRA, R.M.S., MEDEIROS, A.J., MELO, A.S.O., DE REZENDE, C.E., TANURI, A. and THOMPSON, F.L. Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Frontiers in Microbiology, 2018, 9(FEB), 176. http://dx.doi.org/10.3389/fmicb.2018.00176 PMid:29541063.
    » http://dx.doi.org/10.3389/fmicb.2018.00176
  • WANG, J., SALATA, J.J. and BENNETT, P.B. Saxitoxin is a gating modifier of HERG K channels. The Journal of General Physiology, 2003, 121(6), 583-598. http://dx.doi.org/10.1085/jgp.200308812 PMid:12771193.
    » http://dx.doi.org/10.1085/jgp.200308812
  • WEITHOFF, G., TAUBE, A. and BOLIUS, S. The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms: genetic identity, grazing loss, competition and biotic resistance. Aquatic Invasions, 2017, 12(3), 333-341. http://dx.doi.org/10.3391/ai.2017.12.3.07
    » http://dx.doi.org/10.3391/ai.2017.12.3.07
  • WIEDNER, C., RUCKER, J., BRUGGEMANN, R. and NIXDORF, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 2007, 152(3), 473-484. http://dx.doi.org/10.1007/s00442-007-0683-5 PMid:17375336.
    » http://dx.doi.org/10.1007/s00442-007-0683-5
  • WILLIS, A., ADAMS, M.P., CHUANG, A.W., ORR, P.T., O’BRIEN, K.R. and BURFORD, M.A. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii ((Wołoszyńska) Seenayya et Subba Raju). Harmful Algae, 2015, 47, 27-34. http://dx.doi.org/10.1016/j.hal.2015.05.011
    » http://dx.doi.org/10.1016/j.hal.2015.05.011
  • WILLIS, A., CHUANG, A.W., DYHRMAN, S. and BURFORD, M.A. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains. Harmful Algae, 2019, 82, 19-25. http://dx.doi.org/10.1016/j.hal.2018.12.003 PMid:30928007.
    » http://dx.doi.org/10.1016/j.hal.2018.12.003
  • WILLIS, A., CHUANG, A.W., WOODHOUSE, J.N., NEILAN, B.A. and BURFORD, M.A. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon, 2016, 119, 307-310. http://dx.doi.org/10.1016/j.toxicon.2016.07.005 PMid:27390039.
    » http://dx.doi.org/10.1016/j.toxicon.2016.07.005
  • WILLIS, A., POSSELT, A.J. and BURFORD, M.A. Variations in carbon-to-phosphorus ratios of two Australian strains of Cylindrospermopsis raciborskii. European Journal of Phycology, 2017, 52(3), 303-310. http://dx.doi.org/10.1080/09670262.2017.1286524
    » http://dx.doi.org/10.1080/09670262.2017.1286524
  • WILLIS, A., WOODHOUSE, J.N., ONGLEY, S.E., JEX, A.R., BURFORD, M.A. and NEILAN, B.A. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains. Harmful Algae, 2018, 73, 157-166. http://dx.doi.org/10.1016/j.hal.2018.03.001 PMid:29602504.
    » http://dx.doi.org/10.1016/j.hal.2018.03.001
  • WOJCIECHOWSKI, J. Efeitos da Temperatura, Fósforo e Luz no crescimento da cianobactéria Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju do reservatório de Alagados, Paraná [Dissertação de Mestrado em Botânica]. Curitiba: Universidade Federal de Paraná, 2013, 123 p.
  • WOJCIECHOWSKI, J., FERNANDES, L.F. and FONSECA, F.V.B. Morpho-physiological responses of a subtropical strain of Cylindrospermopsis raciborskii (Cyanobacteria) to different light intensities. Acta Botanica Brasílica, 2016, 30(2), 232-238. http://dx.doi.org/10.1590/0102-33062015abb0322
    » http://dx.doi.org/10.1590/0102-33062015abb0322
  • WU, Z., SHI, J., XIAO, P., LIU, Y. and LI, R. Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences. Harmful Algae, 2011, 10(5), 419-425. http://dx.doi.org/10.1016/j.hal.2010.05.001
    » http://dx.doi.org/10.1016/j.hal.2010.05.001
  • WU, Z., ZENG, B., LI, R. and SONG, L. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation. Harmful Algae, 2012, 15, 53-58. http://dx.doi.org/10.1016/j.hal.2011.11.005
    » http://dx.doi.org/10.1016/j.hal.2011.11.005
  • XIAO, M., WILLIS, A. and BURFORD, M.A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae, 2017, 62, 84-93. http://dx.doi.org/10.1016/j.hal.2016.12.008 PMid:28118895.
    » http://dx.doi.org/10.1016/j.hal.2016.12.008
  • XIE, J., YU, G., XU, X., LI, S. and LI, R. The morphological and molecular detection for the presence of toxic Cylindrospermopsis (Nostocales, Cyanobacteria) in Beijing city, China. Journal of Oceanology and Limnology, 2018, 36(2), 263-272. http://dx.doi.org/10.1007/s00343-018-6283-x
    » http://dx.doi.org/10.1007/s00343-018-6283-x
  • YAMAMOTO, Y. and SHIAH, F.K. Factors Related to the Dominance of Cylindrospermopsis raciborskii (Cyanobacteria) in a Shallow Pond in Northern Taiwan(1). Journal of Phycology, 2012, 48(4), 984-991. http://dx.doi.org/10.1111/j.1529-8817.2012.01184.x PMid:27009008.
    » http://dx.doi.org/10.1111/j.1529-8817.2012.01184.x
  • YANG, J.R., LV, H., ISABWE, A., LIU, L., YU, X., CHEN, H. and YANG, J. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 2017, 120, 52-63. http://dx.doi.org/10.1016/j.watres.2017.04.062 PMid:28478295.
    » http://dx.doi.org/10.1016/j.watres.2017.04.062
  • ZHANG, W., LOU, I., UNG, W.K., KONG, Y. and MOK, K.M. Analysis of cylindrospermopsin- and microcystin-producing genotypes and cyanotoxin concentrations in the Macau storage reservoir. Hydrobiologia, 2014, 741(1), 51-68. http://dx.doi.org/10.1007/s10750-013-1776-2
    » http://dx.doi.org/10.1007/s10750-013-1776-2

Edited by

Associate Editor: Antonio Fernando Monteiro Camargo

Publication Dates

  • Publication in this collection
    18 Sept 2020
  • Date of issue
    2020

History

  • Received
    09 Aug 2017
  • Accepted
    30 July 2020
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com