Acessibilidade / Reportar erro

Agriculture affects functional diversity of aquatic insects in Subtropical Atlantic Forest streams

Agricultura afeta a diversidade funcional de insetos aquáticos em riachos Subtropicais de Mata Atlântica

Abstracts

Abstract:

Aim

We evaluated the effects of native vegetation and agricultural activities on functional characteristics of aquatic insects’ assemblages in Atlantic Forest streams southern Brazil.

Methods

We collected information on land uses, riparian zone structural characteristics, and limnological variables of ten streams to characterize their environmental quality. In the same streams, we collected aquatic insects (Ephemeroptera, Plecoptera, and Trichoptera) and determined their functional characteristics (e.g. food habits, mobility, shape, and body size). The information for each trait category was quantified using a fuzzy code technique. To test the environmental conditions on aquatic insect functional attributes, we used an RLQ analysis.

Results

In our study, only five environmental variables showed variation in streams (temperature, pH, DO, native vegetation, and agriculture use). We collected a total of 2591 organisms distributed in 21 EPT genera. We observed that the functional attributes of EPT formed distinct groups in relation to the stream categories defined by the measured environmental variables. We observed that shredders and larger and flattened organisms were associated with natural streams. These attributes were associated with the genera Phylloicus, Anacroneuria, Tupiperla, and Farrodes. On the other hand, we observed greater proportions of scrapers, with spherical bodies and shelter builders in streams impacted by agriculture. The most frequent genera in these streams were Itaura, Wormaldia and Helicopsyche.

Conclusions

The modification of natural landscapes by agricultural areas caused significant functional changes in the aquatic invertebrate communities. Since aquatic insects participate effectively in ecological processes, alterations in the functional characteristics of these communities can cause changes in the streams’ functioning.

Keywords:
biological traits; environmental quality; ecological integrity


Resumo:

Objetivo

Neste estudo avaliamos os efeitos da vegetação nativa e atividades agrícolas sobre as características funcionais de assembleias de insetos aquáticos em riachos de Mata Atlântica, sul do Brasil.

Métodos

Coletamos informações sobre usos do solo, características estruturais da zona ripária e variáveis limnológicas de dez córregos para caracterizar sua qualidade ambiental. Nos mesmos riachos coletamos insetos aquáticos (Ephemeroptera, Plecoptera e Trichoptera) e determinamos as características funcionais (e.g., hábitos alimentares, mobilidade, forma, tamanho do corpo). A informação para cada categoria de característica foi quantificada usando uma técnica de código fuzzy. Para testar as condições ambientais nos atributos funcionais de insetos aquáticos, utilizamos uma análise RLQ.

Resultados

Em nosso estudo, apenas cinco variáveis ambientais apresentaram variação entre os riachos (temperatura, pH, DO, vegetação nativa, uso agrícola). Coletamos um total de 2591 organismos distribuídos em 21 gêneros das ordens EPT. Observamos que os atributos funcionais do EPT formaram grupos distintos em relação às categorias de riachos definidas pelas medidas das variáveis ambientais. Observamos que fragmentadores e organismos maiores e achatados estiveram associados a riachos naturais. Esses atributos foram associados aos gêneros Phylloicus, Anacroneuria, Tupiperla e Farrodes. Por outro lado, em riachos impactados pela agricultura, observamos maiores proporções de raspadores, com corpos esféricos e construtores de abrigos. Nesses riachos, os gêneros mais frequentes foram Itaura, Wormaldia e Helicopsyche.

Conclusões

A modificação das paisagens naturais por áreas agrícolas causou mudanças funcionais significativas nas comunidades de invertebrados aquáticos. Como os insetos aquáticos participam efetivamente dos processos ecológicos, alterações nas características funcionais dessas comunidades podem causar mudanças no funcionamento dos riachos.

Palavras-chave:
características biológicas; qualidade ambiental; integridade ecológica


1. Introduction

The expansion of agricultural frontiers has been necessary for the planet's food supply, but it has been considered one of the main forms of human intervention in nature (Paz et al., 2020Paz, D.B., Henderson, K. & Loreau, M., 2020. Agricultural land use and the sustainability of social-ecological systems. Ecol. Modell., 437, 109312. PMid:33343058. http://dx.doi.org/10.1016/j.ecolmodel.2020.109312.
http://dx.doi.org/10.1016/j.ecolmodel.20...
; Tanentzap et al., 2015Tanentzap, A.J., Lamb, A., Walker, S. & Farmer, A., 2015. Resolving conflicts between agriculture and the natural environment. PLoS Biol., 13(9), e1002242. PMid:26351851. http://dx.doi.org/10.1371/journal.pbio.1002242.
http://dx.doi.org/10.1371/journal.pbio.1...
). It is estimated that about 40% of the planet's surface is occupied by agricultural activities (Graeber et al., 2015Graeber, D., Boechat, I.G., Encina-Montoya, F., Esse, C., Gelbrecht, J., Goyenola, G., Gucker, B., Heinz, M., Kronvang, B., Meerhoff, M., Nimptsch, J., Pusch, M.T., Silva, R.C., von Schiller, D. & Zwirnmann, E., 2015. Global effects of agriculture on fluvial dissolved organic matter. Sci. Rep., 5(1), 16328. PMid:26541809. http://dx.doi.org/10.1038/srep16328.
http://dx.doi.org/10.1038/srep16328...
). However, the agricultural expansion reflects in the fragmentation of natural landscapes, water resources degradation, and aquatic diversity decrease (Paz et al., 2020Paz, D.B., Henderson, K. & Loreau, M., 2020. Agricultural land use and the sustainability of social-ecological systems. Ecol. Modell., 437, 109312. PMid:33343058. http://dx.doi.org/10.1016/j.ecolmodel.2020.109312.
http://dx.doi.org/10.1016/j.ecolmodel.20...
; Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
; Rovani et al., 2020Rovani, I.L., Decian, V.S., Zanin, E.M., Brandalise, M., Quadros, F.R. & Hepp, L.U., 2020. Socioeconomic changes and land use and land cover of the northern region of Rio Grande do Sul, Brazil. Floresta Ambient., 27(3), e20180258. http://dx.doi.org/10.1590/2179-8087.025818.
http://dx.doi.org/10.1590/2179-8087.0258...
).

Riparian vegetation has numerous ecological functions, such as bank stability, carbon stock, thermal regulation, and habitat for numerous vertebrate and invertebrate species, among others (Medan et al., 2011Medan, D., Torretta, J.P., Hodara, K., de la Fuente, E.B. & Montaldo, N.H., 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv., 20(13), 3077-3100. http://dx.doi.org/10.1007/s10531-011-0118-9.
http://dx.doi.org/10.1007/s10531-011-011...
; Ribeiro et al., 2019Ribeiro, J.C.T., Nunes-Freitas, A.F., Fidalgo, E.C.C. & Uzeda, M.C., 2019. Forest fragmentation and impacts of intensive agriculture: responses from different tree functional groups. PLoS One, 14(8), e0212725. PMid:31369550. http://dx.doi.org/10.1371/journal.pone.0212725.
http://dx.doi.org/10.1371/journal.pone.0...
; Luke et al., 2019Luke, S.H., Slade, E.M., Gray, C.L., Annammala, K.V., Drewer, J., Williamson, J., Agama, A.L., Ationg, M., Mitchell, S.L., Vairappan, C.S. & Struebig, M.J., 2019. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol., 56(1), 85-92. http://dx.doi.org/10.1111/1365-2664.13280.
http://dx.doi.org/10.1111/1365-2664.1328...
). In addition, riparian vegetation is a source of organic matter for headwater streams influencing the functioning of aquatic environments (Tonello et al., 2021Tonello, G., Decian, V.S., Restello, R.M. & Hepp, L.U., 2021. The conversion of natural riparian forests into agricultural land affects ecological processes in Atlantic forest streams. Limnologica, 91, 125927. http://dx.doi.org/10.1016/j.limno.2021.125927.
http://dx.doi.org/10.1016/j.limno.2021.1...
). More specifically, in agricultural landscapes vegetation maintenance helps in the retention of chemical elements used in crops (e.g. pesticides and metals) (Loureiro et al., 2021Loureiro, R.C., Calisto, J.F.F., Magro, J.D., Restello, R.M. & Hepp, L.U., 2021. The influence of the environment in the incorporation of copper and cadmium in scraper insects. Environ. Monit. Assess., 193(4), 215. PMid:33759031. http://dx.doi.org/10.1007/s10661-021-08997-0.
http://dx.doi.org/10.1007/s10661-021-089...
; Loureiro & Hepp, 2020Loureiro, R.C. & Hepp, L.U., 2020. Stream contamination by trace elements: biota incorporation and phytoremediation. Acta Limnol. Bras., 32, e201. http://dx.doi.org/10.1590/s2179-975x2219.
http://dx.doi.org/10.1590/s2179-975x2219...
). The riparian vegetation removal alters the habitats availability within streams, decreasing the diversity and composition of benthic macroinvertebrates communities (Cornejo et al., 2019Cornejo, A., Tonin, A.M., Checa, B., Tunon, A.R., Perez, D., Coronado, E., Gonzalez, S., Rios, T., Macchi, P., Correa-Araneda, F. & Boyero, L., 2019. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS One, 14(8), e0220528. PMid:31393898. http://dx.doi.org/10.1371/journal.pone.0220528.
http://dx.doi.org/10.1371/journal.pone.0...
; Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
; Meza-Salazar et al., 2020Meza-Salazar, A.M., Guevara, G., Gomes-Dias, L. & Cultid-Medina, C.A., 2020. Density and diversity of macroinvertebrates in Colombian Andean streams impacted by mining, agriculture and cattle production. PeerJ, 8, e9619. PMid:32995074. http://dx.doi.org/10.7717/peerj.9619.
http://dx.doi.org/10.7717/peerj.9619...
). In summary, the presence of riparian vegetation is important for the maintenance of environmental quality and aquatic biodiversity (Dala‐Corte et al., 2020Dala‐Corte, R.B., Melo, A.S., Siqueira, T., Bini, L.M., Martins, R.T., Cunico, A.M., Pes, A.M., Magalhães, A.L.B., Godoy, B.S., Leal, C.G., Monteiro‐Júnior, C.S., Stenert, C., Castro, D.M.P., Macedo, D.R., Lima‐Junior, D.P., Gubiani, É.A., Massariol, F.C., Teresa, F.B., Becker, F.G., Souza, F.N., Valente‐Neto, F., Souza, F.L., Salles, F.F., Brejão, G.L., Brito, J.G., Vitule, J.R.S., Simião‐Ferreira, J., Dias‐Silva, K., Albuquerque, L., Juen, L., Maltchik, L., Casatti, L., Montag, L., Rodrigues, M.E., Callisto, M., Nogueira, M.A.M., Santos, M.R., Hamada, N., Pamplin, P.A.Z., Pompeu, P.S., Leitão, R.P., Ruaro, R., Mariano, R., Couceiro, S.R.M., Abilhoa, V., Oliveira, V.C., Shimano, Y., Moretto, Y., Súarez, Y.R. & Roque, F.O., 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol., 57(7), 1391-1402. http://dx.doi.org/10.1111/1365-2664.13657.
http://dx.doi.org/10.1111/1365-2664.1365...
).

Aquatic insect assemblages show marked changes in their structure and composition in environments affected by agricultural practices (Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
). In streams surrounded by agriculture, an abundance increase of tolerant organisms is observed, but there is a decrease in taxonomic richness and evenness of assemblages (Breda et al., 2020Breda, M., Restello, R.M., Giovenardi, R., Vizzotto, A.P., Soares, B. & Hepp, L.U., 2020. Alpha and beta diversities of Trichoptera (Insecta) assemblages in natural and rural subtropical streams. Acta Limnol. Bras., 32, e14. http://dx.doi.org/10.1590/s2179-975x3219.
http://dx.doi.org/10.1590/s2179-975x3219...
; Hepp et al., 2010Hepp, L.U., Milesi, S.V., Biasi, C. & Restello, R.M., 2010. Effects of agriculture and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia, 27(1), 106-113. http://dx.doi.org/10.1590/S1984-46702010000100016.
http://dx.doi.org/10.1590/S1984-46702010...
; Sensolo et al., 2012Sensolo, D., Hepp, L.U., Decian, V. & Restello, R.M., 2012. Influence of landscape on assemblages of Chironomidae in Neotropical streams. Ann. Limnol. Int. J. Limnol., 48(4), 391-400. http://dx.doi.org/10.1051/limn/2012031.
http://dx.doi.org/10.1051/limn/2012031...
), reflecting on functional attributes of aquatic insect communities (Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
; Conceição et al., 2020Conceição, A.A., Albertoni, E.F., Milesi, S.V. & Hepp, L.U., 2020. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands, 40(6), 2287-2296. http://dx.doi.org/10.1007/s13157-020-01317-1.
http://dx.doi.org/10.1007/s13157-020-013...
).

The functional characteristics of aquatic insects are important for the functioning of ecosystems (Milesi et al., 2019Milesi, S.V., Melo, A.S. & Dolédec, S., 2019. Assessing community functional attributes during substrate colonization: a field experiment using stream insects. Hydrobiologia, 838(1), 183-192. http://dx.doi.org/10.1007/s10750-019-03988-2.
http://dx.doi.org/10.1007/s10750-019-039...
) and are influenced by variations in the streams’ environmental conditions (Díaz et al., 2008Díaz, A.M., Alonso, M.L.S. & Gutiérrez, M.R.V.A., 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw. Biol., 53(1), 1-21. http://dx.doi.org/10.1111/j.1365-2427.2007.01854.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
). Several studies report the existence of clear relationships between the stream insect functional attributes and landscape changes (Ferreira et al., 2017Ferreira, W.R., Hepp, L.U., Ligeiro, R., Macedo, D.R., Hughes, R.M., Kaufmann, P.R. & Callisto, M., 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecol. Indic., 72, 365-373. http://dx.doi.org/10.1016/j.ecolind.2016.08.042.
http://dx.doi.org/10.1016/j.ecolind.2016...
), substrate (Milesi et al., 2016Milesi, S.V., Dolédec, S. & Melo, A.S., 2016. Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshw. Sci., 35(4), 1321-1329. http://dx.doi.org/10.1086/688706.
http://dx.doi.org/10.1086/688706...
), spacial filters (Lamouroux et al., 2004Lamouroux, N., Doledec, S. & Gayraud, S., 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J. N. Am. Benthol. Soc., 23(3), 449-466. http://dx.doi.org/10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2.
http://dx.doi.org/10.1899/0887-3593(2004...
) and environmental quality gradients (Ippolito et al., 2012Ippolito, A., Todeschini, R. & Vighi, M., 2012. Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology, 21(2), 336-352. PMid:21983753. http://dx.doi.org/10.1007/s10646-011-0795-x.
http://dx.doi.org/10.1007/s10646-011-079...
; Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
; Malacarne et al., 2023Malacarne, T.J., Machado, N.R. & Moretto, Y., 2023. Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia (Online). http://dx.doi.org/10.1007/s10750-023-05207-5.).

Aquatic insects have an intrinsic relationship with the environments where they live and develop different abilities to maximize their fitness (Hershkovitz & Gasith, 2013Hershkovitz, Y. & Gasith, A., 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia, 719(1), 59-75. http://dx.doi.org/10.1007/s10750-012-1387-3.
http://dx.doi.org/10.1007/s10750-012-138...
). Studies have observed that organisms with small body sizes, multivoltine life cycles and filter feeding habits are observed in greater proportions in places with higher levels of environmental disturbances (Díaz et al., 2008Díaz, A.M., Alonso, M.L.S. & Gutiérrez, M.R.V.A., 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw. Biol., 53(1), 1-21. http://dx.doi.org/10.1111/j.1365-2427.2007.01854.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
). On the other hand, in natural sites, large body size organisms, semi-voltinism, and the presence of different reproductive strategies were also evidenced (Díaz et al., 2008Díaz, A.M., Alonso, M.L.S. & Gutiérrez, M.R.V.A., 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw. Biol., 53(1), 1-21. http://dx.doi.org/10.1111/j.1365-2427.2007.01854.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
). Thus, in disturbed environments, functional characteristics associated with organisms’ resistance and resilience are observed, favoring their maintenance in these sites (Conceição et al., 2020Conceição, A.A., Albertoni, E.F., Milesi, S.V. & Hepp, L.U., 2020. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands, 40(6), 2287-2296. http://dx.doi.org/10.1007/s13157-020-01317-1.
http://dx.doi.org/10.1007/s13157-020-013...
). In impacted sites, organisms have functional abilities to adapt to adverse conditions based on changes in the community or in the ability to recover after disturbance (Hershkovitz & Gasith, 2013Hershkovitz, Y. & Gasith, A., 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia, 719(1), 59-75. http://dx.doi.org/10.1007/s10750-012-1387-3.
http://dx.doi.org/10.1007/s10750-012-138...
). However, reliable information on how organisms functionally respond to impacted environments is incipient. In this sense, studies are necessary to elucidate the strengths and weaknesses of the functional approach for biomonitoring purposes, which depend on spatial scales, interrelationships and the species pool of the sites (Saito et al., 2020Saito, V.S., Siqueira, T., Bini, L.M., Costa-Pereira, R., Santos, E.P. & Pavoine, S., 2020. Comparing taxon- and trait-environment relationships in stream communities. Ecol. Indic., 117, 106625. http://dx.doi.org/10.1016/j.ecolind.2020.106625.
http://dx.doi.org/10.1016/j.ecolind.2020...
).

In this study, we evaluated the possible effects of replacement of riparian native vegetation with agriculture land use on the functional characteristics of aquatic insect assemblages in Atlantic Forest streams, southern Brazil. We expect functional traits in organisms to reflect environmental impacts observed in streams. We evaluated the functional attributes of body size, feeding habits, morphology, and locomotion of aquatic insect assemblages of the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) along an environmental gradient caused, mainly, by agricultural land use in small streams. Our hypothesis is that the EPT assemblages in streams where riparian vegetation is removed will be composed of (i) smaller organisms, (ii) predominantly collector and filter feeder, (iii) cylindrical shape, and (iv) swimmers. Our expectation is based on the resistance capacity of these organisms in impacted environments (Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
). As they are organisms with little tolerance to disturbed environments, they will present functional attributes associated with abilities that contribute to the acceleration of the reproductive process, greater capacity for dispersion and consumption of indigenous or primarily processing resources.

2. Material and Methods

2.1. Study area

We studied streams located in watersheds belonging (i.e. Dourado, Cravo, Suzana and Campo Rivers) to the upper portion of the Uruguay River Basin in southern Brazil (Figure 1). The region has altitudes ranging from 400 to 750 m a.s.l., average annual temperature of ~18ºC, and average annual precipitation of ~1800 mm (Alvares et al., 2013Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z., 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.
http://dx.doi.org/10.1127/0941-2948/2013...
). The region is inserted in the Atlantic Forest biome with vegetal transition between Mixed Ombrophile Forest and Seasonal Deciduous Forest formations (Oliveira-Filho et al., 2015Oliveira-Filho, A.T., Budke, J.C., Jarenkow, J.A., Eisenlohr, P.V. & Neves, D.R.M., 2015. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J. Plant Ecol., 8(3), 242-260. http://dx.doi.org/10.1093/jpe/rtt058.
http://dx.doi.org/10.1093/jpe/rtt058...
).

Figure 1
Location of streams studied (S1 to S10) in southern Brazil. Natural streams (S1, S2, and S3), intermediate streams (S4, S5, S6, and S7), and impacted streams (S8, S9, and S10).

The plant species that occur in the region is Araucaria angustifolia (Bertol.) Kuntze, but other species like Nectandra megapotamica (Spreng.) Mez., Cedrela fissilis Vell., Cupania vernalis Cambess., Campomanesia xanthocarpa (Mart.) O. Berg e Sebastiania commersoniana (Baill.) L.B. Sm. & Downs are common (Loregian et al., 2012Loregian, A.C., Silva, B.B., Zanin, E.M., Decian, V.S., Henke-Oliveira, C. & Budke, J.C., 2012. Padrões espaciais e ecológicos de espécies arbóreas refletem a estrutura em mosaicos de uma floresta subtropical. Acta Bot. Bras., 26(3), 593-606. http://dx.doi.org/10.1590/S0102-33062012000300009.
http://dx.doi.org/10.1590/S0102-33062012...
). We selected ten streams (Strahler stream order < 3rd) with similar morphological characteristics in the region. The streams width ranged from 1 to 3 m and ~0.4 m in depth. The substrate is basically composed of stones and sediment deposits, and leaves are common in several stream stretches.

2.2. Environmental variables

For each stream, we marked the geographic coordinates, and from this point, we defined the drainage area of each stream. We analyzed the drainage areas following the cartographic parameters for selecting the listed points and water dividers. To quantify the land uses, we used MapInfo 8.5 and Idrisi 32 software. For each drainage area, we classified the land uses using the method of Supervised Classification by Maximum Likelihood (maxlike) in SIG IDRISI 32. We quantified the land use and land cover classes in the drainage areas as follows: agriculture, pasture, and native arboreal vegetation.

In each stretch, we analyzed in situ the variables: water temperature, turbidity, electrical conductivity, pH, dissolved oxygen, and total dissolved solids using a multiparameter analyzer Horiba® U51. In the same stretches, we collected water samples and analyzed the nitrite and total phosphorus concentrations in laboratory using spectrophotometric method. Finally, we filtered the samples with 0.45 µm porosity filters and analyzed dissolved organic carbon and total dissolved nitrogen concentrations in a TOC Shimadzu® Analyzer.

2.3. Aquatic insects

We collected aquatic insects with a Surber sampler (250 µm mesh and 0.09 m2 area) in the stony substrate. In each stream stretch, we collected six sub-samples that were grouped, fixed with 80% ethanol, and taken to the laboratory for screening and identification. In the laboratory, we separated insect larvae into orders Ephemeroptera, Trichoptera, and Plecoptera (EPT) and carried out identifications up to the genus taxonomic level according to Fernandez & Dominguez (2001)Fernandez, H.R. & Dominguez, E., 2001. Guia para determinación de los artropodos bentônicos sudamericanos. Tucumán: Universidad Nacional de Tucumán. and Mugnai et al. (2010)Mugnai, R., Nessimian, J.L. & Baptista, D.F., 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro. Rio de Janeiro: Technical Books, 174 p.. After identification, we classified the genera functional attributes according to information from the literature, preferably with data from studies carried out in the Neotropical region (Tachet et al., 2002Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P., 2002. Invertébrés d’eau douce. Paris: CNRS Éditions.; Tomanova et al., 2008Tomanova, S., Moya, N. & Oberdorff, T., 2008. Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Res. Appl., 24(9), 1230-1239. http://dx.doi.org/10.1002/rra.1148.
http://dx.doi.org/10.1002/rra.1148...
; Milesi et al., 2016Milesi, S.V., Dolédec, S. & Melo, A.S., 2016. Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshw. Sci., 35(4), 1321-1329. http://dx.doi.org/10.1086/688706.
http://dx.doi.org/10.1086/688706...
). We used the four functional attributes: body size, feeding habits, morphology, and locomotion described into 14 functional categories (Table 1). We chose these functional attributes because they are characteristics directly associated with environmental changes. The information for each trait category was quantified using a fuzzy code technique. This technique determines the affinity of each taxon belonging to each trait category (Chevene et al., 1994Chevene, F., Doléadec, S. & Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol., 31(3), 295-309. http://dx.doi.org/10.1111/j.1365-2427.1994.tb01742.x.
http://dx.doi.org/10.1111/j.1365-2427.19...
). Values from 0 to 3 are assigned, where 0 corresponds to no affinity, 1 corresponds to weak affinity, 2 to moderate affinity, and 3 to strong affinity. This approach helps compensate for for each taxon's different information levels (Chevene et al., 1994Chevene, F., Doléadec, S. & Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol., 31(3), 295-309. http://dx.doi.org/10.1111/j.1365-2427.1994.tb01742.x.
http://dx.doi.org/10.1111/j.1365-2427.19...
).

Table 1
Functional attributes and their categories used for the Ephemeroptera, Plecoptera and Trichoptera organisms in streams studied.

2.4. Data analysis

Initially, we grouped the streams according to three categories (i.e. natural, intermediary, and impacted), using scores from the first and second principal component (PC1 and PC2) of a Principal Component Analysis (PCA). We performed this ordering based on limnological variables and land use and land cover standardized based on the maximum value among the sampling units. The categorization of streams was based on the relationships between the scores of the first two main components and the values of the limnological and land use and occupation variables. As expected, the highest dissolved oxygen concentrations, native vegetation percentage in riparian zone, and neutral pH were the main predictors of streams with natural conditions. On the other hand, the impacted streams had higher percentages of agricultural use in the riparian zone and higher water temperatures (Table 2). After stream categorization, we compared the limnological variables between the three stream categories using an ANOVA with a posteriori Tukey-HSD test. We performed the same procedure to assess differences between EPT abundance (log-transformed) and genera richness between stream categories.

Table 2
Pearson correlations between the measured environmental variables and the scores of the first two main components of the PCA. Values in bold: p<0.05.

To test the environmental conditions on aquatic insect functional attributes, we used an RLQ analysis based on matrices with environmental variables (R), insect abundance (L), and insect functional attributes (Q). The RLQ uses an inertia analysis to verify the relationships between functional attributes and habitats with the insects that occur in these sites. Based on this association between the three matrices, RLQ provides a simultaneous ordering between biological and environmental information (Dolédec et al., 1996Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S., 1996. Matching species traits to environmental variables: a new three-table ordination method. Environ. Ecol. Stat., 3(2), 143-166. http://dx.doi.org/10.1007/BF02427859.
http://dx.doi.org/10.1007/BF02427859...
). We used model 2 to perform the analyses, which randomizes the environmental matrix to relate it to the functional attributes’ matrix (Dray et al., 2014Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S. & Ter Braak, C.J.F., 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14-21. PMid:24649641. http://dx.doi.org/10.1890/13-0196.1.
http://dx.doi.org/10.1890/13-0196.1...
). We tested the significance of randomization based on a Monte-Carlo test (p < 0.05). We used the rlq function in the 'ade4' package (Dray & Dufour, 2007Dray, S. & Dufour, A.B., 2007. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw., 22(4), 1-20. http://dx.doi.org/10.18637/jss.v022.i04.
http://dx.doi.org/10.18637/jss.v022.i04...
). All analyses were performed using the R software (R Core Team, 2017R Core Team, 2017. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, July 5, from http://www.R-project.org/
http://www.R-project.org/...
).

3. Results

3.1. Environmental variables

The environmental characteristics observed in the streams promoted a PCA ordination where we classified the sites according to three categories associated with their quality (Figure 2, Table 2). In our study, the 10 studied streams were classified according to the level of impact as natural (n=3; S1, S2, and S3), intermediate (n=4; S4, S5, S6, and S7), and impacted (n=3; S8, S9, and S10). In addition, only five environmental variables showed variation between the impact types (Table 3 and Table 4). The water temperature in natural streams was lower (15.9±0.50 ºC) compared to intermediate (17.9±0.26 ºC) and impacted (17.8±0.32 ºC) streams (Figure 3A). The pH ranged from neutral to slightly acidic between natural (7.10±0.05) and impacted (6.43±0.03) streams (Figure 3B). Dissolved oxygen concentrations were similar between natural and impacted streams (8.7±0.2 mg.L-1 and 7.6±0.2 mg.L-1, respectively) and higher than in intermediate streams (6.4±0.3 mg.L-1) (Figure 3C). The native tree cover was higher in natural streams (69.0±6.2%), gradually decreasing in intermediate (46.5±8.0%) and impacted (16.4±5.9%) streams (Figure 3D). The inverse pattern was observed for agricultural use with the highest percentages in impacted streams (75.9±7.5%), followed by intermediate (39.3±7.1%) and natural (20.8±5.8%) (Figure 3E). The other environmental variables measured were similar between the three categories of streams (Table 3 and Table 4).

Figure 2
Principal Components Analysis of environmental variables measured in streams studied in southern Brazil. Veg: natural vegetation; Agr: agriculture; Past: pasture; Temp: water temperature; NTD: nitrogen total dissolved; CE: electrical conductivity; TDS: total dissolved solids; NO2: nitrite; OD: dissolved oxygen; Turb: turbidity; COD: dissolved organic carbon.
Table 3
Environmental variables measured in streams in southern Brazil. Temp (water temperature), DO (dissolved oxygen), pH (pH), Turb (turbidity), CE (electric conductivity), DOC (dissolved organic carbon), TDN (dissolved total nitrogen), NO2 (nitrite), PO4 (phosphate), veg (native vegetation land use), agr (agriculture land use), past (pasture land use).
Table 4
Results of analysis of variance performed for each environmental variable measured between natural, intermediate, and impacted streams.
Figure 3
Boxplot for the values (median) of the environmental variables that showed a significant difference (different letters, p < 0.05) between the categories of streams (natural, n=3; intermediate, n=4; and impacted, n=3).

3.2. Aquatic insect assemblages

We collected 2591 organisms distributed in 21 EPT genera (Table 5). Of these, we collected 1275 organisms (49.2%) in impacted streams, 714 in natural streams (27.5%), and 602 in intermediate streams (23.2%). The abundance of organisms was greater in impacted streams and similar between natural and intermediate streams (F2,7=5.7, p=0.03). In turn, the richness of genera observed between natural and impacted streams was higher than the intermediate ones (F2,7=27.6, p<0.001), but similar to each other. In this way, we performed a rarefaction to correct the effect of abundance on the richness of genera and observed that the richness in natural streams was higher than the others (F2.7=5.2, p=0.04), while the richness in impacted and intermediate streams was similar.

Table 5
Abundance of Ephemeroptera, Plecoptera and Trichoptera larvaes sampling in streams in southern Brazil.

The genus Smicridea (Hydropsychidae, Trichoptera) was the most abundant (30.6% of the total) and present in all streams, the same as Caenis (Caenidae, Ephemeroptera, 24.8%) and Itaura (Glossossomatidae, Trichoptera, 20.3%). The genera Cernotina (Polycentropodidae, Trichoptera) and Nectopsyche (Leptoceridae, Trichoptera) were exclusive from natural streams. On the other hand, Marilia (Odontoceridae, Trichoptera) and Wormaldia (Philopotamidae, Trichoptera) and Tricorythopsis (Leptohyphidae, Ephemeroptera) were exclusive from impacted streams (Table 5).

We observed that the functional attributes of EPT formed distinct groups in relation to the stream categories defined by the measured environmental variables (RLQ, p = 0.006, Figure 4). This ordering was summarized in 56% by the first RLQ axis and 33% by the second RLQ axis. Thus, along the first axis we observe the distinction between streams according to the proposed classification (i.e., natural, intermediate and impacted). While natural streams were ordered by the highest percentages of riparian vegetation, impacted streams had higher percentages of agricultural use. In turn, the intermediate streams presented a dispersion along the second axis of the RLQ, corresponding to limnological characteristics associated with nitrogen and DOC concentrations.

Figure 4
Results of RLQ analysis performed with invertebrate community composition, functional attributes, and environmental variables in streams of southern Brazil. (A) Environmental variables ordination. (B) Organism’s composition ordination. (C) RLQ ordination. (D) Functional attributes ordination in natural-impacted streams gradient.

We observed larger organisms in natural streams, with flattened bodies, tarsal claws, and shredder feeding habits. These attributes were associated with the genera Phylloicus (Calomoceratidae, Trichoptera), Anacroneuria (Perlidae, Plecoptera), Tupiperla (Gripopterygidae, Plecoptera), and Farrodes (Leptophebiidae, Ephemeroptera). In impacted streams, we observed smaller organisms with scraper feeding habits, cylindrical bodies, and organisms that lives attached to substrate or build shelters. In these streams, the most frequent genera were Itaura, Wormaldia, and Helicopsyche (Helicopsychidae, Trichoptera). The impacted streams have a higher agricultural use percentage in their drainage area, acidic pH, and higher water temperatures.

4. Discussion

In this study, we evaluated the effects of riparian vegetation and agriculture in the buffer zone of small streams on the functional diversity of Ephemeroptera, Plecoptera, and Trichoptera assemblages. We observed that the insect functional attributes, body size, feeding habits, morphology, and locomotion reflected the streams’ environmental variability. In the present study, we standardized numerous environmental characteristics that can naturally generate functional variability in communities (e.g. size of streams, type of substrate, geological basis, among others). In this way, we observed clear associations between the functional characteristics of the organisms and the environmental variables measured, including characteristics related to the landscape of areas adjacent to the streams (i.e. riparian vegetation, agriculture). Thus, we can see that changes in streams adjacent areas (e.g., land use) are important environmental predictors in the structuring of aquatic insect communities.

Thus, it is expected that changes in land use in the stream drainage area will affect the limnological water quality and, consequently, the aquatic biota (Breda et al., 2020Breda, M., Restello, R.M., Giovenardi, R., Vizzotto, A.P., Soares, B. & Hepp, L.U., 2020. Alpha and beta diversities of Trichoptera (Insecta) assemblages in natural and rural subtropical streams. Acta Limnol. Bras., 32, e14. http://dx.doi.org/10.1590/s2179-975x3219.
http://dx.doi.org/10.1590/s2179-975x3219...
; Castro et al., 2021Castro, E.R., Veras, D.S., Lustosa, G.S., Azevêdo, C.A.S. & Juen, L., 2021. Effects of environmental variables and habitat integrity on the structure of the aquatic insect communities of streams in the Cerrado-Caatinga ecotone in Northeastern Brazil. Neotrop. Entomol., 50(1), 21-31. PMid:33104980. http://dx.doi.org/10.1007/s13744-020-00816-4.
http://dx.doi.org/10.1007/s13744-020-008...
). In this study, we observed that the vegetation removal was decisive for the change in limnological variables such as water temperature, pH, and dissolved oxygen. Vegetation removal facilitates the light incidence increasing the stream water temperature (Tonello et al., 2021Tonello, G., Decian, V.S., Restello, R.M. & Hepp, L.U., 2021. The conversion of natural riparian forests into agricultural land affects ecological processes in Atlantic forest streams. Limnologica, 91, 125927. http://dx.doi.org/10.1016/j.limno.2021.125927.
http://dx.doi.org/10.1016/j.limno.2021.1...
). In addition, removal of riparian vegetation facilitates the sediment input from agricultural areas containing chemical substances (e.g. pesticides and metals) that acidify the water and reduce the dissolved oxygen concentration in streams (Loureiro et al., 2018Loureiro, R.C., Menegat, M.N., Restello, R.M. & Hepp, L.U., 2018. Incorporation of zinc and copper by insects of different functional feeding groups in agricultural streams. Environ. Sci. Pollut. Res. Int., 25(18), 17402-17408. PMid:29654465. http://dx.doi.org/10.1007/s11356-018-1971-9.
http://dx.doi.org/10.1007/s11356-018-197...
).

The insect abundance was approximately two times greater in impacted streams, which resulted in a genera richness was greater in to the natural streams. However, the greater abundance in impacted environments was due to the dominance of three genera: Smicridea, Itaura, and Caenis, representing 83% of all collected insects. The dominance of few taxa is a common pattern in biological communities; however, the dominance of some taxa is more evident when the environment is impacted. Studies demonstrate that changes in areas adjacent to streams can cause chemical changes in the water (for example, through the transport of sediments or chemicals) favoring the dominance of tolerant organisms (Hepp et al., 2010Hepp, L.U., Milesi, S.V., Biasi, C. & Restello, R.M., 2010. Effects of agriculture and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia, 27(1), 106-113. http://dx.doi.org/10.1590/S1984-46702010000100016.
http://dx.doi.org/10.1590/S1984-46702010...
; Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
; Hepp et al., 2021Hepp, L.U., Milesi, S.V., Nava, D. & Restello, R.M., 2021. Nestedness of stream insects in Subtropical region: importance of inter-annual temporal scale. Iheringia Ser. Zool., 111, e2021005. http://dx.doi.org/10.1590/1678-4766e2021005.
http://dx.doi.org/10.1590/1678-4766e2021...
). Among the Trichoptera genera, Smicridea and Itaura are widely observed in streams with agricultural use (Breda et al., 2020Breda, M., Restello, R.M., Giovenardi, R., Vizzotto, A.P., Soares, B. & Hepp, L.U., 2020. Alpha and beta diversities of Trichoptera (Insecta) assemblages in natural and rural subtropical streams. Acta Limnol. Bras., 32, e14. http://dx.doi.org/10.1590/s2179-975x3219.
http://dx.doi.org/10.1590/s2179-975x3219...
), while Caenis has been reported as an Ephemeroptera genus tolerant to anthropogenic disturbances (Arimoro & Muller, 2010Arimoro, F.O. & Muller, W.J., 2010. Mayfly (Insecta: Ephemeroptera) community structure as an indicator of the ecological status of a stream in the Niger Delta area of Nigeria. Environ. Monit. Assess., 166(1-4), 581-594. PMid:19543701. http://dx.doi.org/10.1007/s10661-009-1025-3.
http://dx.doi.org/10.1007/s10661-009-102...
). In addition, our results clearly demonstrated the effects of organism abundance on richness. The richness of genera observed between natural and impacted streams was similar, however, when we corrected these values based on a rarefaction based on the abundance of organisms, it was possible to observe that the richness in natural streams was higher. In this sense, it is important to highlight that we must be cautious when interpreting the results, based only on some assemblage metrics.

The EPT assemblages in streams responded significantly to streams’ environmental quality. The distinction between functional attributes, mainly comparing natural and impacted streams assemblages demonstrates that the effects of environmental filters (at regional or local scales) act decisively on aquatic communities. Local environmental factors are fundamental for establishing the functional composition of aquatic insects, as they can act as environmental filters (Nicacio et al., 2020Nicacio, G., Cunha, E.J., Hamada, N. & Juen, L., 2020. How habitat filtering can affect taxonomic and functional composition of aquatic insect communities in small Amazonian streams. Neotrop. Entomol., 49(5), 652-661. PMid:32440832. http://dx.doi.org/10.1007/s13744-020-00780-z.
http://dx.doi.org/10.1007/s13744-020-007...
). In turn, local environmental changes are related to changes in the streams’ drainage area (i.e., vegetation replacement by agriculture or urbanization) (Sitati et al., 2021Sitati, A., Raburu, P.O., Yegon, M.J. & Masese, F.O., 2021. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica, 88, 125875. http://dx.doi.org/10.1016/j.limno.2021.125875.
http://dx.doi.org/10.1016/j.limno.2021.1...
). Thus, riparian vegetation is important for maintaining the integrity of small streams, acting as impacts mitigation observed in drainage areas (Luiza-Andrade et al., 2017Luiza-Andrade, A., Brasil, L.S., Benone, N.L., Shimano, Y., Farias, A.P.J., Montag, L.F., Dolédec, S. & Juen, L., 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecol. Indic., 82, 478-483. http://dx.doi.org/10.1016/j.ecolind.2017.07.006.
http://dx.doi.org/10.1016/j.ecolind.2017...
; Huiñocana et al., 2020Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002.
http://dx.doi.org/10.1051/limn/2020002...
).

The predominant functional attributes observed in impacted streams are characteristic of insects’ resistance strategies. Small body size organisms are common in impacted environments (Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
). Organisms generally develop life history strategies that result in abilities to withstand adverse environmental conditions (Hershkovitz & Gasith, 2013Hershkovitz, Y. & Gasith, A., 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia, 719(1), 59-75. http://dx.doi.org/10.1007/s10750-012-1387-3.
http://dx.doi.org/10.1007/s10750-012-138...
). In impacted locations, communities tend to have smaller organisms, as a possible physiological response to environmental changes, however, there is no consensus in the literature on whether this relationship between disturbance and individual size is really clear (Gomes et al., 2018Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006.
http://dx.doi.org/10.1016/j.ecolind.2018...
; Lundquist & Zhu, 2018Lundquist, M.J. & Zhu, W., 2018. Aquatic insect functional diversity and nutrient content in urban streams in a medium-sized city. Ecosphere, 9(5), e02284. http://dx.doi.org/10.1002/ecs2.2284.
http://dx.doi.org/10.1002/ecs2.2284...
; Malacarne et al., 2023Malacarne, T.J., Machado, N.R. & Moretto, Y., 2023. Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia (Online). http://dx.doi.org/10.1007/s10750-023-05207-5.; Collyer et al., 2023Collyer, G., Perkins, D.M., Petsch, D.K., Siqueira, T. & Saito, V., 2023. Land-use intensification systematically alters the size structure of aquatic communities in the Neotropics. Glob. Change Biol., 29(14), 4094-4106. PMid:37059700. http://dx.doi.org/10.1111/gcb.16720.
http://dx.doi.org/10.1111/gcb.16720...
). Furthermore, resistant organisms to disturbed environments tend to feed on fine or dissolved particles. In streams with riparian vegetation replaced by agriculture, the input of fine sediments is common, which facilitates the establishment of scrapers, collectors, and filter feeders (Tonello et al., 2021Tonello, G., Decian, V.S., Restello, R.M. & Hepp, L.U., 2021. The conversion of natural riparian forests into agricultural land affects ecological processes in Atlantic forest streams. Limnologica, 91, 125927. http://dx.doi.org/10.1016/j.limno.2021.125927.
http://dx.doi.org/10.1016/j.limno.2021.1...
). On the other hand, the presence of riparian vegetation in natural streams provides the input of organic material which is used as a food resource by shredders (Tonin et al., 2018Tonin, A.M., Hepp, L.U. & Gonçalves Junior, J.F., 2018. Spatial variability of plant litter decomposition in stream networks: from litter bags to watersheds. Ecosystems, 21(3), 567-581. http://dx.doi.org/10.1007/s10021-017-0169-1.
http://dx.doi.org/10.1007/s10021-017-016...
). Substrate homogenization alters stream current flow making the environment more suitable for organisms that have anchoring structures (e.g., claws or house building) or less hydrodynamic (e.g., cylindrical larvae) (Milesi et al., 2019Milesi, S.V., Melo, A.S. & Dolédec, S., 2019. Assessing community functional attributes during substrate colonization: a field experiment using stream insects. Hydrobiologia, 838(1), 183-192. http://dx.doi.org/10.1007/s10750-019-03988-2.
http://dx.doi.org/10.1007/s10750-019-039...
). Furthermore, streams with intermediate impact levels did not represent a clear pattern in the functional characteristics of EPT assemblages. This occurs precisely because of the transitory environmental characteristics between natural and impacted environments.

5. Conclusion

Aquatic environments functioning depends on complex interactions between species and the environments in which they occur. The conservation of riparian vegetation in small streams is essential for maintaining the functions of these ecosystems and supporting aquatic communities. Aquatic insects can tolerate or re-establish themselves in adverse environmental conditions (Restello & Hepp, 2020Restello, R.M. & Hepp, L.U., 2020. Monitoramento biológico de riachos com o uso de invertebrados aquáticos. In: Hepp, L.U. & Restello, R.M., eds. Ecologia de riachos no Alto Uruguai Gaúcho. Erechim: EdiFapes, 33-51.). This occurs because insects’s have functional characteristics that facilitate their resistance or resilience to these environments. Our study demonstrated an intrinsic relationship between land use and land cover (especially native riparian vegetation and agriculture) and the aquatic insects functional diversity. Furthermore, we demonstrate that changes in the streams’ water quality are associated with changes in the adjacent areas of these environments. This was possible because we studied streams with a similar structure, which allowed us to infer more directly about the effects of variables on a local (limnological) and regional (land use) scale. The functional attributes reflected the impact showing that they are useful for checking the environmental quality. Also, resistance functional attributes (e.g., body size, feeding habits, morphology and locomotion) were sensitive to agricultural uses. Finally, the use of functional attributes can complement the taxonomic information of aquatic communities, especially when the objective of biological assessment is detecting the effects of diffuse impacts (e.g. agriculture).

Acknowledgements

LUH thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for grants (Number 307212/2020-3). SVM receives a scholarship from Pós-Doutorado Júnior/Conselho Nacional de Desenvolvimento Científico e Tecnológico (150477/2021-0), and thank the Programa de Estágio de Pós-Doutorado da UFMS. JSH and RCP received Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior scholarship, financial code 001. RMR receives financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Number 409685/2016-0).

  • Cite as: Hepp, L.U. et al. Agriculture affects functional diversity of aquatic insects in Subtropical Atlantic Forest streams. Acta Limnologica Brasiliensia, 2023, vol. 35, e31.

References

  • Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z., 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • Arimoro, F.O. & Muller, W.J., 2010. Mayfly (Insecta: Ephemeroptera) community structure as an indicator of the ecological status of a stream in the Niger Delta area of Nigeria. Environ. Monit. Assess., 166(1-4), 581-594. PMid:19543701. http://dx.doi.org/10.1007/s10661-009-1025-3
    » http://dx.doi.org/10.1007/s10661-009-1025-3
  • Breda, M., Restello, R.M., Giovenardi, R., Vizzotto, A.P., Soares, B. & Hepp, L.U., 2020. Alpha and beta diversities of Trichoptera (Insecta) assemblages in natural and rural subtropical streams. Acta Limnol. Bras., 32, e14. http://dx.doi.org/10.1590/s2179-975x3219
    » http://dx.doi.org/10.1590/s2179-975x3219
  • Castro, E.R., Veras, D.S., Lustosa, G.S., Azevêdo, C.A.S. & Juen, L., 2021. Effects of environmental variables and habitat integrity on the structure of the aquatic insect communities of streams in the Cerrado-Caatinga ecotone in Northeastern Brazil. Neotrop. Entomol., 50(1), 21-31. PMid:33104980. http://dx.doi.org/10.1007/s13744-020-00816-4
    » http://dx.doi.org/10.1007/s13744-020-00816-4
  • Chevene, F., Doléadec, S. & Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol., 31(3), 295-309. http://dx.doi.org/10.1111/j.1365-2427.1994.tb01742.x
    » http://dx.doi.org/10.1111/j.1365-2427.1994.tb01742.x
  • Collyer, G., Perkins, D.M., Petsch, D.K., Siqueira, T. & Saito, V., 2023. Land-use intensification systematically alters the size structure of aquatic communities in the Neotropics. Glob. Change Biol., 29(14), 4094-4106. PMid:37059700. http://dx.doi.org/10.1111/gcb.16720
    » http://dx.doi.org/10.1111/gcb.16720
  • Conceição, A.A., Albertoni, E.F., Milesi, S.V. & Hepp, L.U., 2020. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands, 40(6), 2287-2296. http://dx.doi.org/10.1007/s13157-020-01317-1
    » http://dx.doi.org/10.1007/s13157-020-01317-1
  • Cornejo, A., Tonin, A.M., Checa, B., Tunon, A.R., Perez, D., Coronado, E., Gonzalez, S., Rios, T., Macchi, P., Correa-Araneda, F. & Boyero, L., 2019. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS One, 14(8), e0220528. PMid:31393898. http://dx.doi.org/10.1371/journal.pone.0220528
    » http://dx.doi.org/10.1371/journal.pone.0220528
  • Dala‐Corte, R.B., Melo, A.S., Siqueira, T., Bini, L.M., Martins, R.T., Cunico, A.M., Pes, A.M., Magalhães, A.L.B., Godoy, B.S., Leal, C.G., Monteiro‐Júnior, C.S., Stenert, C., Castro, D.M.P., Macedo, D.R., Lima‐Junior, D.P., Gubiani, É.A., Massariol, F.C., Teresa, F.B., Becker, F.G., Souza, F.N., Valente‐Neto, F., Souza, F.L., Salles, F.F., Brejão, G.L., Brito, J.G., Vitule, J.R.S., Simião‐Ferreira, J., Dias‐Silva, K., Albuquerque, L., Juen, L., Maltchik, L., Casatti, L., Montag, L., Rodrigues, M.E., Callisto, M., Nogueira, M.A.M., Santos, M.R., Hamada, N., Pamplin, P.A.Z., Pompeu, P.S., Leitão, R.P., Ruaro, R., Mariano, R., Couceiro, S.R.M., Abilhoa, V., Oliveira, V.C., Shimano, Y., Moretto, Y., Súarez, Y.R. & Roque, F.O., 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol., 57(7), 1391-1402. http://dx.doi.org/10.1111/1365-2664.13657
    » http://dx.doi.org/10.1111/1365-2664.13657
  • Díaz, A.M., Alonso, M.L.S. & Gutiérrez, M.R.V.A., 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw. Biol., 53(1), 1-21. http://dx.doi.org/10.1111/j.1365-2427.2007.01854.x
    » http://dx.doi.org/10.1111/j.1365-2427.2007.01854.x
  • Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S., 1996. Matching species traits to environmental variables: a new three-table ordination method. Environ. Ecol. Stat., 3(2), 143-166. http://dx.doi.org/10.1007/BF02427859
    » http://dx.doi.org/10.1007/BF02427859
  • Dray, S. & Dufour, A.B., 2007. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw., 22(4), 1-20. http://dx.doi.org/10.18637/jss.v022.i04
    » http://dx.doi.org/10.18637/jss.v022.i04
  • Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S. & Ter Braak, C.J.F., 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14-21. PMid:24649641. http://dx.doi.org/10.1890/13-0196.1
    » http://dx.doi.org/10.1890/13-0196.1
  • Fernandez, H.R. & Dominguez, E., 2001. Guia para determinación de los artropodos bentônicos sudamericanos. Tucumán: Universidad Nacional de Tucumán.
  • Ferreira, W.R., Hepp, L.U., Ligeiro, R., Macedo, D.R., Hughes, R.M., Kaufmann, P.R. & Callisto, M., 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecol. Indic., 72, 365-373. http://dx.doi.org/10.1016/j.ecolind.2016.08.042
    » http://dx.doi.org/10.1016/j.ecolind.2016.08.042
  • Gomes, W.I.A., Jovem-Azevêdo, D.S., Paiva, F.F., Milesi, S.V. & Molozzi, J., 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic., 93, 404-410. http://dx.doi.org/10.1016/j.ecolind.2018.05.006
    » http://dx.doi.org/10.1016/j.ecolind.2018.05.006
  • Graeber, D., Boechat, I.G., Encina-Montoya, F., Esse, C., Gelbrecht, J., Goyenola, G., Gucker, B., Heinz, M., Kronvang, B., Meerhoff, M., Nimptsch, J., Pusch, M.T., Silva, R.C., von Schiller, D. & Zwirnmann, E., 2015. Global effects of agriculture on fluvial dissolved organic matter. Sci. Rep., 5(1), 16328. PMid:26541809. http://dx.doi.org/10.1038/srep16328
    » http://dx.doi.org/10.1038/srep16328
  • Hepp, L.U., Milesi, S.V., Biasi, C. & Restello, R.M., 2010. Effects of agriculture and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia, 27(1), 106-113. http://dx.doi.org/10.1590/S1984-46702010000100016
    » http://dx.doi.org/10.1590/S1984-46702010000100016
  • Hepp, L.U., Milesi, S.V., Nava, D. & Restello, R.M., 2021. Nestedness of stream insects in Subtropical region: importance of inter-annual temporal scale. Iheringia Ser. Zool., 111, e2021005. http://dx.doi.org/10.1590/1678-4766e2021005
    » http://dx.doi.org/10.1590/1678-4766e2021005
  • Hershkovitz, Y. & Gasith, A., 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia, 719(1), 59-75. http://dx.doi.org/10.1007/s10750-012-1387-3
    » http://dx.doi.org/10.1007/s10750-012-1387-3
  • Huiñocana, J.C.S., Albertoni, E.F., Picolotto, R.C., Milesi, S.V. & Hepp, L.U., 2020. Nestedness of insect assemblages in agriculture-impacted Atlantic forest streams. Ann. Limnol. Int. J. Lim., 56, 3. http://dx.doi.org/10.1051/limn/2020002
    » http://dx.doi.org/10.1051/limn/2020002
  • Ippolito, A., Todeschini, R. & Vighi, M., 2012. Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology, 21(2), 336-352. PMid:21983753. http://dx.doi.org/10.1007/s10646-011-0795-x
    » http://dx.doi.org/10.1007/s10646-011-0795-x
  • Lamouroux, N., Doledec, S. & Gayraud, S., 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J. N. Am. Benthol. Soc., 23(3), 449-466. http://dx.doi.org/10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2
    » http://dx.doi.org/10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2
  • Loregian, A.C., Silva, B.B., Zanin, E.M., Decian, V.S., Henke-Oliveira, C. & Budke, J.C., 2012. Padrões espaciais e ecológicos de espécies arbóreas refletem a estrutura em mosaicos de uma floresta subtropical. Acta Bot. Bras., 26(3), 593-606. http://dx.doi.org/10.1590/S0102-33062012000300009
    » http://dx.doi.org/10.1590/S0102-33062012000300009
  • Loureiro, R.C. & Hepp, L.U., 2020. Stream contamination by trace elements: biota incorporation and phytoremediation. Acta Limnol. Bras., 32, e201. http://dx.doi.org/10.1590/s2179-975x2219
    » http://dx.doi.org/10.1590/s2179-975x2219
  • Loureiro, R.C., Calisto, J.F.F., Magro, J.D., Restello, R.M. & Hepp, L.U., 2021. The influence of the environment in the incorporation of copper and cadmium in scraper insects. Environ. Monit. Assess., 193(4), 215. PMid:33759031. http://dx.doi.org/10.1007/s10661-021-08997-0
    » http://dx.doi.org/10.1007/s10661-021-08997-0
  • Loureiro, R.C., Menegat, M.N., Restello, R.M. & Hepp, L.U., 2018. Incorporation of zinc and copper by insects of different functional feeding groups in agricultural streams. Environ. Sci. Pollut. Res. Int., 25(18), 17402-17408. PMid:29654465. http://dx.doi.org/10.1007/s11356-018-1971-9
    » http://dx.doi.org/10.1007/s11356-018-1971-9
  • Luiza-Andrade, A., Brasil, L.S., Benone, N.L., Shimano, Y., Farias, A.P.J., Montag, L.F., Dolédec, S. & Juen, L., 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecol. Indic., 82, 478-483. http://dx.doi.org/10.1016/j.ecolind.2017.07.006
    » http://dx.doi.org/10.1016/j.ecolind.2017.07.006
  • Luke, S.H., Slade, E.M., Gray, C.L., Annammala, K.V., Drewer, J., Williamson, J., Agama, A.L., Ationg, M., Mitchell, S.L., Vairappan, C.S. & Struebig, M.J., 2019. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol., 56(1), 85-92. http://dx.doi.org/10.1111/1365-2664.13280
    » http://dx.doi.org/10.1111/1365-2664.13280
  • Lundquist, M.J. & Zhu, W., 2018. Aquatic insect functional diversity and nutrient content in urban streams in a medium-sized city. Ecosphere, 9(5), e02284. http://dx.doi.org/10.1002/ecs2.2284
    » http://dx.doi.org/10.1002/ecs2.2284
  • Malacarne, T.J., Machado, N.R. & Moretto, Y., 2023. Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia (Online). http://dx.doi.org/10.1007/s10750-023-05207-5.
  • Medan, D., Torretta, J.P., Hodara, K., de la Fuente, E.B. & Montaldo, N.H., 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv., 20(13), 3077-3100. http://dx.doi.org/10.1007/s10531-011-0118-9
    » http://dx.doi.org/10.1007/s10531-011-0118-9
  • Meza-Salazar, A.M., Guevara, G., Gomes-Dias, L. & Cultid-Medina, C.A., 2020. Density and diversity of macroinvertebrates in Colombian Andean streams impacted by mining, agriculture and cattle production. PeerJ, 8, e9619. PMid:32995074. http://dx.doi.org/10.7717/peerj.9619
    » http://dx.doi.org/10.7717/peerj.9619
  • Milesi, S.V., Dolédec, S. & Melo, A.S., 2016. Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshw. Sci., 35(4), 1321-1329. http://dx.doi.org/10.1086/688706
    » http://dx.doi.org/10.1086/688706
  • Milesi, S.V., Melo, A.S. & Dolédec, S., 2019. Assessing community functional attributes during substrate colonization: a field experiment using stream insects. Hydrobiologia, 838(1), 183-192. http://dx.doi.org/10.1007/s10750-019-03988-2
    » http://dx.doi.org/10.1007/s10750-019-03988-2
  • Mugnai, R., Nessimian, J.L. & Baptista, D.F., 2010. Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro. Rio de Janeiro: Technical Books, 174 p.
  • Nicacio, G., Cunha, E.J., Hamada, N. & Juen, L., 2020. How habitat filtering can affect taxonomic and functional composition of aquatic insect communities in small Amazonian streams. Neotrop. Entomol., 49(5), 652-661. PMid:32440832. http://dx.doi.org/10.1007/s13744-020-00780-z
    » http://dx.doi.org/10.1007/s13744-020-00780-z
  • Oliveira-Filho, A.T., Budke, J.C., Jarenkow, J.A., Eisenlohr, P.V. & Neves, D.R.M., 2015. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J. Plant Ecol., 8(3), 242-260. http://dx.doi.org/10.1093/jpe/rtt058
    » http://dx.doi.org/10.1093/jpe/rtt058
  • Paz, D.B., Henderson, K. & Loreau, M., 2020. Agricultural land use and the sustainability of social-ecological systems. Ecol. Modell., 437, 109312. PMid:33343058. http://dx.doi.org/10.1016/j.ecolmodel.2020.109312
    » http://dx.doi.org/10.1016/j.ecolmodel.2020.109312
  • R Core Team, 2017. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, July 5, from http://www.R-project.org/
    » http://www.R-project.org/
  • Restello, R.M. & Hepp, L.U., 2020. Monitoramento biológico de riachos com o uso de invertebrados aquáticos. In: Hepp, L.U. & Restello, R.M., eds. Ecologia de riachos no Alto Uruguai Gaúcho. Erechim: EdiFapes, 33-51.
  • Ribeiro, J.C.T., Nunes-Freitas, A.F., Fidalgo, E.C.C. & Uzeda, M.C., 2019. Forest fragmentation and impacts of intensive agriculture: responses from different tree functional groups. PLoS One, 14(8), e0212725. PMid:31369550. http://dx.doi.org/10.1371/journal.pone.0212725
    » http://dx.doi.org/10.1371/journal.pone.0212725
  • Rovani, I.L., Decian, V.S., Zanin, E.M., Brandalise, M., Quadros, F.R. & Hepp, L.U., 2020. Socioeconomic changes and land use and land cover of the northern region of Rio Grande do Sul, Brazil. Floresta Ambient., 27(3), e20180258. http://dx.doi.org/10.1590/2179-8087.025818
    » http://dx.doi.org/10.1590/2179-8087.025818
  • Saito, V.S., Siqueira, T., Bini, L.M., Costa-Pereira, R., Santos, E.P. & Pavoine, S., 2020. Comparing taxon- and trait-environment relationships in stream communities. Ecol. Indic., 117, 106625. http://dx.doi.org/10.1016/j.ecolind.2020.106625
    » http://dx.doi.org/10.1016/j.ecolind.2020.106625
  • Sensolo, D., Hepp, L.U., Decian, V. & Restello, R.M., 2012. Influence of landscape on assemblages of Chironomidae in Neotropical streams. Ann. Limnol. Int. J. Limnol., 48(4), 391-400. http://dx.doi.org/10.1051/limn/2012031
    » http://dx.doi.org/10.1051/limn/2012031
  • Sitati, A., Raburu, P.O., Yegon, M.J. & Masese, F.O., 2021. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica, 88, 125875. http://dx.doi.org/10.1016/j.limno.2021.125875
    » http://dx.doi.org/10.1016/j.limno.2021.125875
  • Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P., 2002. Invertébrés d’eau douce. Paris: CNRS Éditions.
  • Tanentzap, A.J., Lamb, A., Walker, S. & Farmer, A., 2015. Resolving conflicts between agriculture and the natural environment. PLoS Biol., 13(9), e1002242. PMid:26351851. http://dx.doi.org/10.1371/journal.pbio.1002242
    » http://dx.doi.org/10.1371/journal.pbio.1002242
  • Tomanova, S., Moya, N. & Oberdorff, T., 2008. Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Res. Appl., 24(9), 1230-1239. http://dx.doi.org/10.1002/rra.1148
    » http://dx.doi.org/10.1002/rra.1148
  • Tonello, G., Decian, V.S., Restello, R.M. & Hepp, L.U., 2021. The conversion of natural riparian forests into agricultural land affects ecological processes in Atlantic forest streams. Limnologica, 91, 125927. http://dx.doi.org/10.1016/j.limno.2021.125927
    » http://dx.doi.org/10.1016/j.limno.2021.125927
  • Tonin, A.M., Hepp, L.U. & Gonçalves Junior, J.F., 2018. Spatial variability of plant litter decomposition in stream networks: from litter bags to watersheds. Ecosystems, 21(3), 567-581. http://dx.doi.org/10.1007/s10021-017-0169-1
    » http://dx.doi.org/10.1007/s10021-017-0169-1

Edited by

Associate Editor: Victor Satoru Saito.

Publication Dates

  • Publication in this collection
    20 Nov 2023
  • Date of issue
    2023

History

  • Received
    27 Mar 2023
  • Accepted
    17 Oct 2023
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com