SciELO - Scientific Electronic Library Online

 
vol.7 número2Mensuração do custo social subjacente à atual frota autônoma de caminhões da agropecuária nacional - um estudo de caso: soja, café e boi em péAcessibilidade na Região Amazônica através do transporte hidroviário índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

  • Português (pdf)
  • Artigo em XML
  • Como citar este artigo
  • SciELO Analytics
  • Curriculum ScienTI
  • Tradução automática

Indicadores

Links relacionados

Compartilhar


Journal of Transport Literature

versão On-line ISSN 2238-1031

J. Transp. Lit. vol.7 no.2 Manaus abr. 2013

http://dx.doi.org/10.1590/S2238-10312013000200005 

DIRETÓRIO DE PESQUISAS

 

Análise de eficiência na gestão de portos públicos brasileiros em relação ao papel das autoridades portuárias

 

Efficiency analysis of Brazilian public ports management concerning to the role of port authorities

 

 

Luiz Cláudio Sayão Cortez; Lucas Rebello de Oliveira; Eduardo Ferraz Martins; Igor Rosa Dias de Jesus*; João Carlos Correia Baptista Soares de Mello

Universidade Federal Fluminense (UFF), Brazil

 

 


RESUMO

O objetivo deste artigo é a realização de uma avaliação da eficiência das autoridades portuárias brasileiras no desempenho de suas funções, no período de 2007 a 2009, com a utilização da Análise Envoltória de Dados (DEA). Consideraram-se como inputs: Número de funcionários, Custo operacional, Investimento e como Outputs: Faturamento e Carga Movimentada. Destaca-se ainda a orientação a Output e a utilização na análise do estudo proposto da eficiência de escala e da avaliação cruzada. Foram consideradas oito autoridades portuárias em três anos totalizando 24 DMUs. O estudo proposto permitiu avaliar se as operações das Companhias Docas estão sendo eficientes do ponto de vista operacional e permitiu comparar o desempenho entre as autoridades portuárias para identificar quais elementos de gestão devem ser modificados para o alcance de um desempenho satisfatório. De forma consolidada, pôde-se perceber que a CODESP (São Paulo) foi a companhia Docas mais eficiente no período, seguida pela CODOMAR (Maranhão) e pela CDRJ (Rio de Janeiro).

Palavras-chave: autoridade portuária; companhia docas; eficiência; portos; DEA.


ABSTRACT

This article aims to make an efficiency evaluation of Brazilian port authorities in performing their functions, from 2007 to 2009, using Data Envelopment Analysis (DEA). It is considered as inputs: quantity of employees, operational costs, investments; and as outputs: billing and handled cargo. The used DEA model is output-oriented and uses for its analysis scale efficiency and cross efficiency evaluation. Eight port authorities are considered in three years, resulting in 24 DMUs. This study allows us to evaluate if the Docks Companies operations are being efficient from the operational point of view, as well as to compare the performance between the port authorities, in order to identify which management elements should be turned to the achievement of a satisfactory performance. On a consolidated basis, we could notice that Docks Company CODESP (São Paulo) was the more efficient company in the period, followed by CODOMAR (Maranhão) and CDRJ (Rio de Janeiro).

Key words: port authority; docks company; efficiency; ports; DEA.


 

 

Introdução

Apesar do contínuo incentivo para o desenvolvimento dos demais modos de transporte, o modo aquaviário continua sendo o principal meio para realizar importações e exportações. Segundo avaliação da Secretaria de Portos da Presidência da República (SEP/PR), o Brasil conta com uma costa de 8,5 mil quilômetros navegáveis, e possui um setor portuário que movimenta anualmente cerca de 700 milhões de toneladas das mais diversas mercadorias e responde, sozinho, por mais de 90% das exportações.

Importante destacar algumas mudanças importantes que ocorreram como a extinção da Portobrás em 1990 e a criação da Lei 8630, (Lei de Modernização dos Portos). Após este fato a administração dos portos deixou de ser exclusivamente centralizada podendo as cargas serem movimentadas tanto por terminais privados quanto públicos. Estes últimos são administrados pelas Companhias Docas, porém foram arrendados para operadores privados após a entrada em vigor da Lei 8630/93, trocando o papel das Companhias Docas de serem operadores portuários para serem autoridades portuárias.

Dentre as novas atribuições das Companhias Docas, destacam-se o poder de fiscalização das atividades de movimentação de carga, propiciar infraestrutura de acesso aos portos, prover segurança por meio da guarda portuária e numa visão mais abrangente fomentar o desenvolvimento regional de modo a maximizar a utilização dos portos.

Destacam-se inúmeros estudos sobre eficiência portuária. Dentre alguns estudos abordados na literatura Roll e Hayuth (1993) comparam o desempenho de vinte portos, Martinez Budria (1999) estuda a eficiência das autoridades portuárias espanhola, Valentine e Gray (2001) abordam as diferentes formas que podem levar os portos a maior eficiência, Itoh (2002) analisa a eficiência de oito portos no Japão, Barros e Athanassiou (2004) compara a eficiência portuária de Grécia e Portugal visando identificar práticas que conduzam a um melhor desempenho da política portuária Européia, Barros (2006) realiza uma análise de benchmark dos portos italianos considerando variáveis operacionais e financeiras, Rios e Maçada (2006) analisam a eficiência dos terminais de contêineres do Mercosul nos anos de 2002 a 2004 e identificam referências para terminais ineficientes, Haralambides, Hussain, Barros e Peypoch (2010) fazem uma nova abordagem de eficiência portuária utilizando indicador Luenberger em uma amostra de 16 portos do Oriente Médio e do Leste Africano no período de 2005 a 2007, Hung, Lu e Wang (2011) exploram um estudo de benchmarking sobre a eficiência operacional de portos asiáticos. Caillaux et al. (2011) estudam diferentes métodos para a escolha de um porto para a realização de operações de transbordo. Bertoloto Soares de Mello (2011) se debruçam sobre o problema da eficiência dos portos e terminais privativos brasileiros.

Contudo, muito pouco foi estudado no que diz respeito a eficiência das autoridades portuárias, cujas funções extrapolam apenas as funções que buscam lucro, incluindo funções de fiscalização, de manutenção das condições de infraestrutura de navegação e de gestão de contratos de arrendamento. Um dos poucos trabalhos nesse sentido foi realizado por Tongzon (2001), que inseriu no seu modelo alguns inputs relativos à autoridade portuária como número de funcionários, porém sua análise ainda foca no que deve ser o papel do operador portuário, ao invés da autoridade portuária em si.

Sendo assim, o presente artigo buscará avaliar o desempenho das oito Companhias Docas no cumprimento do seu papel como autoridade portuária, utilizando a metodologia de Análise Envoltória de Dados (DEA) e analisando suas respectivas forças e fraquezas no contexto de negócio. As oito Companhias Docas a serem analisadas são CODEBA (Bahia), CDRJ (Rio de Janeiro), CODERN (Rio Grande do Norte), CODESP (São Paulo), CDP (Pará), CODOMAR (Maranhão), CODESA (Espírito Santo) e CDC (Ceará).

O artigo está estruturado de forma que, primeiramente, será apresentada a modelagem utilizada, incluindo a definição dos inputs e dos outputs, bem como uma apresentação do modelo DEA utilizado. Posteriormente, serão apresentados os resultados das eficiências para cada uma das oito companhias, utilizando-se o método da avaliação cruzada. Através deste método se poderá notar que a CODESP (São Paulo) foi a companhia Docas mais eficiente no período, seguida pela CODOMAR (Maranhão) e pela CDRJ (Rio de Janeiro). Por fim, os resultados de cada uma das Companhias Docas serão discutidos e analisados, no que tange às suas diferentes eficiências calculadas e aos benchmarks de cada uma delas.

 

1. Modelagem

Neste trabalho será utilizada a técnica de Análise Envoltória de Dados (Data Envelopment Analysis - DEA) para avaliação da eficiência das autoridades portuárias brasileiras, visto que, conforme exposto em Soares de Mello et al. (2005), esta tem por objetivo primário a comparação de unidade produtivas (decision-making units -DMUs) que realizam tarefas similares mas se diferenciam em recursos consumidos (inputs) e saídas produzidas (outputs). Com isso, é possível identificar as DMUs que compõem a fronteira de eficiência (DMUs eficientes), sendo estas utilizadas como benchmarks para as ineficientes, que por sua vez buscam maximizar suas eficiências através das metas e alvos na fronteira determinada.

Neste contexto, como também existe a intenção de fazer uma análise temporal de desempenho, as DMUs consideradas são compostas pela autoridade portuária agregada ao respectivo ano de análise.

Existem oito autoridades portuárias (Companhias Docas): CODEBA (Bahia), CDRJ (Rio de Janeiro), CODERN (Rio Grande do Norte), CODESP (São Paulo), CDP (Pará), CODOMAR (Maranhão), CODESA (Espírito Santo) e CDC (Ceará). Cada uma será avaliada considerando o respectivo desempenho durante o período de 2007 a 2009 (3 anos), visto que compreende um período que engloba eventos importantes para a economia brasileira, e mais especificamente ao setor de portos, como a criação da SEP (Secretaria Especial de Portos) em 2007, a crise financeira internacional em 2008 e a retomada do crescimento econômico póscrise em 2009. Sendo assim, serão 24 DMUs avaliadas (8 autoridades portuárias em 3 anos).

Os inputs e outputs escolhidos para modelagem do problema proposto são:

Inputs:

- Número de funcionários: Reflete a utilização de insumo humano para geração de resultados. É de vital importância, principalmente ao considerar o papel de autoridade portuária, onde as atribuições de gestão (que exigem capital humano mais qualificado) são prioritárias em relação às atribuições operacionais (que estão sob controle dos arrendatários e operadores portuários).

- Custo operacional (Mil R$): Contribui para avaliação do ponto de vista da eficiência operacional da empresa, considerando o ajustamento adequado da capacidade operacional à demanda prevista (uma das principais atribuições da autoridade portuária), assim como o consumo de recursos financeiros decorrentes de seus negócios (incluindo a operação nas áreas não arrendadas).

- Investimento (Mil R$): Reflete o grau de comprometimento da empresa com a expansão de infraestrutura e melhoria dos serviços prestados no médio e longo prazo.

Outputs:

- Faturamento (Mil R$): Para a autoridade portuária, é conseqüência da gestão dos contratos de arrendamentos operacionais (através de garantias de movimentação mínima adequada e análises de viabilidade bem balizadas, por exemplo) e nãooperacionais (como a receita de aluguel de imóveis próprios, por exemplo), além da gestão operacional das áreas dos portos não arrendadas.

- Carga Movimentada (Mil Toneladas): No caso dos terminais arrendados, reflete a eficiência operacional dos arrendatários, e no caso da área não arrendada, mostra a eficiência da autoridade portuária em conseguir carga para converter em faturamento. Além disso, evidencia o impacto da operação portuária no nível de desenvolvimento econômico e social da região do entorno.

Será escolhida a orientação a output, visto que o objetivo das Companhias Docas é maximizar o faturamento e a carga movimentada a partir da infraestrutura e recursos existentes. Além disso, serão aplicados os modelos CCR e BCC para o problema proposto, visto que se deseja identificar a eficiência de escala (CCR/BCC) para cada empresa em cada ano (cf. Lothgren e Tambour, 1999). Através da determinação das escalas de operação, será possível identificar a dinâmica das autoridades portuárias pela busca da escala ótima de produção ao longo do tempo considerado, ou seja, de 2007 a 2009, assim como os impactos dos eventos ocorridos neste período para o desempenho dos portos brasileiros.

O modelo CCR considera a escala de produção na avaliação de desempenho, refletindo o aspecto técnico da operação, enquanto que o modelo BCC não considera, avaliando cada DMU em sua respectiva escala, refletindo o aspecto gerencial.

De acordo com Soares de Mello et al. (2005), a formulação matemática de DEA CCR orientado a output é dada pela Equação (1), onde h0 é entendido como o inverso da eficiência, ou seja 1/Eff. As variáveis xi e yj referem-se aos inputs e outputs de cada DMU, e as variáveis vi e uj referem-se aos pesos atribuídos a cada uma dessas variáveis.

A formulação BCC é tal como a CCR, incluindo-se, no entanto, uma variável v* no modelo, que é a variável que denota a escala de operação de cada DMU. Esta formulação pode ser vista na Equação (2).

Conforme exposto em Wanke e Affonso (2011), a eficiência de escala é dada pela razão entre os índices de eficiência dos modelos CCR e BCC (CCR/BCC), e quanto menor esta relação, maior é a ineficiência de escala. Sendo assim, pode-se perceber que a eficiência de escala define quais DMUs operam na mesma escala. Isto é bastante relevante para o trabalho proposto, visto que as autoridades portuárias apresentam diferentes características operacionais, tanto do ponto de vista de número de portos que gerenciam, quanto do enfoque da região onde estão inseridas e os tipos de produtos que são movimentados.

De acordo com Ross e Droge (2004), o valor do parâmetro de escala (referenciado por v*, gerado pelo modelo BCC) define o nível de distanciamento da escala ótima de produção, conforme descrito abaixo:

- v* = 0: opera na escala ótima (retornos constantes de escala).

- v* > 0: opera acima da escala ótima (retornos decrescentes de escala).

- v* < 0: opera abaixo da escala ótima (retornos crescentes de escala).

Segue abaixo a tabela com os valores de inputs e outputs utilizados na modelagem, onde cada DMU representa a Companhia Docas analisada, seguida respectivamente pelo ano a que os dados se referem.

 

Tabela 1

 

2. Resultados

Com o modelo proposto e o levantamento de dados realizado, serão gerados os índices de eficiência para as 24 DMUs (autoridade portuária no respectivo ano) considerando os modelos CCR e BCC, assim como calculada a eficiência de escala. Para isso, será utilizado o software SIAD (Sistema Integrado de Apoio à Decisão).

De acordo com Angulo-Meza et al. (2005), o software SIAD é uma ferramenta que permite resolver problemas de programação linear específicos para abordagens DEA, fornecendo, para um conjunto de inputs e de outputs inseridos no modelo, as eficiências de cada DMU. O software trabalha tanto com orientação a input como a output, permitindo a utilização de elementos adicionais como eficiência cruzada, restrições aos pesos e benchamrks para cada uma das DMUs.

Em seguida, será feita uma avaliação considerando cada autoridade portuária de forma consolidada, ou seja, considerando a média dos resultados dos três anos considerados, permitindo uma avaliação de desempenho de maneira global entre as empresas.

A discussão sobre os resultados será realizada à medida que estes forem sendo expostos.

2.1 CCR, BCC e Eficiência de escala

Segue abaixo a tabela com os índices de eficiência calculados para os modelos CCR e BCC, o parâmetro de escala v* gerado pelo modelo BCC, e a eficiência de escala calculada pela divisão entre os índices CCR e BCC, respectivamente. Cabe ressaltar que pode haver múltiplas soluções ótimas para o problema, mas o v* representa o primeiro encontrado pelo software utilizado. Conforme consta em Lins et al. (2003), esta prática não costuma apresentar discrepância para a maior parte das DMUs. Vale ainda lembrar que, apesar de utilizarmos o primeiro v* encontrado pelo sistema, mesmo havendo multiplicidade dos valores do fator de escala, se um valor indica retornos decrescentes, todos indicarão. Se um valor indica retornos crescentes, todos indicarão. Isto vale apenas para as DMUs que não são CCR eficientes. Portanto, desde que não se façam rankings de retornos de escala, não há problemas em usar o primeiro valor achado para o fator de escala, desde que a DMU não seja CCR eficiente. Neste caso deve-se utilizar o valor v* = 0. Uma solução que contornaria o problema da multiplicidade de valores v* seria a utilização de uma fronteira de eficiência suavizada, conforme pode ser visto em Nacif et al. (2009).

 

Tabela 2

 

Pela tabela pode-se perceber que todas as empresas operam com elevada eficiência de escala (acima de 83%), com exceção da CDC com eficiências entre 53% e 65%, e que está em uma escala menor de operação (que reflete em diferenças de tecnologia ou infraestrutura).

A CODOMAR é a empresa que opera sempre dentro da escala ótima (sem retornos crescentes ou decrescentes), com a CDRJ bem próxima (operando na escala ótima nos anos de 2008 e 2009) As companhias que também operaram na escala ótima de produção foram a CDP, em 2007, a CODESP em 2007, e a CODESA em 2009. Cabe ressaltar que em todas essas situações houve eficiência simultaneamente no modelo CCR e no modelo BCC, o que indica que a DMU opera na escala ótima de produção, com v* = 0. Das DMUS que estão aproximadamente na mesma escala, a CODERN foi a empresa de pior resultado, com índices de eficiência entre 33% e 48% no modelo CCR. O parâmetro de escala (v*) mostra o afastamento em relação à escala ótima para cada empresa em cada ano. Segue na Tabela 3 a evolução da eficiência operacional ao longo do período de 2007 a 2009.

Pela tabela, é possível observar o descolamento da escala operacional da CDC em relação às demais, evidenciado mais diretamente pelo ano de 2007, onde esta obteve v* = -30,65 (extremamente abaixo da escala ótima).

Por outro lado, a CODOMAR operou na escala ótima durante os três anos, enquanto que a CDRJ passou a operar nesta escala apenas a partir do ano de 2008. A CODESP operava na escala ótima em 2007 e praticamente na escala ótima em 2009. Em 2008, houve uma diferença na escala de produção, que pode ser explicada pela crise financeira mundial de 2008, que afetou significativamente a oferta e a demanda no setor. O grande impacto para a autoridade portuária localizada no estado de São Paulo, a CODESP, é reflexo da importância econômica deste estado para a economia brasileira.

Cabe ressaltar que a CDP foi outra Companhia Docas que sentiu o efeito da crise econômica em 2008 e, apesar de seu pequeno porte, teve comportamento de escala bastante similar ao da CODESP; isto é, escala ótima em 2007, escala não-ótima em 2008 e escala praticamente ótima em 2009. CODERN e CODEBA mantiveram-se constantes e abaixo da escala ótima ao longo do período de tempo avaliado.

Vale destacar o perfil da CODESA, que mostrou sua evolução ao longo dos três anos, através do v*, em relação a sua busca para atingir escala ótima: 2007 (-0,32: abaixo), 2008 (-0,24: abaixo, mas na direção da escala ótima), 2009 (zero, ou seja, na escala ótima).

Além disso, é possível perceber que as oito primeiras DMUs foram consideradas eficientes pelos modelos CCR (modelo que capta o efeito da eficiência de escala), o que representa 1/3 do total das DMUs avaliadas, dificultando a comparação devido à falta de discriminação entre elas. Diante disso, para aumentar a discriminação entre as DMUs avaliadas, será utilizado o método de avaliação cruzada, pelo modelo CCR e com abordagem agressiva, seguindo a fundamentação teórica exposta em Wu et al. (2009).

2.2 Avaliação cruzada

A avaliação cruzada é um modelo utilizado para aumentar a discriminação existente entre as DMUs. Segundo Leta et al. (2005), na avaliação cruzada as DMUs têm uma avaliação própria (DEA clássico) e também são avaliadas pelas outras DMUs utilizando os pesos ótimos dados pelo modelo. Dessa forma, cada DMU determina os pesos para o cálculo de seu índice de eficiência e utiliza esses pesos para determinar os índices de eficiência das outras DMUs.

Pode-se dizer que enquanto em DEA clássico cada DMU é avaliada segundo seu próprio ponto de vista, na avaliação cruzada ela também é avaliada segundo os pontos de vista das outras DMUs. Chama-se eficiência cruzada a média dos pontos de vista de todas as DMUs.

A Tabela 4 apresenta o ranqueamento das eficiências cruzadas médias para as 24 DMUs.

 

 

Entretanto, dado que a avaliação temporal de desempenho já foi realizada através do parâmetro de escala (v*), deseja-se então fazer uma avaliação individualizada das Companhias Docas, considerando o desempenho global nos 3 anos, através da média das eficiências cruzadas médias nos 3 anos para cada autoridade portuária. Segue abaixo o ranqueamento considerando os índices de eficiência consolidados por empresa:

Na avaliação agrupada, a CODESP se apresentou como a mais eficiente, seguida pela CODOMAR. Foi possível perceber que este resultado foi diferente do apresentado pela eficiência de escala, onde a CODOMAR foi a que mais se aproximou da escala ótima, seguida pela CODESP. A Tabela 5 apresenta alguns indicadores adicionais sobre o perfil de cada porto, que auxiliam no processo de análise.

 

 

 

Tabela 6

 

Com base nos dados coletados e nos relatórios de gestão foi percebido que a CODESP, por possuir 1 porto apenas, e por ter a maior faixa de cais tem grande vantagem física em relação as demais DMUS, visto que os funcionários (tanto os administrativos quanto os guardas portuários) necessitam concentrar-se em apenas num local. Seu perfil de carga movimentada, focada principalmente em container, permite a ela ter uma boa lucratividade. Além de ser a mais eficiente, a CODESP é também a mais rentável das Docas, uma vez que não possui nível de dívida elevado, como as demais, e tem grande integração com a cidade que a abriga, incluindo fatores infraestruturais como ferrovias e rodovias no seu entorno. Dentre os fatores negativos, destaca-se apenas o alto investimento para apenas um porto.

A CODOMAR, por sua vez, aparece em segundo lugar, pois tem apenas um porto, mas principalmente por ter poucos funcionários, e conseqüentemente baixíssimo custo. Como fatores negativos, apresentou investimento razoavelmente elevado para o faturamento que teve, e movimentou apenas cargas de baixo valor agregado. Esse fato, possivelmente justifica o prejuízo obtido pela empresa, apesar dela apresentar bom desempenho operacional (se desconsideradas as diferenças entre as cargas movimentadas). Precisa investir em equipamentos e no desenvolvimento de malha urbana para escoar produtos não graneleiros.

A CDRJ possui 4 portos e isso oferece a ela tanto vantagens quanto desvantagens. Dentre as vantagens, destacam-se a possibilidade de especializar o porto em um determinado tipo de operação, sem excluir os demais tipos do seu portfólio de serviços, e de expandir a hinterlândia, área de 50 km no entorno do porto, tendo a chance de ser competitiva em diversos setores e numa região mais extensa. Por outro lado, possuir mais de um porto implica num grande aumento de custos, uma vez que é função da autoridade portuária prover segurança e infraestrutura básica para a movimentação de carga nos portos. Sendo assim, o bom desempenho da companhia pode ser explicado por ela ter a segunda maior movimentação de carga e faturamento, como outputs e também por ser a segunda empresa com maior nível de inputs, atrás apenas da CODESP. Cabe apenas uma ressalva, que a CDRJ apesar de ser operacionalmente eficiente, apresenta prejuízos constantes devido às dividas contraídas na época do fechamento da Portobrás, e apresenta restrições para o crescimento da sua operação principalmente no porto do Rio

Apesar de não movimentar grandes quantidades de carga, por focar sua operação em containers, a CODESA obteve um desempenho satisfatório por não necessitar de muitos funcionários, dado que possui apenas um porto com faixa de cais mediana, e por ter um custo baixo se comparado às outras Companhias Docas do mesmo tamanho. Além disso, ela foi uma das 2 únicas Companhias Docas a ter lucro durante os três anos analisados. Contudo, em 2009, sua movimentação diminuiu consideravelmente, bem como seu faturamento, fatos que acabaram prejudicando seu desempenho global na análise. Nesse caso, cabe à empresa buscar elevar novamente sua movimentação de carga através de novas parcerias, focando em ampliar o escoamento de produção local, maximizando a utilização da infraestrutura ferroviária já existente.

A CDP foca sua operação na movimentação de carga de granel, que possui baixo valor agregado. Por isso não apresenta alto faturamento, apesar de apresentar altos valores de movimentação, se for avaliada sua faixa de cais. Contudo, ela também não apresenta um nível de custo e investimento alto e nem um número elevado de funcionários, o que favorece sua análise de eficiência, permitindo-a ter lucro em 2 dos 3 anos analisados, mesmo possuindo 3 portos na sua operação. Um possível desafio para a empresa é reavaliar sua gestão, visto que os valores da eficiência cruzada vêm diminuindo nos últimos anos, o que pode indicar problemas no futuro.

A CODEBA, por sua vez, apresentou um desempenho mediano, uma vez que, ao ser comparada com outras empresas de tamanho similar, apresentou elevados custos, com menos mão de obra, e ao mesmo tempo, não conseguiu transformar sua faixa de cais, relativamente grande, em faturamento. Isso ocorre devido ao perfil de movimentação de carga da empresa, que foca sua operação em granel 70% sendo 42% líquido e o restante granel sólido. Ao avaliar a carga movimentada total, a quantidade é baixa, de modo que a empresa poderia tentar ampliar sua atuação na exportação de cacau e aprimorar seus canais de escoamento, principalmente no modo ferroviário.

Conforme apresentado anteriormente, a CDC apresentou uma escala diferente das demais, tanto em tamanho, quanto em faturamento e movimentação de carga, sendo apenas 18% voltada para carga geral. Por estar localizada no meio da cidade, apresenta problemas para ampliar sua infraestrutura logística, e consequentemente funcionar como meio de desenvolvimento regional através da movimentação de carga dos produtores locais.

Por sua vez, a CODERN foi a empresa que apresentou o pior resultado, pois possui 3 portos em sua gestão, mas todos possuem pequenas faixas de cais, de modo que exigem alto custo para manutenção da guarda portuária, alto investimento para manutenção da infraestrutura de navegação e muitos funcionários. Além disso, sua movimentação é focada em granel sólido, o que prejudica muito o faturamento, e acaba contribuindo para que a companhia seja vista como ineficiente

2.3 Benchmarking

Com os resultados do software SIAD para determinação dos benchmarks para as DMUs ineficientes pelo modelo CCR, constata-se que a fronteira de eficiência utilizando o modelo DEA clássico é praticamente composta pelas DMUs correspondentes às seguintes autoridades portuárias: CODESP, CODOMAR e CDRJ, que são justamente as que obtiveram as três primeiras posições no ranqueamento consolidado da avaliação cruzada.

Entretanto, quando comparadas às três últimas empresas deste mesmo ranqueamento (CODEBA, CDC e CODERN), constatou-se uma grande diferença de desempenho. As três melhores então no intervalo de eficiência aproximadamente entre 0,60 e 0,73, e as três últimas entre 0,27 e 0,47, sendo a média do intervalo das de maior desempenho aproximadamente 80% maior que a média do intervalo das de menor desempenho. Seguem abaixo os alvos calculados pelo software SIAD para as três empresas que apresentaram pior desempenho:

 

Tabela 7

 

Pela tabela acima, percebe-se que a diferença (coluna % aumento necessário) para que as três autoridades portuárias de pior desempenho cheguem até a fronteira de eficiência é muito significativa, chegando a mais que dobrar o que é faturado ou movimentado em muitos dos casos. Desta forma, fica visível que este padrão de melhoria de desempenho não é fácil de ser alcançado no curto prazo, demandando muitos esforços de gestão.

 

Conclusão

Após efetuar as análises técnicas e de negócio, acredita-se que os objetivos apresentados no artigo tenham sido alcançados. Através da eficiência de escala (CCR/BCC) foi possível identificar as DMUs em escalas de produção diferentes, assim como avaliar o comportamento das autoridades portuárias ao longo dos três anos considerados (gráfico do v*). Foi possível também perceber que a CODESP (São Paulo) foi a companhia Docas mais eficiente no período, seguida pela CODOMAR (Maranhão) e pela CDRJ (Rio de Janeiro).

Além disso, foi possível observar o efeito da crise econômica em 2008 sobre as operações portuárias (casos de CODESP e CDP) e a evolução da CODESA ao longo dos 3 anos para escala ótima. Como o modelo BCC apresentou pouca discriminação (60% eficientes), decidiu-se fazer a avaliação cruzada. Com a matriz de avaliação cruzada, foi possível agrupar as autoridades portuárias de acordo com as características de desempenho, direcionando para um benchmarking realista.

De acordo com a alocação dos benchmarks fornecidos pelo modelo, a CODEBA foi elencada como benchmark da CODERN, que teve desempenho bem abaixo, porém na mesma escala da CODESP (melhor global). Com isso, CODERN pode identificar as práticas da CODEBA, chegar em seu nível de desempenho, e no futuro buscar o nível da CODESP (melhoria gradativa).

O número de portos a ser gerenciado foi percebido como um fator impactante no desempenho das DMUs (caso do pior desempenho comparativo da CDRJ, que tem quatro portos, em relação à CODESP, com 1 porto apenas). Neste caso, pode ser vista uma relação entre maiores custos e necessidades de investimento nessas companhias, do que nas outras que têm apenas um porto sob sua gestão.

Percebe-se também a necessidade do governo de aprimorar a infraestrutura provida de modo a acabar com o gargalo logístico existente no entorno dos portos, aumentando assim o grau de competitividade da indústria nacional. Dessa forma, foi possível avaliar criticamente se as operações das Companhias Docas estão sendo eficientes do ponto de vista operacional, embora nem sempre o resultado financeiro coincida com este, pelo fato de a dívida da extinção da Portobrás ter sido dividida entre as oito companhias.

Com base nesses resultados, espera-se que surjam outros estudos da mesma natureza, aprofundando a discussão acerca do impacto que cada empresa tem na sua área de abrangência, utilizando outros métodos para comparar o desempenho operacional e estabelecendo quais elementos da gestão devem ser modificados em cada unidade para que todas possam alcançar um desempenho satisfatório.

 

Referências

Angulo-Meza, L., Biondi Neto, L., Soares de Mello J. C. C. B. e Gomes, E. G. (2005) ISYDS - Integrated system for decision support (SIAD - sistema integrado de apoio a decisão): a software package for data envelopment analysis model. Pesquisa Operacional, vol. 25, n. 3, pp. 493-503.         [ Links ]

Barros, C. P. e Athanassiou, M. (2004) Efficiency in European seaports with DEA: evidence from Greece and Portugal. Maritime Economics e Logistics, vol. 6, pp. 122-140.         [ Links ]

Barros, C. P. (2006) A benchmark analysis of Italian seaport using data envelopment analysis. Maritime Economics and Logistics, vol. 8, pp. 347-365.         [ Links ]

Bertoloto, R. F. e Soares de Mello, J. C. C. B. (2011) Eficiência de portos e terminais privativos brasileiros com características distintas. Journal of Transport Literature, vol. 5, n. 2, pp. 4-21.         [ Links ]

Caillaux, M. A., Sant'Anna, A. P., Angulo-Meza, L. e Soares De Mello, J. C. C. B. (2011) Container logistics in Mercosur: choice of a transhipment port using the ordinal Copeland method, data envelopment analysis and probabilistic composition. Maritime Economics and Logistics, vol. 13, n. 4, pp. 355-370.         [ Links ]

Haralambides, H. A., Hussain, M. A., Barros, C. P. B. e Peypoch, N. C. (2010) A new approach in benchmarking seaport efficiency and technological change. International Journal of Transport Economics, vol. 37, n. 1, pp. 77-96.         [ Links ]

Hung, S., Lu, W. e Wang, T. (2010) Benchmarking the operating efficiency of Asia container ports. European Journal of Operational Research, vol. 203, n. 3, pp. 706-713.         [ Links ]

Itoh, H. (2002) Efficiency changes at major container ports in Japan: a window application of data envelopment analysis. Review of Urban and Regional Development Studies, vol. 14, n. 2, pp. 133-152.         [ Links ]

Leta, F. R., Soares de Mello, J. C. C. B., Gomes, E. G. e Angulo-Meza, L. (2005) Métodos de melhora de ordenação em DEA aplicados à avaliação estática de tornos mecânicos. Investigação Operacional, vol. 25, n. 2, pp. 229-242.         [ Links ]

Lins, M. P. E., Gomes, E. G., Soares de Mello, J. C. C. B. e Soares de Mello, A. J. R. (2003) Olympic ranking based on a zero sum gains DEA model. European Journal of Operational Research, vol. 148, n. 2, pp. 312-322.         [ Links ]

Lothgren, M. e Tambour, M. (1999) Testing scale efficiency in DEA models: a bootstrapping approach. Applied Economics, vol. 31, n. 10, pp. 1231-1237.         [ Links ]

Martinez-Budria, E., Diaz-Armas, R., Navarro-Ibanez, M. e Ravelomesa, T. (1999) A study of the efficiency of Spanish port authorities using data envelopment analysis. International Journal of Transport Economics, vol. 26, n. 2, pp. 237-253.         [ Links ]

Nacif, F. B., Soares de Mello, J. C. C. B. e Angulo-Meza, L. (2009) Choosing weights in optimal solutions for DEA-BCC models by means of a n-dimensional smooth frontier. Pesquisa Operacional, vol. 29, n. 3, pp. 623-642.         [ Links ]

Rios, L. R. e Maçada A. C. (2006) Analysing the relative efficiency of container terminals of Mercosur using DEA. Maritime Economics e Logistics, vol. 8, pp. 331-346.         [ Links ]

Roll, Y. e Hayuth, Y. (1993) Port performance comparison applying DEA. Maritime Policy and Management, vol. 20, n. 2, pp. 153-161.         [ Links ]

Ross, A. D. e Droge, C. (2004) An analysis of operations efficiency in large-scale distribution systems. Journal of Operations Management, vol. 21, n. 6, pp. 673-688.         [ Links ]

Soares de Mello, J. C. C. B., Angulo Meza, L., Gomes, E. G. e Biondi Neto, L. (2005) Curso de análise envoltória de dados. XXXVII Simpósio Brasileiro de Pesquisa Operacional, Gramado, RS.         [ Links ]

Tongzon, J. (2001) Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transportation Research Part A, vol. 35, n.2, pp. 113-128.         [ Links ]

Valentine, V. F. e Gray, R. (2001) The measurement of port efficiency using data envelopment analysis, Proceedings of the 9th World Conference on Transport Research, Seoul.         [ Links ]

Wanke, P. F. e Affonso, C. R. (2011) Determinantes da eficiência de escala no setor Brasileiro de operadores logísticos. Produção, vol. 21, n. 1, pp. 53-63.         [ Links ]

Wu, J., Liang, L. e Yang, F. (2009) Achievement and benchmarking at the Summer Olympics using cross efficiency evaluation method. European Journal of Operational Research, vol. 197, n.1 pp. 722-730.         [ Links ]

 

 

Submitted 3 Feb 2012; received in revised form 22 Jun 2012; accepted 11 Jul 2012

 

 

* Email: igdias@uol.com.br.
1 Fonte: Companhias Docas.
2 Fonte: elaboração própria.
3 Fonte: elaboração própria.
4 Fonte: elaboração própria.
5 Fonte: elaboração própria.
6 Idem.
7 Fonte: elaboração própria.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons