Acessibilidade / Reportar erro

Activity of antioxidant enzymes and proline accumulation in Erythrina velutina Willd. seeds subjected to abiotic stresses during germination

Atividade de enzimas antioxidantes e acúmulo de prolina em sementes de Erythrina velutina Willd. submetidas a estresses abióticos durante a germinação

Abstracts

The aim of this study was to evaluate the effect of different abiotic stresses on the activity of antioxidant enzymes and on accumulation of proline in Erythrina velutina Willd. seeds during germination. Mulungu seeds were scarified and placed to germinate at constant temperatures of 15, 25, and 35 ºC, moistened with distilled water, and exposed to 12 h of light. Other seeds were exposed to solutions of NaCl (EC of 0, 4, and 8 dS.m-1) and polyethylene glycol (osmotic potentials of 0.0, -0.2, and - 0.6 MPa) and maintained in a germination chamber set at 25 ºC and 12 h photoperiod for seven days. At the end of each period of imbibition, the embryonic axis and cotyledons of the seedlings were collected separately and used to quantify proline content and the activity of antioxidant enzymes. These were detected in both the cotyledons and embryonic axis of the mulungu seeds. Antioxidant activity varied depending upon the type and degree of stress applied. It was concluded that under the aspect of the detoxification process, the mechanism found in mulungu seeds is more efficient when subjected to different temperatures followed by salt stress and water stress.

antioxidative metabolism; water stress; salt stress; heat stress; mulungu


Objetivou-se com este trabalho avaliar o efeito de diferentes estresses abióticos na atividade das enzimas antioxidantes e no acúmulo da prolina em sementes de Erythrina velutina Willd. durante a germinação. Sementes de mulungu foram escarificadas e colocadas para germinarem nas temperaturas constantes de 15, 25 e 35 ºC, umedecidas com água destilada e com 12 h de luz. Outras sementes foram expostas a soluções teste de NaCl (condutividade elétrica 0, 4 e 8 dS.m-1) e soluções de polietilenoglicol (potencias osmóticos 0,0; -0,2 e -0,6 MPa) e mantidas em câmaras de germinação ajustadas a 25 ºC, fotoperíodo de 12 h durante sete dias. Os cotilédones e eixo embrionário de plântulas foram coletados e utilizados para quantificar o teor de prolina e a atividade de enzimas antioxidantes. Estas foram detectadas nos cotilédones e eixo embrionário de sementes de mulungu. A atividade antioxidante foi variável dependendo do tipo e nível de estresse aplicado. Os resultados encontrados permitem concluir que sob o aspecto do processo de desintoxicação, o mecanismo encontrado nas sementes de mulungu é mais eficiente quando submetidas a diferentes temperaturas, seguido pelo estresse salino e estresse hídrico.

metabolismo antioxidativo; estresse hídrico; estresse salino; estresse térmico; mulungu


  • ANDREO-SOUZA, Y.; PEREIRA, A.L.; SILVA, F.F.S.; RIBEIRO-REIS, R.C.; EVANGELISTA, M.R.V.; CASTRO, R.D.; DANTAS, B.F. Efeito da salinidade na germinação de sementes e no crescimento inicial de mudas de Pinhão-manso. Revista Brasileira de Sementes, v.32, n.2, p.83-92, 2010. http://www.scielo.br/pdf/rbs/v32n2/v32n2a10
  • APEL, K.; HIRT, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, v.55, p.373-399, 2004. http://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.55.031903.141701
  • AZEVEDO, R.A.; ALAS, R.J.; SMITH, R.J.; LEA, P.J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, v.104, p.280-292, 1998. http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1998.1040217.x/pdf
  • AZOOZ, M.M.; SHADDAD, M.A.; ABDEL-LATEF, A.A. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian Journal of Plant Physiology, v.9, p.1-8, 2004. http://cat.inist.fr/?aModele=afficheN&cpsidt=15979567
  • BAILEY-SERRES, J.; MITTLER, R. The roles of reactive oxygen species in plant cells. Plant Physiology, v.141, n.2, p.311, 2006. http://dx.doi.org/10.1104/pp.104.900191
  • BAILLY, C. Active oxygen species and antioxidants in seed biology. Seed Science Research, v.14, n.2, p.93-107, 2004. http://dx.doi.org/10.1079/SSR2004159
  • BAILLY, C.; LEYMARIE, J.; LEHNER, A.; ROUSSEAU, S.; COÃME, D.; CORBINEAU, F. Catalase activity and expression in developing sunflower seeds as related to drying. Journal of Experimental Botany, v.55, n.396, p.475-483, 2004. http://jxb.oxfordjournals.org/content/55/396/475.full.pdf+html
  • BATES, L.S. Rapid determination of free proline for water stress studies. Plant Soil, v.39, p.205-207, 1973. http://link.springer.com/article/10.1007%2FBF00018060#page-1
  • BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v.72, n.1/2, p.248-254, 1976. http://www.plantstress.com/methods/Proline%20analysis.pdf
  • CAI, F.; MEI, L.; AN, X.; GAO, S.; TANG, L.; CHEN, F. Lipid peroxidation and antioxidant responses during seed germination of Jatropha curcas. Journal of Agriculture and Biology, v.13, p.25-30, 2011. . http://dx.doi.org/ 10-423/DCX/2011/13-1-25-30
  • CAKMAK, T.; ATICI, O.; AGAR, G.; SUNAR, S. Natural aging-related biochemical changes in alfafa (Medicago sativa L.) seeds stored for 42 years. International Research Journal of Plant Science, v.1, n.1, p.1-6, 2010. http://interesjournal.org/IRJPS/Pdf/2010/July%202010/CAKMAK%20et%20al%20.pdf
  • CARVALHO, P.E.R. Mulungu (Erythrina velutina). Embrapa Florestas, Colombo, PR, 2008. 8p. (Circular Técnica, 160). http://www.bibliotecaflorestal.ufv.br/bitstream/handle/123456789/4204/circtec160.pdf?sequence=1
  • CARVALHO, N.M.; NAKAGAWA, J. Sementes: ciência, tecnologia e produção. Jaboticabal: FUNEP, 2012. 590p.
  • CATANEO, A.C.; DESTRO, G.F.G.; FERREIRA, L.C.; CHAMMA, K.L.; SOUZA, D.C.F. Atividade de glutationa S-transferase na degradação do herbicida glyphosate em plantas de milho (Zea mays). Planta Daninha, v.21, n.2, p.307-312, 2003. http://dx.doi.org/10.1590/S0100-83582003000200017
  • CHEN, C.T.; CHEN, L.M.; LIN, C.C.; KAO, C.H. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Science, v.160, n.2, p.283-290, 2001. http://www.sciencedirect.com/science/article/pii/S0168945200003939#
  • CUSTÓDIO, C.C.; MACHADO-NETO, N.B.; MORENO, E.L.C. Water submersion of bean seeds in the vigour evaluation. Revista Brasileira de Ciências Agrárias, v.4, n.3, p.261-266, 2009. http://dx.doi.org/10.5039/agraria.v4i3a5
  • DANTAS, C.V.S.; SILVA, I.B.; PEREIRA, G.M.; MAIA, J.M.; LIMA, J.P.M.S.; MACEDO, C.E.C. Influência da salinidade e déficit hídrico na germinação de sementes de Carthamus tinctorius L. Revista Brasileira de Sementes, v.33, n.3, p.574-582, 2011. http://dx.doi.org/10.1590/S0101-31222011000300020
  • DEMIRAL, T.; TURKAN, I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, v.56, p.72-79, 2006. http://dx.doi.org/10.1016/j.envexpbot.2005.01.005
  • DIXON, D.P.; LAPTHORN, A.; MADESIS, P.; MUDD, E.A.; DAY, A.; EDWARDS, R. Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. Journal of Biological Chemistry, v.283, p.20268-20276, 2008. http://www.jbc.org/content/283/29/20268.full.pdf+html
  • FANTI, S.C.; PEREZ, S.C.J.G.A. Processo germinativo de sementes de painera sob estresses hídrico e salino. Pesquisa Agropecuária Brasileira, v.39, n.9, p.903-909, 2004. http://seer.sct.embrapa.br/index.php/pab/article/view/6855/3911
  • FOYER, C.H.; NOCTOR, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, v.17, p.1866-1875, 2005. http://dx.doi.org/10.1105/tpc.105.033589
  • FUJITA, M.; FUJITA, Y.; NOUTOSHI, Y.; TAKAHASHI, F.; NARUSAKA, Y.; YAMAGUCHI-SHINOZAKI, K.; SHINOZAKI, K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion Plant Biology, v.9, p.436-442, 2006. http://dx.doi.org/10.1016/j.pbi.2006.05.014
  • GILL, S.S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v.48, p.909-930, 2010. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  • GUEDES, R.S.; ALVES, E.U.; GONÇALVES, E.P.; COLARES, P.N.Q.; MEDEIROS, M.S.; VIANA, J.S. Germinação e vigor de sementes de Myracrodruon urundeuva Allemão em diferentes substratos e temperaturas. Revista Árvore, v.35, n.5, p.975-982, 2011. http://dx.doi.org/10.1590/S0100-67622011000600003
  • GOMES-JUNIOR, R.A.; MOLDES, C.A.; DELITE, F.S.; POMPEU, G.B.; GRATÃO, P.L.; MAZZAFERA, P.; LEA, P.J.; AZEVEDO, R.A. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere, v.65, p.1330-1337, 2006. http://dx.doi.org/10.1016/j.chemosphere.2006.04.056
  • HENDRY, G.A.F. Oxygen, free radical processes and seed longevity. Seed Science Research, v.3, p.141-153, 1993. http://journals.cambridge.org/abstract_S0960258500001720
  • HERNANDEZ, M.; FERNANDEZ-GARCIA, N.; DIAZ-VIVANCOS, P.; OLMOS, E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of Experimental Botany, v.61, n.2, p.521-535, 2010. http://jxb.oxfordjournals.org/content/61/2/521.full.pdf+html
  • KAVI KISHORE, P.B.; SANGAM, S.; AMRUTHA, R.N.; SRILAXMI, P.; NAIDU, K.R.; RAO, K.R.S.S.; RAO, S.; REDDY, K.J.; THERIAPPAN, P.; SREENIVASULU, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, v.88, p.424-438, 2005. http://tejas.serc.iisc.ernet.in/~currsci/feb102005/424.pdf
  • KIM, Y.H.; KIM, C.Y.; SONG, W.K.; PARK, D.S.; KWON, S.Y.; LEE, H.S.; BANG, J.W.; KWAK, S.S. Over expression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta, v.227, p.867-881, 2008. http://link.springer.com/article/10.1007/s00425-007-0663-3
  • KOTOWSKI, F. Temperature relations to germination of vegetable seed. Proceedings of the American Society for Horticultural Science, v.23, p.176-184, 1926.
  • LABOURIAU, L.G. A germinação das sementes Washington: Secretaria da OEA, 1983. 173p.
  • MAGUIRE, J.D. Speed of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science, v.2, p.176-177, 1962. DOI:10.2135/cropsci1962.0011183X000200020033x
  • MARCOS-FILHO, J. Fisiologia de sementes de plantas cultivadas Piracicaba: FEALQ, 2005. 495p.
  • MATSUNO, H.; URITANI, I. Physiological behavior of peroxidase isozymes in sweet potato root tissue injured by cutting or with black rot. Plant Cell Physiology, v.13, p.1091-1101, 1972. http://pcp.oxfordjournals.org/content/13/6/1091.full.pdf+html
  • MEIADO, M.V.; ALBUQUERQUE, L.S.C.; ROCHA, E.A.; ROJAS-ARÉCHIGA, M.; LEAL, I.R. Seed germination responses of Cereus jamacaru DC. ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biology, v.25, p.120-128, 2010. DOI: 10.1111/j.1442-1984.2010.00274.x
  • MIRANDA, R.Q.; CORREIA, R.M.; ALMEIDA-CORTEZ, J.S.; POMPELLI, M.F. Germination of Prosopis juliflora (Sw.) D.C. seeds at different osmotic potentials and temperatures. Plant Species Biology, v.26, n.2, p.186-192, 2013. http://doi/10.1111/1442-1984.12025/
  • MISRA, N.; GUPTA, A.K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, v.169, p.331-339, 2005. http://dx.doi.org/10.1016/j.plantsci.2005.02.013
  • MITTLER, R.; VANDERAUWERA, S.; SUZUKI, N.; MILLER, G.; TOGNETTI, V.B.; VANDEPOELE, K.; GOLLERY, M.; SHULAAEV, V; VAN BREUSEGEM, F. ROS signaling: the new wave? Trends in Plant Science, v.16, p.300-309, 2011. http://dx.doi.org/10.1016/j.tplants.2011.03.007
  • MOLDES, C.A.; MEDICI, L.O.; ABRAHÃO, O.S.; TSAI, S.M.; AZEVEDO, R.A. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum, v.30, n.4, p.469-479, 2008. http://link.springer.com/article/10.1007/s11738-008-0144-8
  • NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant and Cell Physiology, v.22, n.5, p.867-880, 1981. http://pcp.oxfordjournals.org/content/22/5/867.full.pdf+html
  • PETROV, V.D.; VAN BREUSEGEM, F. Hydrogen peroxide: a central hub for information flow in plant cells. AoB Plants, v.2012, p.1-13, 2012. http://dx.doi.org/10.1093%2Faobpla%2Fpls014
  • PRISCO, J.T.; GOMES-FILHO, E. Fisiologia e bioquímica do estresse salino em plantas. In: GHEYI, H.R.; DIAS, N.S.E; LACERDA, C.F. (Eds). Manejo da salinidade na agricultura: estudos básicos e aplicados. Fortaleza, Instituto Nacional de Ciência e Tecnologia em Salinidade, p.143-159, 2010. http://200.7.175.130/agroumsa/sites/default/files/repositorio/cap_10_Fisiologia%20e%20bioqu%C3%83%C2%ADmica%20do%20estresse.pdf
  • PRODANOVIC, O.; PRODANOVIC, R.; BOGDANOVIĆ, J.; MITROVIĆ, A.; MILOSAVIĆ, N.; RADOTIĆ, K. Antioxidative enzymes during germination of two lines of serbian spruce [Picea omorika (Panč.) Purkyně]. Archives Biological Science, v.59, n.3, p.209-216, 2007. http://www.doiserbia.nb.rs/Article.aspx?id=035446640703209P&AspxAutoDetectCookieSupport=1#.UzFztBCmV1w
  • RIBEIRO-REIS, R.C. Tolerância a estresses abióticos em sementes de Erythrina velutina Willd. (leguminosae - Papilionoideae) nativa da caatinga. Informativo Abrates, v.22, n.3, p.28-31, 2012. http://www.abrates.org.br/portal/images/Informativo/v22_n3/Palestras_compactado.pdf
  • SHARMA, P.; JHA, A.B.; DUBEY, R.S.; PESSARAKLI, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, v.2012, p.1-26, 2012. http://dx.doi.org/10.1155/2012/217037
  • SILVA, F.A.S.; AZEVEDO, C.A.V. Principal Components Analysis in the Software Assistat-Statistical Attendance. In: WORLD CONGRESS ON COMPUTERS IN AGRICULTURE, 7, Reno-NV-USA: American Society of Agricultural and Biological Engineers, 2009.
  • UOTILA, M.; GULLNER, G.; KOMIVES, T. Induction of glutathione S-transferase activity and glutathione level in plants exposed to glyphosate. Physiologia Plantarum, v.93, n.4, p.689-694, 1995. DOI:10.1111/j.1399-3054.1995.tb05118.x
  • VILLELA, F.A.; DONI FILHO, L.; SEQUEIRA, E.L. Tabela de potencial osmótico em função da concentração de polietilenoglicol 6000 e a temperatura. Pesquisa Agropecuária Brasileira, v.26, n.11/12, p.1957-1968, 1991. https://seer.sct.embrapa.br/index.php/pab/article/view/3549/882

Publication Dates

  • Publication in this collection
    24 June 2014
  • Date of issue
    June 2014

History

  • Accepted
    19 Mar 2014
  • Received
    22 Jan 2014
ABRATES - Associação Brasileira de Tecnologia de Sementes Av. Juscelino Kubitschek, 1400 - 3° Andar, sala 31 - Centro,, CEP 86020-000 Londrina/PR - Londrina - PR - Brazil
E-mail: jss@abrates.org.br