Acessibilidade / Reportar erro

Modifications of auditory feedback and its effects on the voice of adult subjects: a scoping review

ABSTRACT

Introduction

The auditory perception of voice and its production involve auditory feedback, kinesthetic cues and the feedforward system that produce different effects for the voice. The Lombard, Sidetone and Pitch-Shift-Reflex effects are the most studied. The mapping of scientific experiments on changes in auditory feedback for voice motor control makes it possible to examine the existing literature on the phenomenon and may contribute to voice training or therapies.

Purpose

To map experiments and research results with manipulation of auditory feedback for voice motor control in adults.

Method

Scope review following the Checklist Preferred Reporting Items for Systematic reviews and Meta-Analyses extension (PRISMA-ScR) to answer the question: “What are the investigation methods and main research findings on the manipulation of auditory feedback in voice self-monitoring of adults?”. The search protocol was based on the Population, Concept, and Context (PCC) mnemonic strategy, in which the population is adult individuals, the concept is the manipulation of auditory feedback and the context is on motor voice control. Articles were searched in the databases: BVS/Virtual Health Library, MEDLINE/Medical Literature Analysis and Retrieval System online, COCHRANE, CINAHL/Cumulative Index to Nursing and Allied Health Literature, SCOPUS and WEB OF SCIENCE.

Results

60 articles were found, 19 on the Lombard Effect, 25 on the Pitch-shift-reflex effect, 12 on the Sidetone effect and four on the Sidetone/Lombard effect. The studies are in agreement that the insertion of a noise that masks the auditory feedback causes an increase in the individual's speech intensity and that the amplification of the auditory feedback promotes the reduction of the sound pressure level in the voice production. A reflex response to the change in pitch is observed in the auditory feedback, however, with particular characteristics in each study.

Conclusion

The material and method of the experiments are different, there are no standardizations in the tasks, the samples are varied and often reduced. The methodological diversity makes it difficult to generalize the results. The main findings of research on auditory feedback on voice motor control confirm that in the suppression of auditory feedback, the individual tends to increase the intensity of the voice. In auditory feedback amplification, the individual decreases the intensity and has greater control over the fundamental frequency, and in frequency manipulations, the individual tends to correct the manipulation. The few studies with dysphonic individuals show that they behave differently from non-dysphonic individuals.

Keywords:
Auditory Feedback; Voice Training; Adult; Auditory Perception; Feedback; Study Review

RESUMO

Introdução

A percepção auditiva da voz e sua produção envolvem o feedback auditivo, as pistas cinestésicas e o sistema de feedforward, os quais produzem efeitos distintos para a voz. Os efeitos Lombard, Sidetone e o Pitch-Shift-Reflex são os mais estudados. O mapeamento de experimentos científicos sobre as modificações do feedback auditivo para o controle motor da voz possibilita examinar a literatura existente sobre o fenômeno e pode contribuir para o treinamento ou terapias da voz.

Objetivo

Mapear os experimentos e resultados das pesquisas com manipulação do feedback auditivo para o controle motor da voz de indivíduos adultos.

Método

Revisão de escopo seguindo o Checklist Preferred Reporting Items for Systematic reviews and Meta-Analyses extension (PRISMA-ScR) para responder à pergunta: “Quais os métodos de investigação e principais achados das pesquisas sobre a manipulação do feedback auditivo no automonitoramento da voz de indivíduos adultos?”. O protocolo de busca foi baseado na estratégia mnemônica População, Conceito e Contexto (PCC). A população são os indivíduos adultos; o conceito é a manipulação do feedback auditivo e o contexto é o controle motor da voz. Os artigos foram pesquisados nas bases de dados: BVS/ Biblioteca Virtual em Saúde, MEDLINE/Medical Literature Analysis and Retrieval Sistem on-line, COCHRANE, CINAHL/Cumulative Index to Nursing and Allied Health Literature, SCOPUS e WEB OF SCIENCE.

Resultados

Foram encontrados 60 artigos, sendo 19 da temática do Efeito Lombard, 25 do efeito Pitch-shift-reflex, 12 do efeito Sidetone e quatro sobre o efeito Sidetone/Lombard. Os estudos são concordantes que a inserção de um ruído que mascara o feedback auditivo provoca um aumento na intensidade de fala do indivíduo e que a amplificação do feedback auditivo promove a redução do nível de pressão sonora na produção da voz. Observa-se uma resposta reflexa à mudança de tom no feedback auditivo, porém, com características individuais em cada estudo.

Conclusão

O material e método dos experimentos são distintos, não há padronizações nas tarefas, as amostras são variadas, muitas vezes reduzidas. A diversidade metodológica dificulta a generalização dos resultados. Os principais achados das pesquisas a respeito o feedback auditivo sobre o controle motor da voz confirmam que, na supressão do feedback auditivo, o indivíduo tende a aumentar a intensidade da voz. Na amplificação do feedback auditivo, o indivíduo diminui a intensidade e tem maior controle sobre a frequência fundamental e, nas manipulações da frequência, o indivíduo tende a corrigir a manipulação. Os poucos estudos com sujeitos disfônicos mostram que eles se comportam diferentemente dos não disfônicos.

Descritores:
Feedback Auditivo; Percepção Auditiva; Retroalimentação; Controle Motor da Voz; Indivíduos Adultos; Estudo de Revisão

INTRODUCTION

Hearing is greatly important to voice production and self-monitoring, and its influence on voice production has been addressed in the scientific literature(11 Lane H, Tranel B. The lombard sign and the role of hearing in speech. J Speech Hear Res. 1971;14(4):677-709. http://dx.doi.org/10.1044/jshr.1404.677.
http://dx.doi.org/10.1044/jshr.1404.677...

2 Patel R, Niziolek C, Reilly K, Guenther FH. Prosodic adaptations to pitch perturbation in running speech. J Speech Lang Hear Res. 2011;54(4):1051-9. http://dx.doi.org/10.1044/1092-4388(2010/10-0162). PMid:21173388.
http://dx.doi.org/10.1044/1092-4388(2010...

3 Perkell JS, Guenther FH, Lane H, Matthies ML, Stockmann E, Tiede M, et al. The distinctness of speakers' productions of vowel contrasts is related to their discrimination of the contrasts. J Acoust Soc Am. 2004;116(4 Pt 1):2338-44. http://dx.doi.org/10.1121/1.1787524. PMid:15532664.
http://dx.doi.org/10.1121/1.1787524...

4 Donath TM, Natke U, Kalveram KT. Effects of frequency-shifted auditory feedback on voice F0 contours in syllables. J Acoust Soc Am. 2002;111(1 Pt 1):357-66. http://dx.doi.org/10.1121/1.1424870. PMid:11831808.
http://dx.doi.org/10.1121/1.1424870...

5 Jones JÁ, Munhall KG. Perceptual calibration of F0 prodution: evidence from feedback perturbation. J Acoust Soc Am. 2000;108(3 Pt 1):1246-51. http://dx.doi.org/10.1121/1.1288414. PMid:11008824.
http://dx.doi.org/10.1121/1.1288414...

6 Behlau M. Voz: o livro do especialista. Rio de Janeiro: Revinter; 2005. (vol. 2).
-77 Franken MK, Acheson DJ, Mcqueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. J Acoust Soc Am. 2017;142(4):2007-18. http://dx.doi.org/10.1121/1.5006899. PMid:29092613.
http://dx.doi.org/10.1121/1.5006899...
). Voice production and its monitoring involve three mechanisms: auditory feedback, kinesthetic cues (or somatosensory feedback), and the feedforward system(77 Franken MK, Acheson DJ, Mcqueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. J Acoust Soc Am. 2017;142(4):2007-18. http://dx.doi.org/10.1121/1.5006899. PMid:29092613.
http://dx.doi.org/10.1121/1.5006899...
).

Auditory feedback is the hearing perception of one’s own voice in real time, enabling the person to monitor its intensity, frequency, and quality(55 Jones JÁ, Munhall KG. Perceptual calibration of F0 prodution: evidence from feedback perturbation. J Acoust Soc Am. 2000;108(3 Pt 1):1246-51. http://dx.doi.org/10.1121/1.1288414. PMid:11008824.
http://dx.doi.org/10.1121/1.1288414...
,88 Tourville JÁ, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process. 2011;26(7):952-81. http://dx.doi.org/10.1080/01690960903498424. PMid:23667281.
http://dx.doi.org/10.1080/01690960903498...

9 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...
-1010 Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758. PMid:29960497.
http://dx.doi.org/10.1121/1.5042758...
). Somatosensory feedback is the perception of adaptations and the motor adjustments of structures involved in the phonating process(1111 Luo J, Hage SR, Moss CF. The Lombard effect: from acoustics to neural mechanisms. Trends Neurosci. 2018;41(12):938-49. http://dx.doi.org/10.1016/j.tins.2018.07.011. PMid:30115413.
http://dx.doi.org/10.1016/j.tins.2018.07...
).

Auditory and somatosensory feedback help produce internal references for speech motor planning and update these adjustments for the feedforward system(99 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...
) – which is theoretically described as a cortical system located in the left brain hemisphere. It is responsible for mapping the articulation movements of the lips, mandible, tongue, and larynx and stores these speech-motor adjustments based on motor, somatosensory, and auditory references(88 Tourville JÁ, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process. 2011;26(7):952-81. http://dx.doi.org/10.1080/01690960903498424. PMid:23667281.
http://dx.doi.org/10.1080/01690960903498...
). The feedforward system uses these previously acquired internal references to control the voice(77 Franken MK, Acheson DJ, Mcqueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. J Acoust Soc Am. 2017;142(4):2007-18. http://dx.doi.org/10.1121/1.5006899. PMid:29092613.
http://dx.doi.org/10.1121/1.5006899...
).

Different types of auditory feedback manipulations produce distinct effects on the person’s voice – of which the most studied ones are the Lombard effect, the sidetone or amplification effect(1212 Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043. PMid:28959175.
http://dx.doi.org/10.3813/AAA.919043...

13 Lombard E. Le signe de l’elevation de la voix. Ann. Mal. Oreille Larynx Nez Pharynx. 1911;37:101-19.
-1414 Liu H, Larson CR. Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. J Acoust Soc Am. 2007;122(6):3671-7. http://dx.doi.org/10.1121/1.2800254. PMid:18247774.
http://dx.doi.org/10.1121/1.2800254...
), and the pitch-shift effect(1515 Kawahara H. Hearing voice: transformed auditory feedback effects on voice pitch control. In: Rosenthal DF, Okuno HG, Okuno H, Rosenthal D, editors. Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop. Boca Raton: CRC Press; 1995.

16 Chen SH, Liu H, Xu Y, Larson CR. Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am. 2007;121(2):1157-63. http://dx.doi.org/10.1121/1.2404624. PMid:17348536.
http://dx.doi.org/10.1121/1.2404624...

17 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
-1818 Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937. PMid:5439662.
http://dx.doi.org/10.1121/1.1911937...
).

The Lombard effect occurs when the intensity of voice production increases by inserting an intense noise, which masks the auditory feedback. The voice’s sound pressure is increased unconsciously and instantaneously, and when the noise is removed, vocally healthy people tend to return to the speech intensity level they were using before the noise was inserted(22 Patel R, Niziolek C, Reilly K, Guenther FH. Prosodic adaptations to pitch perturbation in running speech. J Speech Lang Hear Res. 2011;54(4):1051-9. http://dx.doi.org/10.1044/1092-4388(2010/10-0162). PMid:21173388.
http://dx.doi.org/10.1044/1092-4388(2010...
,1818 Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937. PMid:5439662.
http://dx.doi.org/10.1121/1.1911937...
).

The sidetone effect is the amplification of the sound feedback, increasing the person’s perception of their own voice(1212 Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043. PMid:28959175.
http://dx.doi.org/10.3813/AAA.919043...
). In response to this manipulation, vocally healthy people reduce their voice’s sound pressure level(1212 Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043. PMid:28959175.
http://dx.doi.org/10.3813/AAA.919043...
). Hence, this effect reduces the sound pressure of the voices of patients with hyperfunctional dysphonia and creates or increases the subject’s auditory perception regarding parameters and changes in their voice(88 Tourville JÁ, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process. 2011;26(7):952-81. http://dx.doi.org/10.1080/01690960903498424. PMid:23667281.
http://dx.doi.org/10.1080/01690960903498...
), making it possible to monitor its fundamental frequency, quality, and intensity(88 Tourville JÁ, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process. 2011;26(7):952-81. http://dx.doi.org/10.1080/01690960903498424. PMid:23667281.
http://dx.doi.org/10.1080/01690960903498...
,1212 Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043. PMid:28959175.
http://dx.doi.org/10.3813/AAA.919043...

13 Lombard E. Le signe de l’elevation de la voix. Ann. Mal. Oreille Larynx Nez Pharynx. 1911;37:101-19.
-1414 Liu H, Larson CR. Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. J Acoust Soc Am. 2007;122(6):3671-7. http://dx.doi.org/10.1121/1.2800254. PMid:18247774.
http://dx.doi.org/10.1121/1.2800254...
).

The pitch-shift effect occurs when a person with no vocal changes is auditorily exposed to changes in their own voice’s frequency. This manipulation causes a reflex correction, which is known to change the frequency most commonly in the opposite direction of the manipulation. Another less often possibility is to change it in the same direction of the manipulation(1010 Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758. PMid:29960497.
http://dx.doi.org/10.1121/1.5042758...
,1515 Kawahara H. Hearing voice: transformed auditory feedback effects on voice pitch control. In: Rosenthal DF, Okuno HG, Okuno H, Rosenthal D, editors. Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop. Boca Raton: CRC Press; 1995.

16 Chen SH, Liu H, Xu Y, Larson CR. Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am. 2007;121(2):1157-63. http://dx.doi.org/10.1121/1.2404624. PMid:17348536.
http://dx.doi.org/10.1121/1.2404624...
-1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
).

It is important to understand how vocal changes produced by different auditory feedback manipulations can be used in voice therapy and training. Little is known about experiments regarding the time of exposure to feedback, the level of amplification or masking noise, and the effectiveness of these manipulations for the voice of individuals with and without vocal complaints, whether they are occupational voice users or not. It is believed that mapping the literature on the topic through a scoping review will help examine the current scientific literature on the phenomenon and verify its gaps, envisioning future possibilities for further studies.

Given the above, the following question was raised: “What are the investigation methods and main findings in research on auditory feedback manipulation in adults’ self-monitoring of voice?”.

METHOD

This scoping review followed the detailed checklist of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses – Extension for Scoping Reviews (PRISMA-ScR) in the Joanna Briggs Institute Reviewers’ Manual(1919 JBI: Joanna Briggs Institute. The Joanna Briggs Institute reviewers’ manual 2015: methodology for JBI scoping reviews. Australia: JBI; 2015.). This checklist has 22 items that guide the writing of the scoping review report. The review was conducted between November 2021 and November 2022. The review protocol was registered in the Open Science Framework (OSF) on November 29, 2021, under DOI:10.17605/OSF.IO/CYM9N.

It used Arksey and O’Malley’s methodological framework(2020 Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. http://dx.doi.org/10.1080/1364557032000119616.
http://dx.doi.org/10.1080/13645570320001...
) with Levac et al.(2121 Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. PMid:20854677.) and Peters et al.(2222 Peters MDJ, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D. Scoping reviews. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer’s manual. Australia: Joanna Briggs Institute; 2017.) recommendations: 1) identifying the research question and objective; 2) identifying relevant studies; 3) selecting studies; 4) mapping data; 5) selecting evidence; 6) presenting results.

Two researchers selected, included, and extracted data independently regarding study eligibility for selection and inclusion. Inclusion and exclusion criteria were defined as follows, according to PRISMA-ScR:

Inclusion criteria: articles with the term “auditory feedback” in their titles and abstracts; articles addressing the topic implicit in their abstracts, related to speech motor control in adults, whether or not occupational voice users; addressing voice treatment or training; articles written in Portuguese, English, or Spanish, with no restriction on the year. These criteria were established to screen all literature available on the topic.

The exclusion criteria were articles using auditory feedback in contexts other than the subjects’ own voice sound amplification (sidetone effect), auditory feedback suppression (Lombard effect), or voice frequency manipulation (pitch-shift effect); articles using feedback with external target sounds; and articles whose populations had neurological conditions. Articles whose topic was unclear in their titles or abstracts were assessed in full texts. In cases of divergence, the reviewers analyzed the articles together to define by consensus whether to keep or remove them.

Search strategy – Research question and search criteria

The review question was developed based on the PCC mnemonic strategy, corresponding to Population, Concept, and Context(1919 JBI: Joanna Briggs Institute. The Joanna Briggs Institute reviewers’ manual 2015: methodology for JBI scoping reviews. Australia: JBI; 2015.,2222 Peters MDJ, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D. Scoping reviews. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer’s manual. Australia: Joanna Briggs Institute; 2017.). In this research, the population referred to adults; concept, to auditory feedback manipulation; and context, to speech motor control.

The sources of evidence were scientific studies published up until November 2022, addressing the use of auditory feedback, including every type of evidence. The articles were searched in the following databases: VHL (Virtual Health Library), MEDLINE (Medical Literature Analysis and Retrieval System Online), Cochrane, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Scopus, and Web of Science. The DeCS/MeSH descriptors used for the concept of “auditory feedback” were Auditory Perception, Audio Feedback; and the keywords were Auditory Feedback, Auditory, External Auditory, Internal Auditory, Kinesthetic, Portable Amplification, Sound Amplification, Auditory Masking, Auditory Self-Monitoring, Sidetone, Pitch-Shift Auditory, Frequency, Shifted, Lombard Effect. As for the concept of “speech motor control”, the descriptors were Voice Quality, Voice Training, Voice; and the keywords were Voice Motor Control, Voice Control, Pitch Control, Control of Voice Intensity.

Figure 1 shows the PCC search strategy developed by the lead researcher and reviewed by the second researcher. After the search, the references in the retrieved articles were also manually searched to complement the data.

Figure 1
Development of the search strategy

Mapping data

After selecting the studies, they were exported to the Rayyan platform – Intelligent Systematic Review. They were blindly selected by each researcher, and the inclusion of conflicting studies was defined by consensus among researchers. After this selection, the form was discussed and updated according to the data they considered relevant. The studies were grouped per type of auditory feedback manipulation, observing their designs, populations, tasks used in experiments, and the dependent variables used to measure the results. Duplicates were removed, and data were extracted and organized in spreadsheets, according to the type of feedback, with the study information relevant to this review: author, country, year, objectives, method, main results, and conclusion.

Selecting evidence

After categorizing the studies, their results were summarized in two charts to make information comparison easier.

RESULTS

The synthesis of the results of the identification, selection, eligibility, and inclusion phases is described in the organogram shown in Figure 2.

Figure 2
Flowchart of the search in the literature and inclusion of articles

The search found 19 studies (corresponding to 31.65%) that used the Lombard effect, all of them cross-sectional. Most samples comprised both male and female participants (n = 15), non-occupational voice users (n = 16), and without vocal complaints (n = 15). Only one study included individuals with dysphonia, and five studies approached singers. The tasks mainly used vowels, followed by singing and then reading. The inserted masking noise ranged from 50 to 105 dB, as there is no consensus or standardization for noise measure. Acoustic measures were the most studied outcomes, especially F0. Results agree that inserting noise to mask auditory feedback increases the person’s speech intensity. Articles that researched adult singers agree that auditory feedback, even in different proportions according to the training level, contributes to tuning precision in singing. Individuals with voice problems seemingly behave differently, having difficulties in returning to the usual adjustment after being exposed to the masking noise.

Also, 12 articles (20% of those found) researched the sidetone (amplification) effect in auditory feedback (Chart 1) – 11 are cross-sectional experimental studies, and the other one is a randomized clinical trial. Most studies focused on the effects of amplification on the human voice. Most samples had both male and female (n = 6) occupational voice users (n = 7), most of them teachers/professors (n = 6). Three studies approached dysphonic subjects, and one had participants with and without vocal complaints. The most used tasks were spontaneous speech (n = 8), followed by text reading (n = 3). Only one study used singing samples. The intensity of voice amplification was controlled in some studies, while other ones did not control it. Acoustic analysis was the most studied outcome, focusing on changes in sound pressure and the subjects’ self-perception. The studies concordantly found decreased sound pressure levels when the auditory feedback is amplified and positive voice production effects when it was amplified in the study samples.

Chart 1
Studies on manipulations of auditory feedback intensity (Lombard Effect, Sidetone Effect, and Sidetone/Lombard Effect) according to authorship, publication year, study country, objective, method, and conclusions

Four articles (corresponding to 6.66% of those found) studied the effects of manipulating the intensity, including the Lombard and sidetone effects in the same research; they were cross-sectional experimental studies. The studies used different tasks to verify the effects of amplifying the voice. The populations comprised singers (n = 2) and individuals without vocal complaints (n = 2) of both sexes (n = 4). They used reading (n = 1), speech (n = 1), and singing samples (n = 2). The intensity was manipulated with different resources, including electronic amplifiers, acoustic reflection boards, and feedback systems with earphones and acoustic amplifiers. The variables used in the studies included acoustic analysis and self-perceived comfort. The authors found improved voice quality and F0 control in auditory feedback amplification and increased effort in the presence of noise.

Moreover, 25 studies (41.67% of those found) investigated auditory feedback frequency manipulation (pitch-shift); all of them are cross-sectional experimental studies. In general, they aimed to observe the reflex of pitch shifts and its applications in the study samples. Most samples included both sexes (n = 14), having people without vocal complaints (n = 24) and non-occupational voice users (n = 19). The most used tasks were the emission of sustained vowels (n = 18) and singing (n = 3). F0 variation was the variable most studied (n = 19) to assess the effect, though some studies used other variables to understand the reflex, such as the magnitude and direction of the reflex response, electroencephalography, electroglottography, laryngeal imaging, response time, and cepstral measures. All experiments verified reflex responses to pitch shifts in auditory feedback, although each study had different characteristics (Chart 2).

Chart 2
Studies on manipulations of auditory feedback intensity (Pitch-shift-reflex) according to author, publication year, study country, objective, method, and conclusions

DISCUSSION

This scoping review mapped the literature available on auditory feedback manipulations in adults’ voice motor control. Many articles have addressed the different manipulations. However, most authors focused on studying auditory feedback suppression (Lombard effect)(2323 Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785.
http://dx.doi.org/10.1590/2317-6431-2016...

24 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.

25 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...

26 Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016. PMid:26106071.
http://dx.doi.org/10.1016/j.jvoice.2015....

27 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...

28 Li X, Jeng F-C. Noise tolerance in human frequency-following responses to voice pitch. J Acoust Soc Am. 2011;129(1):EL21-6. http://dx.doi.org/10.1121/1.3528775. PMid:21302977.
http://dx.doi.org/10.1121/1.3528775...

29 Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.

30 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...

31 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....

32 Larson CR, Sun J, Hain TC. Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am. 2007;121(5):2862-72. http://dx.doi.org/10.1121/1.2715657. PMid:17550185.
http://dx.doi.org/10.1121/1.2715657...

33 Lee G-S, Hsiao T-Y, Yang CCH, Kuo TBJ. Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear. 2007;28(3):343-50. http://dx.doi.org/10.1097/AUD.0b013e318047936f. PMid:17485983.
http://dx.doi.org/10.1097/AUD.0b013e3180...

34 Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004. PMid:16157468.
http://dx.doi.org/10.1016/j.jvoice.2005....

35 Deliyski DD, Shaw HS, Evans MK. Adverse effects of environmental noise on acoustic voice quality measurements. J Voice. 2005;19(1):15-28. http://dx.doi.org/10.1016/j.jvoice.2004.07.003. PMid:15766847.
http://dx.doi.org/10.1016/j.jvoice.2004....

36 Mürbe D, Pabst F, Hofmann G, Sundberg J. Significance of auditory and kinesthetic feedback to singers’. J Voice. 2002;16(1):44-51. http://dx.doi.org/10.1016/S0892-1997(02)00071-1. PMid:12002886.
http://dx.doi.org/10.1016/S0892-1997(02)...
-3737 Tonkinson S. The Lombard effect in choral singing. J Voice. 1994;8(1):24-9. http://dx.doi.org/10.1016/S0892-1997(05)80316-9. PMid:8167784.
http://dx.doi.org/10.1016/S0892-1997(05)...
) and pitch manipulation with the pitch-shift reflex effect(55 Jones JÁ, Munhall KG. Perceptual calibration of F0 prodution: evidence from feedback perturbation. J Acoust Soc Am. 2000;108(3 Pt 1):1246-51. http://dx.doi.org/10.1121/1.1288414. PMid:11008824.
http://dx.doi.org/10.1121/1.1288414...
,3838 Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.

39 Kothare H, Raharjo I, Ramanarayanan V, Ranasinghe K, Parrell B, Johnson K, et al. Sensorimotor adaptation of speech depends on the direction of auditory feedback alteration. J Acoust Soc Am. 2020;148(6):3682-97. http://dx.doi.org/10.1121/10.0002876. PMid:33379892.
http://dx.doi.org/10.1121/10.0002876...

40 Schenck A, Hilger AI, Levant S, Kim JH, Lester-Smith RA, Larson C. The effect of pitch and loudness auditory feedback perturbations on vocal quality during sustained phonation. J Voice. 2023;37(1):37-47. PMid:33191054.

41 Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9. PMid:32447409.
http://dx.doi.org/10.1007/s00221-020-058...

42 Hilger A, Cole J, Kim JH, Lester-Smith RA, Larson C. The effect of pitch auditory feedback perturbations on the production of anticipatory phrasal prominence and boundary. J Speech Lang Hear Res. 2020;63(7):2185-201. http://dx.doi.org/10.1044/2020_JSLHR-19-00043. PMid:32615845.
http://dx.doi.org/10.1044/2020_JSLHR-19-...

43 Ziethe A, Petermann S, Hoppe U, Greiner N, Brüning M, Bohr C, et al. Control of fundamental frequency in dysphonic patients during phonation and speech. J Voice. 2019;33(6):851-9. PMid:30143332.

44 Alsius A, Mitsuya T, Latif N, Munhall KG. Linguistic initiation signals increase auditory feedback error correction. J Acoust Soc Am. 2017;142(2):838-45. http://dx.doi.org/10.1121/1.4997193. PMid:28863596.
http://dx.doi.org/10.1121/1.4997193...

45 Arbeiter M, Petermann S, Hoppe U, Bohr C, Doellinger M, Ziethe A. Analysis of the auditory feedback and phonation in normal voices. Ann Otol Rhinol Laryngol. 2018;127(2):89-98. http://dx.doi.org/10.1177/0003489417744567. PMid:29199445.
http://dx.doi.org/10.1177/00034894177445...

46 Petermann S, Döllinger M, Kniesburges S, Ziethe A. Analysis method for the neurological and physiological processes underlying the Pitch-Shift Reflex. Acta Acust United Acust. 2016;102(2):284-97. http://dx.doi.org/10.3813/AAA.918944.
http://dx.doi.org/10.3813/AAA.918944...

47 Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109. PMid:25873858.
http://dx.doi.org/10.3389/fnins.2015.001...

48 Patel S, Lodhavia A, Frankford S, Korzyukov O, Larson CR. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions. J Voice. 2016;30(6):772.e33-40. http://dx.doi.org/10.1016/j.jvoice.2015.11.012. PMid:26739860.
http://dx.doi.org/10.1016/j.jvoice.2015....

49 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...

50 Behroozmand R, Korzyukov O, Sattler L, Larson CR. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control. J Acoust Soc Am. 2012;132(4):2468-77. http://dx.doi.org/10.1121/1.4746984. PMid:23039441.
http://dx.doi.org/10.1121/1.4746984...

51 Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019. PMid:21719346.
http://dx.doi.org/10.1016/j.clinph.2011....

52 Liu P, Chen Z, Jones JA, Huang D, Liu H. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging. PLoS One. 2011;6(7):e22791. http://dx.doi.org/10.1371/journal.pone.0022791. PMid:21799942.
http://dx.doi.org/10.1371/journal.pone.0...

53 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...

54 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...

55 Sivasankar M, Bauer JJ, Babu T, Larson CR. Voice responses to changes in pitch of voice or tone auditory feedback. J Acoust Soc Am. 2005;117(2):850-7. http://dx.doi.org/10.1121/1.1849933. PMid:15759705.
http://dx.doi.org/10.1121/1.1849933...

56 Leydon C, Bauer JJ, Larson CR. The role of auditory feedback in sustaining vocal vibrato. J Acoust Soc Am. 2003;114(3):1575-81. http://dx.doi.org/10.1121/1.1603230. PMid:14514211.
http://dx.doi.org/10.1121/1.1603230...

57 Burnett TA, Larson CR. Early pitch-shift response is active in both steady and dynamic voice pitch control. J Acoust Soc Am. 2002;112(3):1058-63. http://dx.doi.org/10.1121/1.1487844. PMid:12243154.
http://dx.doi.org/10.1121/1.1487844...

58 Liu H, Xu Y, Larson CR. Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am. 2009;125(4):2299-306. http://dx.doi.org/10.1121/1.3081523. PMid:19354405.
http://dx.doi.org/10.1121/1.3081523...

59 Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3. PMid:9181544.
http://dx.doi.org/10.1016/S0892-1997(97)...
-6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.).

There is a need for more in-depth studies on the multidimensional effects of auditory feedback amplification on the voice. Each study analyzes a type of outcome, but there are few elements to understand the proportions between auditory feedback amplification and decreased voice intensity.

The studies that researched the Lombard effect had different samples, including adult singers, teachers/professors, healthy individuals, reporters, dysphonic individuals, and musicians. Regardless of the population, most results involved increased voice production intensity in the various tasks(2323 Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785.
http://dx.doi.org/10.1590/2317-6431-2016...

24 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.
-2525 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...
,2727 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
,3333 Lee G-S, Hsiao T-Y, Yang CCH, Kuo TBJ. Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear. 2007;28(3):343-50. http://dx.doi.org/10.1097/AUD.0b013e318047936f. PMid:17485983.
http://dx.doi.org/10.1097/AUD.0b013e3180...
,3434 Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004. PMid:16157468.
http://dx.doi.org/10.1016/j.jvoice.2005....
,6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,6262 Mürbe D, Pabst F, Hofmann G, Sundberg J. Effects of a professional solo singer education on auditory and kinesthetic feedback: a longitudinal study of singers’ pitch control. J Voice. 2004;18(2):236-41. http://dx.doi.org/10.1016/j.jvoice.2003.05.001. PMid:15193657.
http://dx.doi.org/10.1016/j.jvoice.2003....
). Few studies observed feedback suppression in dysphonic subjects. Studies have shown that this population is seemingly more sensitive to the effects of auditory feedback suppression and find it more difficult to return to the habitual speech intensity when the noise is removed(2525 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
,3434 Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004. PMid:16157468.
http://dx.doi.org/10.1016/j.jvoice.2005....
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
).

Concerning outcome variables, most studies on the Lombard effect addressed the changes in voice intensity and frequency(2323 Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785.
http://dx.doi.org/10.1590/2317-6431-2016...
,2424 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.,2626 Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016. PMid:26106071.
http://dx.doi.org/10.1016/j.jvoice.2015....

27 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...
-2828 Li X, Jeng F-C. Noise tolerance in human frequency-following responses to voice pitch. J Acoust Soc Am. 2011;129(1):EL21-6. http://dx.doi.org/10.1121/1.3528775. PMid:21302977.
http://dx.doi.org/10.1121/1.3528775...
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....

32 Larson CR, Sun J, Hain TC. Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am. 2007;121(5):2862-72. http://dx.doi.org/10.1121/1.2715657. PMid:17550185.
http://dx.doi.org/10.1121/1.2715657...

33 Lee G-S, Hsiao T-Y, Yang CCH, Kuo TBJ. Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear. 2007;28(3):343-50. http://dx.doi.org/10.1097/AUD.0b013e318047936f. PMid:17485983.
http://dx.doi.org/10.1097/AUD.0b013e3180...
-3434 Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004. PMid:16157468.
http://dx.doi.org/10.1016/j.jvoice.2005....
,3636 Mürbe D, Pabst F, Hofmann G, Sundberg J. Significance of auditory and kinesthetic feedback to singers’. J Voice. 2002;16(1):44-51. http://dx.doi.org/10.1016/S0892-1997(02)00071-1. PMid:12002886.
http://dx.doi.org/10.1016/S0892-1997(02)...
,3737 Tonkinson S. The Lombard effect in choral singing. J Voice. 1994;8(1):24-9. http://dx.doi.org/10.1016/S0892-1997(05)80316-9. PMid:8167784.
http://dx.doi.org/10.1016/S0892-1997(05)...
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6464 Ferreira LP, Servilha EAM, Masson MLV, Reinaldi MBFM. Políticas públicas e voz do professor: caracterização das leis brasileiras. Rev Soc Bras Fonoaudiol. 2009;14(1):1-7. http://dx.doi.org/10.1590/S1516-80342009000100003.
http://dx.doi.org/10.1590/S1516-80342009...
). Some of them also included vocal dose(2727 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
), auditory-perceptual evaluation(2929 Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.), laryngeal resistance(3030 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...
), aerodynamic measures(3030 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...
,6565 Shembel AC, Lee J, Sacher JR, Johnson AM. Characterization of primary muscle tension dysphonia using acoustic and aerodynamic voice metrics. J Voice. 2021. http://dx.doi.org/10.1016/j.jvoice.2021.05.019. PMid:34281751.
http://dx.doi.org/10.1016/j.jvoice.2021....
), laryngeal assessments, vowel duration, formant means(1010 Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758. PMid:29960497.
http://dx.doi.org/10.1121/1.5042758...
,2424 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.,6565 Shembel AC, Lee J, Sacher JR, Johnson AM. Characterization of primary muscle tension dysphonia using acoustic and aerodynamic voice metrics. J Voice. 2021. http://dx.doi.org/10.1016/j.jvoice.2021.05.019. PMid:34281751.
http://dx.doi.org/10.1016/j.jvoice.2021....
), magnetic resonance, and electroencephalography(2525 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...
,2828 Li X, Jeng F-C. Noise tolerance in human frequency-following responses to voice pitch. J Acoust Soc Am. 2011;129(1):EL21-6. http://dx.doi.org/10.1121/1.3528775. PMid:21302977.
http://dx.doi.org/10.1121/1.3528775...
).

There is no consensus on the intensity of the masking noise to induce the Lombard effect. Some researchers used signals other than noise via earphones to mask the auditory input, such as music and external noise(2626 Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016. PMid:26106071.
http://dx.doi.org/10.1016/j.jvoice.2015....
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
,3737 Tonkinson S. The Lombard effect in choral singing. J Voice. 1994;8(1):24-9. http://dx.doi.org/10.1016/S0892-1997(05)80316-9. PMid:8167784.
http://dx.doi.org/10.1016/S0892-1997(05)...
). The studies used different intensities, ranging from 40 to 100 dB; the one most used in the methods within this range was 90 dB(2929 Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.,3333 Lee G-S, Hsiao T-Y, Yang CCH, Kuo TBJ. Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear. 2007;28(3):343-50. http://dx.doi.org/10.1097/AUD.0b013e318047936f. PMid:17485983.
http://dx.doi.org/10.1097/AUD.0b013e3180...
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
). Some studies did not establish a fixed intensity; rather, they were only based on each participant’s threshold(2323 Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785.
http://dx.doi.org/10.1590/2317-6431-2016...
,3232 Larson CR, Sun J, Hain TC. Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am. 2007;121(5):2862-72. http://dx.doi.org/10.1121/1.2715657. PMid:17550185.
http://dx.doi.org/10.1121/1.2715657...
). This shows the need for researching which minimum intensity triggers the Lombard effect and what are the differences between populations, as the literature reports a proportion observed between the noise level and the voice amplification level(1818 Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937. PMid:5439662.
http://dx.doi.org/10.1121/1.1911937...
).

Concerning the main findings of the Lombard effect, most studies state that decreasing one’s own voice auditory feedback leads them to unconsciously increase their vice intensity(1010 Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758. PMid:29960497.
http://dx.doi.org/10.1121/1.5042758...
,2323 Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785.
http://dx.doi.org/10.1590/2317-6431-2016...

24 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.

25 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...

26 Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016. PMid:26106071.
http://dx.doi.org/10.1016/j.jvoice.2015....

27 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...

28 Li X, Jeng F-C. Noise tolerance in human frequency-following responses to voice pitch. J Acoust Soc Am. 2011;129(1):EL21-6. http://dx.doi.org/10.1121/1.3528775. PMid:21302977.
http://dx.doi.org/10.1121/1.3528775...

29 Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.
-3030 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...
,3434 Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004. PMid:16157468.
http://dx.doi.org/10.1016/j.jvoice.2005....
,3535 Deliyski DD, Shaw HS, Evans MK. Adverse effects of environmental noise on acoustic voice quality measurements. J Voice. 2005;19(1):15-28. http://dx.doi.org/10.1016/j.jvoice.2004.07.003. PMid:15766847.
http://dx.doi.org/10.1016/j.jvoice.2004....
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6565 Shembel AC, Lee J, Sacher JR, Johnson AM. Characterization of primary muscle tension dysphonia using acoustic and aerodynamic voice metrics. J Voice. 2021. http://dx.doi.org/10.1016/j.jvoice.2021.05.019. PMid:34281751.
http://dx.doi.org/10.1016/j.jvoice.2021....
), corroborating the literature on the effect(1111 Luo J, Hage SR, Moss CF. The Lombard effect: from acoustics to neural mechanisms. Trends Neurosci. 2018;41(12):938-49. http://dx.doi.org/10.1016/j.tins.2018.07.011. PMid:30115413.
http://dx.doi.org/10.1016/j.tins.2018.07...
,1212 Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043. PMid:28959175.
http://dx.doi.org/10.3813/AAA.919043...
,1818 Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937. PMid:5439662.
http://dx.doi.org/10.1121/1.1911937...
). In general, the authors found increased vocal doses, increased voice intensity, imprecise pitch correspondence, and greater susceptivity to the effect in strained voices(2525 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...

26 Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016. PMid:26106071.
http://dx.doi.org/10.1016/j.jvoice.2015....
-2727 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...
,3030 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...
,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
,3636 Mürbe D, Pabst F, Hofmann G, Sundberg J. Significance of auditory and kinesthetic feedback to singers’. J Voice. 2002;16(1):44-51. http://dx.doi.org/10.1016/S0892-1997(02)00071-1. PMid:12002886.
http://dx.doi.org/10.1016/S0892-1997(02)...
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6565 Shembel AC, Lee J, Sacher JR, Johnson AM. Characterization of primary muscle tension dysphonia using acoustic and aerodynamic voice metrics. J Voice. 2021. http://dx.doi.org/10.1016/j.jvoice.2021.05.019. PMid:34281751.
http://dx.doi.org/10.1016/j.jvoice.2021....
).

Furthermore, the studies observed that the level of vocal change depends on each person(2929 Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.,3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
), which indicates a difficulty in generalizing it and finding a proportion between noise intensity and voice production intensity. Another interesting finding is that individuals can control the changes caused by auditory feedback suppression, based on simple orders or visual feedback(3737 Tonkinson S. The Lombard effect in choral singing. J Voice. 1994;8(1):24-9. http://dx.doi.org/10.1016/S0892-1997(05)80316-9. PMid:8167784.
http://dx.doi.org/10.1016/S0892-1997(05)...
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
).

Another conclusion is that the Lombard effect in beginner singers diminishes tuning precision in complex tasks. Hence, it is inferred that these singers need their hearing to correspond to pitches indicated in complex tasks, whereas more advanced singers do not depend so much on auditory feedback to master their tuning, as previously demonstrated in the literature(2525 Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059. PMid:27916664.
http://dx.doi.org/10.1016/j.neuroimage.2...
,2727 Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176.
http://dx.doi.org/10.1037/pmu0000176...
) – reporters likewise(3131 Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009. PMid:20171834.
http://dx.doi.org/10.1016/j.jvoice.2009....
,3636 Mürbe D, Pabst F, Hofmann G, Sundberg J. Significance of auditory and kinesthetic feedback to singers’. J Voice. 2002;16(1):44-51. http://dx.doi.org/10.1016/S0892-1997(02)00071-1. PMid:12002886.
http://dx.doi.org/10.1016/S0892-1997(02)...
,6262 Mürbe D, Pabst F, Hofmann G, Sundberg J. Effects of a professional solo singer education on auditory and kinesthetic feedback: a longitudinal study of singers’ pitch control. J Voice. 2004;18(2):236-41. http://dx.doi.org/10.1016/j.jvoice.2003.05.001. PMid:15193657.
http://dx.doi.org/10.1016/j.jvoice.2003....
).

It is hypothesized that training kinesthetic skills helps control voice intensity with less influence from auditory feedback. On the other hand, studies on dysphonic patients have shown that they tend to respond in greater magnitude to the effect(2424 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.,3030 Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069). PMid:20029052.
http://dx.doi.org/10.1044/1092-4388(2009...
).

The researchers of studies on pitch-shift effect feedback included variables such as electroencephalography, spectro-temporal dynamics, and functional neuroimaging(4141 Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9. PMid:32447409.
http://dx.doi.org/10.1007/s00221-020-058...
,4545 Arbeiter M, Petermann S, Hoppe U, Bohr C, Doellinger M, Ziethe A. Analysis of the auditory feedback and phonation in normal voices. Ann Otol Rhinol Laryngol. 2018;127(2):89-98. http://dx.doi.org/10.1177/0003489417744567. PMid:29199445.
http://dx.doi.org/10.1177/00034894177445...

46 Petermann S, Döllinger M, Kniesburges S, Ziethe A. Analysis method for the neurological and physiological processes underlying the Pitch-Shift Reflex. Acta Acust United Acust. 2016;102(2):284-97. http://dx.doi.org/10.3813/AAA.918944.
http://dx.doi.org/10.3813/AAA.918944...

47 Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109. PMid:25873858.
http://dx.doi.org/10.3389/fnins.2015.001...

48 Patel S, Lodhavia A, Frankford S, Korzyukov O, Larson CR. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions. J Voice. 2016;30(6):772.e33-40. http://dx.doi.org/10.1016/j.jvoice.2015.11.012. PMid:26739860.
http://dx.doi.org/10.1016/j.jvoice.2015....
-4949 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...
,5151 Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019. PMid:21719346.
http://dx.doi.org/10.1016/j.clinph.2011....
), which verify cortical activities, and associate them between and within hemispheres related to reflex pitch shifts to understand in-depth the response to changes in frequency in auditory feedback(4141 Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9. PMid:32447409.
http://dx.doi.org/10.1007/s00221-020-058...
). Some studies analyzed neuroimaging and electroencephalography(4949 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...
) and described that the right hemisphere plays an essential role in pitch modulation.

The articles describe changes when the feedback goes 0.25 to 7 semitones up or down. However, the minimum manipulation level to obtain a reflex response has not yet been defined(1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
,4949 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...

50 Behroozmand R, Korzyukov O, Sattler L, Larson CR. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control. J Acoust Soc Am. 2012;132(4):2468-77. http://dx.doi.org/10.1121/1.4746984. PMid:23039441.
http://dx.doi.org/10.1121/1.4746984...

51 Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019. PMid:21719346.
http://dx.doi.org/10.1016/j.clinph.2011....

52 Liu P, Chen Z, Jones JA, Huang D, Liu H. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging. PLoS One. 2011;6(7):e22791. http://dx.doi.org/10.1371/journal.pone.0022791. PMid:21799942.
http://dx.doi.org/10.1371/journal.pone.0...

53 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...

54 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...

55 Sivasankar M, Bauer JJ, Babu T, Larson CR. Voice responses to changes in pitch of voice or tone auditory feedback. J Acoust Soc Am. 2005;117(2):850-7. http://dx.doi.org/10.1121/1.1849933. PMid:15759705.
http://dx.doi.org/10.1121/1.1849933...

56 Leydon C, Bauer JJ, Larson CR. The role of auditory feedback in sustaining vocal vibrato. J Acoust Soc Am. 2003;114(3):1575-81. http://dx.doi.org/10.1121/1.1603230. PMid:14514211.
http://dx.doi.org/10.1121/1.1603230...

57 Burnett TA, Larson CR. Early pitch-shift response is active in both steady and dynamic voice pitch control. J Acoust Soc Am. 2002;112(3):1058-63. http://dx.doi.org/10.1121/1.1487844. PMid:12243154.
http://dx.doi.org/10.1121/1.1487844...

58 Liu H, Xu Y, Larson CR. Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am. 2009;125(4):2299-306. http://dx.doi.org/10.1121/1.3081523. PMid:19354405.
http://dx.doi.org/10.1121/1.3081523...

59 Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3. PMid:9181544.
http://dx.doi.org/10.1016/S0892-1997(97)...
-6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.). All experiments used hardware and software that change frequencies and earphones to present the modified signal to participants. Many selected articles on the topic used 1-semitone changes in their experiments(77 Franken MK, Acheson DJ, Mcqueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. J Acoust Soc Am. 2017;142(4):2007-18. http://dx.doi.org/10.1121/1.5006899. PMid:29092613.
http://dx.doi.org/10.1121/1.5006899...
,1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
,4040 Schenck A, Hilger AI, Levant S, Kim JH, Lester-Smith RA, Larson C. The effect of pitch and loudness auditory feedback perturbations on vocal quality during sustained phonation. J Voice. 2023;37(1):37-47. PMid:33191054.,4141 Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9. PMid:32447409.
http://dx.doi.org/10.1007/s00221-020-058...
,4747 Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109. PMid:25873858.
http://dx.doi.org/10.3389/fnins.2015.001...
,4949 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...
,5050 Behroozmand R, Korzyukov O, Sattler L, Larson CR. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control. J Acoust Soc Am. 2012;132(4):2468-77. http://dx.doi.org/10.1121/1.4746984. PMid:23039441.
http://dx.doi.org/10.1121/1.4746984...
,5353 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...

54 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...
-5555 Sivasankar M, Bauer JJ, Babu T, Larson CR. Voice responses to changes in pitch of voice or tone auditory feedback. J Acoust Soc Am. 2005;117(2):850-7. http://dx.doi.org/10.1121/1.1849933. PMid:15759705.
http://dx.doi.org/10.1121/1.1849933...
,5858 Liu H, Xu Y, Larson CR. Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am. 2009;125(4):2299-306. http://dx.doi.org/10.1121/1.3081523. PMid:19354405.
http://dx.doi.org/10.1121/1.3081523...
,5959 Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3. PMid:9181544.
http://dx.doi.org/10.1016/S0892-1997(97)...
).

The tasks varied considerably, including different vowels sustained in constant pitches, corroborating the literature that described the pitch-shift reflex in this task(1010 Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758. PMid:29960497.
http://dx.doi.org/10.1121/1.5042758...
,1515 Kawahara H. Hearing voice: transformed auditory feedback effects on voice pitch control. In: Rosenthal DF, Okuno HG, Okuno H, Rosenthal D, editors. Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop. Boca Raton: CRC Press; 1995.

16 Chen SH, Liu H, Xu Y, Larson CR. Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am. 2007;121(2):1157-63. http://dx.doi.org/10.1121/1.2404624. PMid:17348536.
http://dx.doi.org/10.1121/1.2404624...
-1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
). Some experiments used singing tasks(3838 Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.,4848 Patel S, Lodhavia A, Frankford S, Korzyukov O, Larson CR. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions. J Voice. 2016;30(6):772.e33-40. http://dx.doi.org/10.1016/j.jvoice.2015.11.012. PMid:26739860.
http://dx.doi.org/10.1016/j.jvoice.2015....
,5454 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...
,5959 Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3. PMid:9181544.
http://dx.doi.org/10.1016/S0892-1997(97)...
), or the emission of syllables(4646 Petermann S, Döllinger M, Kniesburges S, Ziethe A. Analysis method for the neurological and physiological processes underlying the Pitch-Shift Reflex. Acta Acust United Acust. 2016;102(2):284-97. http://dx.doi.org/10.3813/AAA.918944.
http://dx.doi.org/10.3813/AAA.918944...
,5454 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...
), words, and sentences(3838 Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.,4242 Hilger A, Cole J, Kim JH, Lester-Smith RA, Larson C. The effect of pitch auditory feedback perturbations on the production of anticipatory phrasal prominence and boundary. J Speech Lang Hear Res. 2020;63(7):2185-201. http://dx.doi.org/10.1044/2020_JSLHR-19-00043. PMid:32615845.
http://dx.doi.org/10.1044/2020_JSLHR-19-...
,4444 Alsius A, Mitsuya T, Latif N, Munhall KG. Linguistic initiation signals increase auditory feedback error correction. J Acoust Soc Am. 2017;142(2):838-45. http://dx.doi.org/10.1121/1.4997193. PMid:28863596.
http://dx.doi.org/10.1121/1.4997193...
,5858 Liu H, Xu Y, Larson CR. Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am. 2009;125(4):2299-306. http://dx.doi.org/10.1121/1.3081523. PMid:19354405.
http://dx.doi.org/10.1121/1.3081523...
) as the frequency is displaced in auditory feedback. The sustained vowels used are not standardized; the most recurrent ones are /a/ and /u/(1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
,3838 Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.,4141 Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9. PMid:32447409.
http://dx.doi.org/10.1007/s00221-020-058...
,4343 Ziethe A, Petermann S, Hoppe U, Greiner N, Brüning M, Bohr C, et al. Control of fundamental frequency in dysphonic patients during phonation and speech. J Voice. 2019;33(6):851-9. PMid:30143332.,4545 Arbeiter M, Petermann S, Hoppe U, Bohr C, Doellinger M, Ziethe A. Analysis of the auditory feedback and phonation in normal voices. Ann Otol Rhinol Laryngol. 2018;127(2):89-98. http://dx.doi.org/10.1177/0003489417744567. PMid:29199445.
http://dx.doi.org/10.1177/00034894177445...

46 Petermann S, Döllinger M, Kniesburges S, Ziethe A. Analysis method for the neurological and physiological processes underlying the Pitch-Shift Reflex. Acta Acust United Acust. 2016;102(2):284-97. http://dx.doi.org/10.3813/AAA.918944.
http://dx.doi.org/10.3813/AAA.918944...
-4747 Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109. PMid:25873858.
http://dx.doi.org/10.3389/fnins.2015.001...
,4949 Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002. PMid:23665378.
http://dx.doi.org/10.1016/j.neuropsychol...

50 Behroozmand R, Korzyukov O, Sattler L, Larson CR. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control. J Acoust Soc Am. 2012;132(4):2468-77. http://dx.doi.org/10.1121/1.4746984. PMid:23039441.
http://dx.doi.org/10.1121/1.4746984...

51 Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019. PMid:21719346.
http://dx.doi.org/10.1016/j.clinph.2011....

52 Liu P, Chen Z, Jones JA, Huang D, Liu H. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging. PLoS One. 2011;6(7):e22791. http://dx.doi.org/10.1371/journal.pone.0022791. PMid:21799942.
http://dx.doi.org/10.1371/journal.pone.0...

53 Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z. PMid:18340440.
http://dx.doi.org/10.1007/s00221-008-133...

54 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...

55 Sivasankar M, Bauer JJ, Babu T, Larson CR. Voice responses to changes in pitch of voice or tone auditory feedback. J Acoust Soc Am. 2005;117(2):850-7. http://dx.doi.org/10.1121/1.1849933. PMid:15759705.
http://dx.doi.org/10.1121/1.1849933...
-5656 Leydon C, Bauer JJ, Larson CR. The role of auditory feedback in sustaining vocal vibrato. J Acoust Soc Am. 2003;114(3):1575-81. http://dx.doi.org/10.1121/1.1603230. PMid:14514211.
http://dx.doi.org/10.1121/1.1603230...
), though some articles used other ones(3838 Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.,4545 Arbeiter M, Petermann S, Hoppe U, Bohr C, Doellinger M, Ziethe A. Analysis of the auditory feedback and phonation in normal voices. Ann Otol Rhinol Laryngol. 2018;127(2):89-98. http://dx.doi.org/10.1177/0003489417744567. PMid:29199445.
http://dx.doi.org/10.1177/00034894177445...
,5151 Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019. PMid:21719346.
http://dx.doi.org/10.1016/j.clinph.2011....
,5454 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...
,5656 Leydon C, Bauer JJ, Larson CR. The role of auditory feedback in sustaining vocal vibrato. J Acoust Soc Am. 2003;114(3):1575-81. http://dx.doi.org/10.1121/1.1603230. PMid:14514211.
http://dx.doi.org/10.1121/1.1603230...
). The studies have found a correction reflex to the manipulation of the auditory feedback frequency – i.e., if the feedback goes up, participants tend to correct it by decreasing the production frequency, and vice-versa, as described in other articles(1515 Kawahara H. Hearing voice: transformed auditory feedback effects on voice pitch control. In: Rosenthal DF, Okuno HG, Okuno H, Rosenthal D, editors. Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop. Boca Raton: CRC Press; 1995.

16 Chen SH, Liu H, Xu Y, Larson CR. Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am. 2007;121(2):1157-63. http://dx.doi.org/10.1121/1.2404624. PMid:17348536.
http://dx.doi.org/10.1121/1.2404624...
-1717 Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527. PMid:11785786.
http://dx.doi.org/10.1121/1.1417527...
,2424 Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.).

The literature available describes different results between vocally healthy and dysphonic populations – the latter seems to have a greater reflex response to pitch changes in auditory feedback(4242 Hilger A, Cole J, Kim JH, Lester-Smith RA, Larson C. The effect of pitch auditory feedback perturbations on the production of anticipatory phrasal prominence and boundary. J Speech Lang Hear Res. 2020;63(7):2185-201. http://dx.doi.org/10.1044/2020_JSLHR-19-00043. PMid:32615845.
http://dx.doi.org/10.1044/2020_JSLHR-19-...
). However, no quantitative or proportional pattern has been found yet regarding such changes triggered by manipulation among dysphonic and non-dysphonic individuals. Studies have concordantly observed that singers rely more on their internal tuning model than non-singers. The longer the training in singing tasks, the more signers tend to rely on their internal tuning model, rather than on the auditory feedback. The manipulations did not have the same magnitude in trained and untrained singers(4747 Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109. PMid:25873858.
http://dx.doi.org/10.3389/fnins.2015.001...
,4848 Patel S, Lodhavia A, Frankford S, Korzyukov O, Larson CR. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions. J Voice. 2016;30(6):772.e33-40. http://dx.doi.org/10.1016/j.jvoice.2015.11.012. PMid:26739860.
http://dx.doi.org/10.1016/j.jvoice.2015....
,5454 Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y. PMid:18592224.
http://dx.doi.org/10.1007/s00221-008-147...
,5757 Burnett TA, Larson CR. Early pitch-shift response is active in both steady and dynamic voice pitch control. J Acoust Soc Am. 2002;112(3):1058-63. http://dx.doi.org/10.1121/1.1487844. PMid:12243154.
http://dx.doi.org/10.1121/1.1487844...
,5959 Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3. PMid:9181544.
http://dx.doi.org/10.1016/S0892-1997(97)...
). These data point to the hypothesis that trained individuals have well-established internal models, little influenced by external changes and updates, in contrast with individuals without training or with vocal changes.

The sidetone effect was tested with spontaneous speech and reading tasks in different study populations, with greater emphasis on teachers/professors(6666 Assad JP, Gama AC, Santos JN, Castro Magalhães M. The effects of amplification on vocal dose in teachers with dysphonia. J Voice. 2019;33(1):73-9. http://dx.doi.org/10.1016/j.jvoice.2017.09.011. PMid:29122417.
http://dx.doi.org/10.1016/j.jvoice.2017....

67 Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010. PMid:22521533.
http://dx.doi.org/10.1016/j.jvoice.2011....

68 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...

69 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...

70 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
-7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
), as they are constantly subject to the Lombard effect with great vocal demand(6464 Ferreira LP, Servilha EAM, Masson MLV, Reinaldi MBFM. Políticas públicas e voz do professor: caracterização das leis brasileiras. Rev Soc Bras Fonoaudiol. 2009;14(1):1-7. http://dx.doi.org/10.1590/S1516-80342009000100003.
http://dx.doi.org/10.1590/S1516-80342009...
,7272 Dragone MLS, Ferreira LP, Giannini SPP, Simões-Zenari M, Vieira VP, Behlau M. Voz do professor: uma revisão de 15 anos de contribuição fonoaudiológica. Rev Soc Bras Fonoaudiol. 2010;15(2):289-96. http://dx.doi.org/10.1590/S1516-80342010000200023.
http://dx.doi.org/10.1590/S1516-80342010...
,7373 Servilha EAM, Ruela IS. Riscos ocupacionais à saúde e voz de professores: especificidades das unidades de rede municipal de ensino. Rev CEFAC. 2010;12(1):109-14. http://dx.doi.org/10.1590/S1516-18462009005000061.
http://dx.doi.org/10.1590/S1516-18462009...
). Voice intensity was the most used outcome, which was expected to reduce with amplification(6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6969 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...
,7272 Dragone MLS, Ferreira LP, Giannini SPP, Simões-Zenari M, Vieira VP, Behlau M. Voz do professor: uma revisão de 15 anos de contribuição fonoaudiológica. Rev Soc Bras Fonoaudiol. 2010;15(2):289-96. http://dx.doi.org/10.1590/S1516-80342010000200023.
http://dx.doi.org/10.1590/S1516-80342010...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
). Other variables included the subjects’ self-perception and the auditory-perceptual evaluation of voice(6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.,6868 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...

69 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...

70 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
-7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
).

The studies do not focus on a specific amplification system. They used portable amplifiers(6767 Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010. PMid:22521533.
http://dx.doi.org/10.1016/j.jvoice.2011....
,6868 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...
,7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7373 Servilha EAM, Ruela IS. Riscos ocupacionais à saúde e voz de professores: especificidades das unidades de rede municipal de ensino. Rev CEFAC. 2010;12(1):109-14. http://dx.doi.org/10.1590/S1516-18462009005000061.
http://dx.doi.org/10.1590/S1516-18462009...
), loudspeakers(6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6969 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...
,7070 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
,7575 McCormick CA, Roy N. The ChatterVox™ portable voice amplifier: a means to vibration dose reduction? J Voice. 2002;16(4):502-8. http://dx.doi.org/10.1016/S0892-1997(02)00126-1. PMid:12512638.
http://dx.doi.org/10.1016/S0892-1997(02)...
), and feedback earphones(6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
,7676 Nudelmam CJ, Codinho J, Fry AC, Bottalico P, Rubin AD. Voice biofeedback via bone conduction headphones: effects on acoustic voice parameters and self-reported vocal effort in individuals with voice disorders. J Voice. 2022. http://dx.doi.org/10.1016/j.jvoice.2022.10.014. PMid:36372674.
http://dx.doi.org/10.1016/j.jvoice.2022....
). The findings show that all experiments described a decrease in vocal loading and effort when the own voices were amplified, demonstrated in the sound pressure level and self-perceived effort(6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.,6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6666 Assad JP, Gama AC, Santos JN, Castro Magalhães M. The effects of amplification on vocal dose in teachers with dysphonia. J Voice. 2019;33(1):73-9. http://dx.doi.org/10.1016/j.jvoice.2017.09.011. PMid:29122417.
http://dx.doi.org/10.1016/j.jvoice.2017....

67 Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010. PMid:22521533.
http://dx.doi.org/10.1016/j.jvoice.2011....

68 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...

69 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...

70 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
-7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
,7575 McCormick CA, Roy N. The ChatterVox™ portable voice amplifier: a means to vibration dose reduction? J Voice. 2002;16(4):502-8. http://dx.doi.org/10.1016/S0892-1997(02)00126-1. PMid:12512638.
http://dx.doi.org/10.1016/S0892-1997(02)...
). All studies are conclusive about the response of decreasing voice production intensity, as previously described in the literature(6060 Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.,6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,6363 Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5. PMid:802981.
http://dx.doi.org/10.1016/0021-9924(75)9...
,6666 Assad JP, Gama AC, Santos JN, Castro Magalhães M. The effects of amplification on vocal dose in teachers with dysphonia. J Voice. 2019;33(1):73-9. http://dx.doi.org/10.1016/j.jvoice.2017.09.011. PMid:29122417.
http://dx.doi.org/10.1016/j.jvoice.2017....

67 Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010. PMid:22521533.
http://dx.doi.org/10.1016/j.jvoice.2011....

68 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...

69 Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952. PMid:12375626.
http://dx.doi.org/10.1080/14015430276014...

70 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
-7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
,7575 McCormick CA, Roy N. The ChatterVox™ portable voice amplifier: a means to vibration dose reduction? J Voice. 2002;16(4):502-8. http://dx.doi.org/10.1016/S0892-1997(02)00126-1. PMid:12512638.
http://dx.doi.org/10.1016/S0892-1997(02)...
). Some of them also describe changes in the voice frequency, agreeing that the voice is better controlled when it is amplified(7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
,7777 Siegel GM, Pick HL Jr. Auditory feedback in the regulation of voice. J Acoust Soc Am. 1974;56(5):1618-24. http://dx.doi.org/10.1121/1.1903486. PMid:4427032.
http://dx.doi.org/10.1121/1.1903486...
).

The studies also report positive voice production results, with less self-perceived phonatory effort(6868 Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157. PMid:12931060.
http://dx.doi.org/10.1159/000072157...
,7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
,7474 Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050). PMid:12199394.
http://dx.doi.org/10.1044/1092-4388(2002...
). However, each experiment used a different method, and even though auditory feedback voice amplification is described as a therapeutic resource that optimizes speech therapy, no research was found addressing its effects along with voice therapy.

Equipment used also varied, and there are no comparisons of the effectiveness obtained with the different forms of using the same type of manipulation. Likewise, few studies observed feedback changes and manipulations in dysphonic individuals. Hence, effectiveness studies are needed to verify the results of using amplification in vocal rehabilitation(6666 Assad JP, Gama AC, Santos JN, Castro Magalhães M. The effects of amplification on vocal dose in teachers with dysphonia. J Voice. 2019;33(1):73-9. http://dx.doi.org/10.1016/j.jvoice.2017.09.011. PMid:29122417.
http://dx.doi.org/10.1016/j.jvoice.2017....
,6767 Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010. PMid:22521533.
http://dx.doi.org/10.1016/j.jvoice.2011....
,7171 Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449. PMid:11769345.
http://dx.doi.org/10.1080/14015430175320...
). These gaps in the literature are fields of research that still need scientific exploration.

The studies in this scoping review show that the levels of amplification are not standardized and that there is no conclusive value of the decrease in voice production intensity in response to specific values of auditory feedback amplification. Few studies explore intensity proportions or levels in their experiments(6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,7070 Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007. PMid:15567049.
http://dx.doi.org/10.1016/j.jvoice.2003....
). This gap makes it difficult to establish a contrary relationship or correlation of the proportion found in the Lombard effect(1818 Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937. PMid:5439662.
http://dx.doi.org/10.1121/1.1911937...
).

On the other hand, experiments that associated the effects of auditory feedback suppression and amplification also had different objectives, such as assessing task precision in singers and verifying comfort levels and sound pressure levels in normal individuals(6161 Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012. PMid:26948385.
http://dx.doi.org/10.1016/j.jvoice.2016....
,7777 Siegel GM, Pick HL Jr. Auditory feedback in the regulation of voice. J Acoust Soc Am. 1974;56(5):1618-24. http://dx.doi.org/10.1121/1.1903486. PMid:4427032.
http://dx.doi.org/10.1121/1.1903486...

78 Bottalico P, Graetzer S, Hunter EJ. Effect of Training and Level of External Auditory Feedback on the Singing Voice: volume and Quality. J Voice. 2016;30(4):434-42. http://dx.doi.org/10.1016/j.jvoice.2015.05.010. PMid:26186810.
http://dx.doi.org/10.1016/j.jvoice.2015....
-7979 Bottalico P, Graetzer S, Hunter EJ. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations. J Acoust Soc Am. 2015;138(6):EL498-503. http://dx.doi.org/10.1121/1.4936643. PMid:26723357.
http://dx.doi.org/10.1121/1.4936643...
). This review did not find standardized levels of amplification or noise insertion, as studies used different experiment methodologies and tasks (singing and text reading tasks).

This scoping review explored experiments and condensed research results with auditory feedback manipulation for adults’ speech-motor control. However, the methodological diversity between experiments, sometimes with scarce information, unstandardized speech tasks, different outcome variables, and small samples may have limited the results. Nevertheless, this review pointed out gaps in current knowledge, encouraging further research on the topic, and, therefore, helping increase the knowledge of voice training or therapy.

CONCLUSION

Mapping the current literature on experiments with auditory feedback included in this scoping review shows that different methods are used to amplify, suppress, and manipulate auditory feedback frequency. Results in general are similar regarding the reflex response in voice motor control, observing each experiment’s specificities. However, the relationship between the magnitude of manipulation and the responses still needs to be better understood. The main findings in research on auditory feedback for voice motor control demonstrate that, in auditory feedback suppression, individuals tend to increase their voice intensity. In auditory feedback amplification, they decrease voice intensity and have greater control over F0. In frequency manipulations, they tend to correct the manipulation. The few studies that conducted experiments in dysphonic individuals showed that they behave differently from non-dysphonic subjects.

  • Study conducted at Programa de Pós-graduação (Mestrado) em Ciências Fonoaudiológicas, Curso de Graduação em Fonoaudiologia, Faculdade de Medicina, Departamento de Fonoaudiologia, Universidade Federal de Minas Gerais – UFMG - Belo Horizonte (MG), Brasil.
  • Financial support: nothing to declare.

REFERÊNCIAS

  • 1
    Lane H, Tranel B. The lombard sign and the role of hearing in speech. J Speech Hear Res. 1971;14(4):677-709. http://dx.doi.org/10.1044/jshr.1404.677
    » http://dx.doi.org/10.1044/jshr.1404.677
  • 2
    Patel R, Niziolek C, Reilly K, Guenther FH. Prosodic adaptations to pitch perturbation in running speech. J Speech Lang Hear Res. 2011;54(4):1051-9. http://dx.doi.org/10.1044/1092-4388(2010/10-0162) PMid:21173388.
    » http://dx.doi.org/10.1044/1092-4388(2010/10-0162)
  • 3
    Perkell JS, Guenther FH, Lane H, Matthies ML, Stockmann E, Tiede M, et al. The distinctness of speakers' productions of vowel contrasts is related to their discrimination of the contrasts. J Acoust Soc Am. 2004;116(4 Pt 1):2338-44. http://dx.doi.org/10.1121/1.1787524 PMid:15532664.
    » http://dx.doi.org/10.1121/1.1787524
  • 4
    Donath TM, Natke U, Kalveram KT. Effects of frequency-shifted auditory feedback on voice F0 contours in syllables. J Acoust Soc Am. 2002;111(1 Pt 1):357-66. http://dx.doi.org/10.1121/1.1424870 PMid:11831808.
    » http://dx.doi.org/10.1121/1.1424870
  • 5
    Jones JÁ, Munhall KG. Perceptual calibration of F0 prodution: evidence from feedback perturbation. J Acoust Soc Am. 2000;108(3 Pt 1):1246-51. http://dx.doi.org/10.1121/1.1288414 PMid:11008824.
    » http://dx.doi.org/10.1121/1.1288414
  • 6
    Behlau M. Voz: o livro do especialista. Rio de Janeiro: Revinter; 2005. (vol. 2).
  • 7
    Franken MK, Acheson DJ, Mcqueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. J Acoust Soc Am. 2017;142(4):2007-18. http://dx.doi.org/10.1121/1.5006899 PMid:29092613.
    » http://dx.doi.org/10.1121/1.5006899
  • 8
    Tourville JÁ, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process. 2011;26(7):952-81. http://dx.doi.org/10.1080/01690960903498424 PMid:23667281.
    » http://dx.doi.org/10.1080/01690960903498424
  • 9
    Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z PMid:18340440.
    » http://dx.doi.org/10.1007/s00221-008-1330-z
  • 10
    Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am. 2018;143(6):EL523-9. http://dx.doi.org/10.1121/1.5042758 PMid:29960497.
    » http://dx.doi.org/10.1121/1.5042758
  • 11
    Luo J, Hage SR, Moss CF. The Lombard effect: from acoustics to neural mechanisms. Trends Neurosci. 2018;41(12):938-49. http://dx.doi.org/10.1016/j.tins.2018.07.011 PMid:30115413.
    » http://dx.doi.org/10.1016/j.tins.2018.07.011
  • 12
    Bottalico P, Passione II, Graetzer S, Hunter EJ. Evaluation of the starting point of the Lombard Effect. Acta Acust United Acust. 2017;103(1):169-72. http://dx.doi.org/10.3813/AAA.919043 PMid:28959175.
    » http://dx.doi.org/10.3813/AAA.919043
  • 13
    Lombard E. Le signe de l’elevation de la voix. Ann. Mal. Oreille Larynx Nez Pharynx. 1911;37:101-19.
  • 14
    Liu H, Larson CR. Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. J Acoust Soc Am. 2007;122(6):3671-7. http://dx.doi.org/10.1121/1.2800254 PMid:18247774.
    » http://dx.doi.org/10.1121/1.2800254
  • 15
    Kawahara H. Hearing voice: transformed auditory feedback effects on voice pitch control. In: Rosenthal DF, Okuno HG, Okuno H, Rosenthal D, editors. Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop. Boca Raton: CRC Press; 1995.
  • 16
    Chen SH, Liu H, Xu Y, Larson CR. Voice F0 responses to pitch-shifted voice feedback during English speech. J Acoust Soc Am. 2007;121(2):1157-63. http://dx.doi.org/10.1121/1.2404624 PMid:17348536.
    » http://dx.doi.org/10.1121/1.2404624
  • 17
    Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparisons of voice F0 responses to pitch-shift onset and offset conditions. J Acoust Soc Am. 2001;110(6):2845-8. http://dx.doi.org/10.1121/1.1417527 PMid:11785786.
    » http://dx.doi.org/10.1121/1.1417527
  • 18
    Lane H, Tranel B, Sisson C. Regulation of voice communication by sensory dynamics. J Acoust Soc Am. 1970;47(2):618-24. http://dx.doi.org/10.1121/1.1911937 PMid:5439662.
    » http://dx.doi.org/10.1121/1.1911937
  • 19
    JBI: Joanna Briggs Institute. The Joanna Briggs Institute reviewers’ manual 2015: methodology for JBI scoping reviews. Australia: JBI; 2015.
  • 20
    Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. http://dx.doi.org/10.1080/1364557032000119616
    » http://dx.doi.org/10.1080/1364557032000119616
  • 21
    Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. PMid:20854677.
  • 22
    Peters MDJ, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D. Scoping reviews. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer’s manual. Australia: Joanna Briggs Institute; 2017.
  • 23
    Fernandes LC, Bomfim DAS, Machado GC, Andrade CL. Influência da retroalimentação auditiva nos parâmetros acústicos vocais de indivíduos sem queixas vocais. Audiol Commun Res. 2018;23(0):e1785. http://dx.doi.org/10.1590/2317-6431-2016-1785
    » http://dx.doi.org/10.1590/2317-6431-2016-1785
  • 24
    Iijima S, Ishimitsu S, Nakayama M. Effects of masking noise in auditory feedback on singing. Int J Innov Comput, Inf Control. 2017;(13):591-603.
  • 25
    Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage. 2017;147:97-110. http://dx.doi.org/10.1016/j.neuroimage.2016.11.059 PMid:27916664.
    » http://dx.doi.org/10.1016/j.neuroimage.2016.11.059
  • 26
    Yiu EM-L, Yip PPS. Effect of noise on vocal loudness and pitch in natural environments: an accelerometer (ambulatory phonation monitor) study. J Voice. 2016;30(4):389-93. http://dx.doi.org/10.1016/j.jvoice.2015.05.016 PMid:26106071.
    » http://dx.doi.org/10.1016/j.jvoice.2015.05.016
  • 27
    Beck SL, Rieser JJ, Erdemir A. Singing without hearing: a comparative study of children and adults singing a familiar tune. Psychomusicology. 2017;27(2):122-31. http://dx.doi.org/10.1037/pmu0000176
    » http://dx.doi.org/10.1037/pmu0000176
  • 28
    Li X, Jeng F-C. Noise tolerance in human frequency-following responses to voice pitch. J Acoust Soc Am. 2011;129(1):EL21-6. http://dx.doi.org/10.1121/1.3528775 PMid:21302977.
    » http://dx.doi.org/10.1121/1.3528775
  • 29
    Caldeira CRP, Vieira VP, Behlau M. Análise das modificações vocais de repórteres na situação de ruído. CoDAS. 2012;17(3):321-6.
  • 30
    Grillo EU, Verdolini Abbott K, Lee TD. Effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice. J Speech Lang Hear Res. 2010;53(4):850-61. http://dx.doi.org/10.1044/1092-4388(2009/08-0069) PMid:20029052.
    » http://dx.doi.org/10.1044/1092-4388(2009/08-0069)
  • 31
    Lindstrom F, Waye KP, Södersten M, McAllister A, Ternström S. Observations of the relationship between noise exposure and preschool teacher voice usage in day-care center environments. J Voice. 2011;25(2):166-72. http://dx.doi.org/10.1016/j.jvoice.2009.09.009 PMid:20171834.
    » http://dx.doi.org/10.1016/j.jvoice.2009.09.009
  • 32
    Larson CR, Sun J, Hain TC. Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. J Acoust Soc Am. 2007;121(5):2862-72. http://dx.doi.org/10.1121/1.2715657 PMid:17550185.
    » http://dx.doi.org/10.1121/1.2715657
  • 33
    Lee G-S, Hsiao T-Y, Yang CCH, Kuo TBJ. Effects of speech noise on vocal fundamental frequency using power spectral analysis. Ear Hear. 2007;28(3):343-50. http://dx.doi.org/10.1097/AUD.0b013e318047936f PMid:17485983.
    » http://dx.doi.org/10.1097/AUD.0b013e318047936f
  • 34
    Ferrand CT. Relationship between masking levels and phonatory stability in normal-speaking women. J Voice. 2006;20(2):223-8. http://dx.doi.org/10.1016/j.jvoice.2005.04.004 PMid:16157468.
    » http://dx.doi.org/10.1016/j.jvoice.2005.04.004
  • 35
    Deliyski DD, Shaw HS, Evans MK. Adverse effects of environmental noise on acoustic voice quality measurements. J Voice. 2005;19(1):15-28. http://dx.doi.org/10.1016/j.jvoice.2004.07.003 PMid:15766847.
    » http://dx.doi.org/10.1016/j.jvoice.2004.07.003
  • 36
    Mürbe D, Pabst F, Hofmann G, Sundberg J. Significance of auditory and kinesthetic feedback to singers’. J Voice. 2002;16(1):44-51. http://dx.doi.org/10.1016/S0892-1997(02)00071-1 PMid:12002886.
    » http://dx.doi.org/10.1016/S0892-1997(02)00071-1
  • 37
    Tonkinson S. The Lombard effect in choral singing. J Voice. 1994;8(1):24-9. http://dx.doi.org/10.1016/S0892-1997(05)80316-9 PMid:8167784.
    » http://dx.doi.org/10.1016/S0892-1997(05)80316-9
  • 38
    Alemi R, Lehmann A, Deroche ML. Changes in spoken and sung productions following adaptation to Pitch-shifted auditory feedback. J Voice. 2023;37(3):466.e1-15. PMid:33745802.
  • 39
    Kothare H, Raharjo I, Ramanarayanan V, Ranasinghe K, Parrell B, Johnson K, et al. Sensorimotor adaptation of speech depends on the direction of auditory feedback alteration. J Acoust Soc Am. 2020;148(6):3682-97. http://dx.doi.org/10.1121/10.0002876 PMid:33379892.
    » http://dx.doi.org/10.1121/10.0002876
  • 40
    Schenck A, Hilger AI, Levant S, Kim JH, Lester-Smith RA, Larson C. The effect of pitch and loudness auditory feedback perturbations on vocal quality during sustained phonation. J Voice. 2023;37(1):37-47. PMid:33191054.
  • 41
    Behroozmand R, Johari K, Bridwell K, Hayden C, Fahey D, den Ouden DB. Modulation of vocal pitch control through high-definition transcranial direct current stimulation of the left ventral motor cortex. Exp Brain Res. 2020;238(6):1525-35. http://dx.doi.org/10.1007/s00221-020-05832-9 PMid:32447409.
    » http://dx.doi.org/10.1007/s00221-020-05832-9
  • 42
    Hilger A, Cole J, Kim JH, Lester-Smith RA, Larson C. The effect of pitch auditory feedback perturbations on the production of anticipatory phrasal prominence and boundary. J Speech Lang Hear Res. 2020;63(7):2185-201. http://dx.doi.org/10.1044/2020_JSLHR-19-00043 PMid:32615845.
    » http://dx.doi.org/10.1044/2020_JSLHR-19-00043
  • 43
    Ziethe A, Petermann S, Hoppe U, Greiner N, Brüning M, Bohr C, et al. Control of fundamental frequency in dysphonic patients during phonation and speech. J Voice. 2019;33(6):851-9. PMid:30143332.
  • 44
    Alsius A, Mitsuya T, Latif N, Munhall KG. Linguistic initiation signals increase auditory feedback error correction. J Acoust Soc Am. 2017;142(2):838-45. http://dx.doi.org/10.1121/1.4997193 PMid:28863596.
    » http://dx.doi.org/10.1121/1.4997193
  • 45
    Arbeiter M, Petermann S, Hoppe U, Bohr C, Doellinger M, Ziethe A. Analysis of the auditory feedback and phonation in normal voices. Ann Otol Rhinol Laryngol. 2018;127(2):89-98. http://dx.doi.org/10.1177/0003489417744567 PMid:29199445.
    » http://dx.doi.org/10.1177/0003489417744567
  • 46
    Petermann S, Döllinger M, Kniesburges S, Ziethe A. Analysis method for the neurological and physiological processes underlying the Pitch-Shift Reflex. Acta Acust United Acust. 2016;102(2):284-97. http://dx.doi.org/10.3813/AAA.918944
    » http://dx.doi.org/10.3813/AAA.918944
  • 47
    Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci. 2015;9:109. http://dx.doi.org/10.3389/fnins.2015.00109 PMid:25873858.
    » http://dx.doi.org/10.3389/fnins.2015.00109
  • 48
    Patel S, Lodhavia A, Frankford S, Korzyukov O, Larson CR. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions. J Voice. 2016;30(6):772.e33-40. http://dx.doi.org/10.1016/j.jvoice.2015.11.012 PMid:26739860.
    » http://dx.doi.org/10.1016/j.jvoice.2015.11.012
  • 49
    Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia. 2013;51(8):1471-80. http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002 PMid:23665378.
    » http://dx.doi.org/10.1016/j.neuropsychologia.2013.05.002
  • 50
    Behroozmand R, Korzyukov O, Sattler L, Larson CR. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control. J Acoust Soc Am. 2012;132(4):2468-77. http://dx.doi.org/10.1121/1.4746984 PMid:23039441.
    » http://dx.doi.org/10.1121/1.4746984
  • 51
    Behroozmand R, Korzyukov O, Larson CR. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback. Clin Neurophysiol. 2011;122(12):2408-17. http://dx.doi.org/10.1016/j.clinph.2011.04.019 PMid:21719346.
    » http://dx.doi.org/10.1016/j.clinph.2011.04.019
  • 52
    Liu P, Chen Z, Jones JA, Huang D, Liu H. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging. PLoS One. 2011;6(7):e22791. http://dx.doi.org/10.1371/journal.pone.0022791 PMid:21799942.
    » http://dx.doi.org/10.1371/journal.pone.0022791
  • 53
    Larson CR, Altman KW, Liu H, Hain TC. Interactions between auditory and somatosensory feedback for voice F 0 control. Exp Brain Res. 2008;187(4):613-21. http://dx.doi.org/10.1007/s00221-008-1330-z PMid:18340440.
    » http://dx.doi.org/10.1007/s00221-008-1330-z
  • 54
    Jones JA, Keough D. Auditory-motor mapping for pitch control in singers and nonsingers. Exp Brain Res. 2008;190(3):279-87. http://dx.doi.org/10.1007/s00221-008-1473-y PMid:18592224.
    » http://dx.doi.org/10.1007/s00221-008-1473-y
  • 55
    Sivasankar M, Bauer JJ, Babu T, Larson CR. Voice responses to changes in pitch of voice or tone auditory feedback. J Acoust Soc Am. 2005;117(2):850-7. http://dx.doi.org/10.1121/1.1849933 PMid:15759705.
    » http://dx.doi.org/10.1121/1.1849933
  • 56
    Leydon C, Bauer JJ, Larson CR. The role of auditory feedback in sustaining vocal vibrato. J Acoust Soc Am. 2003;114(3):1575-81. http://dx.doi.org/10.1121/1.1603230 PMid:14514211.
    » http://dx.doi.org/10.1121/1.1603230
  • 57
    Burnett TA, Larson CR. Early pitch-shift response is active in both steady and dynamic voice pitch control. J Acoust Soc Am. 2002;112(3):1058-63. http://dx.doi.org/10.1121/1.1487844 PMid:12243154.
    » http://dx.doi.org/10.1121/1.1487844
  • 58
    Liu H, Xu Y, Larson CR. Attenuation of vocal responses to pitch perturbations during Mandarin speech. J Acoust Soc Am. 2009;125(4):2299-306. http://dx.doi.org/10.1121/1.3081523 PMid:19354405.
    » http://dx.doi.org/10.1121/1.3081523
  • 59
    Burnett TA, Senner JE, Larson CR. Voice F0 responses to pitch-shifted auditory feedback: a preliminary study. J Voice. 1997;11(2):202-11. http://dx.doi.org/10.1016/S0892-1997(97)80079-3 PMid:9181544.
    » http://dx.doi.org/10.1016/S0892-1997(97)80079-3
  • 60
    Tomassi NE, Castro ME, Timmons Sund L, Díaz-Cádiz ME, Buckley DP, Stepp CE. Effects of sidetone amplification on vocal function during telecommunication. J Voice. 2023;37(4):553-60. PMid:33992477.
  • 61
    Bottalico P, Graetzer S, Hunter EJ. Effect of training and level of external auditory feedback on the singing voice: pitch inaccuracy. J Voice. 2017;31(1):122.e9-16. http://dx.doi.org/10.1016/j.jvoice.2016.01.012 PMid:26948385.
    » http://dx.doi.org/10.1016/j.jvoice.2016.01.012
  • 62
    Mürbe D, Pabst F, Hofmann G, Sundberg J. Effects of a professional solo singer education on auditory and kinesthetic feedback: a longitudinal study of singers’ pitch control. J Voice. 2004;18(2):236-41. http://dx.doi.org/10.1016/j.jvoice.2003.05.001 PMid:15193657.
    » http://dx.doi.org/10.1016/j.jvoice.2003.05.001
  • 63
    Chang-Yit R, Pick HL Jr, Siegel GM. Reliability of sidetone amplification effect in vocal intensity. J Commun Disord. 1975;8(4):317-24. http://dx.doi.org/10.1016/0021-9924(75)90032-5 PMid:802981.
    » http://dx.doi.org/10.1016/0021-9924(75)90032-5
  • 64
    Ferreira LP, Servilha EAM, Masson MLV, Reinaldi MBFM. Políticas públicas e voz do professor: caracterização das leis brasileiras. Rev Soc Bras Fonoaudiol. 2009;14(1):1-7. http://dx.doi.org/10.1590/S1516-80342009000100003
    » http://dx.doi.org/10.1590/S1516-80342009000100003
  • 65
    Shembel AC, Lee J, Sacher JR, Johnson AM. Characterization of primary muscle tension dysphonia using acoustic and aerodynamic voice metrics. J Voice. 2021. http://dx.doi.org/10.1016/j.jvoice.2021.05.019 PMid:34281751.
    » http://dx.doi.org/10.1016/j.jvoice.2021.05.019
  • 66
    Assad JP, Gama AC, Santos JN, Castro Magalhães M. The effects of amplification on vocal dose in teachers with dysphonia. J Voice. 2019;33(1):73-9. http://dx.doi.org/10.1016/j.jvoice.2017.09.011 PMid:29122417.
    » http://dx.doi.org/10.1016/j.jvoice.2017.09.011
  • 67
    Gaskill CS, O’Brien SG, Tinter SR. The effect of voice amplification on occupational vocal dose in elementary school teachers. J Voice. 2012;26(5):667.e19-27. http://dx.doi.org/10.1016/j.jvoice.2011.10.010 PMid:22521533.
    » http://dx.doi.org/10.1016/j.jvoice.2011.10.010
  • 68
    Jónsdottir V, Laukkanen AM, Siikki I. Changes in teachers’ voice quality during a working day with and without electric sound amplification. Folia Phoniatr Logop. 2003;55(5):267-80. http://dx.doi.org/10.1159/000072157 PMid:12931060.
    » http://dx.doi.org/10.1159/000072157
  • 69
    Jónsdóttir VI. Cordless amplifying system in classrooms: a descriptive study of teachers’ and students’ opinions. Logoped Phoniatr Vocol. 2002;27(1):29-36. http://dx.doi.org/10.1080/140154302760146952 PMid:12375626.
    » http://dx.doi.org/10.1080/140154302760146952
  • 70
    Laukkanen AM, Mickelson NP, Laitala M, Syrjä T, Salo A, Sihvo M. Effects of HearFones on speaking and singing voice quality. J Voice. 2004;18(4):475-87. http://dx.doi.org/10.1016/j.jvoice.2003.05.007 PMid:15567049.
    » http://dx.doi.org/10.1016/j.jvoice.2003.05.007
  • 71
    Jónsdottir V, Laukkanen AM, Ilomäki I, Roininen H, Alastalo-Borenius M, Vilkman E. Effects of amplified and damped auditory feedback on vocal characteristics. Logoped Phoniatr Vocol. 2001;26(2):76-81. http://dx.doi.org/10.1080/140154301753207449 PMid:11769345.
    » http://dx.doi.org/10.1080/140154301753207449
  • 72
    Dragone MLS, Ferreira LP, Giannini SPP, Simões-Zenari M, Vieira VP, Behlau M. Voz do professor: uma revisão de 15 anos de contribuição fonoaudiológica. Rev Soc Bras Fonoaudiol. 2010;15(2):289-96. http://dx.doi.org/10.1590/S1516-80342010000200023
    » http://dx.doi.org/10.1590/S1516-80342010000200023
  • 73
    Servilha EAM, Ruela IS. Riscos ocupacionais à saúde e voz de professores: especificidades das unidades de rede municipal de ensino. Rev CEFAC. 2010;12(1):109-14. http://dx.doi.org/10.1590/S1516-18462009005000061
    » http://dx.doi.org/10.1590/S1516-18462009005000061
  • 74
    Roy N, Weinrich B, Gray SD, Tanner K, Toledo SW, Dove H, et al. Voice amplification versus vocal hygiene instruction for teachers with voice disorders. J Speech Lang Hear Res. 2002;45(4):625-38. http://dx.doi.org/10.1044/1092-4388(2002/050) PMid:12199394.
    » http://dx.doi.org/10.1044/1092-4388(2002/050)
  • 75
    McCormick CA, Roy N. The ChatterVox™ portable voice amplifier: a means to vibration dose reduction? J Voice. 2002;16(4):502-8. http://dx.doi.org/10.1016/S0892-1997(02)00126-1 PMid:12512638.
    » http://dx.doi.org/10.1016/S0892-1997(02)00126-1
  • 76
    Nudelmam CJ, Codinho J, Fry AC, Bottalico P, Rubin AD. Voice biofeedback via bone conduction headphones: effects on acoustic voice parameters and self-reported vocal effort in individuals with voice disorders. J Voice. 2022. http://dx.doi.org/10.1016/j.jvoice.2022.10.014 PMid:36372674.
    » http://dx.doi.org/10.1016/j.jvoice.2022.10.014
  • 77
    Siegel GM, Pick HL Jr. Auditory feedback in the regulation of voice. J Acoust Soc Am. 1974;56(5):1618-24. http://dx.doi.org/10.1121/1.1903486 PMid:4427032.
    » http://dx.doi.org/10.1121/1.1903486
  • 78
    Bottalico P, Graetzer S, Hunter EJ. Effect of Training and Level of External Auditory Feedback on the Singing Voice: volume and Quality. J Voice. 2016;30(4):434-42. http://dx.doi.org/10.1016/j.jvoice.2015.05.010 PMid:26186810.
    » http://dx.doi.org/10.1016/j.jvoice.2015.05.010
  • 79
    Bottalico P, Graetzer S, Hunter EJ. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations. J Acoust Soc Am. 2015;138(6):EL498-503. http://dx.doi.org/10.1121/1.4936643 PMid:26723357.
    » http://dx.doi.org/10.1121/1.4936643

Publication Dates

  • Publication in this collection
    22 Dec 2023
  • Date of issue
    2024

History

  • Received
    23 Aug 2022
  • Accepted
    29 May 2023
Sociedade Brasileira de Fonoaudiologia Al. Jaú, 684, 7º andar, 01420-002 São Paulo - SP Brasil, Tel./Fax 55 11 - 3873-4211 - São Paulo - SP - Brazil
E-mail: revista@codas.org.br