Acessibilidade / Reportar erro

A micro-analytical approach to partition coefficients in plagioclase and clinopyroxene of basaltic sills in Serra Geral Formation, Paraná Basin, Brazil

Uma abordagem microanalítica dos coeficientes de partição em plagioclásio e clinopiroxênio de soleiras basálticas da Formação Serra Geral, Bacia do Paraná, Brasil

Abstract:

In the present study, detailed micro-analytical data (major and trace elements) in minerals from sills of Serra Geral Formation represents the first attempt to evaluate the partition coefficient of Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, REE, Hf, Ta, Pb, Th and U among coexisting plagioclase, augite and pigeonite from 12 tholeiitic basaltic sills along the eastern border of the Paraná Basin, Brazil. These 12 samples come from Rio Grande do Sul, Paraná, São Paulo and Goiás states. Plagioclase/melt partition coefficients KD were determined in core, intermediate and rim zones using LA-ICP-MS and the results were compared with the variations of the elements Ca, Al, Na and Si in those areas. Partition coefficients of Sr and Eu decrease with the increase of Ca concentration in plagioclase. A reduction in temperature and consequently a rise in Na and Si levels increase the partition coefficients of Sr and Eu at the rim of mineral The KD of Ni and V in clinopyroxene has positive correlations with Mg2+, Ca2+ and Al3+ due to higher concentrations of those elements at the core and lower concentration towards the rim and negative correlations of KD of Sc, Cr, Co, Pb and Lu, due to preferential substitutions by Fe2+ in sixfold coordination. The use of LA-ICP-MS and EPMA made possible the chemical quantification of major and trace elements and the determination of partition coefficients in coexisting plagioclase and clinopyroxene in basaltic melts.

Keywords:
Partition coefficient; plagioclase; clinopyroxene; Serra Geral Formation; LA-ICP-MS

Resumo:

No presente estudo, dados detalhados de microanálise (elementos maiores e traços) em minerais de sills da Formação Serra Geral representam a primeira tentativa de avaliar o coeficiente de partição de Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, REE, Hf, Ta, Pb, Th e U entre plagioclásio, augita e pigeonita coexistentes em 12 sills basálticos toleíticos ao longo da borda leste da Bacia do Paraná, Brasil. Estas 12 amostras são dos estados do Rio Grande do Sul, Paraná, São Paulo e Goiás. Coeficientes de partição em plagioclásio foram comparados em zonas de núcleo, intermédio e borda, usando LA-ICP-MS, e os resultados foram comparados com as variações das áreas de distribuição dos elementos Ca, Al, Na e Si. O coeficiente de partição do Sr e Eu diminui com o aumento da concentração de Ca no plagioclásio e aumenta para a borda, relacionado com o aumento da concentração de Na e Si e diminuição da temperatura. O KD do Ni e V nos clinopiroxênios analisados possui correlações positivas para Mg2+, Ca2+ e Al3+ devido a altas concentrações destes elementos no núcleo, diminuindo para a borda, e correlações negativas de KD Sc, Cr, Co, Pb e Lu, devido a substituição preferencial pelo Fe2+ em coordenações octaédricas. O uso de LA-ICP-MS e EPMA possibilitam a caracterização química de elementos maiores e traços e a determinação do coeficiente de partição em minerais coexistentes e o líquido.

Palavras-chave:
Coeficiente de partição; plagioclásio; clinopiroxênio; Formação Serra Geral; LA-ICP-MS

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Acknowledgements

The first author wishes to thank CNPq and CAPES for the doctoral scholarship in Brazil and Germany, PRONEX-FAPERGS/CNPq (“Strategic Minerals”) for financial support. CPRM (Geological Survey Brazil) provided support and most of the sill samples. Stuttgart University provided Electron Microprobe facility and overall support.

Referências

  • Arth J.G. 1976. Behaviour of trace elements during magmatic processes - a summary of theorical models and their applications. J. Res. U.S. Geol. Surv, 4:41-47.
  • Beattie P. 1993. The effect of partial melting of spinel peridotite on uranium series disequilibria: constraints from partitioning studies. Earth and Planetary Science Letters, 177:379-391. DOI: 10.1016/0012-821X(93)90091-M.
    » https://doi.org/10.1016/0012-821X(93)90091-M
  • Bellieni G., Comin-Chiaramonti P., Marques L.S., Melfi A.J., Nardy A.J.R., Paratrechas C., Le Bas M.J., Le Maitre R.W., Streckeisen A., Zannetin B. 1986. A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology, 27:745-750.
  • Benjamin T., Heuser W.R., Burnett D.S. 1978. Laboratory studies of Actinide Partitioning Relevant to 244 PU Chronometry. In: Lunar and Planetary Institute, Lunar and Planetary Science Conference, 9, Proceedings Paper, p. 1.393-1.406.
  • Best M.G. 2003. Igneous and Metamorphic Petrology 2.ed., Massachusetts, Blackwell Science Ltd., 729 p.
  • Bindeman I.N., Davis A.M., Drake M.J. 1998. Ion microprobe study of plagioclases-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta, 62(7):1.175-1.193. DOI: 10.1016/S0016-7037(98)00047-7.
    » https://doi.org/10.1016/S0016-7037(98)00047-7
  • Bougault H., & Hekinian R. 1974. Rift valley in the Atlantic Ocean near 36 degrees 50’N; petrology and geochemistry of basalt rocks. Earth and Planetary Science Letters, 24(2):249-261. DOI: 10.1016/0012-821X(74)90103-4.
    » https://doi.org/10.1016/0012-821X(74)90103-4
  • Bowen N.L. 1928. The evolution of the igneous rocks Princeton, Princeton University Press, 334 p.
  • Dale I.M., & Henderson P. 1972. The Partition of Transition Elements in Phenocryst-bearing Basalts and the Implications about Melt Structure. In: Geological Survey of Canada, International Geological Congress, 24, Sector 10, p. 105-111.
  • Deer A.A.W., Howie R.A., Zussman J. 2003. Minerais constituintes das rochas - uma introdução Lisboa, Longmans, Green and Co. Ltda., 652 p.
  • Dostal J., Dupuy C., Carron J.P., Dekerneizon M.., Maury R.C. 1983. Partition-Coefficients of Trace-Elements - Application to Volcanic-Rocks of St-Vincent, WestIndies. Geochimica et Cosmochimica Acta, 47(3):525-533. DOI: 10.1016/0016-7037(83)90275-2.
    » https://doi.org/10.1016/0016-7037(83)90275-2
  • Drake M.J., & Weill D.F. 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and Other Ree between Plagioclases Feldspar and Magmatic Liquid - Experimental Study. Geochimica et Cosmochimica Acta, 39(5):689-712. DOI: 10.1016/0016-7037(75)90011-3.
    » https://doi.org/10.1016/0016-7037(75)90011-3
  • Duke J.M. 1976. Distribution of the period four transition elements among olivine, calcic clinopyroxene and mafic silicate liquid; experimental results. Journal of Petrology, 17(4):499-521.
  • Dunn T., & Sen C. 1994. Mineral/Matrix Partition-Coefficients for Ortho-Pyroxene, Plagioclases, and Olivine in Basaltic to Andesitic Systems - a Combined Analytical and Experimental-Study. Geochimica et Cosmochimica Acta, 58(2):717-733. DOI: 10.1016/0016-7037(94)90501-0.
    » https://doi.org/10.1016/0016-7037(94)90501-0
  • Ewart A., Bryan W.B., Gill J.B. 1973. Mineralogy and Geochemistry of the Younger Volcanic Islands of Tonga, S. W. Pacific. Journal of Petrology, 14(3):429-465.
  • Forsythe L.M., Nielsen R.L., Fisk M.R. 1994. High-FieldStrength Element Partitioning between Pyroxene and Basaltic to Dacitic Magmas. Chemical Geology, 117(1-4):107-125. DOI: 10.1016/0009-2541(94)90124-4.
    » https://doi.org/10.1016/0009-2541(94)90124-4
  • Frey F.A. 1969. Rare earth abundances in a high-temperature peridotite intrusion. Geochimica et Cosmochimica Acta, 33(11):1.429-1.447. DOI: 10.1016/0016-7037(69)90183-5.
    » https://doi.org/10.1016/0016-7037(69)90183-5
  • Fujimaki H., Tatsumoto M., Aoki K. 1984. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. In: Lunar and Planetary Institute, Lunar and Planetary Science Conference, 14, Proceedings Paper, p. B662-B672.
  • Gaetani G.A., & Grove T.L. 1995. Partitioning of Rare-Earth Elements between Clinopyroxene and Silicate Melt - Crystal-Chemical Controls. Geochimica et Cosmochimica Acta, 59(10):1.951-1.962. DOI: 10.1016/00167-0379(50)01190-.
    » https://doi.org/10.1016/00167-0379(50)01190-
  • Hack P.J, Nielsen R.L., Johnston A.D. 1994. Experimentally determined rare-Earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chemical Geology, 117:89-105. DOI: 10.1016/0009-2541(94)90123-6.
    » https://doi.org/10.1016/0009-2541(94)90123-6
  • Hart S.R., & Brooks C. 1974. Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba. Geochimica et Cosmochimica Acta, 38:1.799-1.806. DOI: 10.1016/0016-7037(74)90163-X.
    » https://doi.org/10.1016/0016-7037(74)90163-X
  • Hart S.R., & Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology, 113:1-8.
  • Hauri E.H., Wagner T.P., Grove T.L. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117:149-166. DOI: 10.1016/0009-2541(94)90126-0.
    » https://doi.org/10.1016/0009-2541(94)90126-0
  • Irving A.J., & Frey F.A. 1984. Trace-Element Abundances in Megacrysts and Their Host Basalts - Constraints on Partition-Coefficients and Megacryst Genesis. Geochimica et Cosmochimica Acta, 48(6):1.201-1.221. DOI: 10.1016/0016-7037(84)90056-5.
    » https://doi.org/10.1016/0016-7037(84)90056-5
  • Irvine T.N., & Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8:523-548.
  • Jenner G.A., Foley S.F., Jackson S.E., Green T.H., Fryer B.J., Longerich H.P. 1993. Determination of partition coefficients for trace elements in high pressuretemperature experimental run products by laser ablation microprobe-inductively coupled plasmamass spectrometry (LAM-ICP-MS). Geochimica et Cosmochimica Acta, 57(23-24):5.099-5.103.
  • Kravuchuk I.K., Chernysheva I., Urosov S. 1981. Element distribution between plagioclases and groundmass as an indicator for crystallization conditions of the basalts in the southern vent of Tolbachik. Geochemistry International, 17:18-24.
  • Larsen L.M. 1979. Distribution of Ree and Other TraceElements between Phenocrysts and Peralkaline Undersaturated Magmas, Exemplified by Rocks from the Gardar Igneous Province, South Greenland. Lithos, 12(4):303-315. DOI: 10.1016/0024-4937(79)90022-7.
    » https://doi.org/10.1016/0024-4937(79)90022-7
  • Lindsley D. 1983. Pyroxene thermometry. American Mineralogist, 68:477-493.
  • Machado F.B. 2003. Geologia e possíveis zonas de efusão do magmatismo ácido cretácico da Bacia do Paraná Monografia (TCC), Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, 124 p.
  • Matsui Y., Onuma N., Nagasawa H., Higuchi H., Banno S. 1977. Crystal structure control in trace element partition between crystal and magma. Tectonics, 100:315-324.
  • McCallum I.S., & Charette M.P. 1978. Zr and Nb partition coefficients: implications for the genesis of mare basalts, kreep, and sea floor basalts. Geochimica et Cosmochimica Acta, 42:859-869. DOI: 10.1016/0016-7037(78)90098-4.
    » https://doi.org/10.1016/0016-7037(78)90098-4
  • McKay G., Le L., Wagstaff J., Crozaz G. 1994. Experimental partitioning of rare Earth elements and strontium: constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010. Geochimica et Cosmochimica Acta, 58:2.911-2.919. DOI: 10.1016/0016-7037(94)90124-4.
    » https://doi.org/10.1016/0016-7037(94)90124-4
  • McKenzie D., & O’Nions R.K. 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology, 32:1.021-1.091.
  • Melfi A.J., Piccirillo E.M., Nardy A.J.R. 1988. Geological and magmatic aspects of the Paraná Basin - an introduction. In: Piccirillo E.M., & Melfi A.J. (eds.) The Mesozoic flood volcanism of the Paraná Basin: petrogenetic and geophysical aspects São Paulo, Instituto Astronômico e Geofísico, p. 1-14.
  • Morimoto N. 1988. Nomenclature of Pyroxene. Min. Mag, 52:535-50.
  • Nagasawa H. 1973. Rare-Earth distribution in alkali rocks from Oki-Dogo Island, Japan. Contributions to Mineralogy and Petrology, 39:301-308.
  • Nardy A.J.R., Oliveira M.A.F., De Betancourt R.H.S., Verdugo D.R.H., Machado F.B. 2002. Geologia e estratigrafia da Formação Serra Geral. Rev. Geociências, 21:15-32.
  • Paster T.P., Schauwecker D.S., Haskin L.A. 1974. The behavior of some trace elements during solidification of the Skaergaard layered series. Geochimica et Cosmochimica Acta, 38(10):1.549-1.577. DOI: 10.1016/0016-7037(74)90174-4.
    » https://doi.org/10.1016/0016-7037(74)90174-4
  • Pearce N.J.G., Perkins W.T., Westgate J.A., Gorton M.P., Jackson S.E., Neal C.R., Chenery S.P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21(1):115-144.
  • Reid F. 1983. Origin of the Rhyolitic Rocks of the Taupo Volcanic Zone, New-Zealand. Journal of Volcanology and Geothermal Research, 15(4):315-338.
  • Ringwood A.E. 1970. Petrogenesis of Apollo 11 basalts and implications for lunar origin. Journal of Geophysical Research, 75(32):6.453-6.479.
  • Schnetzler C.C., & Philpotts J.A. 1970. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II. Geochimica et Cosmochimica Acta, 34(3):331-340. DOI: 10.1016/0016-7037(70)90110-9.
    » https://doi.org/10.1016/0016-7037(70)90110-9
  • Skulski T., Minarik W., Watson E.B. 1994. HighPressure Experimental Trace-Element Partitioning between Clinopyroxene and Basaltic Melts. Chemical Geology, 117(1-4):127-147. DOI: 10.1016/0009-2541(94)90125-2.
    » https://doi.org/10.1016/0009-2541(94)90125-2
  • Sobolev A.V., Migdisov A.A., Portnyagin M.V. 1996. Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology, 4(3):307-317.
  • Sun C.O., Williams R.J., Sun S.S. 1974. Distribution coefficients of Eu and Sr for plagioclases-liquid and clinopyroxene-liquid equilibria in oceanic ridge basalt; an experimental study. Geochimica et Cosmochimica Acta, 38(9):1.415-1.433. DOI: 10.1016/0016-7037(74)90096-9.
    » https://doi.org/10.1016/0016-7037(74)90096-9
  • Villemant B., Jaffrezic H., Joron J.L., Treuil M. 1981. Distribution Coefficients of Major and Trace-Elements - Fractional Crystallization in the Alkali Basalt Series of Chaine-Des-Puys (Massif Central, France). Geochimica et Cosmochimica Acta, 45(11):1.997-2.016. DOI: 10.1016/0016-7037(81)90055-7.
    » https://doi.org/10.1016/0016-7037(81)90055-7
  • Watson E.B., Othman D.B., Luck J.M., Hofmann A.W. 1987. Partitioning of U, Pb, Cs, Yb, Hf, Re and Os between Chromian Diopsidic Pyroxene and Haplobasaltic Liquid. Chemical Geology, 62(3-4):191-208. DOI: 10.1016/0009-2541(87)90085-4.
    » https://doi.org/10.1016/0009-2541(87)90085-4
  • Zanettin B. 1984. Proposed new chemical classification of volcanic rocks. Episodes, 7:19-20.

Publication Dates

  • Publication in this collection
    Apr-Jun 2011

History

  • Received
    31 Dec 2009
  • Accepted
    04 Oct 2011
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br