Acessibilidade / Reportar erro

Reoignimbritos e ignimbritos de alto grau do vulcanismo Acampamento Velho, RS: origem e temperatura de formação

Reoignimbrites and high-grade ignimbrites of Acampamento Velho volcanism, RS: origin and formation temperature

Resumo:

A Formação Acampamento Velho é constituída por depósitos vulcânicos neoproterozoicos dominantemente ácidos, emplaçados em condições subaéreas sobre o Escudo Sul-Rio-Grandense. Registros deste vulcanismo são encontrados nos platôs da Ramada e Taquarembó localizados no sudoeste do Estado do Rio Grande do Sul. Este magmatismo varia de metaluminoso a peralcalino e apresenta afinidade alcalina sódica. Nos depósitos de fluxo piroclásticos dominam fragmentos juvenis, como púmices, shards e fragmentos vítreos maciços. Estes apresentam um típico elevado grau de soldagem com ignimbritos, com alto grau nas porções de base e intermediárias, e reoignimbritos no topo. Os cálculos de temperaturas pré-eruptivas obtidas na saturação em zircão mostram valores entre 870-978oC para o Platô do Taquarembó e de 850-946oC para o Platô da Ramada. Os valores de viscosidade calculados variam de 4,77 x 107 a 1,39 x 108 Pa s para os reoignimbritos, e 1,72 x1011 a 6,55 x 1011 Pa s para os ignimbritos. Os conteúdos de Zr crescem em direção ao topo da sequência piroclástica indicando aumento da peralcalinidade, que determinou a redução da viscosidade dos clastos nas porções superiores dos fluxos. Um modelo agradacional progressivo permite explicar as variações verticais no tamanho e tipos de clastos, e na geoquímica do depósito. Este modelo assume a aglutinação de partículas juvenis quentes durante o deslocamento do fluxo, o que espessa progressivamente o depósito. Portanto, a elevada soldagem e o reomorfismo são sin-deposicionais. Os fluxos piroclásticos de alta temperatura dos platôs da Ramada e Taquarembó foram gerados a partir de baixas colunas de erupção e podem ser interpretados como depósitos ignimbríticos extracaldeira.

Palavras-chave:
vulcanismo; depósitos ignimbríticos; soldagem; rochas ácidas

Abstract:

The Acampamento Velho Formation is constituted by neoproterozoic volcanic deposits of dominantly acid composition, which were emplaced under subaerial conditions on Sul-RioGrandense Shield. The volcanism registration have been found at Ramada and Taquarembó plateaus localized at southwest of Rio Grande do Sul State. This magmatism varies from metaluminous to peralkaline and shows alkaline sodic affinity. At the pyroclastic flow deposits dominate juvenile fragments such as pumices, shards and massive vitreous fragments, which show a typical high welding degree with ignimbrites, being high degree at the base and intermediate portions, and reoignimbrites at the top. The pre-eruptive temperature calculations obtained at the saturation of zircon show values between 870-978oC for Taquarembó Plateau and 850-946oC for Ramada Plateau. The calculated viscosity values vary from 4.77 x 107 to 1.39 x 108 Pa s for the reoignimbrites, and 1.72 x1011 to 6.55 x 1011 Pa s for the ignimbrites. Zr contents increase to the pyroclastic sequence top, indicating increasing of peralkalinity, which determined the viscosity reduction of clasts at the upper portions of the flows. The progressive aggradacional model allows explaining the vertical variations at the clast size and type, and at the geochemistry of the deposit. This model assumes the agglutination of hot juvenile particles during the flow movement, which becomes the deposit progressively thicker. Therefore, the high welding degree and the reomorfism are sin-depositional. The high temperature pyroclastic flows of Ramada and Taquarembó plateaus were generated from low eruption columns and can be interpreted as extracaldera ignimbritic deposits.

Keywords:
volcanism; ignimbrite deposits; welding; silicic rocks

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Agradecimentos

Ao CNPq pelas bolsas de produtividade e pelo apoio financeiro (CNPq: 306616/2006-8, 306142/2006-6, 303584/2009-2, 473683/2007, 5470641/2008-8, 470203/2007-2 e 303038/2009-8). Ao IGEO/UFRGS pela logística.

Referências

  • Almeida R.P., Janikian L., Fragoso-Cesar A.R.S., Fambrini G.L. 2010. The Ediacaran to Cambrian Rift System of Southeastern South America: Tectonic Implications. The Journal of Geology, 118:145-161.
  • Almeida D.P.M., Zerfass H., Lima L. 1998. Estratigrafia das rochas vulcânicas da Formação Acampamento Velho (meso-cambriano a eo-ordoviciano) na região dos Cerros do Bugio e Perau (Caçapava do Sul, RS/Brasil). In: Congreso Uruguayo de Geologia, 2, Ext. abstracts, p. 92-95.
  • Almeida D.P.M., Zerfass H., Basei M.A., Petry K., Gomes C.H. 2002. The Acampamento Velho Formation, a Lower Cambrian Bimodal Volcanic Package: Geochemical and Stratigraphic Studies from the Cerro do Bugio, Perau and Serra de Santa Bárbara (Caçapava do Sul, Rio Grande do Sul, RS - Brazil). Gondwana Research, 5(3):721-733.
  • Beddoe-Stephens B., & Millward D. 2000. Very densely welded, rheomorphic ignimbrites of homogeneous intermediate calc-alkaline composition from the English Lake District. Geol. Mag., 137(2):155-173.
  • Bonin B. 2004. Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78:1-24.
  • Bottinga Y., & Weill D.F. 1972. The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci., 272:438-75
  • Boyd F.R. 1961. Welded tuffs and flows in the rhyolite plateau of Yellowstone Park, Wyoming. Geol. Soc. Am. Bull., 72:387-426.
  • Branney M.J., & Kokelaar P. 1992. A Reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bulletin of Volcanology, 54:504-520.
  • Branney M.J., & Kokelaar B.P. 1997. Giant bed from a sustained catastrophic density current flowing over topography: Acatlan ignimbrite, Mexico. Geology, 25:115-118.
  • Branney M.J., & Kokelaar B.P. 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London, Memoirs, 27:1-152.
  • Branney M.J., Kokelaar B.P., McConnell B.J. 1992. The Bad Step Tuff: a lava-like rheomorphic ignimbrite in a calc-alkaline piecemeal caldera, English Lake District. Bulletin of Volcanology, 53:187-199.
  • Brito Neves B.B., & Cordani U.G. 1991. Tectonic evolution of South America during Late Proterozoic. Precambrian Research, 53:23-40.
  • Chapin C.E., & Lowell G.R. 1979. Primary and secondary flow structures in ash-flow tuffs of the Gribbles run paleovalley, Central Colorado. Geology Society of America Special Paper 180:137-154.
  • Chemale Jr. F. 2000. Evolução Geológica do Escudo Sul-riograndense. In: Holz, M., & De Ros, L. F. (ed.). Geologia do Rio Grande do Sul Porto Alegre, CIGO/UFRGS, p.13-52.
  • Chemale Jr. F., Wildner W., Lima E.F., Van Schmus W.R. 1999. Isotopic studies of Brasiliano retro-arc magmatism in Southern Brazil. In: SBG, Simpósio sobre Vulcanismo e Ambientes Associados, 1, Abstracts, p. 57.
  • Clemens J.D., Holloway J.R., White A.J.R. 1986. Origin of an A-type granite: experimental constraints. Am. Min., 71:317-324.
  • Dall’Agnol R., Scaillet B., Pichavant M. 1999. An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. Journ. of Petr., 40(11):1673-1698.
  • Dingwell D.B., & Webb S.L. 1990. Relaxation in silicate melts. Eur. J. Mineral., 2:427-449.
  • Dingwell D.B., Romano C., Hess K.U. 1996. The effect of water on the viscosity of haplogranite melt under P-T-X conditions relevant to silicic volcanism. Contrib. Mineral. Petrol., 124:19-28.
  • Ekren E.B., Mc Intyre D.H., Bennett E.H., 1984. Hightemperature, large-volume, lavalike ash-flow tuff without calderas in southwestern Idaho. U. S. Geol. Surv. Prof. Pap., 1272:1 -76.
  • Ewart A. 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic and related salic volcanic rocks. In: Baker F. (ed.). Trondhjemites, dacites and related rocks Amsterdam, Elsevier, p. 113-121.
  • Freundt A. 1998. The formation of high-grade ignimbrites. I. Experiments on high- and low-concentration transport systems containing sticky particles. Bull. Volcanol., 59:414-435
  • Gastal M.C.P., & Lafon J.M. 1998. Gênese e evolução dos granitóides metaluminosos de afinidade alcalina da porção oeste do escudo sul-rio-grandense: geoquímica e isótopos de Rb-Sr e Pb-Pb. Revista Brasileira de Geociências, 28:11-28.
  • Giordano D., Mangiacapra A., Potuzak M., Russel J.K., Romano C., Dingwell D.B., Di Muro A. 2006. An expanded non-Arrhenian model for silicate melt viscosity: A treatment for matealuminous, peraluminous and peralkaline liquids. Chem. Geol., 229:42-56.
  • Gottsman J., & Dingwell D.B. 2001. Cooling dynamics of spatter-fed phonolite obsidian flows on Teneriefe, Canary Islands. J. Volcanol. Geotherm. Res., 105:323-342.
  • Gresse P.G., Chemale Jr. F., Silva L.C., Walraven F., Hartmann L.A. 1996. Late to post orogenic basins of the Pan-African-Brasiliano collision orogen in southern Africa and southern Brazil. Basin Research, 8:157-171.
  • Gründer A.L., Laporte D., Druitt T.H. 2005. Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff. J. Volcanol. Geotherm. Res., 142:89-104.
  • Guest J.E., & Rogers P.S. 1967. The sintering of glass and its relationship to welding in ignimbrites. Proc. Geol. Soc. London, 1641:174-177.
  • Hanchar J.M., & Watson E.B. 2003. Zircon saturation thermometry. In: Hanchar J. M., & Hoskin P. W. O. (eds) Zircon. Rev. in Min. and Geoch., 53:89-112.
  • Henry C.D., Price J.G., Rubin J.N., Parker D.F., Wolff J.A., Self S., Franklin R., Barker D.S. 1988. Widespread, lava-like silicic volcanic rocks of Trans-Pecos Texas. Geology, 16:509-512.
  • Hergt J., Woodhead J., Schofield A. 2007. A-type magmatism in the Western Lachlan Fold Belt? A study of granites and rhyolites from the Grampians region, Western Victoria. Lithos, 97:122-139.
  • Janikian L., Almeida R.P., Trindade R.I.F., Fragoso-Cesar A.R.S., D’Agrella-Filho M.S., Dantas E.L., Tohver E. 2008. The continental record of Ediacaran volcanosedimentary successions in southern Brazil and their global implications. Terra Nova, 20:259-266.
  • Kano K., Matsuura H., Yamauchi S. 1997. Miocene rhyolitic welded tuff infilling a funnel-shaped eruption conduit Shiotani, southeast of Matsue, SW Japan. Bull. Volcanol. 59:125-135.
  • King P.L., White A.J.R., Chappell B.W., Allen C.M. 1997. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journ. of Petr., 38(3):371-391.
  • Kobberger G., & Schmincke H.U. 1999. Deposition of rheomorphic ignimbrite D (Mogan Formation) Gran Canaria, Canary Islands, Spain. Bull. Volcanol., 60:465-485.
  • Le Maitre R.W. 2002. Igneous rocks: a classification and glossary of terms. In: Recommendations of the International Union of Geological Sciences Subcommission on the Systematic of Igneous Rocks Cambridge, Cambridge University Press, 252 p.
  • Leat P.T., Jackson S.E., Thorpe R.S., Stillman C.J. 1986. Geochemistry of bimodal basalt - subalkaline/peralkaline rhyolite provinces within the Southern British Caledonides. Journal of Geological Society, 143:259-273.
  • Liégeois J.P. 1998. Preface - Some words on post-collisional magmatism. Lithos, 45:15-17.
  • Lima E.F., Sommer C.A., Nardi L.V.S. 2007. O vulcanismo neoproterozóico-ordoviciano no Escudo Sul-riograndense: os ciclos vulcânicos da Bacia do Camaquã. In: Iannuzzi R., & Frantz J.C. (eds.) 50 Anos de Geologia. Instituto de Geociências. Contribuições Porto Alegre, Comunicação e Identidade, p. 79-95.
  • Llambías E.J. 2003. Geología de los Cuerpos Ígneos Buenos Aires, Asociación Geológica Argentina, 182 p.
  • MacDonald R. 1974. Nomenclature and Petrochemistry of the Peralkaline Oversaturated Extrusive Rocks. Bul. of Volcan, 38:498-516.
  • McBierney A.R., & Murase T. 1984. Rheological Properties of Magmas. Ann. Rev. Earth Planet. Sci., 12:337-57
  • Naranjo J.A., Sparks R.S.J., Stasiuk M.V., Moreno H., Ablay G.J. 1992. Morphological, textural and structural variations in the 1988-1990 andesite lava of Lonquimay. Geol. Mag., 129:657-678.
  • Paim P.S.G., Chemale Jr. F., Lopes R.C. 2000. A Bacia do Camaquã. In: Holz M., & De Ros L.F (eds.) Geologia do Rio Grande do Sul Porto Alegre, CIGO/UFRGS, p. 231-374.
  • Patiño Douce A.E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8):743-746.
  • Peterson D.W. 1979. Significance of flattening of pumice frag ments in ash-flow tuffs. In: Chapin, C.E., Elston, W.E. (Eds.), Ash-Flow Tuffs and Associate Igneous Rocks. Spec. Pap. Geol. Soc. Am., 180:195-204.
  • Pierosan R., Lima E.F., Nardi L.V.S, Campos C.P., Bastos Neto A.C., Ferron J.M.T.M., Prado M. 2010. Paleoproterozoic (~1.88Ga) felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: insights in ancient volcanic processes from field and petrologic data. Anais da Acad. Bras. de Ciências (no prelo).
  • Quane S.L., & Russell J.K. 2005. Welding: insights from high-temperature analogue experiments. J. Volcanol. Geotherm. Res., 142:67-87.
  • Quane S.L., Russell J.K., Kennedy L.A. 2004. A lowload high-temperature deformation apparatus for volcanological studies. Am. Mineral., 89:873-877.
  • Ragan D.H., & Sheridan M.F. 1972. Compaction of the bishop Tuff, California. Geol. Soc. Am. Bull., 83:95-106.
  • Ribeiro M., & Fantinel L.M 1978. Associações petrotectônicas do Escudo Sul-rio-grandense: I Tabulação e distribuição das associações petrotectônicas do Rio Grande do Sul. Iheringia, Série Geológica, 5:19-54.
  • Ribeiro M., Bocchi P.R., Figueiredo Filho P.M., Tessari R. 1966. Geologia da Quadrícula de Caçapava do Sul. Rio Grande do Sul. Bol. Div. Fom. Prod. Min. Bras., Rio de Janeiro, 127:1-232.
  • Riehle J.R., Miller T.F., Bailey R.A. 1995. Cooling, degassing and compaction of rhyolitic ash-flow tuffs: a computational model. Bull. Volcanol., 57:319-336.
  • Ross C.S., & Smith R.L. 1961. Ash-flow tuffs, their origin, geologic relations and identification. USGS Journal Research Professional Paper, 366:81.
  • Schmincke H.U. 1974. Volcanological aspects of peralkaline silicic welded ash-flow tuffs. Bull Volcanol., 38:594-636
  • Schmincke H.U., & Swanson D.A. 1967. Laminar viscous flowage structures in ash-flow tuffs from Gran Canaria, Canary Islands. J. Geol., 75:641-664.
  • Shaw H.R. 1972. Viscosities of magmatic silicate liquids: an empirical model of prediction. Am. J. Sci., 272:438- 475.
  • Sheridan M.F. 1979. Emplacement of pyroclastic flows: a review. Geological Society of America Special Paper, 180:125-136.
  • Sisson T.W., & Grove T.L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol., 113:143-166:
  • Smith R.L. 1960a. Ash flows. Geological Society of America Bulletin, 71:795-842.
  • Smith R.L. 1960b. Zones and zonal variations in welded ashflows. USGS Journal Research Professional Paper, 354- F:149-159.
  • Smith R.L. 1979. Ash-flow magmatism. In: Chapin, C.E., Elston, W.E. (Eds.), Ash-Flow Tuffs. Spec. Pap. Geol. Soc. Am., 180:5-27.
  • Sommer C.A. 1994. O vulcanismo ácido da porção sul do Platô do Taquarembó, Dom Pedrito-RS Dissertação de mestrado, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 149 p.
  • Sommer C.A., Lima E.F., Nardi L.V.S. 1999. Evolução do vulcanismo alcalino na porção sul do Platô do Taquarembó, Dom Pedrito - RS. Revista Brasileira de Geociências, 29(2):245-254.
  • Sommer C.A., Lima E.F., Nardi L.V.S., Liz J.D., Pierosan R. 2003. Depósitos de fluxo piroclástico primários: caracterização e estudo de um caso no vulcanismo ácido neoproterozóico do Escudo Sul-Rio-grandense. Pesquisas em Geociências, 30:3-26.
  • Sommer C.A., Lima E.F., Nardi L.V.S., Figueiredo A.M.G., Pierosan R. 2005. Potassic and Low- and High-Ti Mildly Alkaline Volcanism in the Neoproterozoic Ramada Plateau, Southernmost Brazil. Journal of South American Earth Sciences, 18:237-254.
  • Sommer C.A., Lima E.F., Nardi L.V.S, Liz J. D., Waichel B.L. 2006. The evolution of Neoproterozoic magmatism in southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in postcollisional basins. Anais da Academia Brasileira de Ciências, 78(3):573-589.
  • Sparks R.S.J., Self S., Walker G.P.L.1973. Products of ignimbrite eruptions. Geology, 1:115-118.
  • Sparks R.S.J. 1976. Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology, 23:147-188.
  • Sparks, R.S.J., & Wright, J.V. 1979. Welded air-fall tuffs. In: Chapin C.E., Elston W.E. (eds.). Ash-Flow Tuffs. Spec. Pap. Geol. Soc. Am., 180:155-166.
  • Sparks R.S.J., Stasiuk M.V., Gardeweg M., Swanson D.A., 1993. Welded bressias in andesite lavas. J. Geol. Soc., 150:897-902.
  • Streck M.J., & Grunder A.L. 1995. Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bull. Volcanol., 57:151-169.
  • Streck M.J., & Grunder A.L. 1997. Compositional gradients and gaps in the high-silica rhyolites of the Rattlesnake Tuff, southeastern Oregon. J. Petrol., 38:133-163.
  • Tuffen H., Dingwell D.B., Pinkerton H. 2003. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology, 31:1089-1092.
  • Walker G.P.L. 1983. Ignimbrite types and ignimbrite problems. J. Volcanol. Geotherm. Res., 17:65-88
  • Watson E.B. 1979. Zircon saturation in felsic liquids: experimental data and application to trace element geochemistry. Contrib. to Min. and Petr., 70:407-419.
  • Watson E.B., & Harrison T.M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Plan. Sci. Lett., 64:295-304.
  • Wildner W., Lima E.F., Camozzato E., Lopes R.C. 1997. O Vulcanismo Neoproterozóico-Cambriano no Rio Grande do Sul: Estratigrafia e Aspectos Texturais. A Terra em Revista, 3(3):19-27.
  • Wildner W., Nardi L.V.S., Lima E.F. 1999. Post-collisional Alkaline Magmatism on the Taquarembó Plateau: a well Preserved Neoproterozoic-Cambrian Plutono-volcanic Association in Southern Brazil. International Geology Review, 41:1082-1098.
  • Wildner W., Lima E.F., Nardi L.V.S., Sommer C.A. 2002. Volcanic cycles and setting in the Neoproterozoic III to Ordovician Camaquã Basin succession in southern Brazil: characteristics of post-collisional magmatism. Journal of Volcanology and Geothermal Research, 118:261-283.
  • Wohletz K. 2007. Magma (Igneous rock norms, classification, and physical properties) Disponível em Disponível em http://www.ees1.lanl.gov/Wohletz/Magma.htm Acessado em: 10/11/2010.
    » http://www.ees1.lanl.gov/Wohletz/Magma.htm
  • Wolff J.A., & Sumner J.M. 2000. Lava fountains and their products. In: Sigurdson H. (ed.). Encyclopedia of Volcanoes San Diego, Academic Press, p. 321-329.
  • Wolff J.A., & Wright J.V. 1981. Rheomorphism of welded tuffs. J. Volcanol. Geotherm. Res., 10:13-34.
  • Wrigth J.V., Smith A.L., Self S. 1980. A Working Terminology of Pyroclastic Deposits. Journal of Volcanology and Geothermal Research, 8:315-336.
  • Wright J.V., Walker G.P.L. 1981. Eruption, transport and deposition of ignimbrite: A case study from Mexico. J. Volcanol. Geotherm. Res., 9:111-131.
  • Zerfass H., & Almeida D.M.P. 1997. Mapa Geológico da região dos Cerros do Bugio e Perau, Município de Caçapava do Sul, RS. Estudos Tecnológicos - Acta Geológica Leopoldensia (Série Mapas ), 20:3-17.

Datas de Publicação

  • Publicação nesta coleção
    Jul-Sep 2011

Histórico

  • Recebido
    13 Jul 2010
  • Aceito
    13 Out 2011
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br