Acessibilidade / Reportar erro

Rhyacian evolution of the eastern São Luís Craton: petrography, geochemistry and geochronology of the Rosário Suite

Evolução riaciana no leste do Cráton São Luís: petrografia, geoquímica e geocronologia da Suíte Rosário

ABSTRACT:

The São Luís Cráton comprises an area between northeast Pará state and northwest Maranhão that exposes Paleoproterozoic granitic suites and meta-volcanosedimentary sequences. In the east of this geotectonic unit, about 70 km south of São Luís, there is a portion of the São Luís Craton, represented by the intrusive Rosario Suite (RS). This work is focused on rocks of this suite, including petrographic, lithochemical and geochronological studies to understand the crustal evolution of these granitoid rocks. The rock spectrum varies from tonalitic to granodioritic, quartz dioritic and granitic compositions, and there are partial structural and mineralogical changes related to deformation along transcurrent shear zones. The geochemical studies show granitic metaluminous compositions of the calc-alkaline series with I-type affinity typical of magmatic arc. Rare earth elements show marked fractionation and slight Eu positive or negative anomalies (Eu/Eu* = 0.82 to 1.1). Zircon U-Pb data provided consistent ages of 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, 2161 ± 4 Ma and 2175 ± 8 Ma, dating emplacement of these granitoids as Paleoproterozoic (Rhyacian). Sm-Nd isotopic data provided model ages (TDM) of 2.21 to 2.31 Ga with positive values of εNd +1.9 to +3.2 (t = 2.17 Ga), indicating predominantly Rhyacian crustal sources for the parental magmas, similar to those ones found in other areas of the São Luís Craton. The data, integrated with published geological and geochronological information, indicate the occurrence of an important continental crust formation event in this area. The Paleoproterozoic evolution between 2.17 and 2.15 Ga is related to the Transamazonian orogeny. The granitoids of the Rosario Suite represent the main phase of continental arc magmatism that has continuity in other parts of the São Luís Craton and can be correlated with Rhyacian accretionary magmatism in the northwestern portion of the Amazonian Craton that amalgamated Archean terrains during the Transamazonian orogeny.

KEYWORDS:
Rosário Suite; São Luís Craton; Petrology; U-Pb geochronology; Sm-Nd TDM

RESUMO:

O Cráton São Luís compreende uma área entre o nordeste do estado do Pará e o noroeste do Maranhão que expõe suítes graníticas e sequências metavolcanossedimentares do Paleoproterozoico. No leste dessa unidade geotectônica, a cerca de 70 km ao sul da cidade de São Luís, há uma porção do Cráton São Luís representada pela Suíte Intrusiva Rosário. Este trabalho foi focado em rochas dessa suíte, incluindo estudos petrográficos, litoquímicos e geocronológicos para compreender a evolução crustal dessas rochas granitoides. O espectro de rochas varia de composições tonalíticas, granodioríticas, quartzo dioríticas e graníticas, que mostram alterações estruturais e mineralógicas parciais relacionadas à deformação ao longo das zonas de cisalhamento transcorrentes. Os estudos geoquímicos demonstram a natureza granítica metaluminosa caracterizando a série calcioalcalina com afinidade de granitos tipo I, típicos de ambiente de arco magmático. Os elementos terras raras apresentam fracionamento acentuado e ligeiras anomalias de Eu positivas ou negativas (Eu/Eu* = 0,82 a 1,1). Datações pelo método U-Pb em zircão forneceram idades consistentes de 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, 2161 ± 4 Ma e 2175 ±8 Ma que representam a idade de cristalização dos zircões e de colocação desses granitoides no Paleoproterozoico (Riaciano). Os dados isotópicos Sm-Nd forneceram idades modelo (TDM) de 2,21 a 2,31 Ga, que são muito próximas às idades de cristalização, com valores positivos de εNd = +1,9 a +3,2 (t = 2,17 Ga), indicando fonte crustal dominantemente do Riaciano para os magmas parentais, similares aos encontrados em outros domínios do Cráton São Luís. Os dados deste estudo, integrados às informações geológicas e geocronológicas da literatura, indicam a ocorrência de um importante evento de formação de crosta continental nessa área, por meio de múltiplo alojamento de plútons graníticos da série calcioalcalina. A evolução paleoproterozoica entre 2,17 e 2,15 Ga está relacionada com a orogenia transamazônica, e os granitoides da Suíte Rosário representam a fase principal de acresção na evolução de um arco magmático continental juvenil, que tem continuidade para outras partes do Cráton São Luís e correlação com a porção noroeste do Cráton Amazônico, onde se têm registros de arcos magmáticos acrescionários riacianos que se amalgamaram em terrenos arqueanos, associados à orogenia transamazônica.

PALAVRAS-CHAVE:
Suíte Rosário; Cráton São Luís; Petrologia; Geocronologia U-Pb; Sm-Nd TDM

INTRODUCTION

In models of global supercontinent reconstruction, the São Luís Craton and the northeastern portion of the Amazonian Craton (to the east of the Guayana Shield) have been considered remnants of the West African Craton preserved in the northern South American Platform after the breakup of the Pangea Supercontinent (Hurley et al. 1967Hurley P.M., Almeida F.F.M., Melcher G.C., Cordani U.G. , Rand J.R., Kawashita K. , Vandoros P., Pinson W.H., Fairbairn H.W. 1967. Test of continental drift by comparison of radiometric ages. Science, 157:495-500., Torquato & Cordani 1981Torquato J.R., Cordani U.G. 1981. Brazil-Africa geological links. Earth Science Reviews, 17:155-176., Lesquer et al. 1984Lesquer A., Beltrão J.F., Abreu F.A.M. 1984. Proterozoic links between northeastern Brazil and West Africa: a plate tectonic model based on gravity data. Tectonophysics, 110:9-26., Brito Neves et al. 2000Brito-Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (eds.), Tectonic evolution of the South America. 3st International Geological Congress, p.151-182., Klein and Moura 2008Klein E.L., Moura C.A. V. 2008. São Luís Craton and Gurupi Belt (Brazil): possible links with the West-African Craton and surrounding Pan-African belts. In: Pankhurst R.J., Trouw R.A.J., Neves B.B.B., Wit M.J. (Eds.). West Gondwana: pre-cenozoic correlations across the South Atlantic region. Geological Society of London. Special Publication, 294:137-151.).

On the African side, several studies based on structural, geochemical, geophysical and geochronological data demonstrate the existence of Archean and dominantly juvenile Paleoproterozoic crust (Abouchami et al. 1990Abouchami W., Boher M., Michard A., Albarède F. 1990. A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion. Journal of Geophysical Research, 95:17605-17629., Boher et al. 1992Boher M., Abouchami W., Albarède F., Arndt N.T. 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97:345-369., Gasquet et al. 2003Gasquet D., Barbey P., Adou M., Pasquette J.L. 2003. Structure, Sr-Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala área (Côte d’Ivoire): evidence for a 2.3 Ga crustal growth event in the Paleoproterozoico f West Africa? Precambrian Research, 127:329-354.). On the Brazilian side, the northern part of the Amazonian Craton and São Luís Craton have demonstrated geochronological and evolutionary ­similarities. In this part of the Amazonian Craton, the ancient continental crust stabilized in the Archean is bordered by meta-volcanosedimentary sequences (Rosa-Costa et al. 2006Rosa-Costa L.T., Lafon J.M., Delor C. 2006. Zircon geochronology and Sm-Nd isotopic study: further constraints for the Archean and Paleoproterozoic geodynamical evolution of the southeastern Guiana Shield, north of Amazonian Craton, Brazil. Gondwana Research, 10:277-300.) and 2.02-2.25 Ga granitic terranes (Cordani et al. 1979Cordani U.G. , Sato K., Teixeira W., Basei M.A.S., Kawashita K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos: Actas. II Congresso Geológico Chileno, 137-148., Cordani & Brito Neves 1982Cordani U.G. & Brito Neves, B.B. 1982. The geologic evolution of South America during the Archaean and Early Proterozoic. Revista Brasileira de Geociências, 12(1-3):78-88., Tassinari & Macambira 1999Tassinari C.C.G. & Macambira M.J.B. 1999. Geochronological Provinces of the Amazonian Craton. Episodes, 22(3):174-182., Santos et al. 2000Santos J.O.S., Hartmann L.A., Gaudette H.E., Groves D.I., Mcnaughton N.J., Fletcher I.R. 2000. A new understanding oh the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Research, 3(4):453-488., Tassinari et al. 2000Tassinari C.G., Bettencourt J.S., Geraldes M.C., Macambira M.J.B., Lafon J.M. 2000. The Amazon craton. In: Cordani U., Milani E.J., Thomaz Filho A., Campos D.A. Tectonic evolution of South America. 31st International Geological Congress, 2000. Rio de Janeiro. Anais... p. 41-95., Tassinari & Macambira 2004Tassinari C.C.G. & Macambira M.J.B. 2004. A Evolução Tectônica Do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo, p. 471-485., Rosa-Costa et al. 2006Rosa-Costa L.T., Lafon J.M., Delor C. 2006. Zircon geochronology and Sm-Nd isotopic study: further constraints for the Archean and Paleoproterozoic geodynamical evolution of the southeastern Guiana Shield, north of Amazonian Craton, Brazil. Gondwana Research, 10:277-300.).

The main outcrop area of the São Luís Craton crops out for some 100 km near the Atlantic coast. The rocks are discontinuously exposed in erosive or tectonic windows within the sedimentary cover (Gorayeb et al. 1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.). The main lithological associations are meta-volcanosedimentary sequences and granitoids (Gorayeb et al. 1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578., Klein et al. 2005bKlein, E.L., Moura, C.A.V., Pinheiro, B. L. S. 2005b. Paleoproterozoic crustal evolution of the São Luís Craton, Brazil: evidence from zircon geochronology and Sm-Nd isotopes. Gondwana Research, 8:177-186.).

Despite recent advances in knowledge of the evolution of the São Luís Craton, systematic and more detailed studies are needed owing to the wide variety of the rocks of this tectonic unit, the difficulties of access, the restriction of outcrops and the extensive Phanerozoic cover.

The study area is located approximately 70 km south of São Luís, in Maranhão State, northeastern of Brazil, where the easternmost fragment of the craton is exposed as a set of granitic rocks named by Rodrigues et al. (1994Rodrigues T.L.N., Favilla C.A.C., Camozzato E., Verissimo L.S. 1994. Programa Levantamentos Geológicos Básicos do Brasil. Bacabal. Folha SB.23-X-A. Estado do Maranhão. Escala 1:250.000. Brasília, CPRM. 124p. il.) and Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.) as the Rosário Suite (Fig. 1). The present work involves the study of a varied set of granitoid rocks included in the Rosario Suite, still little known from the cartographic, geochemical, geochronological and petrological point of view. In addition, the age range of magmatism is not well determined, the geochemical signature is not fully known, and it is unclear whether they represent juvenile crust or older reworked crust.

Figure 1:
Simplified geological map of São Luis Craton and Gurupi Belt with the location of the study area in the northern state of Maranhão, northern Brazil. Adapted from Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.), Vasquez and Rosa-Costa (2008Vasquez M.L., Rosa-Costa L.T. 2008. Geologia e recursos minerais do Estado do Pará. Programa Geologia do Brasil (PGE). Integração, atualização e difusão de dados da geologia do Brasil. Mapas geológicos estaduais. Escala 1:1.000.000. CD-ROM.), Klein et al. (2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.) and Sousa et al. (2012Sousa C.S., Klein E.L., Vasquez M.L., Lopes E.C.S., Teixeira S.G., Oliveira J.K.M., Moura E.M., Leão M.H.B. 2012. Mapa geológico e recursos minerais do estado do Maranhão. In: Klein E.L., & Sousa C.S. (Orgs.) Geologia e recursos minerais do estado do Maranhão. SIG, Escala 1:750.000. Belém, CPRM. (http://www.geobank.cprm.gov.br/pls/public/Projetos).
http://www.geobank.cprm.gov.br/pls/publi...
). The cited geochronological ages are subject to variable analytical uncertainties.

This research includes new data on granitoids of the Rosário Suite, particularly petrographic, geochemical, geochronological (LA-ICP-MS) and isotopic (Sm-Nd) data. Considering along available data in the literature, it allows us to discuss the crustal evolution of the suite, to make correlations with granitoids of other portions of the São Luís Craton, and to contribute to the advancement of the evolutionary models.

REGIONAL GEOLOGY CONTEXT

The São Luís Craton consists generally of three main Paleoproterozoic rock associations: a meta-volcanosedimentary succession, volcanic sequences and granitoids (Fig. 1). Older rocks (2240 ± 5 Ma) belong to the Aurizona Group, which comprises a meta-volcanosedimentary succession of schists, felsic and mafic meta-volcanic rocks, quartzites and meta-cherts.

The Tromaí Suite (2168 to 2,148 Ma, single zircon Pb-evaporation) (Klein & Moura 2001Klein E.L., Moura C.A.V. 2001. Age constraints on granitoids and metavolcanic rocks of the São Luís Craton and Gurupi belt, northern Brazil: implications for lithostratigraphy and geological evolution. International Geology Review, 43:237-253.) is the most extensive igneous unit. It is formed of tonalite, trondhjemite, granodiorite and granite that belong to a juvenile calc-alkaline series related to an intra-oceanic island-arc to transitional setting (Klein & Moura 2001Klein E.L., Moura C.A.V. 2001. Age constraints on granitoids and metavolcanic rocks of the São Luís Craton and Gurupi belt, northern Brazil: implications for lithostratigraphy and geological evolution. International Geology Review, 43:237-253., Klein et al. 2008Klein E.L., Luzardo R., Moura C.A.V., Armstrong R. 2008. Geochemistry and geochronology of Paleoproterozoic granitoid magmatism: further evidence on the crustal evolution of the São Luís Craton, Brazil. Precambrian Research, 165:221-242.). Volcanic rocks with similar ages were included into the Serra do Jacaré and Rio Diamante units, with the chemical characteristics of a transitional arc in an active continental margin (Klein et al. 2009Klein E.L., Luzardo R., Moura C.A.V., Lobato D.C., Brito R.S.C., Armstrong R. 2009. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: implications for tectonic setting and crustal evolution. Journal of South American Earth Sciences, 27:129-145.). The Rosilha volcanic unit is younger (2069 Ma) than the other two volcanic units (~2160 Ma), and has a post-orogenic tectonic setting (Klein et al. 2009Klein E.L., Luzardo R., Moura C.A.V., Lobato D.C., Brito R.S.C., Armstrong R. 2009. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: implications for tectonic setting and crustal evolution. Journal of South American Earth Sciences, 27:129-145.).

Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.) characterized the Rosário Suite as a set of composite tonalitic, granodioritic and granitic plutons with Paleoproterozoic ages (2.08-2.13 Ga). The rocks exhibit partial textural, structural and mineralogical transformations along transcurrent shear zones.

Other granitoids that have biotite and muscovite, peraluminous and S-type characteristics are represented by the Ourém, Japiim, Jonasa, Tracuateua and Mirasselvas bodies, aged 2.14 to 2.06 Ga (Palheta et al. 2009Palheta E.S., Abreu F.A.M., Moura C.A.V. 2009. Granitoides proterozoicos como marcadores da evolução geotectônica da região nordeste do Pará - Brasil. Revista Brasileira de Geociências, 39:647-657., Klein et al. 2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.). The Negra Velha Granite (2056-2,076 Ma) consists of small granitic bodies intruded into the Tromaí Granitic Suite and associated with felsic volcanic and pyroclastic rocks of the same age (Klein et al. 2008Klein E.L., Luzardo R., Moura C.A.V., Armstrong R. 2008. Geochemistry and geochronology of Paleoproterozoic granitoid magmatism: further evidence on the crustal evolution of the São Luís Craton, Brazil. Precambrian Research, 165:221-242., 2009Klein E.L., Luzardo R., Moura C.A.V., Lobato D.C., Brito R.S.C., Armstrong R. 2009. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: implications for tectonic setting and crustal evolution. Journal of South American Earth Sciences, 27:129-145.). The Caxias Microtonalite, with age of 2009 ± 11 Ma (Klein et al. 2014Klein E.L., Tassinari C.C.G., Vasconcelos P.M. 2014. U-Pb Shrimp and 40Ar/39Ar constraints on the timing of mineralization in the Paleoproterozoic Caxias orogenic gold deposit, São Luís cratonic fragment, Brazil. Journal of Geology, 44:277-288.), represents the youngest magmatic plutonic activity of this cratonic area.

The Gurupi Belt is interpreted as a Neoproterozoic-early Cambrian orogen with NNW-SSE orientation, developed in the south-southwestern margin of the São Luís Craton (Almeida et al. 1976Almeida F.F.M., Hasui Y., Brito Neves B.B. 1976. The upper Precambrian of South America. Boletim Instituto de Geociências USP, 7:45-80., Abreu et al. 1980Abreu F.A.M., Villas R.N.N., Hasui Y. 1980. Esboço estratigráfico do Pré-Cambriano da região do Gurupi, estados do Pará e Maranhão. In: SBG, Congresso Brasileiro de Geologia, 31, Camboriú. Anais, v.2, p.645-669. Costa 2000Costa J.L. 2000. Folha SA.23-V-C Castanhal, Programa Levantamentos Geológicos Básicos do Brasil, Programa Grande Carajás, Belém, CPRM, CD-ROM., Klein et al. 2005aKlein E.L., Moura C.A.V., Krymsky R. S., Griffin W. L. 2005a. The Gurupi belt in northern Brazil: lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 141:83-105., 2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.). The belt and its reworked basement include rock units of varied nature and ages ranging from Archean to Eocambrian (Klein et al. 2005bKlein, E.L., Moura, C.A.V., Pinheiro, B. L. S. 2005b. Paleoproterozoic crustal evolution of the São Luís Craton, Brazil: evidence from zircon geochronology and Sm-Nd isotopes. Gondwana Research, 8:177-186., Palheta et al. 2009Palheta E.S., Abreu F.A.M., Moura C.A.V. 2009. Granitoides proterozoicos como marcadores da evolução geotectônica da região nordeste do Pará - Brasil. Revista Brasileira de Geociências, 39:647-657.).

Several plutonic bodies are exposed as basement units of the Gurupi Belt and represent a variety of granitoid types emplaced at different times. They show zircon inheritance and chemical and isotopic features that imply participation in the magma genesis of reworked Archean to Paleoproterozoic crust, in clear contrast to the juvenile characteristics of the predominant magmatic unit of the neighboring Tromaí Suite (Klein et al. 2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.).

GEOLOGY OF THE ROSÁRIO REGION

The study area is located in the northwestern Maranhão State around the towns of Rosário, Bacabeira, Perizes, Axixá, Morros and Presidente Juscelino, where the Rosário Suite granitoids crop out (Fig. 2). The granitoids are exposed only in erosive and tectonic windows and are largely covered by Paleozoic sedimentary rocks of the Parnaíba Basin, in the southern portion, and the Cenozoic Barreiras Formation, in the north. The main exposures are found in mines and river valleys. Figure 2 shows the distribution of the principal units and the sampling locations.

Figure 2:
Geological map of the Rosário region with the localities of outcrops studied in this work. Modified from Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.) and Sousa et al. (2012Sousa C.S., Klein E.L., Vasquez M.L., Lopes E.C.S., Teixeira S.G., Oliveira J.K.M., Moura E.M., Leão M.H.B. 2012. Mapa geológico e recursos minerais do estado do Maranhão. In: Klein E.L., & Sousa C.S. (Orgs.) Geologia e recursos minerais do estado do Maranhão. SIG, Escala 1:750.000. Belém, CPRM. (http://www.geobank.cprm.gov.br/pls/public/Projetos).
http://www.geobank.cprm.gov.br/pls/publi...
).

In this work, we identified five main lithological types: meta-melatonalite, meta-tonalite, meta-granodiorite, meta-monzogranite, and andesite dykes. They are generally exposed in hill tops, gravel-extraction quarries and outcrop slabs on the banks and beds of rivers, such as the Rio Munim, in the town of Presidente Juscelino (Fig. 2) (in Appendix A are the coordinates of the points in the map).

The contact relationships between the rocks are not registered directly, but temporal relationships are recognized by the presence of enclaves or by injecting veins. The meta-tonalites contain many leucotonalite veins, pegmatites and aplites, which are genetically related to granodiorite nearby and the youngest magmatic phases of the suite, probably the most evolved felsic phases of magmatic differentiation of the suite (Gorayeb et al. 1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.).

ANALYTICAL PROCEDURES

Petrography

Petrographic analyses of 16 thin sections from ­granitoids of the Rosário Suite were performed by conventional optical microscopy, involving mineralogical characterization and quantification and textural/microstructural analysis. Modal mineralogical analyses were performed using a Swift automatic point counter, with 2,800 points for each thin section (Table 1). Petrographic classification was defined according to Streckeisen (1976Streckeisen A.L. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12:1-33.), Le Maitre (2002Le Maitre R.W. 2002. A classification of igneous rocks and glossary of terms. 2nd Edition, London, Cambridge University Press, 193p.), Fettes and Desmons (2008Fettes D., & Desmons J. 2008. Metamorphic Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge, Cambridge University Press. p. 240-256.) and Paschier and Trouw (1996Passchier C.W., & Trouw R.A.J. 1996. Micro-tectonics. Berlin, Springer-Verlag. 289p.), and the modal results were plotted in Q-A-P and Q (A + P) -M’ diagrams.

Table 1:
Modal composition of the Rosário Suite.

Geochemistry

The geochemical analyses were performed on 27 samples at the ACME Analytical Laboratories Ltd. (Vancouver, Canada) and the analytical results are in Table 2. The analytical package included major and minor oxides and trace elements, including rare earth elements (REE). SiO2, TiO2, Al2O3, Fe2O3t, MgO, CaO, MnO, Na2O, K2O and P2O5 were analyzed by inductively-coupled plasma atomic emission spectrometry (ICP-AES), with detection limits of SiO2 = 0.02%; Al2O3 = 0.03%; Fe2O3 = 0.04%; and K2O, CaO, MgO, Na2O, MnO, TiO2, P2O5 = 0.01%. Trace elements were analyzed by inductively-coupled plasma atomic mass spectrometry (ICP-MS) with detection limits of: Ba, Ga, Hf, Nb, Rb, Sr, V, Zr, La, Ce, Eu, Gd, Dy, Ho, Er, Tm, Yb, Co and Zn = 0.5 ppm; Cs, Sn, Cu e Ni = 1 ppm; Hg, Ta, Th, Ti, U, W, Y, Sm, Lu = 0.1 ppm; Bi, Cd e Sb = 0.1 ppm; Pr and Pb = 0.02 ppm; Nd = 0.4 ppm.

Table 2:
Chemical analyses of major, minor (in wt %) and trace elements (in ppm) for the Rosário Suite.

Analytical accuracy was monitored by the analysis of the standard STD SO-18, chemical blanks and one duplicate analysis (sample 2013/SR-03). The detailed analytical procedures performed by ACME labs are available on http://www.acmelab.com. The concentrations of major elements were recalculated using the conversion factor for volatile correction, following the procedures of Rollinson (1993Rollinson H.R. 1993. Using geochemical data: evaluation, presentation, interpretation. New York, Longman, 352p.), Wilson (1989Wilson M. 1989. Igneous petrogenesis - a global tectonic approach. Unwin Hyman Ltd, London.) and Gill (2010Gill R. 2010. Igneous rocks and process: a practical guide. London, Wiley-Blackwell. 428p.).

U-Pb Geochronology

U-Pb zircon analyses were performed on five samples by laser inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Geochronology Laboratory of University of Brasília (UnB). The analytical procedures followed the recommendations of Bühn et al. (2009Bühn B., Pimentel M.M., Matteini M., Dantas E.L. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma spectrometry (LA-MC-ICP-MS). Anais da Academia Brasileira de Ciências, 81:99-114.) and Chemale Jr. et al. (2012Chemale Jr. F., Mallmann G., Bitencourt M.F., Kawashita K. 2012. Time constraints on magmatism along the Major Gercino Shear Zone, southern Brazil: Implications for West Gondwana reconstruction. Gondwana Research, 22(1):184-189.). The zircon crystals were concentrated using conventional techniques at the Pará-Iso Laboratory of the Federal University of Pará, in Belém, Brazil, including mineral sieving (250-180 µm and 180-125 µm), magnetic separation and gravimetric separation by heavy liquid. The least magnetic zircon fraction was concentrated using an isodynamic Franz magnetic separator, and the least altered crystals were picked under a stereo microscope. Selected zircon grains were mounted in circular epoxy mounts and polished to obtain a smooth surface. Cathodoluminescence images were obtained using a scanning electron microscope (SEM) at the Geochronology Laboratory of UnB. U-Pb analyses were performed on a New Wave UP213 Nd:YAG laser (λ = 213 nm) coupled to a Thermo Finnigan Neptune Multicollector ICP-MS at frequency rate of 10 Hz, energy of approximately 100 mJ/cm2, and spot size varying from 15 to 30 µm. The instrumental mass discriminations were corrected by the analyses of zircon standard GJ-1 (Jackson et al. 2004Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211:47-69.), and the instrumental mass discriminations were corrected by the standards GJ-1 zircon (Jackson et al. 2004Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211:47-69.) and 91500 zircon (Wiedenbeck et al. 1995Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1):1-23.).

Age calculations and U-Pb plots in the Concordia diagram were performed using Isoplot/Ex 3.0 software (Ludwig 2003Ludwig K.R. 2003. User’s Manual for Isoplot/Ex version 3.00 - A Geochronology Toolkit for Microsoft Excel, No. 4. Berkeley Geochronological Center, Special Publication, 70 p.). The estimate of common Pb was performed using the model of Stacey and Kramers (1975Stacey J.S., & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):207-221.), taking as reference the age 206Pb/208Pb uncorrected for common Pb. The calculation and calibration procedures follow the routine of the Laboratory of Geochronology of the University of Brasilia and are presented in Bühn et al. (2009Bühn B., Pimentel M.M., Matteini M., Dantas E.L. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma spectrometry (LA-MC-ICP-MS). Anais da Academia Brasileira de Ciências, 81:99-114.). Only the uncertainties of the GJ-1 were propagated to the sample values; 91500 was treated as a secondary standard and analyzed as an unknown.

Sm-Nd Isotopic Analyses

Sm-Nd isotopic analyses of four granitoids were performed at the Isotope Geology Laboratory (Pará-Iso Lab) of Geoscience Institute of Federal University of Pará following the analytical procedures of Gioia and Pimentel (2000Gioia S.M.C.L., & Pimentel M.M. 2000. The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências, 72:220-245.) and Oliveira et al. (2008Oliveira E.C., Lafon J.M., Gioia S.M.C.L., Pimentel M.M. 2008. Datação Sm-Nd em rocha total e granada do metamorfismo granulítico da região de Tartarugal Grande, Amapá Central. Revista Brasileira de Geociências, 38:114-127.). Approximately 100 mg of whole-rock powders were mixed with 100 mg and 149Sm-150Nd spike solution and dissolved in Savillex capsules using the HNO3, HF and HCl acids. Two-step ion-exchange chromatography was performed in Teflon columns, using the Ln Eichrom resin for Sm and Nd separation.

The Sm and Nd isotopic analysis was performed in a Thermo Finnigan Neptune Multicollector ICP-MS. For the correction of mass discrimination, the 143Nd/144Nd ratio was normalized to 146Nd/144Nd = 0.7219, using the exponential law (Russell et al. 1978Russell W.A., Papanastassiou D.A., Tombrello T.A. 1978. Ca isotope fractionation on the earth and other solar system materials. Geochimica et Cosmochima Acta, 42(8):1075-1090.). The accuracy and reproducibility of results were controlled by standards using BCR-1 [(143Nd/144Nd ranged from 0.512573 ± 12 (2σ) to 0.512669 ± 10 (2σ)], with the average value of 0.512622 ± 28 (2σ)) and La Jolla (143Nd/144Nd isotopic ratios ranged from 0.511793 ± 9 to 0.511883 ± 5, with most values being above 0.5118) (Oliveira et al. 2008Oliveira E.C., Lafon J.M., Gioia S.M.C.L., Pimentel M.M. 2008. Datação Sm-Nd em rocha total e granada do metamorfismo granulítico da região de Tartarugal Grande, Amapá Central. Revista Brasileira de Geociências, 38:114-127.). The decay constant used was 6.54 × 10-12 a-1 (Lugmair & Marti 1978Lugmair G.W., & Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39:349-357.), and the Nd model ages (TDM) were calculated according to the model of depleted mantle evolution of DePaolo (1981DePaolo D.J. 1981. A neodymium and strontium isotopic study of the mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86:10470-10488.). During the period of Sm and Nd procedures, total chemical blanks were lower than 0.1% of the elements concentration and were considered negligible.

PETROGRAPHY OF THE ROSÁRIO SUITE

The plutonic rocks studied were classified according to Streckeisen (1976Streckeisen A.L. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12:1-33.) and Le Maitre (2002Le Maitre R.W. 2002. A classification of igneous rocks and glossary of terms. 2nd Edition, London, Cambridge University Press, 193p.) as quartz diorite, melatonalite, tonalite, granodiorite and monzogranite (Table 1, Fig. 3). Leucotonalite, pegmatite and aplite occur as veins, preferentially intruded into tonalitic rocks, which are also cross-cut by dykes of porphyry andesite. In general, the granitoids show variable deformation and low-grade metamorphism; primary igneous features are largely preserved (Fig. 4).

Figure 3:
QAP and Q(A+P)M diagrams (Streckeisen 1976Streckeisen A.L. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12:1-33., Le Maitre 2002Le Maitre R.W. 2002. A classification of igneous rocks and glossary of terms. 2nd Edition, London, Cambridge University Press, 193p.) with the modal composition of Rosário Suite rocks and displaying the composition trends of granitoid series from Lameyre and Bowden (1982Lameyre J., Bowden P. 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14:169-186.).

Figure 4:
Textural and structural features of the Rosário Suite Granitoids: (A, B) relicts of igneous textures in granite and granodiorite; (C, D) metamelatonalites showing tectonic fabric; (E) preferred orientation of minerals in metagranodiorite; (F) metaleucotonalite with tectonic transposition banding and veins.

The granitoids are generally coarse-grained plutonic rocks with partially preserved hypidiomorphic granular texture. They are deformed by shearing in transcurrent zones, inducing partial mineralogical re-equilibration under greenschist metamorphic conditions that partially modified the plutonic igneous fabric, turning them into protomylonites. In this process, new mineral associations were generated (Chl, Ab, Act, Cc, Ep, Qtz), which changed the original grey and pink colors into green tones in these granitoids. Because of such characteristics, designation as metaplutonic rocks is more appropriate.

Hornblende metatonalite

The hornblende metatonalites are phaneritic coarse-grained, and leucocratic to mesocratic (M = 16-32), with greenish and whitish light grey colors. Medium- to fine-grained portions are related to comminution in shear zones and show discrete foliation defined by the preferred orientation of feldspars, quartz, biotite and amphibole. The preserved textural aspects in these rocks have two main characteristics: plutonic igneous textures (e.g., hypidiomorphic granular type) and the superposition of a tectono-metamorphic fabric recognized by overlapping mineral grains resulting in rock anisotropy, which becomes mylonitic foliation in shear zones or shear bands. This anisotropy is a common feature in the Rosário Suite rocks. The essential primary mineralogy comprises oligoclase (An24), quartz, hornblende and biotite. Accessory minerals are titanite, apatite, zircon and opaque minerals. Secondary phases, related to metamorphic transformations, are represented by tremolite-actinolite that partially replaces hornblende, and plagioclase transformed into epidote and sericite by saussuritization.

Hornblende-biotite metatonalite

Of restricted occurrence (2013/SR-05), it represents a variation of the hornblende metatonalite. This sample exhibits coarse grain-size and a melanocratic colour index (M = 60-70): dark grey, with greenish and whitish tones. Microscopically, it shows hypidiomorphic granular texture and mineralogy represented by oligoclase (An25), quartz, microcline, hornblende, biotite and titanite, with accessory apatite, zircon and opaque minerals. Tremolite-actinolite, epidote and sericite represent secondary phases related to metamorphic transformation.

Hornblende metagranodiorite and Hornblende metaquartz diorite

The hornblende metagranodiorite and hornblende metaquartz diorite are leuco- to mesocratic (M = 9-40), coarse-grained and pinkish grey rocks, showing hypidiomorphic granular texture. Plagioclase, quartz, microcline, hornblende and titanite are the main mineralogical phases, with biotite, apatite, zircon and opaque minerals as accessories. The alteration phases are tremolite-actinolite, sericite and epidote. The textural aspects are similar to those of metatonalite, e.g., preserved plutonic features in a mylonitic fabric. The feldspars, amphibole and quartz crystals are rotated and slightly stretched, forming an incipient foliation. In these rocks, centimetre-thick dioritic or amphibole-rich mafic enclaves are also found, representing fractions of partially digested tonalite (Fig. 5A).

Figure 5:
General features of the Rosário Suite Granitoids: (A) mafic enclave enclosed by granodiorite; (B) network of leucogranite veins cutting melatonalite; (C) subvertical dykes of porphyritic andesite cutting granitoids in the quarry walls.

Metamonzogranite

Monzogranitic rocks are coarse-grained, slightly richer in quartz and alkali-feldspar, plagioclase and biotite, and lacking hornblende. The textures are similar to the types described before with minerals slightly imbricated due to deformation and incipient recrystallization. The plagioclase crystals exhibit green tones due to saussuritization, and epidote, sericite and calcite transformation.

The field and petrographic data of granites series studied reveals an important plutonic event in the region in which all rocks show petrographic similarities with common textural and mineralogical features, reflecting slight variations in mineral quantities. As shown in Figure 4, the compositional trends suggest magmatic differentiation processes in the evolution of this suite, as pointed out by Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.).

STRUCTURAL GEOLOGY AND THERMAL-TECTONIC PROCESSES

The granitoids of Rosário Suite exhibit textural/structural and mineralogical changes related to shear tectonics recorded in other parts of the São Luís Craton, as well as faults and joints. However, except along the shear zones, these transformations did not destroy the original igneous fabric, which preserves the history of plutonic origin. The main structural features superimposed on igneous textures are marked by imbrications and light stretching of the primary minerals (quartz, plagioclase, hornblende and titanite), creating anisotropy and developing a discrete foliation in the rocks, transforming them into protomylonites.

Shear bands and ductile shear zones with sinistral movement, centimetric to decimetric widths and lengths up to tens of meters, are common in the study area. Along these zones, there is a 50-70 Az mylonitic foliation that dips between 60 and 70º SE and stretching lineation dipping 30-35 to 200-220 Az. In some narrow zones, mylonite and ultramylonite developed, marked by darker colour and comminution of minerals, resulting in aphanitic rocks. The microstructural features are highlighted by almond-shaped hornblende and relict plagioclase, and quartz ribbons in a fine-grained matrix. The matrix is composed of sericite, epidote and carbonates replacing plagioclase, associated with quartz and plagioclase microgranular aggregates, chlorite, acicular tremolite-actinolite and microgranular titanite derived mainly from the substitution reaction of hornblende.

In general, the granitoids are slightly deformed with incipient metamorphic transformation that generated new mineral assemblages, imposing green tonalities on the original grey and pink colours and these granitoids. The metamorphic paragenesis ­Ab + Ser + Ep + Chl + Act + Cc + ­Qtz coexists with relict primary minerals (quartz, plagioclase, hornblende, alkali-feldspar), which allows us to estimate the metamorphic conditions in the low greenschist facies.

The transformations recorded in Rosário Suite may be related to the same context of thermo-tectonic processes that took placed on other areas, such as to the boundary between the craton and the Gurupi Belt (Klein & Lopes 2011Klein E.L., Lopes E.C. 2011. Geologia e recursos minerais da Folha Centro Novo do Maranhão - SA.23-Y-B-I, Estados do Maranhão e Pará, escala 1:100.000 - Belém. CPRM, p.57-87. CD-ROM.).

GEOCHEMISTRY OF THE ROSÁRIO SUITE

In general, the studied granitoids demonstrated high contents of SiO2 (50-79%), Al2O3 (10-16%) and Na2O (2.3-6.7%) and low concentrations of TiO2 (0.03-0.77%), K2O (0.6-3.5%), MnO (0.02-0.22%) and P2O5 (0.02-0.3%). Other major elements showed low and moderate variations: MgO (0.12-8%); CaO (1.5-9%); Fe2O3 Total (0.8-12%); Na2O (1.8-7%); and low K2O/Na2O ratio (0.1-1.9). The trends of compositional types (diorite, tonalite, granodiorite and granite) showed continuous variation in the contents of main major and trace elements, with increasing SiO2, with positive covariance between Na2O and SiO2, and negative covariance between CaO, Fe2O3t, K2O, MgO, TiO2 and P2O5 (Fig. 6). These variations are probably related to magmatic differentiation.

Figure 6:
Harker diagrams with major and trace elements vs. SiO2 for granitoids of the Rosário Suite.

In classificatory diagrams, as R1-R2 (La Roche 1980La Roche H. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses - its relationships with current nomenclature. Chemical Geology, 29:183-210.) and diagram Total-Alcali vs. Silica (TAS) (Cox et al. 1979Cox K.G., Bell J.D., Pankhurst R.J. 1979. The interpretation of igneous rocks. London, George Allen & Unwin, 450p.), all granitoids plot in the fields of diorite, tonalite, granodiorite and granite (Fig. 7A, B), in accordance with the petrographic classification. The samples that fall in the gabbro field are melanocratic types (melatonalites and diorites).

Figure 7:
Geochemical diagrams with plotted data of the Rosário Suite Granitoids: (A) R1-R2 classification diagram (La Roche 1980La Roche H. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses - its relationships with current nomenclature. Chemical Geology, 29:183-210.); (B) TAS classification diagram (Cox et al. 1979Cox K.G., Bell J.D., Pankhurst R.J. 1979. The interpretation of igneous rocks. London, George Allen & Unwin, 450p.).

In the aluminum-saturation Shand diagram (Shand 1950Shand S.J. 1950. Eruptive rocks, their genesis, composition, classification and their relation to ore-deposits. Thomas Murby, London, 488 p.) (Fig. 8), the granitoids plot within the metaluminous field, followed the petrographic data that show significant presence of hornblende and minor biotite. In the diagram Alkali oxides, Fe oxides e Magnesium (Mg), the rocks define a trend compatible with the calc-alkaline series (Fig. 9).

Figure 8:
Rosário Suite plotted in the aluminum saturation diagram (Shand 1950Shand S.J. 1950. Eruptive rocks, their genesis, composition, classification and their relation to ore-deposits. Thomas Murby, London, 488 p.).

Figure 9:
AFM diagram for magmatic series classification (Irvine & Baragar 1971Irvine T.N., Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8:523-546.) with the Rosário Suite trends.

In the multielement diagram, the compositional groups showed consistent signatures (Fig. 10), such as large-ion lithophile elements (LILE)-enrichment relative to light rare earth elements (LREE) and high field strength (HFS) elements. Furthermore, the geochemical pattern of quartz diorites and granodiorites are similar, showing positive Ba and negative Th anomalies. Metatonalites are similar to tonalites, exhibiting accentuated negative Th and Nb anomalies with fractionated patterns. Granites also demonstrate more accentuated sub-horizontal pattern with the most intense high field strength elements (HFSE) depletion.

Figure 10:
Chondrite-normalized multielement diagram (Thompson 1982Thompson R.N. 1982. British Tertiary volcanic province. Scottish Journal of Geology, 18:49-107.) for the granitoids of the Rosário Suite.

The rare earth elements (REE) patterns are very similar for all analyzed granitoids. However, three groups can be discriminated. The first one, composed of quartz diorite and tonalite, shows sub-horizontal heavy rare earth elements (HREE) pattern and steep LREE pattern, which is slightly fractionated, with La/Yb ratio between 2 and 13, and incipient negative Eu anomalies. The second group, consisting of granodiorites and granites, exhibits steeper REE patterns than the other two groups (La/Yb = 3-22), with slight heavy REE depression and incipient negative Eu anomalies [(Eu/Eu*)N = 0.9-2.0]. In general, the total REE content is lower (∑REE = 13 to 89 ppm) than in the quartz diorite and tonalite (∑ETR = 55 to 144 ppm) (Fig. 11).

Figure 11:
Rare earth element (REE) diagrams normalized to chondrite (Boynton 1984Boynton W.V. 1984. Cosmochemistry of the rare-earth elements: meteorite studies. In: Henderson P. (Ed.). Rare-earth elements geochemistry. Amsterdam, Elsevier, p.63-114.) for the Rosário Suite rocks.

In the Y+Nb versus Rb (Pearce et al. 1984Pearce J.A., Harris N.B.W., Tindle A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983.) and Zr versus (Nb N /Zr N) (Thiéblemont & Tégyey 1994Thiéblemont D., Tégyey M. 1994. Une discrimination géochimique des roches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calcio-alcalins. Comptes Rendus de l’Académie des Sciences, 319:87-94.) diagrams the rocks plot in the field of volcanic arc granites (VAG) related to subduction setting and calc-alkaline affinity (Fig. 12A, 12B). In the log [CaO/(Na2O+K2O)] versus SiO2 diagram (Brown et al. 1984Brown G.C., Thorpe R.S., Webb P.C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on source magmas. Journal of the Geological Society, 141:413-426.), the studied rocks correspond to granites of normal continental arc, similar to the Sierra Nevada and Peru batholiths of North and South America, respectively (Winter 2001Winter D. 2001. An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey. 796p., McBirney & White 1982McBirney A.R., White C.M. (1982). The Cascade Province. In: Thorpe R. S. (Ed.), Andesites. orogenic andesites and related rocks. New York, John Wiley & Sons, p.115-136., Thorpe et al. 1982Thorpe R.S., Francis P.W., Hammill M., Baker C.W. 1982. The Andes. In: R. S. Thorpe (ed.). Andesites, orogenic andesites and related rocks. New York, John Wiley & Sons. p.188-205.) (Fig. 12C).

Figure 12:
Geochemical diagrams for tectonic environment classification: (A) Y+Nb versus Rb (Pearce et al. 1984Pearce J.A., Harris N.B.W., Tindle A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983.); (B) log [(CaO/Na2O+K2O)] versus SiO2 (Brown et al. 1984Brown G.C., Thorpe R.S., Webb P.C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on source magmas. Journal of the Geological Society, 141:413-426.); (C) Zr versus NbN/ZrN (Thiéblemont & Tégyey 1994Thiéblemont D., Tégyey M. 1994. Une discrimination géochimique des roches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calcio-alcalins. Comptes Rendus de l’Académie des Sciences, 319:87-94.).

U-PB GEOCHRONOLOGY

Petrographic analyses under optical microscope and stereomicroscope observations of zircon grains complemented by cathodoluminescence (CL) images identified mostly euhedral zircon crystals with well-defined faces, showing clear concentric magmatic zoning (Fig. 13). The least magnetic zircon grains were chosen for analysis, and the analytical points were chosen considering the more homogeneous portions of the crystal, without inclusions or fractures. Analyses of the nucleus and edge of the crystals presented similar results. The results of the geochronological analyses are in Tables 3, 4, 5, 6 and 7. Most of the analyzed zircon grains have Th/U ratios between 0.23 and 0.90, within the normal range for magmatic zircons.

Figure 13:
Cathodoluminescence images of analyzed zircon grains from the Rosário Suite Granitoids. Open circles mark spots analyzed by LA-ICP mass spectrometer (15-30 µm-size).

Table 3:
Summary of U-Pb zircon in situ data from sample obtained by LA-MC-ICP-MS from metatonalite (SR-04) of the Rosário Suite.
Table 4:
Summary of U-Pb zircon in situ data from sample obtained by LA-MC-ICP-MS from metatonalite (SR-05) of the Rosário suite.
Table 5:
Summary of U-Pb zircon in situ data from sample obtained by LA-MC-ICP-MS from metatonalite (SR-06) of the Rosário suite.
Table 6:
Summary of U-Pb zircon in situ data from sample obtained by LA-MC-ICP-MS from Metatonalite (SR-09) of the Rosário suite.
Table 7:
Summary of U-Pb zircon in situ data from sample obtained by LA-MC-ICP-MS from metagranodiorite (SR-08) of the Rosário suite.

The age uncertainties calculated are all 2-sigma, or 95% confidence, limit uncertainties based on internal reproducibility of the sample data, but they do not take into account the equivalent uncertainty in U/Pb calibration against the standards, normally no better than around 0.3%.

The total of 29 zircons were analyzed from sample 2013/SR-04 (metatonalite), which fall around a line with an upper intercept at 2170 ± 4 Ma (Mean Square of Weighted Deviated - MSWD = 1.0, Fig. 14A). A more robust age estimate for the original crystallization is a Concordia age (as evaluated by Ludwig 2003Ludwig K.R. 2003. User’s Manual for Isoplot/Ex version 3.00 - A Geochronology Toolkit for Microsoft Excel, No. 4. Berkeley Geochronological Center, Special Publication, 70 p.) of 2166 ± 7 Ma (MSWD = 0.02) for the seven most concordant data points.

Figure 14:
207Pb/235U versus206Pb/238U Concordia diagrams and weighted mean 207Pb/206Pb age diagrams for the zircon grains analyzed by LA-ICP-MS.

Twenty-nine analyses from a second metatonalite sample (2013/SR-05) gave a slightly more concordant dataset (Fig. 14B) with an upper intercept age of 2170 ± 6 Ma (MSWD = 0.7) and a poorly constrained lower intercept of -158 ± 370 Ma. In this case, nine of the data points provided a Concordia age of 2170 ± 7 Ma (MSWD = 1.3).

Twenty-five zircons were analyzed from metatonalite sample 2013/SR-06; all are somewhat discordant (Fig. 14C), and the best age that can be obtained is the weighted mean 207Pb/206Pb age of 2170 ± 7 Ma (MSWD = 1.7) (Fig. 14D).

The single metagranodiorite sample analyzed (2013/SR-08) yielded 23 data points with a wide spread in the Wetherill diagram (Fig. 14E), but with variable non-linear discordance. The best estimate for the original crystallization age is taken as the weighted mean 207Pb/206Pb age of 2176 ± 8 Ma for the nine most concordant data (MSWD = 0,5) (Fig. 14F).

For the final metatonalite sample (2013/SR-09), a set of 29 zircons was analyzed (Table 6, Fig. 14G). The data are variably discordant and do not fit a straight line in the Wetherill diagram. Too few are sufficiently concordant to define a Concordia age, but 21 analyses that are less than 5% discordant, given a weighted mean 207Pb/206Pb age of 2,161 ± 4 Ma (MSWD = 0.7). 207Pb/206Pb ages are equivalent to forcing a Discordia though zero, which in this case gives a close minimum age for crystallization (Fig. 14H).

The graphical representation of T (Ga) versus εNd (Fig. 15) also shows that all the new results fall within the field corresponding to juvenile Paleoproterozoic crust of the São Luís Craton, compiled from the data of Klein et al. (2005aKlein E.L., Moura C.A.V., Krymsky R. S., Griffin W. L. 2005a. The Gurupi belt in northern Brazil: lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 141:83-105., 2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.).

Figure 15:
εNd versus time diagram, showing the isotopic composition of the Rosário Suite. The field of the Paleoproterozoic São Luís crust is from Klein et al. (2005aKlein E.L., Moura C.A.V., Krymsky R. S., Griffin W. L. 2005a. The Gurupi belt in northern Brazil: lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 141:83-105., 2012Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.).

These results and the geochemical data reveal the juvenile nature of these rocks reinforcing the interpretation that this region may be part of the Rhyacian juvenile continental magmatic arc, that extends through other parts of São Luís Craton with correspondence in the northeast portion of the Amazonian Craton and in West Africa (Abouchami et al. 1990Abouchami W., Boher M., Michard A., Albarède F. 1990. A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion. Journal of Geophysical Research, 95:17605-17629., Boher et al. 1992Boher M., Abouchami W., Albarède F., Arndt N.T. 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97:345-369., Wright et al. 1995Wright J.B., Hastings D.A., Jones W.B., Williams H.R. 1995. Geology and mineral resources of West Africa. London, Allen & Unwin, 187p., Hirdes et al. 1996Hirdes W., Davis D.W., Ludtke G., Konan G. 1996. Two generations of Birrimian (Paleoproterozoic) volcanic belts in northeastern Cote d’Ivoire (West Africa): consequences for the “Birrimian controversy”. Precambrian Research, 80:173-191.).

WHOLE-ROCK SM-ND RESULTS

The Sm and Nd isotopic analytical results of four samples of metatonalites from the Rosário Suite (Table 8) showed acceptable value ranges for both 147Sm/144Nd ratio (0.08 to 0.13) and fractionation degree (-0.54 to -0.39), according to Sato and Tassinari (1997Sato K. , Tassinari C.C.G. 1997. Principais eventos de acresção continental no Cráton Amazônico baseados em idade modelo Sm-Nd, calculada em evoluções de estágio único e estágio duplo. In: M.L. Costa & R.S. Angélica, (Eds.), Contribuição à Geologia da Amazônia. Belém, SBG-NO, p.91-142.).

Table 8:
Whole-rock Sm-Nd isotopic data of metatonalite from Rosário Suite.

The εNd values calculated according to the crystallization age obtained in this work (t = 2.2 Ga) are in the range +3.2 to +1.9 and the data yield similar TDM model ages for separation from depleted mantle of 2.21 to 2.31 Ga.

CONCLUSIONS

The geochemical characteristics combined with the field, petrographic, geochronological and isotopic data indicate that studied rocks are co-genetic and that compositional variations are associated with magmatic fractionation process. The different petrographic-compositional types possibly represent successions of magmatic pulses in an arc-related environment, but the samples dated here are essentially coeval. All five samples analyzed have yielded consistent U-Pb zircon ages with preferred results of 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, for metatonalite and 2161 ± 4 Ma for metagranodiorite, and 2175 ± 8 Ma for metagranodiorite. Allowing for the inherent calibration uncertainty, these data suggest that the Rosário Suite plutonic rocks were emplaced during a single magmatic episode between 2155 and 2175 Ma. These ages are slightly older than previous results of 2.08 to 2.13 Ga presented by Gorayeb et al. (1999Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.) using the Pb zircon evaporation method. Younger ages are commonly expected by Pb evaporation method, providing minimum ages.

Our data show that emplacement of the Rosário Suite between about 2.15 and 2.18 Ma represents an important event of Paleoproterozoic crust formation during the Rhyacian period. Whole-rock Sm-Nd isotopic study provided TDM model ages between 2.21 and 2.37 Ga, with low positive εNd values, indicating that the Rosário Suite magmas had a short time of crustal residence, which implies an essentially juvenile nature.

The area where the Rosário Suite is located represents the most eastern exposures of the São Luís Craton, which are part of a large batholith of felsic to intermediate composition (diorites, tonalites, granodiorites, granites, leucogranites and andesites). Multiple plutons are probably involved, but it is not possible to delimit them on the scale of the mapping that has been carried out.

Geochemical data have demonstrated systematic variation in the major, minor and trace elements. In geochemical diagrams, all granitoids show trends of magmatic differentiation compatible to arc-related environment of the calc-alkaline series. They are metaluminous, calc-alkaline, I-type granitoids related to subduction environment of the continental magmatic arcs.

The structural data indicate the deformational effects of a regional transcurrent tectonic system, probably at more advanced stages of the Paleoproterozoic Transamazonian orogeny or subsequent Neoproterozoic tectonics of the Brasilian/Pan-African cycle that produced new structural features, such as mylonitic fabrics with comminution, rotation and overlapping processes of feldspars, biotite and hornblende. This tectonic condition also imposed different grades of stretching, recrystallization of quartz, saussuritization of plagioclase and neoformation of tremolite-actinolite and chlorite. The metamorphic conditions reached the greenschist facies. The deformation and metamorphic transformations are related to the collisional tectonic Transamazonian orogenesis in the Rhyacian period in other regions of the São Luís and Amazonian cratons.

The Rosário Suite is part of an extensive Rhyacian continental juvenile magmatic arc which is found in other parts of the São Luís Craton, which in the literature has been considered a fragment of the West African Craton. In Brazil, it is possible to correlate with the northwestern part of the Amazonian Craton, in which Rhyacian accretional magmatic arcs were amalgamated to form Archean terrains, more specifically in the northwest of the Pará state and Amapá. The Paleoproterozoic evolution of these cratons (2.24-2.1 Ga) is related to the Transamazonian orogenies, and the Rosário granitoids may represent the main accretion phase in the arc magmatic evolution.

ACKNOWLEDGMENTS

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the grant of a scholarship to the first author, and the Programa Institutos Nacionais de Ciência e Tecnologia (INCT)/Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia (GEOCIAM) Project - Ministério da Ciência, Tecnologia e Inovação (MCT)/Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/Fundação Amazônia de Amparo a Estudos e Pesquisas do Pará (FAPESPA) (Proc. no. 573733/2008-2) for financial support. We further acknowledge the Programa de Pós-Graduação em Geologia e Geoquímica (PPGG) do Instituto de Geociências (IG) of Universidade Federal do Pará (UFPA).

We are also grateful to the Geochronology Laboratory of UnB and technicians Felipe Valença de Oliveira and Luciana Pereira for their attention and support in obtaining cathodoluminescence images acquired by electron microscopy, and U-Pb zircon geochronological analysis by LA-ICP-MS. We thank the Pará-Iso for Sm-Nd analysis, for help in the recalculation of geochronological date. We are grateful to the Microanalysis Laboratory of UFPA for the support in the preparation of mounts of zircon grains, especially to Professor PhD Claudio Nery Lamarão, technicians Ana Paula Correa and Joelma Lobo. Finally, we would like to thank the reviewers and associate editor PhD Robert Pankhurst for their criticisms, corrections and suggestions that led to the improvement of the work.

REFERENCES

  • Abouchami W., Boher M., Michard A., Albarède F. 1990. A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion. Journal of Geophysical Research, 95:17605-17629.
  • Abreu F.A.M., Villas R.N.N., Hasui Y. 1980. Esboço estratigráfico do Pré-Cambriano da região do Gurupi, estados do Pará e Maranhão. In: SBG, Congresso Brasileiro de Geologia, 31, Camboriú. Anais, v.2, p.645-669.
  • Almeida F.F.M., Hasui Y., Brito Neves B.B. 1976. The upper Precambrian of South America. Boletim Instituto de Geociências USP, 7:45-80.
  • Boher M., Abouchami W., Albarède F., Arndt N.T. 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97:345-369.
  • Boynton W.V. 1984. Cosmochemistry of the rare-earth elements: meteorite studies. In: Henderson P. (Ed.). Rare-earth elements geochemistry Amsterdam, Elsevier, p.63-114.
  • Brito-Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (eds.), Tectonic evolution of the South America 3st International Geological Congress, p.151-182.
  • Brown G.C., Thorpe R.S., Webb P.C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on source magmas. Journal of the Geological Society, 141:413-426.
  • Bühn B., Pimentel M.M., Matteini M., Dantas E.L. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma spectrometry (LA-MC-ICP-MS). Anais da Academia Brasileira de Ciências, 81:99-114.
  • Chemale Jr. F., Mallmann G., Bitencourt M.F., Kawashita K. 2012. Time constraints on magmatism along the Major Gercino Shear Zone, southern Brazil: Implications for West Gondwana reconstruction. Gondwana Research, 22(1):184-189.
  • Costa J.L. 2000. Folha SA.23-V-C Castanhal, Programa Levantamentos Geológicos Básicos do Brasil, Programa Grande Carajás, Belém, CPRM, CD-ROM.
  • Cordani U.G. , Sato K., Teixeira W., Basei M.A.S., Kawashita K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos: Actas. II Congresso Geológico Chileno, 137-148.
  • Cordani U.G. & Brito Neves, B.B. 1982. The geologic evolution of South America during the Archaean and Early Proterozoic. Revista Brasileira de Geociências, 12(1-3):78-88.
  • Cox K.G., Bell J.D., Pankhurst R.J. 1979. The interpretation of igneous rocks London, George Allen & Unwin, 450p.
  • DePaolo D.J. 1981. A neodymium and strontium isotopic study of the mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86:10470-10488.
  • Fettes D., & Desmons J. 2008. Metamorphic Rocks: A Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge, Cambridge University Press. p. 240-256.
  • Gasquet D., Barbey P., Adou M., Pasquette J.L. 2003. Structure, Sr-Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala área (Côte d’Ivoire): evidence for a 2.3 Ga crustal growth event in the Paleoproterozoico f West Africa? Precambrian Research, 127:329-354.
  • Gill R. 2010. Igneous rocks and process: a practical guide. London, Wiley-Blackwell. 428p.
  • Gioia S.M.C.L., & Pimentel M.M. 2000. The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências, 72:220-245.
  • Gorayeb P.S.S., Gaudette H.E., Moura C.A.V., Abreu F.A.M. 1999. Geologia e geocronologia da Suíte Rosário, nordeste do Brasil, e sua contextualização geotectônica. Revista Brasileira de Geociências, 29:571-578.
  • Hirdes W., Davis D.W., Ludtke G., Konan G. 1996. Two generations of Birrimian (Paleoproterozoic) volcanic belts in northeastern Cote d’Ivoire (West Africa): consequences for the “Birrimian controversy”. Precambrian Research, 80:173-191.
  • Hurley P.M., Almeida F.F.M., Melcher G.C., Cordani U.G. , Rand J.R., Kawashita K. , Vandoros P., Pinson W.H., Fairbairn H.W. 1967. Test of continental drift by comparison of radiometric ages. Science, 157:495-500.
  • Irvine T.N., Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8:523-546.
  • Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211:47-69.
  • Klein E.L., Lopes E.C. 2011. Geologia e recursos minerais da Folha Centro Novo do Maranhão - SA.23-Y-B-I, Estados do Maranhão e Pará, escala 1:100.000 - Belém. CPRM, p.57-87. CD-ROM.
  • Klein E.L., Luzardo R., Moura C.A.V., Armstrong R. 2008. Geochemistry and geochronology of Paleoproterozoic granitoid magmatism: further evidence on the crustal evolution of the São Luís Craton, Brazil. Precambrian Research, 165:221-242.
  • Klein E.L., Luzardo R., Moura C.A.V., Lobato D.C., Brito R.S.C., Armstrong R. 2009. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: implications for tectonic setting and crustal evolution. Journal of South American Earth Sciences, 27:129-145.
  • Klein E.L., Moura C.A.V. 2001. Age constraints on granitoids and metavolcanic rocks of the São Luís Craton and Gurupi belt, northern Brazil: implications for lithostratigraphy and geological evolution. International Geology Review, 43:237-253.
  • Klein E.L., Moura C.A. V. 2008. São Luís Craton and Gurupi Belt (Brazil): possible links with the West-African Craton and surrounding Pan-African belts. In: Pankhurst R.J., Trouw R.A.J., Neves B.B.B., Wit M.J. (Eds.). West Gondwana: pre-cenozoic correlations across the South Atlantic region. Geological Society of London. Special Publication, 294:137-151.
  • Klein E.L., Moura C.A.V., Krymsky R. S., Griffin W. L. 2005a. The Gurupi belt in northern Brazil: lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Research, 141:83-105.
  • Klein, E.L., Moura, C.A.V., Pinheiro, B. L. S. 2005b. Paleoproterozoic crustal evolution of the São Luís Craton, Brazil: evidence from zircon geochronology and Sm-Nd isotopes. Gondwana Research, 8:177-186.
  • Klein E.L., Rodrigues J.B., Lopes E.C.S., Soledade G.L. 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil: geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Research, 220-221:192-216.
  • Klein E.L., Tassinari C.C.G., Vasconcelos P.M. 2014. U-Pb Shrimp and 40Ar/39Ar constraints on the timing of mineralization in the Paleoproterozoic Caxias orogenic gold deposit, São Luís cratonic fragment, Brazil. Journal of Geology, 44:277-288.
  • La Roche H. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses - its relationships with current nomenclature. Chemical Geology, 29:183-210.
  • Lameyre J., Bowden P. 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14:169-186.
  • Le Maitre R.W. 2002. A classification of igneous rocks and glossary of terms 2nd Edition, London, Cambridge University Press, 193p.
  • Lesquer A., Beltrão J.F., Abreu F.A.M. 1984. Proterozoic links between northeastern Brazil and West Africa: a plate tectonic model based on gravity data. Tectonophysics, 110:9-26.
  • Ludwig K.R. 2003. User’s Manual for Isoplot/Ex version 3.00 - A Geochronology Toolkit for Microsoft Excel, No. 4. Berkeley Geochronological Center, Special Publication, 70 p.
  • Lugmair G.W., & Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39:349-357.
  • McBirney A.R., White C.M. (1982). The Cascade Province. In: Thorpe R. S. (Ed.), Andesites. orogenic andesites and related rocks New York, John Wiley & Sons, p.115-136.
  • Oliveira E.C., Lafon J.M., Gioia S.M.C.L., Pimentel M.M. 2008. Datação Sm-Nd em rocha total e granada do metamorfismo granulítico da região de Tartarugal Grande, Amapá Central. Revista Brasileira de Geociências, 38:114-127.
  • Palheta E.S., Abreu F.A.M., Moura C.A.V. 2009. Granitoides proterozoicos como marcadores da evolução geotectônica da região nordeste do Pará - Brasil. Revista Brasileira de Geociências, 39:647-657.
  • Passchier C.W., & Trouw R.A.J. 1996. Micro-tectonics Berlin, Springer-Verlag. 289p.
  • Pearce J.A., Harris N.B.W., Tindle A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983.
  • Rodrigues T.L.N., Favilla C.A.C., Camozzato E., Verissimo L.S. 1994. Programa Levantamentos Geológicos Básicos do Brasil Bacabal. Folha SB.23-X-A. Estado do Maranhão. Escala 1:250.000. Brasília, CPRM. 124p. il.
  • Rollinson H.R. 1993. Using geochemical data: evaluation, presentation, interpretation New York, Longman, 352p.
  • Rosa-Costa L.T., Lafon J.M., Delor C. 2006. Zircon geochronology and Sm-Nd isotopic study: further constraints for the Archean and Paleoproterozoic geodynamical evolution of the southeastern Guiana Shield, north of Amazonian Craton, Brazil. Gondwana Research, 10:277-300.
  • Russell W.A., Papanastassiou D.A., Tombrello T.A. 1978. Ca isotope fractionation on the earth and other solar system materials. Geochimica et Cosmochima Acta, 42(8):1075-1090.
  • Santos J.O.S., Hartmann L.A., Gaudette H.E., Groves D.I., Mcnaughton N.J., Fletcher I.R. 2000. A new understanding oh the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Research, 3(4):453-488.
  • Sato K. , Tassinari C.C.G. 1997. Principais eventos de acresção continental no Cráton Amazônico baseados em idade modelo Sm-Nd, calculada em evoluções de estágio único e estágio duplo. In: M.L. Costa & R.S. Angélica, (Eds.), Contribuição à Geologia da Amazônia Belém, SBG-NO, p.91-142.
  • Shand S.J. 1950. Eruptive rocks, their genesis, composition, classification and their relation to ore-deposits Thomas Murby, London, 488 p.
  • Sousa C.S., Klein E.L., Vasquez M.L., Lopes E.C.S., Teixeira S.G., Oliveira J.K.M., Moura E.M., Leão M.H.B. 2012. Mapa geológico e recursos minerais do estado do Maranhão. In: Klein E.L., & Sousa C.S. (Orgs.) Geologia e recursos minerais do estado do Maranhão SIG, Escala 1:750.000. Belém, CPRM. (http://www.geobank.cprm.gov.br/pls/public/Projetos).
    » http://www.geobank.cprm.gov.br/pls/public/Projetos
  • Stacey J.S., & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):207-221.
  • Streckeisen A.L. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12:1-33.
  • Tassinari C.C.G. & Macambira M.J.B. 1999. Geochronological Provinces of the Amazonian Craton. Episodes, 22(3):174-182.
  • Tassinari C.C.G. & Macambira M.J.B. 2004. A Evolução Tectônica Do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida São Paulo, p. 471-485.
  • Tassinari C.G., Bettencourt J.S., Geraldes M.C., Macambira M.J.B., Lafon J.M. 2000. The Amazon craton. In: Cordani U., Milani E.J., Thomaz Filho A., Campos D.A. Tectonic evolution of South America. 31st International Geological Congress, 2000. Rio de Janeiro. Anais... p. 41-95.
  • Thiéblemont D., Tégyey M. 1994. Une discrimination géochimique des roches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calcio-alcalins. Comptes Rendus de l’Académie des Sciences, 319:87-94.
  • Thompson R.N. 1982. British Tertiary volcanic province. Scottish Journal of Geology, 18:49-107.
  • Thorpe R.S., Francis P.W., Hammill M., Baker C.W. 1982. The Andes. In: R. S. Thorpe (ed.). Andesites, orogenic andesites and related rocks New York, John Wiley & Sons. p.188-205.
  • Torquato J.R., Cordani U.G. 1981. Brazil-Africa geological links. Earth Science Reviews, 17:155-176.
  • Vasquez M.L., Rosa-Costa L.T. 2008. Geologia e recursos minerais do Estado do Pará Programa Geologia do Brasil (PGE). Integração, atualização e difusão de dados da geologia do Brasil. Mapas geológicos estaduais. Escala 1:1.000.000. CD-ROM.
  • Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1):1-23.
  • Wilson M. 1989. Igneous petrogenesis - a global tectonic approach Unwin Hyman Ltd, London.
  • Winter D. 2001. An introduction to igneous and metamorphic petrology Prentice Hall, New Jersey. 796p.
  • Wright J.B., Hastings D.A., Jones W.B., Williams H.R. 1995. Geology and mineral resources of West Africa London, Allen & Unwin, 187p.

Appendix A. List of studied samples with geographic coordinates.

Publication Dates

  • Publication in this collection
    Apr-Jun 2017

History

  • Received
    20 Mar 2016
  • Accepted
    09 May 2017
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br