Acessibilidade / Reportar erro

The Barreiro suite in the central Ribeira Belt (SE-Brazil): a late Tonian tholeiitic intraplate magmatic event in the distal passive margin of the São Francisco Paleocontinent

Abstract

New geochemical, U-Pb, Lu-Hf and Sr-Nd data from the Barreiro Suite metabasites in comparison with enclaves within the distal Andrelândia Group and the orthogranulites of the Juiz de Fora Complex are presented. Geochemical data suggest intraplate setting, with high and low-TiO2 , TDMNd ages between 1.80 and 1.41 Ga, negative ΕNdt and (87 Sr/86 Sr)i between 0.714 and 0.747. Results contrast with part of the Juiz de Fora Complex enclaves, with island arc tholeiites- calcalkaline basalts (IAT-CAB) geochemical signatures, TDMNd ages between 2.58 and 2.16 Ga, positive ΕNdt values and (87Sr/86Sr)i between 0.700 and 0.712. U-Pb data for the Barreiro Suite yielded a crystallization age of 766 ± 13 Ma and a metamorphic overprint of 619 ± 6 Ma. The results indicate three episodes of mafic magmatism in the Occidental terrane of the Ribeira Belt. The two older episodes are related to Rhyacian arc evolution (ca. 2.2 to 2.1 Ga) and to the Statherian (ca. 1.7 Ga) tectonics, and occur only within the Juiz de Fora Complex, while the younger ca. 766 Ma episode constrains the timing of distal passive margin evolution. An important implication is that these late Tonian metabasic rocks could have been a source of detrital zircons for the sedimentation along the distal Andrelândia basin.

KEYWORDS:
Andrelândia Group; U-Pb; Sm-Nd; Lu-Hf; within-plate basalts

INTRODUCTION

Tholeiitic mafic rocks are very common in many different tectonic environments, ranging from continental and oceanic plateaus, continental rifts to passive margins and convergent tectonic settings such as magmatic arcs (Pearce & Cann 1973Pearce J.A. & Cann J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19(2):290-300. http://dx.doi.org/10.1016/0012-821X(73)90129-5
http://dx.doi.org/10.1016/0012-821X(73)9...
, Pearce et al. 1975Pearce T.H., Gorman B.E., Birkett T.C. 1975. The TiO2-K2O-P2O5 diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth and Planetary Science Letters, 24(3):419-426. https://doi.org/10.1016/0012-821X(75)90149-1
https://doi.org/10.1016/0012-821X(75)901...
, Pearce 1983Pearce J.A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth C.J. & Norry M.J. (eds.), Continental basalts and mantle xeno­­­­liths. Nantwich: Shiva, p. 230-249., 1987Pearce J.A. 1987. An expert system for the tectonic characterization of ancient volcanic rocks. Journal of Volcanology and Geothermal Research, 32(1-3):51-65. https://doi.org/10.1016/0377-0273(87)90036-9
https://doi.org/10.1016/0377-0273(87)900...
, Wilson 1989Wilson M. 1989. Igneous petrogenesis: a global tectonic approach. London, Unwin Hyman, 466 p.). In high-grade metamorphic terrains, the original tectonic setting is commonly unclear because recrystallization and deformation obscure primary characteristics. In such terrains, the geochemical and isotopic signatures, and the age of mafic rocks are important tools for the determination of their tectonic setting. Geochronological dating also provides additional constraints on the age of genetically-related high-grade metasedimentary units in orogenic belts.

The Ribeira Belt, southeast Brazil, comprises a Neoproterozoic and Early Paleozoic network of orogenic belts that resulted from the amalgamation of Western Gondwana (Fig. 1A ), evolving through episodes of diachronous tectonic accretions and continental collisions in Neoproterozoic and Cambrian times. Together with the Araçuaí Belt (Heilbron et al. 2004Heilbron M., Pedrosa-Soares A.C., Campos Neto M., Silva L.C., Trouw R.A.J., Janasi V.C. 2004. A Província Mantiqueira. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (eds.), O Desvendar de um Continente: A Moderna Geologia da América do Sul e o Legado da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 203-204., 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá M., Siga O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society Special Publications, 294:211-237. https://doi.org/10.1144/SP294.12
https://doi.org/10.1144/SP294.12...
, 2017aHeilbron H., Cordani U., Alkmim F., Reis H. 2017a. Tectonic Genealogy of a Miniature Continent. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds.), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Berlin, Springer., Pedrosa-Soares et al. 2008Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. In: Pankhurst J.R., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (eds.).West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Geological Society, London, Special Publications, 294, p. 153-172., Alkmim et al. 2017Alkmim F.F, Kuchenbecker M., Reis H.L.S., Pedrosa-Soares A.C. 2017. The Araçuaí belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds). São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent. 1 ed. Springer, v. 1, 251-276.), the Ribeira Belt makes up a 300 km wide and 600 km long deeply eroded orogenic system that runs roughly parallel to the southeastern coast of Brazil (Fig. 1B).

Figure 1.
(A) Ribeira Belt in the scenario of South America: 1: Andean Belt; 2: Patagonia terrane; 3: Phanerozoic cover; 4: Cratons; 5: Neoproterozoic belts; 6: São Francisco craton; (B) tectonic organization of SE Brazil: 1: Phanerozoic cover; 2-4: Ribeira Belt units; 2: Apiaí terrane; 3: reworked passive margins; 4: arc-related terranes; 5: Brasília Belt.

The external zone of this orogenic system comprises the reworked Neoproterozoic passive margin of the São Francisco paleocontinent. Because of intense deformation and metamorphism related to the Brasiliano collage, the metasedimentary units together with syn-depositional magmatic rocks crop out as high-grade gneisses, tectonically interleaved with highly-deformed basement slivers during the collisional episodes.

The Macaúbas and Andrelândia groups (Paciullo et al. 2000Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia Basin, a Neoproterozoicintra-plate continental margin,southern Brasília Belt. Revista Brasileira de Geociências, 30(1):200-202., Pedrosa Soares et al. 1998Pedrosa-Soares A.C., Vidal P., Leonardos O.H., Brito-Neves B.B. 1998. Neoprotero-zoic oceanic remnants in eastern Brazil: further evidence and refutation of an exclusively ensialic evolution for the Araçuaí-West Congo orogen. Geology, 26(6):519-522. https://doi.org/10.1130/0091-7613(1998)026%3C0519:NORIEB%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1998)0...
, 2000Pedrosa-Soares A.C., Wiedemann-Leonardos C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: Cordani U., Milani E., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. São Paulo, Sociedade Brasileira de Geologia, p. 265-285.) represent the main Neoproterozoic passive margin sedimentary sequences of the Araçuaí and Ribeira belts. They are mainly siliciclastic, and depositional age constraints are mostly based on U-Pb ages of detrital zircons from quartzitic rocks (Valeriano et al. 2004Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer H.J., Simões L.S.A. 2004. U Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, 130(1/4):27-55., Valladares et al. 2004Valladares C.S., Machado N., Heilbron M., Gauthier G. 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco Craton, Brazil: implications for the evolution of Proterozoic basin. Gondwana Research, 7(4):913-921. https://doi.org/10.1016/S1342-937X(05)71074-1
https://doi.org/10.1016/S1342-937X(05)71...
, 2008Valladares C.S., Machado N., Heilbron M., Duarte B.P., Gauthier G. 2008. Sedimentary provenance in the central Ribeira belt based on laser-ablation ICPMS 207Pb/206Pb zircon ages. Gondwana Research, 13:516-526. http://dx.doi.org/10.1016/j.gr.2007.05.013
http://dx.doi.org/10.1016/j.gr.2007.05.0...
, Belém et al. 2011Belém J., Pedrosa-Soares A.C., Noce C.M., Silva L.C., Armstrong R., Fleck A., Gradim C.T., Queiroga G.N. 2011. Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2):224-243. https://doi.org/10.18285/geonomos.v19i2.55
https://doi.org/10.18285/geonomos.v19i2....
, Westin & Campos Neto 2013Westin A. & Campos Neto M.C. 2013. Provenance and tectonic setting of the external nappe of the Southern Brasília Orogen. Journal of South American Earth Sciences, 48:220-239. http://dx.doi.org/10.1016/j.jsames.2013.08.006
http://dx.doi.org/10.1016/j.jsames.2013....
, Degler et al. 2017Degler R., Pedrosa-Soares A.C., Dussin I., Queiroga G., Schulz B. 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints for Western Gondwana assembly. Gondwana Research, 57:30-50. http://dx.doi.org/10.1016/j.gr.2017.07.004
http://dx.doi.org/10.1016/j.gr.2017.07.0...
, Frugis & Campos Neto 2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.). Results obtained suggest São Francisco craton source rocks, and the main constraint for the maximum possible sedimentation age of these units is the youngest detrital zircon, ranging in age from Tonian to Cryogenian ages. In several studies, the Cryogenian zircons are interpreted reflecting a shift from passive margin to active tectonic setting, with provenance from approaching magmatic arcs (Campos Neto et al. 2011Campos Neto M.C., Basei M.A.S., Janasi V.A., Moraes R. 2011. Orogen migration and tectonic setting of the Andrelândia Nappe system: an Ediacaran western Gondwana collage, south of São Francisco Craton. Journal of South American Earth Sciences. 32(4):393-406., Belém et al. 2011Belém J., Pedrosa-Soares A.C., Noce C.M., Silva L.C., Armstrong R., Fleck A., Gradim C.T., Queiroga G.N. 2011. Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2):224-243. https://doi.org/10.18285/geonomos.v19i2.55
https://doi.org/10.18285/geonomos.v19i2....
, Degler et al. 2017Degler R., Pedrosa-Soares A.C., Dussin I., Queiroga G., Schulz B. 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints for Western Gondwana assembly. Gondwana Research, 57:30-50. http://dx.doi.org/10.1016/j.gr.2017.07.004
http://dx.doi.org/10.1016/j.gr.2017.07.0...
). The major problem is that most of these studied units are metamorphosed to upper amphibolite to granulite facies, so many of these young zircons shows complex textures, with internal cores with different ages and compositions, suggestive of metamorphic reworking at high temperature that could lead to Pb loss. Therefore, another tool for constraining the depositional age of these high-grade siliciclastic rocks is the age of syn- or post-depositional magmatic rocks.

This study aims to contribute to the understanding of the development of the distal passive margin of the São Francisco paleocontinent by presenting new geological, geochemical and geochronological data for the Barreiro Suite (Heilbron et al. 2012Heilbron M., Tupinambá M., Almeida J.C.H., Valeriano C., Gontijo A., Silva T.M., Menezes P.T.L., Mane M., Palermo N., Pereira R.M. 2012. Introdução. In: Heilbron M. (eds.), Geologia e recursos minerais da folha Santo Antônio de Pádua SF. 26-X-D-VI, escala 1:100.000. Belo Horizonte, CPRM, v. 1, p. 17-21., 2017bHeilbron M., Valeriano C.M., Almeida J.C.H., Eirado L.G. 2017b. Geologia e Recursos Minerais do estado do Rio de Janeiro. 1. ed. Brasília, CPRM, v. 1, 182p.). This recently described unit includes tholeiitic mafic rocks that occur within the distal segment of the Andrelândia basin. However, a further toll for constraining the depositional age of these high-grade siliciclastic rocks is the age of syn or post-depositional magmatic rocks. We also present a comparison of geochemical and Sm-Nd and Sr isotope data from metabasic rocks intercalated in the Andrelândia and Macaúbas sequences with data for basic enclaves and layers that occur within the basement units such as the Juiz de Fora Complex.

TECTONIC SETTING: THE ANDRELÂNDIA GROUP IN THE DISTAL SÃO FRANCISCO PASSIVE MARGIN

The study area is located in the central segment of the Neoproterozoic-Cambrian Ribeira Belt (Almeida et al. 1981Almeida F.F.M. de, Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth-Science Reviews, 17(1-2):1-29. https://doi.org/10.1016/0012-8252(81)90003-9
https://doi.org/10.1016/0012-8252(81)900...
, Heilbron et al. 2004Heilbron M., Pedrosa-Soares A.C., Campos Neto M., Silva L.C., Trouw R.A.J., Janasi V.C. 2004. A Província Mantiqueira. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (eds.), O Desvendar de um Continente: A Moderna Geologia da América do Sul e o Legado da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 203-204.). Following the tectonic subdivision of Heilbron et al. (2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá M., Siga O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society Special Publications, 294:211-237. https://doi.org/10.1144/SP294.12
https://doi.org/10.1144/SP294.12...
, 2017aHeilbron M., Ribeiro A., Valeriano C.M., Paciullo F., Almeida J.C.H., Trouw R., Tupinambá M., Silva L.G.E. 2017a. The Ribeira belt. In: Heilbron M., Cordani U.G., Alkmim F. (eds.), São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent. Berlin, Springer, v. 1, p. 277-304.), the Ribeira Belt is divided into four tectono-stratigraphic terranes that sequentially docked against the southeastern portion of the São Francisco paleocontinental passive margin (Fig. 2). From west to east, these terranes are the Occidental Terrane (reworked SFC margin); the Paraíba do Sul-Embú Terrane, docked at ca. 620-595 Ma; the Oriental Terrane, docked at ca. 605-565 Ma; and the Cabo Frio Terrane, docked at ca. 535-510 Ma.

Figure 2.
Tectonic map of central Ribeira Belt, modified from Heilbron et al. (2017aHeilbron M., Valeriano C.M., Almeida J.C.H., Eirado L.G. 2017b. Geologia e Recursos Minerais do estado do Rio de Janeiro. 1. ed. Brasília, CPRM, v. 1, 182p.). The green rectangle shows the studied area.

The Occidental Terrane, the focus of this work, is regarded as the reworked passive margin of the São Francisco paleocontinent and comprises three major litho-tectonic units:

  • reworked Paleoproterozoic basement and bimodal Mesoproterozoic magmatic rocks (Heilbron et al. 1998Heilbron M., Duarte B.P., Nogueira J.R. 1998. The Juiz de Fora complex of the Central Ribeira belt, SE Brazil: a segment of Paleoproterozoic granulitic crust thrust during the Pan-African Orogen. Gondwana Research, 1(3):373-381. http://dx.doi.org/10.1016/S1342-937X(05)70853-4
    http://dx.doi.org/10.1016/S1342-937X(05)...
    , 2010Heilbron M., Duarte B.P., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: Implications for paleogeography reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, 178(1):136-148. http://dx.doi.org/10.1016/j.precamres.2010.02.002
    http://dx.doi.org/10.1016/j.precamres.20...
    , Noce et al. 2007Noce C.M., Pedrosa-Soares A.C., Silva L.C., Armstrong R., Piuzana D. 2007. Evolution of polycyclic basement complexes in the Araçuaí orogen, based on U-Pb SHRIMP data: Implication of Brazil-Africa links in Paleoproterozoic time. Precambrian Research, 159:60-78., Degler et al. 2018Degler R., Pedrosa-Soares A.C., Novo T., Tedeschi M., Silva L.C., Dussin I., Lana C. 2018. Rhyacian-Orosirian isotopic records from the basement of theAraçuaí-Ribeira orogenic system (SE Brazil): Links in the Congo-São Francisco paleocontinent. Precambrian Research, 317:179-195. http://dx.doi.org/10.1016/j.precamres.2018.08.018
    http://dx.doi.org/10.1016/j.precamres.20...
    );

  • a Neoproterozoic metasedimentary sequence described originally as the Andrelândia Group (Paciullo et al. 2000Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia Basin, a Neoproterozoicintra-plate continental margin,southern Brasília Belt. Revista Brasileira de Geociências, 30(1):200-202.);

  • syn- to late-collisional Neoproterozoic granitoid rocks (Fig. 2).

Studies carried out in the proximal zone of the Neoproterozoic passive margin (Paciullo 1997Paciullo F.V.P. 1997. A Sequência Deposicional Andrelândia. Doctoral Thesis, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro., Paciullo et al. 2000Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia Basin, a Neoproterozoicintra-plate continental margin,southern Brasília Belt. Revista Brasileira de Geociências, 30(1):200-202., Ribeiro et al. 1995Ribeiro A., Trouw R.A.J, Andreis R.R., Paciullo F.V.P., Valença J.G. 1995. Evolução das bacias proterozóicas e o termo-tectonismo brasiliano na margem sul do cráton do São Francisco. Revista Brasileira de Geociências, 25:235-248.) proposed a subdivision of the Andrelândia Group into two major sequences. The basal Carrancas Sequence (informal designation) comprises psammitic banded gneisses with quartzites, pelitic schist and amphibolite intercalations (A1 + A2), followed by a regressive succession of quartzites bearing characteristic green muscovite (A3), succeeded by a transgressive succession of graphite-rich grey schists and feldspathic quartzites (A4). The overlying Serra do Turvo Sequence consists of pelitic schists and gneisses (A6), followed by the uppermost unit of plagioclase-rich schists and gneisses (A5). In the distal segment of the passive margin, where our study is located, only the basal unit (A1 + A2 equivalent?) and a pelitic unit of paragnais and schist (A6) are present. In the recent geological map of Rio de Janeiro State (Heilbron et al. 2017bHeilbron M., Valeriano C.M., Almeida J.C.H., Eirado L.G. 2017b. Geologia e Recursos Minerais do estado do Rio de Janeiro. 1. ed. Brasília, CPRM, v. 1, 182p.), the name of Raposos Group was adopted for this distal portion of the Andrelândia Group. Because of intense tectonic shuffling with basement rocks of the Juiz de Fora Complex, and metamorphic conditions up granulite facies, the reconstruction of the architecture of this distal basin is difficult.

Major attempts to determine the depositional age of the Andrelândia Group were based on detrital zircons in metasedimentary rocks and on few Sm-Nd model ages of intercalated metabasic rocks (Heilbron et al. 1989Heilbron M., Gonçalves M.L., Teixeira W., Trouw R.A.J., Padilha A., Kawashita K. 1989. Geocronologia da área entre Lavras, São João del Rei, Lima Duarte e Caxambu. Anais da Academia Brasileira de Ciências, 61(2):177-199., Frugis & Campos Neto 2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.). Most data point a Tonian onset of sedimentation after ca. 1.0-0.9 Ga (Valeriano et al. 2004Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer H.J., Simões L.S.A. 2004. U Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, 130(1/4):27-55., Valladares et al. 2004Valladares C.S., Machado N., Heilbron M., Gauthier G. 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco Craton, Brazil: implications for the evolution of Proterozoic basin. Gondwana Research, 7(4):913-921. https://doi.org/10.1016/S1342-937X(05)71074-1
https://doi.org/10.1016/S1342-937X(05)71...
. On the other hand, younger Neoproterozoic zircons with ages of ca. 680 Ma for the A5 unit have been attributed to provenance from magmatic arcs during the orogenic stage (Belém et al. 2011Belém J., Pedrosa-Soares A.C., Noce C.M., Silva L.C., Armstrong R., Fleck A., Gradim C.T., Queiroga G.N. 2011. Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2):224-243. https://doi.org/10.18285/geonomos.v19i2.55
https://doi.org/10.18285/geonomos.v19i2....
, Frugis & Campos Neto 2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57., Westin & Campos Neto 2013Westin A. & Campos Neto M.C. 2013. Provenance and tectonic setting of the external nappe of the Southern Brasília Orogen. Journal of South American Earth Sciences, 48:220-239. http://dx.doi.org/10.1016/j.jsames.2013.08.006
http://dx.doi.org/10.1016/j.jsames.2013....
), indicating a shift to an active setting. It is important to stress that high-pressure granulite facies metamorphism between 640 and 600 Ma hampers precise determination of the minimum age of sedimentation (Coelho et al. 2017Coelho M.B., Trouw R.A.J., Ganade de Araújo C.E., Vinagre R., Mendes J.C., Sato K. 2017. Constraining timing and P-T conditions of continental collision and late overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System. Precambrian Research, 292:194-215. https://doi.org/10.1016/j.precamres.2017.02.001
https://doi.org/10.1016/j.precamres.2017...
, Heilbron et al. 2017aHeilbron H., Cordani U., Alkmim F., Reis H. 2017a. Tectonic Genealogy of a Miniature Continent. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds.), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Berlin, Springer., Trouw et al. 2013Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. Journal of South American Earth Sciences, 48:43-57.).

Metabasic rocks are interlayered with the A1 + A2 and A6 units and normally parallel to the primary sedimentary bedding. They vary from fine-grained and foliated amphibolites to coarse-grained mafic granulites. In the high-pressure metamorphic facies, garnet + clinopyroxene + quartz is a very common assemblage in the lower Andrelândia nappe system. Relics of retro-eclogite have been described by Silva et al. (2002Silva L.C., Armstrong R., Noce C.M., Carneiro M., Pimentel M., Pedrosa-Soares A.C., Leite C., Vieira V.S., Silva M., Paes V., Cardoso-Filho J. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP; parte II: Orógeno Araçuaí, Cinturão Móvel Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências, 32(4):513-528.), Trouw et al. (2000Trouw R.A.J., Heilbron M., Ribeiro A., Valeriano C., Paciullo F., Almeida J.C.H., Tupinambá M. 2000. The Central Segment of the Ribeira belt. In: Cordani U., Milani E., Thomaz-Filho A., Campos D. (eds.). Geotectonics of South America. Rio de Janeiro, CPRM, v. 1, p. 287-310., 2013Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. Journal of South American Earth Sciences, 48:43-57.), Campos Neto (2000Campos Neto M.C. 2000. Orogenic systems from Southwestern Gondwana, an approach to Brasiliano-Pan African cycle and orogenic collage in south-eastern Brazil. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. Rio de Janeiro, SBG.), and by Coelho et al. (2017Coelho M.B., Trouw R.A.J., Ganade de Araújo C.E., Vinagre R., Mendes J.C., Sato K. 2017. Constraining timing and P-T conditions of continental collision and late overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System. Precambrian Research, 292:194-215. https://doi.org/10.1016/j.precamres.2017.02.001
https://doi.org/10.1016/j.precamres.2017...
). In the upper nappe system, referred to Heilbron et al. (2000Heilbron M., Duarte B.P., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: Implications for paleogeography reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, 178(1):136-148. http://dx.doi.org/10.1016/j.precamres.2010.02.002
http://dx.doi.org/10.1016/j.precamres.20...
) as the Juiz de Fora crustal duplex system, (garnet) + orthopyroxene + clinopyroxene + quartz is the most common assemblage (Duarte et al. 2003Duarte B., Heilbron M., Nogueira J.R., Tupinambá M., Eirado L.G., Valladares C., Almeida J.C.H., Guia C. 2003. Geologia das Folhas Juiz de Fora e Chiador. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.). Projeto Sul de Minas. Belo Horizonte, COMIG/SEME, v. 1. p. 153-258.).

Gonçalves & Figueiredo (1992Gonçalves M.L. & Figueiredo M.C.H. 1992. Geoquímica dos Anfibolitos de Santana do Garambéu (MG): Implicações Tectônicas sobre a Evolução do Grupo Andrelândia. Geochimica Brasiliensis, 6(2):127-140.) studied mafic rocks that occur near the town of Andrelândia, while Marins (2000Marins G. 2000. Petrologia dos Anfibolitos do Domínio Juiz de Fora e da Klippe Paraíba do Sul, no Setor Central da Faixa Ribeira. MS Dissertation, Programa em Análise de Bacias e Faixas Móveis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.) presented geochemical data for mafic rocks located between Conservatória and Barra do Piraí. Both studies report intraplate to MORB-like signatures. A few Sm-Nd model ages of ca. 1.0 Ga were also reported for mafic rocks near Andrelândia town (Heilbron et al. 1989Heilbron M., Gonçalves M.L., Teixeira W., Trouw R.A.J., Padilha A., Kawashita K. 1989. Geocronologia da área entre Lavras, São João del Rei, Lima Duarte e Caxambu. Anais da Academia Brasileira de Ciências, 61(2):177-199.).

MAFIC ROCKS OF THE STUDY AREA: GEOLOGY AND PETROGRAPHY

Centimetric to decametric enclaves of metabasic rocks are interlayered within rocks of the Neoproterozoic Andrelândia Group and the orthogranulites of the Juiz de Fora Complex.

The Barreiro Suite is dominated by metabasic bodies shown in the 1:100.000 geological maps of Santo Antônio de Pádua (Heilbron et al. 2012Heilbron M., Tupinambá M., Almeida J.C.H., Valeriano C., Gontijo A., Silva T.M., Menezes P.T.L., Mane M., Palermo N., Pereira R.M. 2012. Introdução. In: Heilbron M. (eds.), Geologia e recursos minerais da folha Santo Antônio de Pádua SF. 26-X-D-VI, escala 1:100.000. Belo Horizonte, CPRM, v. 1, p. 17-21.) and Ubá (Noce et al. 2003Noce C.M., Romano A.W., Pinheiro C.M., Mol V.S., Pedrosa-Soares A.C. 2003. Geologia das Folhas Ubá e Muriaé. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (eds.), Geologia e Recursos Minerais do Sudeste Mineiro. Belo Horizonte, COMIG, p. 623-659.) sheets. A decametric-scale mafic body was described within the orthogranulites of the Juiz de Fora Complex. Initially, our work was conducted to date this mafic occurrence. However, our detailed geological mapping shows that the Barreiro suite also occur within the Andrelândia metasedimentary rocks and within the ca. 620-595 Ma syn-collisional garnet charnockites (diatexites) of the Salvaterra suite (Duarte et al. 2013Duarte B., Heilbron M., Nogueira J.R., Tupinambá M., Eirado L.G., Valladares C., Almeida J.C.H., Guia C. 2003. Geologia das Folhas Juiz de Fora e Chiador. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.). Projeto Sul de Minas. Belo Horizonte, COMIG/SEME, v. 1. p. 153-258.) (Fig. 3). The major mafic bodies occur in the western part of the mapped area, as enclaves within this syn-collision Brasiliano granitoid suite. For comparison, these minor lenses within the other country rocks were sampled.

Figure 3.
Geological map of the studied area with the location of the analysed enclaves from the country rocks.

The contact relationships with country rocks are different in the two situations. The lenses in the garnet charnockite, especially the centimentric ones, show textural evidence of partial digestion, suggesting that they are refractory material that survived partial melting.

Mafic lenses within the Andrelândia Group and the Juiz de Fora Complex

The mafic lenses (Figs. 3 and 4) have centimetre to decametre dimensions and display at least two types of relationships with country rocks. Some of the largest bodies display very sharp contacts either with the metasedimentary rocks of the Andrelândia Group, or with the orthogranulites of the Juiz de Fora Complex. On the other hand, centimetric scale enclaves within the orthogranulites show diffuse contacts possibly indicating that they have a common magmatic origin (Fig. 5).

Figure 4.
Geological map of the Barreiro Suite, with the location of the analysed rocks. All samples gave the same prefix code RE-CE.

Figure 5.
Outcrop images of country rocks of the Barreiro Suite. (A) Garnet-biotite gneiss of the Andrelândia Group; (B) hand sample of Opx-bearing granitoid of the Salvaterra Suite; (C) contact between the leuco-charnockite of the Juiz de Fora Complex and the grey foliated granite of the Bonfim Suite; (D) stretched mafic granulite included in the ortho-granulites of the Juiz de Fora Complex.

Mafic enclaves are granulite facies rocks, containing ortho and clinopyroxene, and locally garnet (Fig. 5). Hornblende, biotite and plagioclase also occurs, besides accessory phases such as ilmenite, zircon and apatite. Textures vary from granoblastic to mylonitic, compatible with those of the country rocks.

The Barreiro Suite

In the larger (up to 50 m) lenses of the Barreiro Suite (Fig. 4), two lithofacies were observed, consisting respectively of medium to fine- and coarse-grained rocks (Fig. 6). Because of the quality of the outcrops, mainly as quasi in-situ mega-boulders, it was not possible to clearly observe the relationships between these two facies. In the field, both occurs as dark gray rocks with a subtle foliation. However, under the microscope, there is a granonematoblastic texture where a visible foliation is defined by the preferential orientation of the mafic minerals. Deformational textures such as incomplete twinning of feldspars, undulose extinction and polygonal granoblastic contacts are commonly observed. The coarse-grained facies rocks locally contain plagioclase porphyroblasts, possibly representing relics of magmatic megacrysts.

Figure 6.
(A) Hand sample and (B) photomicrograph of the coarse-grained variety of metabasic rocks of the Barreiro Suite; (C) hand sample and (D) photomicrograph of the fine-grained variety of the metabasic rocks of the Barreiro Suite; (E) general overview of the Barreiro Suite outcrops with dispersed boulders.

The main mineralogy of both facies is represented by orthopyroxene, clinopyroxene, dark hornblende, plagioclase and opaque phases, mainly ilmenite. Biotite and hornblende also occur along the margins of the pyroxenes, suggesting formation by retrogressive reactions. Apatite, quartz and zircon are the common accessory phases.

Geochemistry

Sampling and analytical procedures

Nineteen samples of the metabasic rocks of the Barreiro suite and 23 samples of mafic lenses within Andrelândia Group and Juiz de Fora Complex rocks were selected for geochemical analyses (Tab. 1). Samples were crushed and milled at the Laboratório de Preparação de Amostras (LGPA) of the Universidade do Estado do Rio de Janeiro (UERJ). Activation Laboratories (Ontario, Canada) performed major and trace element analysis, including Rare Earth Elements (REE). Details of the analytical techniques used by this laboratory are presented at www.actlabs.com. Treatment of the data was carried out using the GeoChemical Data ToolKIT (GCDkit) software of Janoušek et al. (2006Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
https://doi.org/10.1093/petrology/egl013...
).

Table 1.
Geochemical data of the metabasic rocks

RESULTS

The rocks of the Barreiro suite (Tab. 1) range from gabbros to diorites, with silica contents between 47.98 and 54.48%, MgO 2.97-7.45%, and TiO2 1.72-3.77. They define a subalkaline tholeiitic series that can be subdivided into high (> 2.2%) and low-TiO2 (< 2.2%) groups (Fig. 7). Both geochemical groups are recognized in both the coarse-and fine-grained varieties of the Barreiro suite. As expected, the High-TiO2 group displays relatively higher contents of P2O5, REE and high field strengh elements (HFSE) elements such as Zr, Ba and Y. The low-TiO2 group is less evolved or less contaminated as expressed by higher MgO and CaO contents and lower FeOt contents. The chondrite-normalized REE diagrams (Fig. 7) display enrichment in total content of REE and the negative Eu\Eu* anomalies of the High-TiO2 group. In all tectonic discriminant diagrams (Fig. 8), both groups consistently suggest intraplate continental (CT and E-MORB) to passive margin (E-MORB) environments, with both continental tholeiites and E-MORB signatures. The plosts involving the high-field strength elements, Tb, Ta, Th and Nb (Figs. 8E, 8F) seem to rule out extensional back-arc settings.

Figure 7.
Geochemical data for the rocks of the Barreiro Suite and mafic enclaves within the country rocks: (A) binary TiO2 × SiO2 diagram with subdivision into two groups; (B) chemical classification of the analysed rocks in the TAS diagram of Cox et al. (1989Cox K.G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342:873-877. http://dx.doi.org/10.1038/342873a0
http://dx.doi.org/10.1038/342873a0...
); (C) chemical classification in the R1 × R2 diagram of De La Roche et al. (1980De la Roche H., Leterrier J., Grand Claude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1--R2 diagrams and major element analyses - its relationships with current nomenclature. Chemical Geology ., 29:183-210.); (D) AFM diagram of Irvine and Baragar (1971Irvine T.N. & Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
https://doi.org/10.1139/e71-055...
); (E) chrondrite-normalized spidergram of the High-TiO2 and Low-TiO2 groups of the Barreiro Suite; (F) chrondrite-normalized spidergram including alkaline basic enclaves in the Andrelândia Group and Juiz de Fora Complex. Both spidergrams were normalized using the chondrite composition of Boynton (1984Boynton WV. 1984. Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson P. (eds). Rare Earth Element Geochemistry. Elsevier, New York, p. 63-114.).

Figure 8.
Plot of analyzed sample in tectonic diagrams: (A) Zr/4- 2Nb-Y triangular diagram of Meschede (1986Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56:207-218.); (B) Zi × Ti of Pearce (1982Pearce J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.), Andesites: orogenie andesites and related rocks. Chichester, Wiley, p. 525-548.); (C) TiO2 x 10 MnO × 10 P2O5 triangular diagram of Mullen (1983); and (D) Ti x V diagram of Shervais (1982Shervais J.V. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59:101-118.), (E) triangular diagram of Cabanis and Thiéblemont (1988), in Xia and Li (2019Xia L. & Li X. 2019. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65:43-67. http://dx.doi.org/10.1016/j.gr.2018.08.006
http://dx.doi.org/10.1016/j.gr.2018.08.0...
); (F) normalized binary diagram of Scanni (2015Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4):481-501. https://doi.org/10.1016/j.gsf.2014.03.006
https://doi.org/10.1016/j.gsf.2014.03.00...
) (normalized by Sun & McDonough 1989Sun S. & McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. ln: Saunders A.D., Norry M.J. (eds.), Magmatism in the Ocean Basins. London, Geological Society, p. 313-345.)

On the other hand, as expected, the mafic enclaves included in both the Andrelândia metasedimentary rocks and the orthogranulites of the Juiz de Fora Complex display heterogeneous geochemical signatures, suggesting different tectonic environments. Using the geochemical data, the enclaves of the country rocks were tentatively separated into four groups (Figs. 7 and 8):

  • Group 1 with tholeiitic intraplate signatures, mostly with low-TiO2 contents, with the exception of a single sample. These enclaves occur both within the orthogranulites of the Juiz de Fora complex and in the metasedimentary rocks of the Andrelândia group. Their geochemical signature is very similar to that obtained from the low-TiO2 rocks of the Barreiro Suite;

  • Group 2 comprises low-TiO2 samples with E-MORB compositions;

  • Group 3 comprises intraplate alkaline mafic rocks, which occur in both the cover and basement associations;

  • Group 4 represents the most common signatures for the mafic enclaves within the Juiz de Fora Complex, comprising tholeiitic to calcalkaline compositions (IAT and to CAB), indicating arc-related environments. As mafic rocks of this group crop out only within the orthogranulites of the Juiz de Fora complex, we suggest that they belong to the convergent Rhyacian history of the basement.

Enclaves of groups 1 to 3 (both Andrelândia Group and Juiz de Fora Complex) and all Barreiro Suite samples plot in the intraplate to passive margin extensional settings (Fig. 8). On the other hand, the Group 4 of the Juiz de Fora Complex (CAB to IAT convergent tectonic settings) is probably related with the Rhyacian history of the basement (Fig. 8).

U-PB GEOCHRONOLOGY AND HF ISOTOPES OF THE BARREIRO SUITE

In order to constrain the age of the intraplate magmatism of the Barreiro Suite, sample MI-BR-68, a diorite, was selected for U-Pb analysis. This sample produced the largest number of recovered zircons suitable for geochronological investigation.

Preparation and analytical procedures

The sample preparation involved crushing (ca. 30 kg) and manual panning, followed by density and magnetic separation in the LGPA laboratory of the UERJ. Zircons typically show pale brown to pink colors, with short prismatic habit (2:1 to 3:1 aspect ratios), and less commonly with sub-equant shapes. Scanning electron microscope cathodoluminescence images were obtained at the MULTILAB facilities of the UERJ. Most of the grains display complex zoning patterns, rounded bright overgrowths and resorption textures that, with typical soccer ball grains, are typical of high-grade metamorphism (Rubatto 2017Rubatto D. 2017. Zircon: The Metamorphic Mineral. In: Kohn M.J., Engi M., Lanari P. (eds.), Petrochronology. Reviews in Mineralogy and Geochemistry, 83:261-289.).

U-Pb isotopic data were obtained at the Geochronology Laboratory of the Universidade de Brasília (UnB) using a Thermo-Finnigan Neptune multicollector inductively coupled plasma mass spectrometer connected to a “New Wave 213 mm Nd-YAG” laser beam with spot diameters of 30 to 50 µm, and frequency of 6 to 10 Hz. Bracketing technique of analyses, described in detail by Bühn et al. (2009Bühn B., Pimentel M.M., Matteini M., Dantas E. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Anais da Academia Brasileira de Ciências, 81(1):99-114. http://dx.doi.org/10.1590/S0001-37652009000100011
http://dx.doi.org/10.1590/S0001-37652009...
), involved the use of the JG1, Temora 2 and FC1 standards. For the standard and sample analyses, isotope ratio measurements consist of blocks of 40 cycles, each with 1.049 sec duration.

Analyses with either errors higher than 10% for isotope ratios, 204Pb contents higher than 0.5%, or discordance above 5%, were not considered in the age calculations. Analyses with 206Pb/204Pb ratios higher than 3,000 indicate negligible common Pb contents, obviating the need for common Pb correction. When necessary, the correction is made with the in-house spreadsheet of Bühn et al. (2009Bühn B., Pimentel M.M., Matteini M., Dantas E. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Anais da Academia Brasileira de Ciências, 81(1):99-114. http://dx.doi.org/10.1590/S0001-37652009000100011
http://dx.doi.org/10.1590/S0001-37652009...
), following Stacey and Kramers (1975Stacey J.S. & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Science Letters, 26:207-221.). Age calculations and plots were performed with the Isoplot V.3 software of Ludwig (2003Ludwig K.R. 2003. Isoplot 3.00, A Geochronological Toolkit for Excel: Berkeley Geochronology Center Special Publication No. 4.).

The Lu-Hf analyses were performed at the University of Notre Dame (USA), using a UP193 nm laser ablation system coupled to a NuPlasma II Multi-Collector ICPMS. The Lu-Hf spots were located as the same zircon texture domains of the U-Pb spots. Analytical conditions were laser spots of 50 µm diameter, 60 s of ablation after a run of 30 s for background, pulse of 5 Hz corresponding to an energy fluence of ~10 J/cm2. Methodology followed the protocol of Simonetti and Neal (2010Simonetti A., Neal C.R. 2010. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth and Planetary Science Letters, 295:251-261. http://dx.doi.org/10.1016/j.epsl.2010.04.004
http://dx.doi.org/10.1016/j.epsl.2010.04...
), using the Plesovice, BR266 and 1500 standards. Mass interference of 176Lu with 176Hf was corrected using the 176Lu/175Lu ratio of 0.02655 (International Union of Pure and Applied Chemistry 1998International Union of Pure and Applied Chemistry. 1998. Commission on Atomic Weights and Isotopic Abundances. Isotopic Compositions of the Elements 1997. Pure and Applied Chemistry, 70(1):217-235.), and the decay constant of 176Lu of 867 × 10-11 (Söderlund et al. 2004Söderlund U., Patchett J.P., Vervoort J.D., Isachsen C.E. 2004. The 176Lu decay constantdetermined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/S0012-821X(04)00012-3
https://doi.org/10.1016/S0012-821X(04)00...
). Chondritic ratios used for εHf calculations were 176Hf/177Hf = 279718, 176Lu/177Hf = 0.0336 (Bouvier et al. 2008Bouvier A., Vervoort J.D., Patchett P.J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
https://doi.org/10.1016/j.epsl.2008.06.0...
), and present-day depleted mantle ratios of 176Hf/177Hf = 0.28325 and 176Lu/177Hf = 0.0388 (Griffin et al. 2000Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterbergh E., O’Reilly S.Y., Shee S.R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
https://doi.org/10.1016/S0016-7037(99)00...
; updated by Andersen et al. 2009Andersen T., Andersson U.B., Graham S., Åberg G., Simonsen S.L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, 166(2):233-247. http://dx.doi.org/10.1144/0016-76492007-166
http://dx.doi.org/10.1144/0016-76492007-...
).

U-Pb results

Analysis of sample MI-BR-68 produced 45 spots (Tab. 2), nine of which were discarded due to poor analytical parameters such as isotope ratios errors higher than 10%, 204Pb contents higher than 0.5%, or discordance above 5%.

Table 2.
Summary of U-Pb zircon data obtained by inductively coupled plasma mass spectrometry (LA-ICPMS) (Mi-BR-68) - ZIRCON

All zircons plot along the Concordia between ca. 780 Ma and ca. 610 Ma (Fig. 9), perhaps suggesting ion diffusion under high-temperatures of the regional granulite facies metamorphism. It also confuses distinction between igneous and metamorphic zirons on the basis of zircon textures and Th/U (Rubatto 2017Rubatto D. 2017. Zircon: The Metamorphic Mineral. In: Kohn M.J., Engi M., Lanari P. (eds.), Petrochronology. Reviews in Mineralogy and Geochemistry, 83:261-289.). However, based on the bimodal pattern of the probability density plot of 207 Pb/206 Pb ages (Fig. 9), a group of 8 zircons with concentric oscillatory zoning and relatively high Th/U ratios (Rubatto 2017Rubatto D. 2017. Zircon: The Metamorphic Mineral. In: Kohn M.J., Engi M., Lanari P. (eds.), Petrochronology. Reviews in Mineralogy and Geochemistry, 83:261-289.) yielded a Concordia age of 766 ± 13 Ma, interpreted as the age of reference for the mafic magmatism. The cluster of younger zircons, with relatively lower Th/U ratios, yielded a Concordia age of 619 ± 6 Ma, interpreted as the best estimate for the age of the metamorphic overprint. This latter age is comparable with the early metamorphic ages reported for the Ribeira Belt (Bento dos Santos et al. 2007Bento dos Santos T., Munhá J., Tassinari C., Fonseca P., Dias Neto C. 2007. Thermochronological evidence for long-term elevated geothermal gradients in Ribeira Belt, SE Brazil. Geochimica et Cosmochimica Acta, 71(15 Suppl. 1):A79., Machado et al. 1996Machado N., Valladares C., Heilbron M., Valeriano C. 1996. U/Pb Geochronology Of Central Ribeira Belt: Implications For The Evolution Of Brasiliano Orogeny. Precambrian Research, 79(3):347-361., Heilbron & Machado 2003Heilbron M. & Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira belt (se Brazil). Precambrian Research, 125(1-2):87-112.). Field observations support this interpretation, such as the presence of thin leucocratic intrusive veins and partial digestion of the mafic enclaves of the Barreiro Suite within the syn-collisional granitoid rocks.

Figure 9.
LA_ICPMS U-Pb data for sample MI-BR-68 of the Barreiro Suite. (A) Concordia diagram for all analysed zircons, indicating the Mesoproterozoic and Paleoproterozoic inheritance; (B) relative probability plot of 207Pb/206Pb ages showing the bimodal pattern; (C) calculated crystallization age of 766 ± 3 Ma with selected images of analysed zircons; (D) calculated high-grade metamorphic overprint age of 619 ± 6 Ma.

Three inherited zircons, with ages of ca. 1.38 Ga, 2.14 Ga and 2.15 Ga, reflect the basement associations of the Occidental terrane of the Ribeira Belt, confirming the intraplate setting of the Barreiro Suite as indicated by geochemical criteria.

Lu-Hf results

Lu-Hf analyses (Tab. 3) were performed on the same sample as the U-Pb analyses. Zircon grains were selected for the investigation of crystallization age, metamorphic overprint and inheritance. Measured 176Hf/177Hf ratios vary between 0.281927 and 0.282559, while 176Lu/177Hf ratios are below 0.0015.

Table 3.
Lu-Hf data of sample MI-BR-68

Zircons with late Tonian ages, interpreted as crystallization ages, yield a broad spectrum of TDM Hf model ages, as expected for intraplate basaltic rocks, ranging from ca. 1.75 to 0.96 Ga with predominantly positive εHf(t = 766) values between + 5.61 and + 0.24. Two grains yielded negatives εHf(t = 766) values of -10.97 and of -4.07 (Fig. 10).

Figure 10.
Hf evolution diagram for the analysed zircons. The blue ellipse highlights data for zircons defining the crystallization age, while the red ellipse shows the data for metamorphic zircons. A single datum for the Mesoproterozoic inherited zircon grain is presented in yellow. Selected images with both the U-Pb and Lu-Hf targets and Th-U ratios are presented below. As expected for high-grade metamorphism the analysed zircons do not have low Th/U ratios.

On the other hand, most of the Ediacaran metamorphic zircons and overgrowths, with U-Pb ages between 624 and 594 Ma, yielded Hf TDM model ages between 1.80 Ga and 1.04 Ga, with negative εHf(t = 766) values between -10.86 and -1.82. The metamorphic zircons are interpreted as having grown from in situ melting films within the basic rocks, the preservation of primary 176Hf/177Hf compositions in metamorphic zircon can be usually attributed to subsolidus recrystallization (Zeh et al. 2010Zeh A., Gerdes A., Will T.M., Frimmel H.E. 2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: examples from the Shackleton Range (Antarctica). Geochimica et Cosmochimica Acta, 74(16):4740-4758. http://dx.doi.org/10.1016/j.gca.2010.05.016
http://dx.doi.org/10.1016/j.gca.2010.05....
), as strongly suggested by very complex textures detected on the cathodoluminescence images. Tedeschi et al. (2018Tedeschi M., Pedrosa-Soares A.C., Dussin I., Lanarid P., Novo T., Pinheiro M.A., Lana C., Peters D. 2018. Protracted zircon geochronological record of UHT garnet-free granulites in the Southern Brasília orogen (SE Brazil): Petrochronological constraints on magmatism and metamorphism. Precambrian Research, 316:101-126. http://dx.doi.org/10.1016/j.precamres.2018.07.023
http://dx.doi.org/10.1016/j.precamres.20...
) obtained similar results for high-temperature granulites in the Southern Brasília belt.

The single grain with age of ca. 1.39 Ga represents inheritance, with a Hf TDM model age of 1.62 Ga with εHf(t = 1.62) of +5.61, suggesting juvenile sources.

Sm-Nd AND Sr ISOTOPES

Analytical procedures

Thirteen samples of the Barreiro suite and from mafic enclaves within Juiz de Fora Complex and Andrelândia Group country rocks were selected. Samples preparation involved fragmentation with a jaw crusher and milling at the LGPA-UERJ.

Sm-Nd and Sr isotopic data were obtained by at the Laboratory Geochronology and Radiogenic Isotopes (LAGIR) of the UERJ, where chemical procedures are carried out in clean rooms using purification of Milli-Q® water and PA Merck® acids purified by repeated sub-boiling distillation. Between 25 and 50 mg of pulverized rock samples were subjected to digestion in Savillex® vessels on a hot plate, after the addition of proportional amounts of a double 149Sm-150Nd tracer, using a mixture of concentrated HF and HNO3 6N for 3 days, followed by further digestion with HCl 6N for 2 days. Separation of Sr and REE used cation exchange following conventional techniques with Teflon columns filled with Biorad AG50W-X8 resin (100-200 mesh) in HCl medium. For the separation of Sm and Nd from the other REE, a secondary column was used with the Eichrom LN-B-25S (50-100 µm) resin.

After evaporation Sm, Nd and Sr samples were separately loaded onto previously degassed Re filaments assembled in double filament mounts, using H3PO4 as ionization activator.

Isotope ratios were measured with a Thermo Scientific TRITON in static mode using up to 8 Faraday collectors. The measured isotope ratios are reported with absolute standard errors (2σ) below 0.00001. The measured ratios were normalized respectively to the natural constant ratios of 146Nd/144Nd = 0.7219, 147Sm/152Sm = 0.5608 and 88Sr/86Sr = 8.3762. The average 143Nd/144Nd ratio of repeated measurements of the JNdi-1 reference material (Tanaka et al. 2000Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T.,Yuhara M., Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M., Dragusanu C. 2000. JNdi-1: a neodymium isotopic reference in consistency with Lajolla neodymium. Chemical Geology, 168:279-281. http://dx.doi.org/10.1016/S0009-2541(00)00198-4
http://dx.doi.org/10.1016/S0009-2541(00)...
) is 0.512098 ± 0.000006 (n = 322). The average 87Sr/86Sr ratio of the NBS-987 reference material (Wise & Waters 2007Wise S.A. & Waters R.L. 2007. Certificate of analysis standard reference material® 987 Strontium Carbonate (Isotopic Standard). NIST National Institute of Standards & Technology, 2 p. Available at: <https://www.nist.gov>.
https://www.nist.gov...
) is 0.710239 ± 0.000007 (n=158). Repeated analyses of the BCR and AVG rock reference materials from the United States Geologic Survey yield 147Sm/144Nd ratios with reproducibility within 1% (Valeriano et al. 2008Valeriano C.M., Vaz G.S., Medeiros S.R., Neto C.C.A., Ragatky C.D. 2008. The Neodymium isotope composition of the JNdi-1 oxide reference material: results from the LAGIR Laboratory, Rio de Janeiro. In: South American Symposium on Isotope Geology, 6., San Carlos de Bariloche, Argentina. Proceedings… p. 1-2. 1 CD-ROM.). Neodymium (TDM) model ages were calculated using the depleted mantle model of De Paolo (1981De Paolo D.J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11):10470-10488. https://doi.org/10.1029/JB086iB11p10470
https://doi.org/10.1029/JB086iB11p10470...
).

Sm-Nd and Sr isotopes results

The location of samples is shown in Figures 3 and 4, and the analytical results are presented in Table 4. Two isotopic groups can be discriminated. The majority of samples, including all those from the Barreiro suite, part of those from the Juiz de Fora Complex, and one single sample occurring within the metasedimentary rocks of Andrelândia-Raposos group yielded late Paleoproterozoic to Mesoproterozoic TDM model ages, between ca. 1.80 Ga and 1.50 Ga. The εNdt values obtained are -8 to -3, and initial 87Sr/86Sr ratios between 0.7017 and 0.7092. This range of values suggests different degrees of contamination from country rocks, as indicated by inherited zircons with old U-Pb ages.

Table 4.
Sm-Nd and Sr isotopic data of the metabasic rocks

Sample RE-CM-28C, with highest Mg number, shows less contaminated isotopic signatures, probably reflecting the primary composition of the mafic magma with low SiO2 and high MgO contents. The young TDM age of 0.97 Ga, εt = +4.1 and initial 87Sr/86Sr 0.7036 of this sample characterize it as the most primitive sample of the Barreiro Suite (Fig. 11).

Figure 11.
Sm-Nd isotopic data for selected analysed samples. (A) Nd evolution diagram; (B) εnd(i) × 87Sr/86Sr(i) diagram for the samples of Barreiro Suite and a few mafic enclaves from the Andrelândia Group and Juiz de Fora Complex.

Three mafic enclaves with geochemical signatures of convergent tectonic settings (IAT/BAB or CAB), found in the Juiz de Fora Complex, yielded TDM ages between 2.58 Ga and 2.16 Ga, with εt between +3.0 and -1.7. These samples display initial 87Sr/86Sr ratios between 0.7004 and 0.7124. These results reflect an older convergent juvenile accretion history of the Juiz de Fora complex, as previously reported by Heilbron et al. (2010Heilbron M., Duarte B.P., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: Implications for paleogeography reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, 178(1):136-148. http://dx.doi.org/10.1016/j.precamres.2010.02.002
http://dx.doi.org/10.1016/j.precamres.20...
) and Degler et al. (2018Degler R., Pedrosa-Soares A.C., Novo T., Tedeschi M., Silva L.C., Dussin I., Lana C. 2018. Rhyacian-Orosirian isotopic records from the basement of theAraçuaí-Ribeira orogenic system (SE Brazil): Links in the Congo-São Francisco paleocontinent. Precambrian Research, 317:179-195. http://dx.doi.org/10.1016/j.precamres.2018.08.018
http://dx.doi.org/10.1016/j.precamres.20...
).

DISCUSSION

Two tectonic settings in the studied area indicated by metabasic rocks

The data presented above, summarized in Table 5, suggest late Tonian (ca. 766 Ma) extensional intraplate magmatism both in the cover and in the basement of the distal segment of the São Francisco paleocontinent passive margin (Andrelândia Group).

Table 5.
Summary of the new data obtained for mafic rocks of the Barreiro Suite and mafic enclaves of Andrelândia Group and Juiz de Fora Complex.

The development of the Andrelândia basin in the proximal zone started in the Mesoproterozoic to Neoproterozoic transition, as indicated by the youngest detrital zircons of ca. 0.9 Ma (Valeriano et al. 2004Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer H.J., Simões L.S.A. 2004. U Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, 130(1/4):27-55., Belém et al. 2011Belém J., Pedrosa-Soares A.C., Noce C.M., Silva L.C., Armstrong R., Fleck A., Gradim C.T., Queiroga G.N. 2011. Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2):224-243. https://doi.org/10.18285/geonomos.v19i2.55
https://doi.org/10.18285/geonomos.v19i2....
) and TDM of interlayered metabasic rocks of ca. 1.0 Ga (Heilbron et al. 1989Heilbron M., Gonçalves M.L., Teixeira W., Trouw R.A.J., Padilha A., Kawashita K. 1989. Geocronologia da área entre Lavras, São João del Rei, Lima Duarte e Caxambu. Anais da Academia Brasileira de Ciências, 61(2):177-199., Frugis & Campos Neto 2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.). The new data presented here indicate that the evolution of the distal passive margin lasted at least until late Tonian times.

This late Tonian within-plate magmatism displays within plate basalts (WPB) signatures, with both high-TiO2 and low-TiO2 groups, with a few samples showing relatively primitive MORB-like signatures. Mafic magmatic rocks intrude both basement rock associations (Juiz de Fora Complex), as well the cover of distal Andrelândia passive margin (Figs. 12 and 13).

Figure 12.
Composite stratigraphic chart for the Andrelândia basin, including proximal (autochthonous and Andrelândia domains) and distal (Andrelândia and Juiz de Fora domains), modified from Ribeiro et al. (2013Ribeiro A., Teixeira W., Dussin I.A., Ávila C.A., Nascimento D. 2013. U-Pb LA-ICP-MS detrital zircon ages of the São João del Rei and Carandaí basins: New evidence of intermittent Proterozoic rifting in the São Francisco paleocontinent. Gondwana Research, 24(2):713-726. http://dx.doi.org/10.1016/j.gr.2012.12.016
http://dx.doi.org/10.1016/j.gr.2012.12.0...
) and Heilbron et al. (2017aHeilbron M., Ribeiro A., Valeriano C.M., Paciullo F., Almeida J.C.H., Trouw R., Tupinambá M., Silva L.G.E. 2017a. The Ribeira belt. In: Heilbron M., Cordani U.G., Alkmim F. (eds.), São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent. Berlin, Springer, v. 1, p. 277-304.). Amphibolite data are from this work, Frugis & Campos Neto (2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.) and Heilbron et al. (1989Heilbron M., Gonçalves M.L., Teixeira W., Trouw R.A.J., Padilha A., Kawashita K. 1989. Geocronologia da área entre Lavras, São João del Rei, Lima Duarte e Caxambu. Anais da Academia Brasileira de Ciências, 61(2):177-199.). Younger detrital zircon was compiled from Valladares et al. (2004Valladares C.S., Machado N., Heilbron M., Gauthier G. 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco Craton, Brazil: implications for the evolution of Proterozoic basin. Gondwana Research, 7(4):913-921. https://doi.org/10.1016/S1342-937X(05)71074-1
https://doi.org/10.1016/S1342-937X(05)71...
, 2008Valladares C.S., Machado N., Heilbron M., Duarte B.P., Gauthier G. 2008. Sedimentary provenance in the central Ribeira belt based on laser-ablation ICPMS 207Pb/206Pb zircon ages. Gondwana Research, 13:516-526. http://dx.doi.org/10.1016/j.gr.2007.05.013
http://dx.doi.org/10.1016/j.gr.2007.05.0...
), Ribeiro et al. (2013Ribeiro A., Teixeira W., Dussin I.A., Ávila C.A., Nascimento D. 2013. U-Pb LA-ICP-MS detrital zircon ages of the São João del Rei and Carandaí basins: New evidence of intermittent Proterozoic rifting in the São Francisco paleocontinent. Gondwana Research, 24(2):713-726. http://dx.doi.org/10.1016/j.gr.2012.12.016
http://dx.doi.org/10.1016/j.gr.2012.12.0...
), Degler et al. (2017Degler R., Pedrosa-Soares A.C., Dussin I., Queiroga G., Schulz B. 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints for Western Gondwana assembly. Gondwana Research, 57:30-50. http://dx.doi.org/10.1016/j.gr.2017.07.004
http://dx.doi.org/10.1016/j.gr.2017.07.0...
), Frugis & Campos Neto (2018Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.).

Figure 13.
A comparison of new data and previously published data for mafic rocks in the region of the Andrelândia deformed basin units. Proximal data are compiled from Paciullo (1997Paciullo F.V.P. 1997. A Sequência Deposicional Andrelândia. Doctoral Thesis, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.) and Gonçalves and Figueiredo (1992Gonçalves M.L. & Figueiredo M.C.H. 1992. Geoquímica dos Anfibolitos de Santana do Garambéu (MG): Implicações Tectônicas sobre a Evolução do Grupo Andrelândia. Geochimica Brasiliensis, 6(2):127-140.), compared with our data for the distal part of the basin (Barreiro Suite) and the mafic enclaves of both the Andrelândia Group and the Juiz de Fora Complex. (A) TiO2 × MgO diagram showing that both proximal and distal samples could be subdivided into the same groups, and (B) plot in the Zi-Ti tectonic diagram of Pearce (1982Pearce J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.), Andesites: orogenie andesites and related rocks. Chichester, Wiley, p. 525-548.), with green, blue, yellow and pink fields to show respectively, the intraplate High- and Low-TiO2 groups, MORB-like samples and a few older mafic enclaves of the Juiz de Fora Complex with arc-related signatures.

A few samples detected only in the Juiz de Fora Complex display convergent tectonic signatures (IAT to CAB) and older TDM model ages, indicating that they probably belong to the Paleoproterozoic history of the basement.

Both associations show evidence of Neoproterozoic Brasiliano overprinting, with high deformation textures and granulite facies metamorphism between ca. 619 (this work) and 565 Ma (Duarte 2003Duarte B., Heilbron M., Nogueira J.R., Tupinambá M., Eirado L.G., Valladares C., Almeida J.C.H., Guia C. 2003. Geologia das Folhas Juiz de Fora e Chiador. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.). Projeto Sul de Minas. Belo Horizonte, COMIG/SEME, v. 1. p. 153-258., Heilbron & Machado 2003Heilbron M. & Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira belt (se Brazil). Precambrian Research, 125(1-2):87-112., Bento dos Santos et al. 2007Bento dos Santos T., Munhá J., Tassinari C., Fonseca P., Dias Neto C. 2007. Thermochronological evidence for long-term elevated geothermal gradients in Ribeira Belt, SE Brazil. Geochimica et Cosmochimica Acta, 71(15 Suppl. 1):A79., Degler et al. 2017Degler R., Pedrosa-Soares A.C., Dussin I., Queiroga G., Schulz B. 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints for Western Gondwana assembly. Gondwana Research, 57:30-50. http://dx.doi.org/10.1016/j.gr.2017.07.004
http://dx.doi.org/10.1016/j.gr.2017.07.0...
).

Correlation with previous data reported for the Andrelândia basin

Previous works have reported combined geochemical and geochronological data for the metabasic rocks interlayered with the metasedimentary rocks of the Andrelândia Basin. In the most proximal region, between Madre de Deus de Minas and Andrelândia towns, southern Minas Gerais State, Gonçalves & Figueiredo (1992Gonçalves M.L. & Figueiredo M.C.H. 1992. Geoquímica dos Anfibolitos de Santana do Garambéu (MG): Implicações Tectônicas sobre a Evolução do Grupo Andrelândia. Geochimica Brasiliensis, 6(2):127-140.) and Paciullo et al. (2000Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia Basin, a Neoproterozoicintra-plate continental margin,southern Brasília Belt. Revista Brasileira de Geociências, 30(1):200-202.) obtained very similar results, with low- and high-TiO2 amphibolites, pointing to intraplate to MORB-like signatures, suggestive of syn-sedimentary magmatism. These authors suggested that the magmatism evolved in time from high-TiO2 intraplate rocks in the lower units to MORB signatures in the upper units of the basin. Marins (2000Marins G. 2000. Petrologia dos Anfibolitos do Domínio Juiz de Fora e da Klippe Paraíba do Sul, no Setor Central da Faixa Ribeira. MS Dissertation, Programa em Análise de Bacias e Faixas Móveis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.) also reported the same geochemical groups for the amphibolites interlayered within the distal portion of the Andrelândia basin (Raposos Group). The comparison between all the available geochemical data is presented in Figure 13 and provides additional evidence of a major episode of intraplate to E-MORB tholeiitic magmatism between 0.9 Ga and 0.77 Ga associated with the development of the southeastern and eastern São Francisco paleocontinent passive margin.

Tectonic implications for the Neoproterozoic passive margin evolution within the Araçuaí-Ribeira orogenic system

The geochronology data presented herein provide constraints to the timing of evolution of the distal segment of the Andrelândia basin (Raposos Group) from ca. 1.0 Ga to ca. 766 Ma (Fig. 12). This age interval agrees well with the evolution of the Macaúbas Group, located to the north, in the Araçuaí Belt. Other reported coeval intraplate magmatic episodes are the Pedro Lessa suite, the Northern Espinhaço mafic dykes and the Salto da Divisa A-type granites, with ages of 910 to 850 Ma, as well as correlative bimodal volcanic rocks and A-type granites in Africa with ages of 930 to 910 Ma (Pedrosa-Soares & Alkmim 2011Pedrosa-Soares A.C. & Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? Geonomos, 19(2). https://doi.org/10.18285/geonomos.v19i2.56
https://doi.org/10.18285/geonomos.v19i2....
, Pedrosa-Soares et al. 2000Pedrosa-Soares A.C., Wiedemann-Leonardos C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: Cordani U., Milani E., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. São Paulo, Sociedade Brasileira de Geologia, p. 265-285., 2016Pedrosa-Soares A.C., Dussin I., Nseka P., Baudet D., Fernandez-Alonso M., Tack L. 2016. Tonian rifting events on the Congo-São Francisco paleocontinent: New evidence from U-Pb and Lu-Hf data from the Shinkakasa plutonic complex (Boma region, West Congo Belt, Democratic Republic of Congo). In: International Geologica Belgica Meeting. Mons, 5., Belgium. Abstract Book…, p. 44.).

Published ages between ca. 735 Ma and 675 Ma, from the Southern Bahia Alkaline Province, and from the La Louila felsic volcanism in southwest Gabon (≤ 713 Ma) constrain the timing of deposition of the top units of the Macaúbas Group and African correlatives (Pedrosa-Soares & Alkmim 2011Pedrosa-Soares A.C. & Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? Geonomos, 19(2). https://doi.org/10.18285/geonomos.v19i2.56
https://doi.org/10.18285/geonomos.v19i2....
). This data indicates that the extensional history of the São Francisco eastern passive margin could have lasted until Cryogenian times, coeval with the development of outboard magmatic arcs eastern wards (Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá M., Siga O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society Special Publications, 294:211-237. https://doi.org/10.1144/SP294.12
https://doi.org/10.1144/SP294.12...
, 2017aHeilbron H., Cordani U., Alkmim F., Reis H. 2017a. Tectonic Genealogy of a Miniature Continent. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds.), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Berlin, Springer.).

CONCLUSIONS

The combination of the data presented herein with previously reported studies for the metabasic rocks of the Ribeira Belts reveals that at least three different episodes of mafic magmatism can be detected in the distal part of the Andrelândia basin and associated basement complexes. The two older episodes are represented by dismembered metabasic rocks found within the orthogranulites of the basement Juiz de Fora Complex and related to the Rhyacian arc (ca. 2.2 to 2.1 Ga) and to Statherian (ca. 1.7 Ga) intraplate magmatism. The youngest episode occurs as dismembered metabasic bodies that intruded both the cover and the basement association, with a late Tonian age of ca. 766 Ma, and clearly displays intraplate signatures associated with the evolution of the distal passive margin (Fig. 13).

An important implication of the characterization of this Late Tonian to Early Cryogenian intraplate metabasic rocks is that they must have shed detrital zircons that have been found sparsely in previous studies on the distal segments of the Andrelândia basin. We suggest that the existence of detrital zircons originated from intraplate magmatic events should be considered in future provenance studies of metasedimentary units of Neoproterozoic succession around the São Francisco craton, rather than necessarily originating from approaching magmatic arcs, as they have been commonly interpreted.

Acknowledgements

The authors are grateful to CPRM-PRONAGEO, CNPq and FAPERJ for research funding, and to the technicians of the laboratories from Brasília (UnB-Brazil), LAGIR (UERJ-Brazil) and Notre Dame (USA) universities. Monica Heilbron and Marcela Lobato were granted respectively Senior Visiting Professor and Sandwich PhD CAPES scholarships. Claudio Valeriano acknowledges a scholarship from CNPq (Estágio Senior no Exterior). We also would like to thank the generous revisions of Brendan Murphy, Robert Pankhurst and a third anonymous reviewer, which helped to improve an earlier version of the manuscript.

REFERENCES

  • Alkmim F.F, Kuchenbecker M., Reis H.L.S., Pedrosa-Soares A.C. 2017. The Araçuaí belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds). São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent. 1 ed. Springer, v. 1, 251-276.
  • Almeida F.F.M. de, Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth-Science Reviews, 17(1-2):1-29. https://doi.org/10.1016/0012-8252(81)90003-9
    » https://doi.org/10.1016/0012-8252(81)90003-9
  • Andersen T., Andersson U.B., Graham S., Åberg G., Simonsen S.L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, 166(2):233-247. http://dx.doi.org/10.1144/0016-76492007-166
    » http://dx.doi.org/10.1144/0016-76492007-166
  • Belém J., Pedrosa-Soares A.C., Noce C.M., Silva L.C., Armstrong R., Fleck A., Gradim C.T., Queiroga G.N. 2011. Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2):224-243. https://doi.org/10.18285/geonomos.v19i2.55
    » https://doi.org/10.18285/geonomos.v19i2.55
  • Bento dos Santos T., Munhá J., Tassinari C., Fonseca P., Dias Neto C. 2007. Thermochronological evidence for long-term elevated geothermal gradients in Ribeira Belt, SE Brazil. Geochimica et Cosmochimica Acta, 71(15 Suppl. 1):A79.
  • Bouvier A., Vervoort J.D., Patchett P.J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
    » https://doi.org/10.1016/j.epsl.2008.06.010
  • Boynton WV. 1984. Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson P. (eds). Rare Earth Element Geochemistry Elsevier, New York, p. 63-114.
  • Bühn B., Pimentel M.M., Matteini M., Dantas E. 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Anais da Academia Brasileira de Ciências, 81(1):99-114. http://dx.doi.org/10.1590/S0001-37652009000100011
    » http://dx.doi.org/10.1590/S0001-37652009000100011
  • Campos Neto M.C. 2000. Orogenic systems from Southwestern Gondwana, an approach to Brasiliano-Pan African cycle and orogenic collage in south-eastern Brazil. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America Rio de Janeiro, SBG.
  • Campos Neto M.C., Basei M.A.S., Janasi V.A., Moraes R. 2011. Orogen migration and tectonic setting of the Andrelândia Nappe system: an Ediacaran western Gondwana collage, south of São Francisco Craton. Journal of South American Earth Sciences 32(4):393-406.
  • Campos Neto M.C., Basei M.A.S., Vlach S.R.F., Caby R., Szabo G.A.J., Vasconcelos P. 2004. Migração de orógenos e superposição de orogêneses: Um esboço da colagem brasiliana no sul do Cráton do São Francisco, SE-Brasil. Boletim do Instituto de Geociências/USP, 4:13-40.
  • Coelho M.B., Trouw R.A.J., Ganade de Araújo C.E., Vinagre R., Mendes J.C., Sato K. 2017. Constraining timing and P-T conditions of continental collision and late overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System. Precambrian Research, 292:194-215. https://doi.org/10.1016/j.precamres.2017.02.001
    » https://doi.org/10.1016/j.precamres.2017.02.001
  • Cox K.G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342:873-877. http://dx.doi.org/10.1038/342873a0
    » http://dx.doi.org/10.1038/342873a0
  • De la Roche H., Leterrier J., Grand Claude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1--R2 diagrams and major element analyses - its relationships with current nomenclature. Chemical Geology ., 29:183-210.
  • De Paolo D.J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11):10470-10488. https://doi.org/10.1029/JB086iB11p10470
    » https://doi.org/10.1029/JB086iB11p10470
  • Degler R., Pedrosa-Soares A.C., Dussin I., Queiroga G., Schulz B. 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints for Western Gondwana assembly. Gondwana Research, 57:30-50. http://dx.doi.org/10.1016/j.gr.2017.07.004
    » http://dx.doi.org/10.1016/j.gr.2017.07.004
  • Degler R., Pedrosa-Soares A.C., Novo T., Tedeschi M., Silva L.C., Dussin I., Lana C. 2018. Rhyacian-Orosirian isotopic records from the basement of theAraçuaí-Ribeira orogenic system (SE Brazil): Links in the Congo-São Francisco paleocontinent. Precambrian Research, 317:179-195. http://dx.doi.org/10.1016/j.precamres.2018.08.018
    » http://dx.doi.org/10.1016/j.precamres.2018.08.018
  • Duarte B., Heilbron M., Nogueira J.R., Tupinambá M., Eirado L.G., Valladares C., Almeida J.C.H., Guia C. 2003. Geologia das Folhas Juiz de Fora e Chiador. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.). Projeto Sul de Minas Belo Horizonte, COMIG/SEME, v. 1. p. 153-258.
  • Frugis G. & Campos Neto M. 2018. Eastern Paranapanema and Southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the Southern Brasília Orogen. Precambrian Research, 308:35-57.
  • Gonçalves M.L. & Figueiredo M.C.H. 1992. Geoquímica dos Anfibolitos de Santana do Garambéu (MG): Implicações Tectônicas sobre a Evolução do Grupo Andrelândia. Geochimica Brasiliensis, 6(2):127-140.
  • Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterbergh E., O’Reilly S.Y., Shee S.R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
    » https://doi.org/10.1016/S0016-7037(99)00343-9
  • Heilbron H., Cordani U., Alkmim F., Reis H. 2017a. Tectonic Genealogy of a Miniature Continent. In: Heilbron M., Cordani U.G., Alkmim F.F. (eds.), São Francisco Craton, Eastern Brazil Regional Geology Reviews. Berlin, Springer.
  • Heilbron M., Duarte B.P., Nogueira J.R. 1998. The Juiz de Fora complex of the Central Ribeira belt, SE Brazil: a segment of Paleoproterozoic granulitic crust thrust during the Pan-African Orogen. Gondwana Research, 1(3):373-381. http://dx.doi.org/10.1016/S1342-937X(05)70853-4
    » http://dx.doi.org/10.1016/S1342-937X(05)70853-4
  • Heilbron M., Duarte B.P., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: Implications for paleogeography reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, 178(1):136-148. http://dx.doi.org/10.1016/j.precamres.2010.02.002
    » http://dx.doi.org/10.1016/j.precamres.2010.02.002
  • Heilbron M., Gonçalves M.L., Teixeira W., Trouw R.A.J., Padilha A., Kawashita K. 1989. Geocronologia da área entre Lavras, São João del Rei, Lima Duarte e Caxambu. Anais da Academia Brasileira de Ciências, 61(2):177-199.
  • Heilbron M. & Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira belt (se Brazil). Precambrian Research, 125(1-2):87-112.
  • Heilbron M., Pedrosa-Soares A.C., Campos Neto M., Silva L.C., Trouw R.A.J., Janasi V.C. 2004. A Província Mantiqueira. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (eds.), O Desvendar de um Continente: A Moderna Geologia da América do Sul e o Legado da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 203-204.
  • Heilbron M., Ribeiro A., Valeriano C.M., Paciullo F., Almeida J.C.H., Trouw R., Tupinambá M., Silva L.G.E. 2017a. The Ribeira belt. In: Heilbron M., Cordani U.G., Alkmim F. (eds.), São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent Berlin, Springer, v. 1, p. 277-304.
  • Heilbron M., Tupinambá M., Almeida J.C.H., Valeriano C., Gontijo A., Silva T.M., Menezes P.T.L., Mane M., Palermo N., Pereira R.M. 2012. Introdução. In: Heilbron M. (eds.), Geologia e recursos minerais da folha Santo Antônio de Pádua SF. 26-X-D-VI, escala 1:100.000. Belo Horizonte, CPRM, v. 1, p. 17-21.
  • Heilbron M., Valeriano C.M., Almeida J.C.H., Eirado L.G. 2017b. Geologia e Recursos Minerais do estado do Rio de Janeiro 1. ed. Brasília, CPRM, v. 1, 182p.
  • Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá M., Siga O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society Special Publications, 294:211-237. https://doi.org/10.1144/SP294.12
    » https://doi.org/10.1144/SP294.12
  • International Union of Pure and Applied Chemistry. 1998. Commission on Atomic Weights and Isotopic Abundances. Isotopic Compositions of the Elements 1997. Pure and Applied Chemistry, 70(1):217-235.
  • Irvine T.N. & Baragar W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
    » https://doi.org/10.1139/e71-055
  • Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
    » https://doi.org/10.1093/petrology/egl013
  • Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3):745-750. http://dx.doi.org/10.1093/petrology/27.3.745
    » http://dx.doi.org/10.1093/petrology/27.3.745
  • Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., LeBas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R., Zanettin B. 1989. A classification of igneous rocks and glossary of terms Oxford, Blackwell.
  • Ludwig K.R. 2003. Isoplot 3.00, A Geochronological Toolkit for Excel: Berkeley Geochronology Center Special Publication No. 4.
  • Machado N., Valladares C., Heilbron M., Valeriano C. 1996. U/Pb Geochronology Of Central Ribeira Belt: Implications For The Evolution Of Brasiliano Orogeny. Precambrian Research, 79(3):347-361.
  • Marins G. 2000. Petrologia dos Anfibolitos do Domínio Juiz de Fora e da Klippe Paraíba do Sul, no Setor Central da Faixa Ribeira MS Dissertation, Programa em Análise de Bacias e Faixas Móveis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.
  • Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56:207-218.
  • Noce C.M., Pedrosa-Soares A.C., Silva L.C., Armstrong R., Piuzana D. 2007. Evolution of polycyclic basement complexes in the Araçuaí orogen, based on U-Pb SHRIMP data: Implication of Brazil-Africa links in Paleoproterozoic time. Precambrian Research, 159:60-78.
  • Noce C.M., Romano A.W., Pinheiro C.M., Mol V.S., Pedrosa-Soares A.C. 2003. Geologia das Folhas Ubá e Muriaé. In: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (eds.), Geologia e Recursos Minerais do Sudeste Mineiro Belo Horizonte, COMIG, p. 623-659.
  • Paciullo F.V.P. 1997. A Sequência Deposicional Andrelândia. Doctoral Thesis, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.
  • Paciullo F.V.P., Ribeiro A., Andreis R.R., Trouw R.A.J. 2000. The Andrelândia Basin, a Neoproterozoicintra-plate continental margin,southern Brasília Belt. Revista Brasileira de Geociências, 30(1):200-202.
  • Pearce J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.), Andesites: orogenie andesites and related rocks. Chichester, Wiley, p. 525-548.
  • Pearce J.A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth C.J. & Norry M.J. (eds.), Continental basalts and mantle xeno­­­­liths Nantwich: Shiva, p. 230-249.
  • Pearce J.A. 1987. An expert system for the tectonic characterization of ancient volcanic rocks. Journal of Volcanology and Geothermal Research, 32(1-3):51-65. https://doi.org/10.1016/0377-0273(87)90036-9
    » https://doi.org/10.1016/0377-0273(87)90036-9
  • Pearce J.A. & Cann J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19(2):290-300. http://dx.doi.org/10.1016/0012-821X(73)90129-5
    » http://dx.doi.org/10.1016/0012-821X(73)90129-5
  • Pearce T.H., Gorman B.E., Birkett T.C. 1975. The TiO2-K2O-P2O5 diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth and Planetary Science Letters, 24(3):419-426. https://doi.org/10.1016/0012-821X(75)90149-1
    » https://doi.org/10.1016/0012-821X(75)90149-1
  • Pedrosa-Soares A.C. & Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? Geonomos, 19(2). https://doi.org/10.18285/geonomos.v19i2.56
    » https://doi.org/10.18285/geonomos.v19i2.56
  • Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. In: Pankhurst J.R., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (eds.).West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region Geological Society, London, Special Publications, 294, p. 153-172.
  • Pedrosa-Soares A.C., Dussin I., Nseka P., Baudet D., Fernandez-Alonso M., Tack L. 2016. Tonian rifting events on the Congo-São Francisco paleocontinent: New evidence from U-Pb and Lu-Hf data from the Shinkakasa plutonic complex (Boma region, West Congo Belt, Democratic Republic of Congo). In: International Geologica Belgica Meeting. Mons, 5., Belgium. Abstract Book…, p. 44.
  • Pedrosa-Soares A.C., Vidal P., Leonardos O.H., Brito-Neves B.B. 1998. Neoprotero-zoic oceanic remnants in eastern Brazil: further evidence and refutation of an exclusively ensialic evolution for the Araçuaí-West Congo orogen. Geology, 26(6):519-522. https://doi.org/10.1130/0091-7613(1998)026%3C0519:NORIEB%3E2.3.CO;2
    » https://doi.org/10.1130/0091-7613(1998)026%3C0519:NORIEB%3E2.3.CO;2
  • Pedrosa-Soares A.C., Wiedemann-Leonardos C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: Cordani U., Milani E., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America São Paulo, Sociedade Brasileira de Geologia, p. 265-285.
  • Ribeiro A., Teixeira W., Dussin I.A., Ávila C.A., Nascimento D. 2013. U-Pb LA-ICP-MS detrital zircon ages of the São João del Rei and Carandaí basins: New evidence of intermittent Proterozoic rifting in the São Francisco paleocontinent. Gondwana Research, 24(2):713-726. http://dx.doi.org/10.1016/j.gr.2012.12.016
    » http://dx.doi.org/10.1016/j.gr.2012.12.016
  • Ribeiro A., Trouw R.A.J, Andreis R.R., Paciullo F.V.P., Valença J.G. 1995. Evolução das bacias proterozóicas e o termo-tectonismo brasiliano na margem sul do cráton do São Francisco. Revista Brasileira de Geociências, 25:235-248.
  • Rollinson H. 1993. Using geochemical data: evaluation, presentation, interpretation. United Kingdom, Pearson Education Limited, Longman Group.
  • Rubatto D. 2017. Zircon: The Metamorphic Mineral. In: Kohn M.J., Engi M., Lanari P. (eds.), Petrochronology. Reviews in Mineralogy and Geochemistry, 83:261-289.
  • Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4):481-501. https://doi.org/10.1016/j.gsf.2014.03.006
    » https://doi.org/10.1016/j.gsf.2014.03.006
  • Shervais J.V. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59:101-118.
  • Silva L.C., Armstrong R., Noce C.M., Carneiro M., Pimentel M., Pedrosa-Soares A.C., Leite C., Vieira V.S., Silva M., Paes V., Cardoso-Filho J. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP; parte II: Orógeno Araçuaí, Cinturão Móvel Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências, 32(4):513-528.
  • Simonetti A., Neal C.R. 2010. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth and Planetary Science Letters, 295:251-261. http://dx.doi.org/10.1016/j.epsl.2010.04.004
    » http://dx.doi.org/10.1016/j.epsl.2010.04.004
  • Söderlund U., Patchett J.P., Vervoort J.D., Isachsen C.E. 2004. The 176Lu decay constantdetermined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/S0012-821X(04)00012-3
    » https://doi.org/10.1016/S0012-821X(04)00012-3
  • Stacey J.S. & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Science Letters, 26:207-221.
  • Sun S. & McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. ln: Saunders A.D., Norry M.J. (eds.), Magmatism in the Ocean Basins London, Geological Society, p. 313-345.
  • Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T.,Yuhara M., Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M., Dragusanu C. 2000. JNdi-1: a neodymium isotopic reference in consistency with Lajolla neodymium. Chemical Geology, 168:279-281. http://dx.doi.org/10.1016/S0009-2541(00)00198-4
    » http://dx.doi.org/10.1016/S0009-2541(00)00198-4
  • Tedeschi M., Pedrosa-Soares A.C., Dussin I., Lanarid P., Novo T., Pinheiro M.A., Lana C., Peters D. 2018. Protracted zircon geochronological record of UHT garnet-free granulites in the Southern Brasília orogen (SE Brazil): Petrochronological constraints on magmatism and metamorphism. Precambrian Research, 316:101-126. http://dx.doi.org/10.1016/j.precamres.2018.07.023
    » http://dx.doi.org/10.1016/j.precamres.2018.07.023
  • Trouw R.A.J., Heilbron M., Ribeiro A., Valeriano C., Paciullo F., Almeida J.C.H., Tupinambá M. 2000. The Central Segment of the Ribeira belt. In: Cordani U., Milani E., Thomaz-Filho A., Campos D. (eds.). Geotectonics of South America Rio de Janeiro, CPRM, v. 1, p. 287-310.
  • Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. Journal of South American Earth Sciences, 48:43-57.
  • Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer H.J., Simões L.S.A. 2004. U Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, 130(1/4):27-55.
  • Valeriano C.M., Vaz G.S., Medeiros S.R., Neto C.C.A., Ragatky C.D. 2008. The Neodymium isotope composition of the JNdi-1 oxide reference material: results from the LAGIR Laboratory, Rio de Janeiro. In: South American Symposium on Isotope Geology, 6., San Carlos de Bariloche, Argentina. Proceedings… p. 1-2. 1 CD-ROM.
  • Valladares C.S., Machado N., Heilbron M., Duarte B.P., Gauthier G. 2008. Sedimentary provenance in the central Ribeira belt based on laser-ablation ICPMS 207Pb/206Pb zircon ages. Gondwana Research, 13:516-526. http://dx.doi.org/10.1016/j.gr.2007.05.013
    » http://dx.doi.org/10.1016/j.gr.2007.05.013
  • Valladares C.S., Machado N., Heilbron M., Gauthier G. 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco Craton, Brazil: implications for the evolution of Proterozoic basin. Gondwana Research, 7(4):913-921. https://doi.org/10.1016/S1342-937X(05)71074-1
    » https://doi.org/10.1016/S1342-937X(05)71074-1
  • Xia L. & Li X. 2019. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65:43-67. http://dx.doi.org/10.1016/j.gr.2018.08.006
    » http://dx.doi.org/10.1016/j.gr.2018.08.006
  • Westin A. & Campos Neto M.C. 2013. Provenance and tectonic setting of the external nappe of the Southern Brasília Orogen. Journal of South American Earth Sciences, 48:220-239. http://dx.doi.org/10.1016/j.jsames.2013.08.006
    » http://dx.doi.org/10.1016/j.jsames.2013.08.006
  • Wilson M. 1989. Igneous petrogenesis: a global tectonic approach. London, Unwin Hyman, 466 p.
  • Wise S.A. & Waters R.L. 2007. Certificate of analysis standard reference material® 987 Strontium Carbonate (Isotopic Standard). NIST National Institute of Standards & Technology, 2 p. Available at: <https://www.nist.gov>.
    » https://www.nist.gov
  • Zeh A., Gerdes A., Will T.M., Frimmel H.E. 2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: examples from the Shackleton Range (Antarctica). Geochimica et Cosmochimica Acta, 74(16):4740-4758. http://dx.doi.org/10.1016/j.gca.2010.05.016
    » http://dx.doi.org/10.1016/j.gca.2010.05.016

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20180129.

Publication Dates

  • Publication in this collection
    20 May 2019
  • Date of issue
    2019

History

  • Received
    20 Nov 2018
  • Accepted
    19 Feb 2019
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br