Acessibilidade / Reportar erro

Geochemistry, Sm-Nd isotopes and SHRIMP U-Pb geochronology of the Morro do Coco Granite (RJ, Brazil): another piece of the post-collisional magmatism of the Ribeira Belt

Abstract

The Morro do Coco granite (MC) is a post-collisional intrusive body that was emplaced at Ribeira Belt, in the Cambro-Ordovician, succeeding the final stages of the Gondwana supercontinent amalgamation. This unit requires more studies, contrasting with similar best investigated occurrences of the central Ribeira Belt. This work presents a detailed investigation of such unit using petrography, Inductively Coupled Plasma (ICP), X-Ray Fluorescence (XRF) whole-rock geochemistry, U-Pb (SHRIMP) geochronology and Sm-Nd isotopes. The rock is a nearly undeformed syenogranite, geochemically classified as a high-K calc-alkaline magnesian, with metaluminous to slightly peraluminous affinity. Strongly light rare earth elements (LREE)-enriched patterns with significant negative Eu anomalies, typical of post-collisional granites, are identified. Similarly to other post-collisional granites of the central Ribeira Belt, U-Pb zircon data provide crystallization age of 496 ± 3 Ma . Sm-Nd isotopic data suggest crustal magma source as indicated by εNd(496) of -9, 143Nd/144Nd ratios between 0.511747 and 0.511752 and Mesoproterozoic TDM ages of 1.3 Ga. Based on its geochemical characteristics, morphology and geochronology, this unit is considered here as a member of Nova Friburgo Suite. Geochronological data defined three pulses of magmatism in this part of the orogen during the Cambro-Ordovician (515, 490 and 460 Ma).

KEYWORDS:
Post-collisional; Brasiliano Orogeny; Cambro-Ordovician; Ribeira Belt; Morro do Coco granite

INTRODUCTION

During the Neoproterozoic-Paleozoic, Brasiliano/Pan-African thermotectonic events took place at the margins of the São Francisco paleocontinent (Brazil) and another plate located to the east, possibly the Congo paleocontinent (Heilbron et al. 2000Heilbron M., Mohriak W., Valeriano C.M., Milani E., Almeida J.C.H., Tupinambá M. 2000. From collision to extension: the roots of the South-eastern continental margin of Brazil. In: Talwani M. (ed.), Atlantic Rifts and Continental Margin. AGU Geophysical Monograph Series, 115. 354 p., Brito Neves et al. 2014Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
http://dx.doi.org/10.5327/Z2317-48892014...
). The convergence between these two continents and possibly a third one, the Paranapanema block which is presently interpreted as hidden under the Paleozoic Paraná basin in Brazil (cf.Trouw et al. 2000Trouw R.A.J., Heilbron M., Ribeiro A., Paciullo F., Valeriano C., Almeida J.C.H., Tupinambá M., Andreis R.R. 2000. The central segment of the Ribeira belt. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Proceedings of the 31 st International Geological Congress, Rio de Janeiro, Brazil, p. 287-310.), resulted in a series of collisions that culminated in the amalgamation of the Gondwana supercontinent from ca. 580 to 510 Ma (e.g., Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
http://dx.doi.org/10.1016/j.precamres.20...
, Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J.C.H., Tupinambá M., Siga Junior O., Trouw R.A.J. 2008. Correlation of Neoproterozoic terranes between Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (eds.), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society of London, Special Publication, 295:211-237.). At Southeastern Brazil, these orogenic events are presently represented by the Ribeira and Araçuaí Belts (Fig. 1A), which extend for more than 1,400 km along Espírito Santo, Rio de Janeiro, São Paulo and Minas Gerais States.

Figure 1.
Regional maps and tectonic context (modified from Heilbron et al. 2004Heilbron M., Pedrosa-Soares A.C., Campos Neto M.C., Silva L.C., Trouw R.A.J., Janasi V.A. 2004. Província Mantiqueira. In: Mantesso-Neto V., Bartorelli A., Carneiro C., Dal Ré, Brito-Neves B.B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 203-235.). (A) Subdivision of the Mantiqueira Province, composed by the Brasilia, Dom Feliciano, Ribeira and Araçuaí Belts and location of Figure 1B area (dashed square). (B) Tectonic map of the Central segment of the Mantiqueira Province: (1) Cenozoic rifts covers; (2) Cretaceous alkaline massifs; (3) Socorro-Guaxupé Nappe (superior nappe); (4) Metasedimentary rocks including Ky-granulites (Inferior nappes); (5) São Francisco Craton basement and autochthonous domain; (6) São Francisco Supergroup; (7) São João Del Rey and Tiradentes formations (autochthonous covers); (8) Andrelandia Group; (9) Juiz de Fora domain (Occidental Terrane); (10) Paraíba do Sul Klippe; (11) Oriental Terrane Gneiss complex; (12) Rio Negro magmatic arc granitoids; (13) Cabo Frio Tectonic Domain Região dos Lagos Ortogneiss; (14) Cabo Frio Tectonic Domain Búzios-Palmital supracrustal sucessions; (15) Embu terrane; (16) São Roque and Açungui terranes; (17) Cambro-Ordivician granitoids: gs- Guarujá-Santos; ai- Anchieta Island; pt- Parati; ma- Mambucaba; mt- Mangaratiba; vd- Vila dois Rios; pb- Pedra Branca; fv- Favela; an- Andorinha; su- Suruí; te- Teresópolis; fr- Frade; nf- Nova Friburgo; cp- Conselheiro Paulino; sr- São José do Ribeirão; sp- São Pedro de Lumiar; sn- Sana; sj- Silva Jardim; cj- Cajú; it- Itaoca; mc- Morro do Coco; ms- Mimoso do sul; sa- Santa Angélica; bu- Buarama; ca- Castelo; pa- Pedra Azul.

The post-collisional phase, considered here as the ongoing geodynamic stage after the maximum plate convergence and the high-pressure metamorphism of this region, precluded “stable” platform conditions that allowed the development of Paleozoic intracratonic basins such as Amazonas and Paraná (Cunha et al. 2007Cunha P.R.C., Melo J.H.G., Silva B.O. 2007. Bacia do Amazonas. Cartas Estratigráficas: Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2):227-251., Milani et al. 2007Milani E.J., Melo J.H.G., Souza P.A., Fernandes L.A., França A.B. 2007. Bacia do Paraná. Cartas Estratigráficas: Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2):265-287.). Indeed, the post-collisional stage is considered a complex period of large horizontal terrane adjustments along shear zones, associated to crustal extension and uplift, lithospheric delamination, docking and subduction of oceanic plates (e.g., Liégeois 1998Liégeois J.P. 1998. Preface: Some words on the post-collisional magmatismo. Lithos, 45:XV-XVII.). The post-collisional magmatism at Ribeira and Araçuaí Belts encompasses mainly high-K calc-alkaline granitoids, minor dioritic and a single manifestation of true shoshonitic rocks (e.g., Martins et al. 2016Martins G.G., Mendes J.C., Schmitt R.S., Armstrong R., Valeriano C.M. 2016. 550-490 Ma pre-to post-collisional shoshonitic rocks in the Ribeira Belt (SE Brazil) and their tectonic significance. Precambrian Research, 286:352-369. https://doi.org/10.1016/j.precamres.2016.10.010
https://doi.org/10.1016/j.precamres.2016...
).

In this paper, the first study of the Morro do Coco granite (MC) is provided by presenting its field, petrographic and geochemical features, U-Pb zircon geochronology and Sm-Nd isotopic data in order to contribute to the understanding of the post-collisional magmatism that took place in Southeast Brazil during the Cambro-Ordovician period. Previous data of similar occurrences in the same region were also compared and discussed regarding the geographic and age distribution of intrusions with similar age to reconstruct the regional geodynamic scenario during the post-collisional stage of the Gondwana supercontinent amalgamation.

GEOLOGICAL SETTING

The Ribeira Belt (Fig. 1B) is commonly divided into four tectonostratigraphic domains, with rocks verging northwest toward the São Francisco Craton (SFC; e.g., Trouw et al. 2000Trouw R.A.J., Heilbron M., Ribeiro A., Paciullo F., Valeriano C., Almeida J.C.H., Tupinambá M., Andreis R.R. 2000. The central segment of the Ribeira belt. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Proceedings of the 31 st International Geological Congress, Rio de Janeiro, Brazil, p. 287-310.) namely, from bottom to top:

  • Occidental Terrane, the autochthonous domain, composed by intercalations of reworked SFC sheets interleaved with Meso-Neoproterozoic metasedimentary rocks from its passive margin;

  • the Embú-Paraíba do Sul Terrane, considered a magmatic arc resulting from the subduction and collision between the São Francisco and the Paranapanema paleocontinents (Trouw et al. 2013Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília Belt and the central Ribeira Belt, SE Brazil. South American Earth Sciences, 48:43-57. http://dx.doi.org/10.1016/j.jsames.2013.07.012
    http://dx.doi.org/10.1016/j.jsames.2013....
    ). It consists of Paleoproterozoic orthogneiss and metasedimentary rocks, and Neoproterozoic granitoids intrusive in the orthogneisses;

  • the Oriental Terrane, comprising paragnaisses intruded by syn-collisional granitoids (Costeiro Domain), Rio Negro Magmatic Arc (ca. 780 to 620 Ma; Tupinambá et al. 2000Tupinambá M., Teixeira W., Heilbron M. 2000. Neoproterozoic Western Gondwana assembly and subduction-related plutonism: the role of the Rio Negro Complex in the Ribeira belt, South-eastern Brazil. Revista Brasileira de Geociências, 30(1):7-11.) and post-collisional granitoid intrusions (ca. 515-454 Ma; Valeriano et al. 2011Valeriano C.M., Tupinambá M., Simonetti A., Heilbron M., Almeida J., Eirado Silva L. 2011. U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician post-collisional granites of the Ribeira Belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. Journal of South American Earth Sciences, 32(4):416-428. http://dx.doi.org/10.1016/j.jsames.2011.03.003
    http://dx.doi.org/10.1016/j.jsames.2011....
    , Tupinambá et al. 2012Tupinambá M., Heilbron M., Valeriano C., Porto Jr. R., Dios F.B., Machado N., Silva L.G.E., Almeida J.C.H. 2012. Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): implications for Western Gondwana amalgamation. Gondwana Research, 21(2-3):422-438. http://dx.doi.org/10.1016/j.gr.2011.05.012
    http://dx.doi.org/10.1016/j.gr.2011.05.0...
    , Bongiolo et al. 2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
    http://dx.doi.org/10.1016/j.lithos.2015....
    ), including MC, focus of this contribution;

  • The Cabo Frio Tectonic Domain (CFTD), considered as part of the Congo Craton (e.g., Fernandes et al. 2015Fernandes G.L.F., Schmitt R.S., Bongiolo E.M., Basei M.A.S., Mendes J.C. 2015. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (SE Brazil): U-Pb and Lu-Hf provenance data. Precambrian Research, 226:337-360. http://dx.doi.org/10.1016/j.precamres.2015.05.017
    http://dx.doi.org/10.1016/j.precamres.20...
    ). The CFTD constitutes a Paleoproterozoic basement (Região dos Lagos Complex; Fonseca et al. 1979Fonseca M.J.G., Silva Z.C.G., Campos D.A., Tosatto P. 1979. Folhas do Rio de Janeiro, Vitória e Iguape. Texto explicativo e Mapa. Brasília: DNPM, 239 p.), represented by calc-alkaline orthogneisses of tonalitic to syenogranitic compositions, tectonically interleaved with Neoproterozoic metavolcano-sedimentary successions (Búzios and Palmital; Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
    http://dx.doi.org/10.1016/j.precamres.20...
    ).

The main periods of thermotectonic activity recorded at the Ribeira Belt are:

  • ca. 790-620 Ma, pre-collisional stage, including subduction and development of magmatic arcs such as Rio Negro and Serra da Bolívia (Tupinambá et al. 2012Tupinambá M., Heilbron M., Valeriano C., Porto Jr. R., Dios F.B., Machado N., Silva L.G.E., Almeida J.C.H. 2012. Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): implications for Western Gondwana amalgamation. Gondwana Research, 21(2-3):422-438. http://dx.doi.org/10.1016/j.gr.2011.05.012
    http://dx.doi.org/10.1016/j.gr.2011.05.0...
    ; Heilbron et al. 2013Heilbron M., Tupinambá M., Valeriano C.M., Armstrong R., Silva L.G.E., Melo R.S., Simonetti A., Pedrosa-Soares A.C., Machado N. 2013. The Serra da Bolívia complex: the record of a new Neoproterozoic arc-related unit at Ribeira belt. Precambrian Research, 238:158-175. http://dx.doi.org/10.1016/j.precamres.2013.09.014
    http://dx.doi.org/10.1016/j.precamres.20...
    );

  • 620-605 Ma, collisional stage between the Embú-Paraíba do Sul microcontinent and the São Francisco Craton passive margin (Trouw et al. 2013Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília Belt and the central Ribeira Belt, SE Brazil. South American Earth Sciences, 48:43-57. http://dx.doi.org/10.1016/j.jsames.2013.07.012
    http://dx.doi.org/10.1016/j.jsames.2013....
    ) that originated the southern Brasilia Belt;

  • 605-550 Ma, collisional stage between a continental arc and the Oriental Terrane, representing the main collisional event registered at the Ribeira Belt (Heilbron and Machado 2003Heilbron M., Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogen (SE Brazil). Precambrian Research, 125(1-2):87-112. http://dx.doi.org/10.1016/S0301-9268(03)00082-2
    http://dx.doi.org/10.1016/S0301-9268(03)...
    );

  • 540-510 Ma, the docking of the Cabo Frio Terrane against the Oriental Terrane in the Buzios Orogeny (Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
    http://dx.doi.org/10.1016/j.precamres.20...
    );

  • 510-440 Ma, when post-collisional magmatism took place in the Oriental Terrane (Valeriano et al. 2016Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
    http://dx.doi.org/10.1016/j.jsames.2015....
    , Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
    http://dx.doi.org/10.1016/j.precamres.20...
    , Bongiolo et al. 2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
    http://dx.doi.org/10.1016/j.lithos.2015....
    ).

This complete history of subductions and orogenies recorded at Ribeira Belt resembles a long-term maintenance of high temperatures and low cooling rates at the active (upper) plate. Thus, Ribeira Belt is considered a hot orogen (e.g., Bento dos Santos et al. 2010Bento dos Santos T.M., Munhá J., Tassinari C., Fonseca P., Dias Neto C. 2010. Thermochronology of central Ribeira Fold Belt, SE Brazil: petrological and geochronological evidence for high-temperature maintenance during Western Gondwana amalgamation. Precambrian Research, 180(3-4):285-298. http://dx.doi.org/10.1016/j.precamres.2010.05.002
http://dx.doi.org/10.1016/j.precamres.20...
, 2015Bento dos Santos T.M., Tassinari C.C.G., Fonseca P.E. 2015. Diachronic collision, slab break-off and long-term high thermal flux in the Brasiliano-Pan-African orogeny: implications for the geodynamic evolution of the Mantiqueira Province. Precambrian Research, 260:1-22. http://dx.doi.org/10.1016/j.precamres.2014.12.018
http://dx.doi.org/10.1016/j.precamres.20...
, Valeriano et al. 2016Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
http://dx.doi.org/10.1016/j.jsames.2015....
), which might have implications on the post-collisional magmatism observed throughout its entire area.

The Cambro-Ordovician magmatism at the Ribeira-Araçuaí belts

Several occurrences of post-collisional Cambro-Ordovician granitoids, and fewer records of intermediate and basic rocks (De Campos et al. 2004De Campos C.P., Mendes J.C., Ludka I.P., Medeiros S.R., Moura J.C., Wallfass C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17:1-39. https://doi.org/10.3809/jvirtex.2004.00106
https://doi.org/10.3809/jvirtex.2004.001...
, Valeriano et al. 2017Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano. Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.) are found at the Ribeira and Araçuaí belts (Fig. 1B). Valeriano et al. (2011Valeriano C.M., Tupinambá M., Simonetti A., Heilbron M., Almeida J., Eirado Silva L. 2011. U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician post-collisional granites of the Ribeira Belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. Journal of South American Earth Sciences, 32(4):416-428. http://dx.doi.org/10.1016/j.jsames.2011.03.003
http://dx.doi.org/10.1016/j.jsames.2011....
, 2016Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
http://dx.doi.org/10.1016/j.jsames.2015....
) summarize the occurrence and characteristics of the 15 largest granitic intrusions in the Central Ribeira Belt. Based on geochronological, compositional and structural characteristics, Valeriano et al. (2011Valeriano C.M., Tupinambá M., Simonetti A., Heilbron M., Almeida J., Eirado Silva L. 2011. U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician post-collisional granites of the Ribeira Belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. Journal of South American Earth Sciences, 32(4):416-428. http://dx.doi.org/10.1016/j.jsames.2011.03.003
http://dx.doi.org/10.1016/j.jsames.2011....
, 2017Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano. Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.) individualized two groups of post-collisional intrusions:

  • the Cambrian Suruí Suite (ca. 510 Ma);

  • the Ordovician Nova Friburgo Suite (ca. 485 Ma).

At the Central Ribeira Belt, other smaller post-collisional bodies are known, such as the Cajú granite (454 ± 5 Ma; Bongiolo et al. 2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
http://dx.doi.org/10.1016/j.lithos.2015....
); the São Pedro de Lumiar granite (~490 Ma; Mendes et al. 2011Mendes J.C., Medeiros S.R., Chaves E.A. 2011. Assinatura isotópica de Sr e Nd do magmatismo cálcio-alcalino de alto-K na Faixa Ribeira central: o exemplo do Granito São Pedro em Lumiar. RJ. Revista Brasileira de Geociências, 41(3):408-419.); the Mambucaba granite (492 ± 15; Machado et al. 1996Machado N., Valladares C.S., Heilbron M., Valeriano C.M. 1996. U-Pb geochronology of the central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambrian Research, 79(3-4):347-361. https://doi.org/10.1016/0301-9268(95)00103-4
https://doi.org/10.1016/0301-9268(95)001...
) and the MC granite, focus of this study.

Cambro-Ordovician intrusions also occur at the northern area where there is a transition between the Ribeira and the Araçuaí belts, like the Santa Angélica (513 ± 8 Ma; Söllner et al. 2000Söllner F., Lammerer B., Wiedemann C.M. 2000. Dating the Ribeira Mobile Belt of Brazil. Zeitschrift für Angewandte Geologie, 245-255.), Mimoso do Sul and Buarama (495 ± 5 Ma and 480 ± 4 Ma, respectively; Söllner et al. 2000Söllner F., Lammerer B., Wiedemann C.M. 2000. Dating the Ribeira Mobile Belt of Brazil. Zeitschrift für Angewandte Geologie, 245-255.) and Várzea Alegre (499 ± 5 Ma; Mendes et al. 2005Mendes J.C., Medeiros S.R., McReath I., De Campos C.M.P. 2005. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb-Sr ages, combined with Srand Nd isotopic data of charnockitic rocks from the Varzea Alegre complex. Gondwana Research, 8(3):337-345.) bimodal intrusive bodies. Post-collisional granitic intrusions have also been identified at the southern Ribeira Belt, such as the Guarujá-Santos granites (497 ± 7 Ma; Janasi et al. 2015Janasi V.A., Vasconcellos A.C.B.C., Siga Júnior O., Sato K., Machado F.B., Martins L., Garcia M.G.M. 2015. In situ U-Pb dating and Hf isotope geochemistry of zircons from granites of the Costeiro Domain, SE Brazil: timing and source contrasts with neighboring terranes of the Ribeira Belt. In: Hutton Symposium on Granites and Related Rocks, 8., Florianópolis. Annals…, v. 1, p. 69.) and the Anchieta Island (500 ± 6 Ma; Azevedo Sobrinho et al. 2011Azevedo Sobrinho J.M., Janasi V.A., Simonetti A., Heaman L.M., Santoro J., Diniz H.N. 2011. The Ilha Anchieta Quartz Monzonite: the southernmost expression of ca. 500 Ma post-collisional magmatism in the Ribeira Belt. Anais da Academia Brasileira de Ciências, 83(3):891-906. http://dx.doi.org/10.1590/S0001-37652011000300010
http://dx.doi.org/10.1590/S0001-37652011...
).

The geographic distribution of these intrusions along a NE/SW relatively restricted corridor of about 80 km width inside the Oriental Terrane (Fig. 1B) raises ideas about the geodynamic models responsible for their emplacement, which Valeriano et al. (2016Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
http://dx.doi.org/10.1016/j.jsames.2015....
) suggest to be a response to break-off of the subducted lithospheric slab and production of localized post-collisional magmatism along a narrow zone in the upper plate.

ANALYTICAL METHODS

Sampling and petrography

Geological mapping and sampling were carried out at the MC region (Fig. 2). The granite and its host rocks were sampled prioritizing fresh rocks and scattering in the mapped area. Eight thin sections of MC granite were studied under transmitted light petrography at the Universidade Federal do Rio de Janeiro (UFRJ). Modal mineral distribution was obtained for all samples by counting at least 600 points per thin section. The plagioclase composition was petrographically calculated using the a-normal extinction-angle method (cf.Hibbard 1995Hibbard M.J. 1995. Petrography to Petrogenesis. New Jersey, Prentice Hall, 608 p.).

Figure 2.
Geological Map of the Morro do Coco Granite and geographic location of the samples used in this work.

Lithogeochemistry

Nine whole-rock samples from MC granite (Suppl. Tab. 1A Supplementary material Supplementary data associated with this article can be found in the online version: Supplementary Table A1, Supplementary Table A2, Supplementary Table A3, Supplementary Table A4 and Supplementary Table A5. ) were analyzed by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) to evaluate major elements plus MnO, BaO, Cr2O3 and SrO, and by ICP Mass Spectrometry (ICP-MS) to determine trace elements at the ALS laboratory, Canada. Samples were digested by Lithium tetraborate fusion prior to nitric acid dissolution, before analyses. Duplicate and blank samples were used to control the analyses’ accuracy and precision, respectively. Loss on Ignition (LOI) was obtained by heating the samples at 1,000ºC for over an hour. Five other samples were analyzed by X-Ray Fluorescence (XRF) (Philips PW2400 with Rh-bearing tube) for major and some trace elements in the XRF laboratory at UFRJ. Duplicate analyses showed comparable results between the laboratories. All results were recalculated to anhydrous totals after Fe-oxidation adjustment to obtain the Fe2O3/FeO ratios from the Fe2O3(t) measured (cf.Middlemost 1989Middlemost E.A.K. 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1):19-26. https://doi.org/10.1016/0009-2541(89)90011-9
https://doi.org/10.1016/0009-2541(89)900...
) using the IgRoCS software (Verma and Rivera-Gómez 2013Verma S.P., Rivera-Gómez M.A. 2013. Computer programs for the classification and nomenclature of igneous rocks. Episodes, 36(2):115-124.). Adjusted data were used to calculate CIPW norms and were plotted on multidimensional tectonic discrimination diagrams for acidic rocks using the TecDIA software of Verma et al. (2015Verma S.P., Cruz-Huicochea R., Díaz-González L., Verma S.K. 2015. A new computer program TecDIA for multidimensional tectonic discrimination of intermediate and acid magmas and its application to the Bohemian Massif, Czech Republic. Journal of Geosciences, 60(4):203-218. http://dx.doi.org/10.3190/jgeosci.201
http://dx.doi.org/10.3190/jgeosci.201...
). Other chemical classification, geotectonic discriminant and elemental diagrams developed by several authors were plotted using the GeoChemical Data toolkit 5.0 (GCDkit; Janoušek et al. 2006Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
https://doi.org/10.1093/petrology/egl013...
).

Zircon U-Pb geochronology

In-situ high resolution SHRIMP dating on zircon crystals was performed on one sample (CLR-02C) from MC granite. Zircon crystals were concentrated by magnetic and heavy liquid separation prior to handpicking under binocular microscope. The sample was mounted on adhesive tape, placed on epoxy resin, and polished. TEMORA 1 zircon (206Pb/238U age of 416.78 ± 0.33 Ma; Black et al. 2003Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2):155-170.) was used as standard. Zircon grains were assessed under cathodoluminescence (CL) imaging to determine its internal domains and to select the spots for analysis. Isotopic data was acquired by a SHRIMP IIe at the Geochronology Research Center (CPGeo; Universidade de São Paulo). Softwares used at the CPGeo were LabVIEW 8.5 and SHRIMP SW 2.1. Raw data reduction was done using SQUID 1.06 Excel macro (Ludwig 2001Ludwig K.R. 2001. SQUID 1.02: A User’s Manual. Berkeley, Berkeley Geochronology Center Special Publication.), and concordia diagrams were plotted using ISOPLOT 4.15 (Ludwig 2012Ludwig K.R. 2012. User’s Manual for Isoplot 3.75. Berkeley, Berkeley Geochronology Center Special Publication , 75 p.). U concentration was calibrated against the standard crystal SL13 with 238 ppm of U (Claué-Long et al. 1995Claué-Long J.C., Compston W., Roberts J., Fanning C.M. 1995. Two carboniferous ages: 819 a comparison of SHRIMP zircon dating with conventional zircon ages and Ar/Ar analysis. In: Berggren WA, Kent DV, Aubrey MP, Hardenbol J. (eds.). Geochronology Time Scales and Global Stratigraphic Correlation. United Kingdom: SEPM Special Publication, 4, p. 3-21., Sato et al. 2014Sato K., Tassinari C.C.G., Basei M.A.S., Siga Júnior O., Onoe A.T., Souza M.D. 2014. Sensitive high resolution ion microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP, Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
https://doi.org/10.5327/Z1519-874X201400...
). Common lead corrections were made to 204Pb (cf.Stacey and Kramers 1975Stacey J.S., Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):207-221. https://doi.org/10.1016/0012-821X(75)90088-6
https://doi.org/10.1016/0012-821X(75)900...
). The uncertainties of isotopic ratios and ages were reported at the 1% level, and weighted mean ages were reported as 95% confidence limits (Sato et al. 2014Sato K., Tassinari C.C.G., Basei M.A.S., Siga Júnior O., Onoe A.T., Souza M.D. 2014. Sensitive high resolution ion microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP, Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
https://doi.org/10.5327/Z1519-874X201400...
).

Whole-rock Sm-Nd isotopes

Whole-rock Sm-Nd isotope analyses on two samples ­(CLR-02C and CLR-07C) were carried out by ICP-MS (Thermo Neptune) at CPGeo, following the procedures described by Sato et al. (1995Sato K., Tassinari C.C.G., Kawashita K., Petronilho L. 1995. O Método Geocronológico Sm-Nd no IGc/USP e suas Aplicações. Anais da Academia Brasileira de Ciências, 67(3):313-336.). Prior to ICP-MS analysis, Sm and Nd concentrations were obtained through isotope dilution, with the addition of a 149Sm and 150Nd combined spike, followed by chemical digestion by HF, HNO3 and HCl in Savillex™ vessels. Chromatographic separation of Sm and Nd was achieved in two steps, starting with AG50W-X8 resin to separate Rare Earth Elements (REE) from the bulk sample, followed by Sm and Nd separation using LaNthanides (LN) resin. Isotopic 143Nd/144Nd ratios were normalized to 146Nd/144Nd = 0.7219 (DePaolo 1981DePaolo D.J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11):10470-10488. https://doi.org/10.1029/JB086iB11p10470
https://doi.org/10.1029/JB086iB11p10470...
). 147Nd/144Nd ratios and eNd(t) values were calculated according to Hamilton et al. (1983Hamilton P.H., O’Nions R.K., Bridgewater D., Nutman A. 1983. Sm-Nd studies of Archean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth and Planetary Science Letters, 62(2):263-272. https://doi.org/10.1016/0012-821X(83)90089-4
https://doi.org/10.1016/0012-821X(83)900...
). Analytical blank concentration was 31pg and the mean value for 143Nd/144Nd of JNDi standard from July to May 2014 was 0.512097 ± 0.000005. Resulting data was plotted using ISOPLOT 4.15 (Ludwig 2012Ludwig K.R. 2012. User’s Manual for Isoplot 3.75. Berkeley, Berkeley Geochronology Center Special Publication , 75 p.).

FIELD ASPECTS AND PETROGRAPHY

MC granite is a tabular plutonic body that occupies an area of about 45 km2 at northern Rio de Janeiro State, Brazil (Fig. 2). It is intrusive in paragneiss of the São Fidélis Unit and ortogneiss of the Angelim Suite, both part of the Neoproterozoic Costeiro Domain of the Central Ribeira Belt (Fig. 1B). São Fidélis Unit comprises a supracrustal sequence of the Costeiro Domain, consisted of paragneiss metamorphosed under amphibolite facies P-T conditions (Eirado et al. 2017Eirado L.G., Heilbron M., Ragatky C.D., Tupinambá M., Peixoto C. 2017. Unidades Metassedimentares Neoproterozoicas da Faixa Ribeira no Estado do Rio de Janeiro. Geologia e recursos minerais do estado do Rio de Janeiro: Texto Explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro: CPRM, p. 45-60.). In the studied area, it occurs as garnet-biotite-sillimanite gneiss, cropping out at lower topographic areas. The Angelim Suite ortogneiss is a group of intrusive plutonic rocks of predominant tonalitic composition in the supracrustal São Fidélis Unit (Tupinambá et al. 2007Tupinambá M., Heilbron M., Duarte B.P., Nogueira J.R., Valladares C.S., Almeida J., Silva L.G. do E., Medeiros S.R. de, Almeida C.G. de, Miranda A., Ragatky C.D., Mendes J.C, Ludka I. 2007. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. Geonomos, 15(1):67-79. https://doi.org/10.18285/geonomos.v15i1.108
https://doi.org/10.18285/geonomos.v15i1....
). It is represented in the studied area by a garnet-hornblende-biotite gneiss, cropping out at higher topographies.

In the field, MC occurs mostly as in situ blocks and boulders. The rock is macroscopically very homogeneous throughout the studied area. Its modal proportions plot in the field of syenogranites in the Quartz, Alkali feldspar, Plagioclase (QAP) diagram (Suppl. Tab. A2 and A3 Supplementary material Supplementary data associated with this article can be found in the online version: Supplementary Table A1, Supplementary Table A2, Supplementary Table A3, Supplementary Table A4 and Supplementary Table A5. ).

Petrographically, MC is a grey, leucocratic, equigranular, medium-grained (3 mm in average) rock composed essentially by quartz (27%), alkali-feldspar (28%), biotite (16%) and plagioclase (10.5%). Allanite, titanite, apatite, opaque minerals and rare rutile are the accessory phases. Chlorite and sericite are the main secondary minerals (Fig. 3). Quartz occurs as subhedral to anhedral crystals, varying from 0.5 to 3 mm, and locally show undulose extinction (Figs. 3G and 3H); alkali-feldspar occurs as subhedral to euhedral crystals varying between 0.5 to 4.5 mm, often showing Carlsbad and tartan twinning and alteration to sericite; recrystallization of alkali-feldspar subcrystals is also observed locally (Figs. 3K and 3L).

Figure 3.
Photomicrographs of Morro do Coco. Each pair of photomicrographs is shown as parallel and crossed polars, respectively. (A) and (B) General aspects of mineralogy and texture of the granite; (C) and (D) Zircon crystal on detail; (E) and (F) Yellow epitode crystal with allanite core; (G) and (H) Detail on quartz crystal showing undulose extinction; (I) and (J) Detail on plagioclase crystal and myrmekitic texture on plagioclase near alkali-feldspar; (K) and (L) Detail on alkali-feldspar subcrystal in larger alkali-feldspar crystal; (M) and (N) Detail on quartz crystal in alkali-feldspar.

Biotite is light to dark brown, subhedral to euhedral varying from 0.1 to 1 mm and usually occurs as inclusions in quartz. Alteration to chlorite and opaque minerals is observed. Plagioclase crystals are anhedral to subhedral, with grain size ranging from 0.2 to 2 mm, and generally show polysynthetic twinning. Myrmekitic texture is locally observed in plagioclase crystals rimmed by alkali-feldspar (Figs. 3I and 3J). Alteration to sericite can be observed on plagioclase, whose measured plagioclase composition is compatible with andesine (An34-38).

Titanite occurs as light brown, subhedral to anhedral crystals of 0.5 mm on average. They may present alteration to opaque minerals within crystal borders and fractures. Epidote occurs as prismatic, with yellow color and pleochroism, subhedric to euhedric, 0.5 to 1 mm crystals with allanite cores (Figs. 3E and 3F). Zircon crystals are subhedral to anhedral, measuring up to 0.3 mm and occur mostly included within quartz and biotite crystals (Figs. 3C and 3D) and apatite occurs as submillimetric rounded crystals.

RESULTS

Whole rock geochemistry

Whole-rock major and trace elements analyses were performed on 14 MC granite samples (Tab. 1). SiO2 content varies from 68 to 72 wt.%, Al2O3 concentrations are between 14 and 15 wt.%, K2O has high concentrations of up to 6 wt.%, and CaO and Na2O have average contents of 2 to 2.8 wt.%, respectively. Average Fe2O3(t) content is 2.9 wt.%.

Table 1.
Representative geochemical analyses of Morro do Coco granite by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (major elements), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (trace elements) and X-Ray Fluorescence (XRF) (major and trace elements).

MC granites are characterized by high Ba (~1,700 ppm), Zr (~500 ppm), Th (~75 ppm) and light rare earth elements (LREE) (La 225 ppm and Ce ~435 ppm), and medium Sr contents (~340 ppm). Nonetheless, heavy rare earth elements (HREE) show small concentrations such as Yb (0.7 ppm) and Lu (0.1 ppm).

The CIPW normative mineralogy (Suppl. Tab. A4 Supplementary material Supplementary data associated with this article can be found in the online version: Supplementary Table A1, Supplementary Table A2, Supplementary Table A3, Supplementary Table A4 and Supplementary Table A5. ) corresponds to quartz (ca. 23-29 wt.%), orthoclase (ca. 33-37 wt.%), plagioclase (ca. 28-36 wt.%), and lesser amounts of hyperstene, magnetite, ilmenite, apatite and normative corundum, which is compatible with petrographic results.

The studied granites are high-K calc-alkaline, magnesian to ferroan and metaluminous to slightly peraluminous (Fig. 4). In the K2O vs. SiO2 diagram (Fig. 4B), MC samples plot in the shoshonite series field. However, they are considered here as high-K calc-alkaline rocks, as they do not meet all the requirements to be classified as a true shoshonite (cf.Morrison 1980Morrison G.W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1):97-108. https://doi.org/10.1016/0024-4937(80)90067-5
https://doi.org/10.1016/0024-4937(80)900...
, Campbell et al. 2014Campbell I.H., Stepanov A.S., Liang H.-Y., Allen C.M., Norman M.D., Zhang Y.-Q., Xie Y.-W. 2014. The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions to Mineralogy and Petrology, 167:983-1005. https://doi.org/10.1007/s00410-014-0983-9
https://doi.org/10.1007/s00410-014-0983-...
), such as:

  • Na2O/K2O > 1 at 55 wt% SiO2;

  • negative or absent correlation between K2O vs. SiO2 at SiO2 > 57 wt%;

  • La/YbN between 8 and 46.

Figure 4.
Geochemical classification diagrams for whole rock analyses of Morro do Coco Granite. (A) TAS (Cox et al. 1979Cox K.G., Bell J.D., Pankhurst R.J. 1979. The Interpretation of Igneous Rocks. London: George Allen and Unwin, 450 p.); (B) K2O vs. SiO2 (Peccerillo and Taylor 1976Peccerillo A., Taylor S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
https://doi.org/10.1007/BF00384745...
); (C) and (D) geochemical classification diagrams (FeOt/FeOt + MgO vs. SiO2 and Na2O + K2O-CaO vs. SiO2; Frost et al. 2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048.); (E) A/NK vs. A/CNK diagram (Shand 1943Shand S.J. 1943. The Eruptive Rocks. 2nd Ed. New York, John Wiley, 444 p.).

Using multielemental diagram normalized to the average crust (Weaver and Tarney 1984Weaver B.L., Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature, 310:575-577.; Fig. 5A), MC samples display moderate enrichment in large ion litophile elements (LILE) such as Rb, Th and K and are less enriched in high field strength elements (HFSE) such as P and Ti. Negative Sr, Ba, P, Nb, Ti and Zr anomalies would indicate fractionation of plagioclase, apatite, titanite and zircon. The chondrite-normalized REE pattern of Boynton (1984Boynton W.V. 1984. Geochemistry of the rare earth elements, Meteorite studies. In: Henderson P. (ed.). Rare earth element Geochemistry. Amsterdam: Elsevier, p. 63-14.; Fig. 5B) is strongly fractionated, with (Ce/Yb)N ratios ranging from 109 to 229 and significant negative Eu anomalies (Eu/Eu* = 0.37 to 0.66).

Figure 5.
Multielemental and rare earth elements (REE) patterns for Morro do Coco granite samples. (A) Multielemental diagram normalized to average crust (Weaver and Tarney 1984Weaver B.L., Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature, 310:575-577.); (B) REE pattern diagram normalized for chondrite (Boynton 1984Boynton W.V. 1984. Geochemistry of the rare earth elements, Meteorite studies. In: Henderson P. (ed.). Rare earth element Geochemistry. Amsterdam: Elsevier, p. 63-14.).

In binary diagrams using silica as differentiation index, major elements present negative correlation for Al2O3, CaO, MgO, Na2O, TiO2, P2O5 and Fe2O3(t). Positive correlations only occur for K2O and K2O/Na2O (Fig. 6). Minor and trace elements (Fig. 7), exhibit negative SiO2 correlation for Sr, Zr and Ba and positive correlations for Y and Nb. Other elements such as La show random distribution. Nb/Zr vs. Nb binary diagram, used to identify crystal fractionation and different magma sources (Sial and McReath 1984Sial A.N., McReath I. 1984. Petrologia Ígnea. SBG, CNPq, Ed. Bureau, 180 p.), shows two different clusters for MC samples (Fig. 8) and two evolution lines of fractional crystallization.

Figure 6.
Binary diagrams using SiO2 as differentiation index for major elements of Morro do Coco granite samples.

Figure 7.
Binary diagrams using SiO2 as differentiation index for selected minor and trace elements of Morro do Coco granite samples.

Figure 8.
Nb/Zr versus Nb binary diagram plot of Morro do Coco samples. The horizontal lines represent process of fractional crystallization. The two clusters may indicate different magmatic sources.

Geotectonic classification

A series of geotectonic classification diagrams for acidic rocks were created by Verma et al. (2012Verma S.K., Pandarinath K., Verma S.P. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3):325-347. http://dx.doi.org/10.1080/00206814.2010.543784
http://dx.doi.org/10.1080/00206814.2010....
, 2013Verma S.P., Pandarinath K., Verma S.K., Agrawal S. 2013. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos, 168-169:113-123. http://dx.doi.org/10.1016/j.lithos.2013.01.014
http://dx.doi.org/10.1016/j.lithos.2013....
) based on linear discriminant analysis of natural logarithm transformed ratios of major (m3) and immobile trace elements (tacid). The plot of MC in these function-based multidimensional diagrams indicates the rock has collisional affinity on the major elements-based diagrams (m3; Fig. 9), and collisional affinity trending to arc setting on the immobile trace elements-based diagrams (tacid; Fig. 10).

Figure 9.
Multidimensional geotectonic classification diagram for acidic rocks based on major elements (m3, Verma et al. 2012Verma S.K., Pandarinath K., Verma S.P. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3):325-347. http://dx.doi.org/10.1080/00206814.2010.543784
http://dx.doi.org/10.1080/00206814.2010....
) for Morro do Coco samples and a comparison with other post-collisional granitic intrusions found in Ribeira-Araçuaí Belts. Data from: Almeida (2010Almeida G.A. 2010. Revisão Petroquímica dos Granitóides Pós-Colisionais ocorrentes na Folha Baía de Guanabara (1:100000), RJ, Brasil. Undergraduate thesis, Instituto de Agronomia, Departamento de Geociências, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 86 p.; Suruí), Valeriano (2012Valeriano C.M. 2012. Geologia e Recursos Minerais da Folha Baía de Guanabara, SF-23-ZB-IV, escala 1:100.000, Nota Explicativa. Programa Geologia do Brasil. Belo Horizonte, CPRM, 156 p.; Pedra Branca), Ribeiro (2006Ribeiro R. 2006. Estudo geológico e geoquímico preliminar do granito Silva Jardim, Rio de Janeiro. Monography, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 45 p.; Silva Jardim), Teixeira (2010Teixeira A.P.G. 2010. Estudos geoquímicos comparativos de granitos tardi a pós-colisionais no segmento central do Orógeno Ribeira no Estado do Rio de Janeiro. Monography, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 45 p.; Parati), Azevedo Sobrinho et al. (2011Azevedo Sobrinho J.M., Janasi V.A., Simonetti A., Heaman L.M., Santoro J., Diniz H.N. 2011. The Ilha Anchieta Quartz Monzonite: the southernmost expression of ca. 500 Ma post-collisional magmatism in the Ribeira Belt. Anais da Academia Brasileira de Ciências, 83(3):891-906. http://dx.doi.org/10.1590/S0001-37652011000300010
http://dx.doi.org/10.1590/S0001-37652011...
; Anchieta Island), Junho (1992Junho M.C.B. 1992. Contribuição à petrologia dos maciços graníticos da Pedra Branca, Frades e Nova Friburgo, Rio de Janeiro. PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 198 p.; Teresópolis), Potratz and Valeriano (2017Potratz G.L., Valeriano C.M. 2017. Petrografia e Litogeoquímica do Granito Itaoca, Município de Campos dos Goytacazes, RJ: O Representante Mais Jovem do Magmatismo Pós-Colisional da Faixa Ribeira. Geonomos, 25(1):1-13. https://doi.org/10.18285/geonomos.v25i1.908
https://doi.org/10.18285/geonomos.v25i1....
; Itaoca), Bongiolo et al. (2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
http://dx.doi.org/10.1016/j.lithos.2015....
; Cajú).

Figure 10.
Multidimensional geotectonic classification diagram for acidic rocks based on immobile trace elements (tacid, Verma et al. 2013Verma S.P., Pandarinath K., Verma S.K., Agrawal S. 2013. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos, 168-169:113-123. http://dx.doi.org/10.1016/j.lithos.2013.01.014
http://dx.doi.org/10.1016/j.lithos.2013....
).

In addition, this classification provides a helpful statistical evaluation of the probability the rock has to belong to a specific geotectonic setting (Tab. 2). For the m3 diagrams, MC has a final probability of 83% to collisional setting, 16% to intraplate setting (CR+OI) and 1% to arc setting (CA). Tacid diagrams probabilities are 75% to collisional setting, 23% to arc setting and 2% to intraplate setting.

Table 2
Geotectonic setting probabilities based on the application of multidimensional diagrams to acidic rocks of Morro do Coco Granite.

On more traditional geotectonic classification diagrams such as Rb vs. Y+Nb, Nb vs. Y, Rb vs. Ta+Yb and Ta vs. Yb of Pearce et al. (1984Pearce J.A., Harris N.B.W., Tindle A.J. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983. http://dx.doi.org/10.1093/petrology/25.4.956
http://dx.doi.org/10.1093/petrology/25.4...
; Fig. 11), MC plots within the limit between syn-collisional granite (syn-COLG) and volcanic arc granite (VAG). Also, most of the samples plot in the post-collisional granite field (post-COLG; Pearce 1996) within the Rb vs. Y+Nb diagram (Fig. 11A).

Figure 11.
Pearce et al. (1984Pearce J.A., Harris N.B.W., Tindle A.J. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983. http://dx.doi.org/10.1093/petrology/25.4.956
http://dx.doi.org/10.1093/petrology/25.4...
) granite geotectonic discriminant diagrams. (A) Rb vs. Y+Nb diagram (including field for post-collisional granites from Pearce 1996); (B) Nb vs. Y; (C) Rb vs. Ta + Yb; (D) Ta vs. Yb.

U-Pb geochronology

Seventeen SHRIMP spots on zircon crystals from one MC sample (CLR-02C) were analyzed (Tab. 3). Crystals are prismatic, some with sub-rounded rims, and their size range from 125 to 260 µm in length and 25 to 50 µm in width, with a length/width ratio varying from 10:3 on elongated crystals to 2:1 on sharp ones. Concentric or irregular oscillatory zoning can be observed for most crystals under CL imaging, interpreted as indicating their igneous origin (Fig. 12A).

Table 3.
Analytical results of sensitive high resolution ion microprobe (SHRIMP) U-Pb zircon data for the Morro do Coco Granite.

Figure 12.
Geocrhonology of Morro do Coco granite. (A) Cathodoluminescence images from zircon crystals of Morro do Coco granite; (B) statistical plot of all ages of analyzed spots with error bar of 2σ. Only the spots represented by black bars were used to calculate the concordant age; (C) U-Pb sensitive high resolution ion microprobe (SHRIMP) Concordia diagram showing only nine selected spots.

Statistical plot of all spots analyzed are shown in Figure 12B. Spots 1.1 and 4.1 yielded 206Pb/238U age of 564 and 591 Ma, respectively, being assigned as a xenocrystal, probably derived from the host rocks. Aside from these two plots, others were excluded due to high discordance degree or low Th/U ratios. Eight plots (2.1, 3.1, 5.1, 6.1, 7.1, 8.1, 13.1, 14.1) have 206Pb/238U ages between 474 and 507 Ma and yielded a concordant age of 496 ± 3 Ma with mean weighted standard deviation (MWSD) concordance of 0.63 (Fig. 12C), which we interpret as the crystallization age for the MC granite.

Sm-Nd isotopes

Sm-Nd results for two samples (CLR-02C and CLR-07C) of the MC granite are presented in Tab. 4. The samples show 143Nd/144Nd ratios of 0.511752 and 0.511747, εNd(496Ma) ~ -9, and TDM model age of 1.3 Ga (Fig. 13). Data suggest Mesoproterozoic age for parental magma extraction from its source.

Table 4.
Sm-Nd isotopic data for the Morro do Coco Granite.

Figure 13.
εNd vs. time (Ga) evolution diagram for two samples (CLR-02C and CLR-07C) of the Morro do Coco granite.

DISCUSSION

The generation of MC in the late Cambrian is related to the post-collisional geodynamics that took place at the final Brasiliano orogeny, during the waning stages of the Gondwana supercontinent amalgamation. Based on the acquired data, the following sections will provide details about its geochemical and geotectonic significance and its correspondence to other similar occurrences in the Ribeira and Araçuaí belts.

Geochemistry of Morro do Coco granite

Whole-rock geochemical data classifies MC as a high-K, calc-alkaline magnesian syenogranite with metaluminous to slightly peraluminous affinity (aluminum saturation index - ASI between 0.97 and 1.06; Fig. 4, Tab. 1). Other important geochemical characteristics of the MC granite are:

  • high K2O concentrations (up to 6 wt.%, Fig. 4B) in K2O vs. SiO2 diagram;

  • high K2O + Na2O contents (around 9 wt.% Tab. 1);

  • great LREE enrichment and negative Eu anomalies on the chondrite-normalized REE pattern (Fig. 5B);

  • strongly negative εNd(496) of ca. -9, indicating crustal melting source.

Still, Mesoproterozoic TDM ages of 1.3 Ga obtained for MC (Fig. 13, Tab. 4) are similar to model ages obtained for intermediate and mafic rocks from Várzea Alegre (Medeiros et al. 2000Medeiros S.R., Wiedemann-Leonardos C., Mendes J.C. 2000. Post-collisional multistage magmatism in the Ribeira Mobile Belt: geochemical and isotopic study of the Varzea Alegre Intrusive Complex, Espirito Santo, Brazil. Revista Brasileira de Geociências, 30(1):30-34.) and syn-collisional calc-alkaline granitoids from São Paulo and Minas Gerais States (Janasi et al. 1997Janasi V.A., Haddad R.C., Vlach S.R.F. 1997. Comments on the Sm-Nd isotope systematics of calc-alkaline granitoids from Pinhal-Ipiuna batholith (São Paulo and Minas Gerais, Brazil). In: South American Symposium on Isotope Geology, Campos do Jordão. Extended Abstract…, 147-150.), which they interpret as being related to an important crust-forming event for the area, possibly in a subduction environment associated to lithospheric mantle metasomatism. Further, magnesian granitoids are related to partial melting of continental crust under oxidizing (and probably wet) conditions (Osbourn 1959Osbourn E.F. 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9):609-647. http://dx.doi.org/10.2475/ajs.257.9.609
http://dx.doi.org/10.2475/ajs.257.9.609...
, Frost et al. 2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048.).

Variation diagrams using SiO2 as differentiation index support that fractional crystallization took part in MC magma evolution as they present negative correlations for Al2O3, CaO, MgO, Na2O, Fe2O3(t) and TiO2 and a positive one for K2O. The depletion in CaO (and Sr) and the enrichment of K2O (and Rb) with increasing SiO2 contents accounts, respectively, for plagioclase fractionation and alkali-feldspar crystallization (Figs. 6 and 7). Negative Eu anomalies (δEu up to 0.35; Fig. 5B) also ascribe the removal of plagioclase from the melt by crystal fractionation or the partial melting of a source rock leaving plagioclase in the residue (cf.Wilson 1989Wilson M. 1989. Igneous Petrogenesis. London, Unwin Hyman Ltd., 466 p.). The two horizontal trend lines in the Nb vs. Nb/Zr binary plot (Fig. 8) are also interpreted as result of the fractional crystallization process.

Fractional crystallization is considered an important process in the history of similar post-collisional rocks in the region, but are certainly combined, in a higher or lesser degree, with mixing between mantle-derived magmas and crustal melts (e.g., Wiedemann et al. 1987Wiedemann C.M., Penha H.M, Schmidt-Thomé R. 1987. Granitoids do Espírito Santo and Rio de Janeiro State. Revista Brasileira de Geociências, 17(4):674-689., Mendes et al. 1997Mendes J.C., McReath I., Wiedemann C.M., Figueiredo M.C.H. 1997. Charnoquitóides do maciço de Várzea Alegre: um exemplo de magmatismo cálcio-alcalino de alto K no arco magmático do Espírito Santo. Revista Brasileira de Geociências, 27(1):13-24., 2005Mendes J.C., Medeiros S.R., McReath I., De Campos C.M.P. 2005. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb-Sr ages, combined with Srand Nd isotopic data of charnockitic rocks from the Varzea Alegre complex. Gondwana Research, 8(3):337-345.). This combined magma source is not evidenced in MC, as demonstrated by its petrographic and geochemical (e.g., lack of association with basic rocks and slightly peraluminous affinity).

A comparison of Morro do Coco with similar occurrences

By comparing the chemical composition of MC with other similarly evolved (SiO2 contents) post-collisional rocks of the Ribeira-Araçuaí belts (Suppl. Tab. A5 Supplementary material Supplementary data associated with this article can be found in the online version: Supplementary Table A1, Supplementary Table A2, Supplementary Table A3, Supplementary Table A4 and Supplementary Table A5. ), they are clearly akin. Mean values of SiO2 (70 wt.%), Al2O3 (14.4 wt.%), Fe2O3(t) (2.7 wt.%), CaO (1.8 wt.%) Na2O (3.1 wt.%) and K2O (5.8 wt.%) of the other intrusions are very alike to the concentrations of major elements in MC (Tab. 1). Only the younger Cajú granite, presenting slightly higher SiO2 contents (up to 73 wt.%), has lower Fe2O3(t) contents (1.2 wt.%).

The plot of geochemical data of post-collisional granites of the Central Ribeira Belt in the major-elements based multidimensional tectonic discrimination diagrams of Verma et al. (2012Verma S.K., Pandarinath K., Verma S.P. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3):325-347. http://dx.doi.org/10.1080/00206814.2010.543784
http://dx.doi.org/10.1080/00206814.2010....
; Fig. 9) show they were all formed at a collisional setting, but one group (Parati, Silva Jardim, Anchieta Island, Teresópolis, Itaoca and MC) plot closer to the collisional/continental rift fields transition, while the other (Suruí, Pedra Branca and Nova Friburgo) plot scattered within the collisional field (Fig. 9A to C). Also, a different chemical behavior between these two groups is observed in the last diagram (Fig. 9E), where the latter demonstrates higher arc setting affinity. This variability may reflect heterogeneity of their magmatic sources, as there is no direct correlation between age or Suite and these geochemical signatures.

Trace-elements-based tectonic classification diagrams corroborate that MC was formed at a collisional/post-collisional setting but, in this case, some samples show arc affinity (Figs. 10 and 11), as noted by Pearce (1996Pearce J.A. 1996. Sources and settings of granitic rocks. Episodes, 19(4):120-125.). As stated by Frost et al. (2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048.), the trace-elements compositions of post-collisional granitoids are highly controlled by melting source and crystallization history, rather than the tectonic environment, as they can be derived from different types of sources depending on the composition of the thickened crust. Thus, this arc-related geochemical signature of MC could be inherited from the melting source.

Incipient deformation is mostly described in the Suruí Suite (Valeriano et al. 2017Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano. Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.). Undulose extinction in quartz crystals and development of myrmekite in plagioclase (Fig. 3G-3J) may indicate solid-state deformation (cf.Vernon et al. 2004Vernon R.H., Johnson S.E., Melis E.A. 2004. Emplacement-related microstructures in the margin of a deformed tonalite pluton: The San José pluton, Baja Califórnia, México. Journal of Structural Geology, 26(10):1867-1884. https://doi.org/10.1016/j.jsg.2004.02.007
https://doi.org/10.1016/j.jsg.2004.02.00...
) in the MC granite. Also, alkali-feldspar recrystallization (Fig. 3K-3L) indicates P-T arrangement of at least 480ºC at 4 kb conditions (Voll 1976Voll G. 1976. Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweizerische Mineralogische und Petrographische Mitteilungen, 56:641-647. http://doi.org/10.5169/seals-43709
http://doi.org/10.5169/seals-43709...
, Altenberger et al. 1987Altenberger U., Hamm N., Kruhl J. 1987. Movements and metamorphism north of the Insubric Line between Val Loana and Val d’Ossola (Italy). Jahrbuch der Geologischen Bundesanstalt (Austria), 130:365-374.) during MC emplacement. This is the expected temperature for the study area in the post-collisional stage of the Ribeira orogen at 495 Ma, using cooling rates of 10ºC/Ma after the metamorphic peak at 525 Ma (ca. 780°C and 9 kb; Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
http://dx.doi.org/10.1016/j.precamres.20...
) near the study area. Thus, incipient deformation observed in MC and other post-collisional intrusion of the Ribeira orogeny might represent the rheological behavior of their magmas under advanced crystallization (35-65%; e.g., Fernandez and Gasquet 1994Fernandez A.N., Gasquet D.R. 1994. Relative rheological evolution of chemically contrasted coeval magmas: example of the Tichka plutonic complex (Morocco). Contributions to Mineralogy and Petrology, 116(3):316-326. https://doi.org/10.1007/BF00306500
https://doi.org/10.1007/BF00306500...
).

Post-collisional age span in southeastern Brazil

The current subdivision of the Cambro-Ordovician granitic intrusions of the Ribeira Belt into two Suites (i.e., Suruí and Nova Friburgo) suggests two pulses of magmatism during the post-collisional stage of the Brasiliano orogeny. The Suruí and Nova Friburgo Suites are distinguished over age, structural and geomorphological criteria. According to Valeriano et al. (2017Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano. Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.), Suruí Suite (~510 Ma) occurs mostly as stocks and batholiths and show superimposed weak ductile deformation; while Nova Friburgo Suite (~485 Ma) granitoids are generally represented by tabular intrusions without clear signs of ductile deformation.

Nevertheless, by comparing these ages and extending this comparison to the South Ribeira and Araçuaí belts, a broader distribution can be observed if we consider analytical errors (Fig. 14, Tab. 5). In Fact, only Pedra Branca, Suruí, Santa Angélica and Pedra Azul granitoids clearly cluster as older representants of this magmatism, and Cajú as the youngest intrusion (ca. 454 Ma; Bongiolo et al. 2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
http://dx.doi.org/10.1016/j.lithos.2015....
). The other intrusions span intermediately, at ca. 495-475 Ma, which could either indicate three pulses of magmatism (515, 495 and 455 Ma) or a continuous event from 515 to 475 Ma with an interval of 20 Ma to a second pulse at ca. 455 Ma.

Table 5.
Geochronological data compilation of some of the Cambro-Ordovician intrusive bodies in the Ribeira and Araçuaí belts.

Figure 14.
Plot of the geochronological data compilation for the Cambro-Ordovician intrusive bodies at the Ribeira-Araçuaí belts from Southern Ribeira Belt to Southern Araçuaí Belt. The Parati and São Pedro de Lumiar error bars are inferred. The Pedra Azul has a very imprecise age due to the methodology used (whole-rock Rb-Sr). Data References are shown in Table 5.

The MC granites have crystallization age of 496 ± 3 Ma, similarly to those of the Nova Friburgo Suite crystallization (ca. 485 Ma; Fig. 14, Tab. 5). Based on geochemical characteristics, age and tabular geometry, MC is interpreted here as belonging to the Nova Friburgo Suite.

Post-collisional Ribeira vs. Araçuaí belts and current geodynamic models

The petrographic and geochemical characteristics of MC are indicative of granites formed by processes associated to delamination of overthickened crust (Frost et al. 2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048.), which is one of the most accepted geodynamic models proposed for the Cambro-Ordovician magmatism at the Ribeira-Araçuaí belts (Heilbron and Machado 2003Heilbron M., Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogen (SE Brazil). Precambrian Research, 125(1-2):87-112. http://dx.doi.org/10.1016/S0301-9268(03)00082-2
http://dx.doi.org/10.1016/S0301-9268(03)...
, Pedrosa-Soares et al. 2008Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and Differences between the Brazilian and African Counterparts of the Neoproterozoic Araçuaí-west Congo Orogen. Geological Society Special Publications, 294:153-172. https://doi.org/10.1144/SP294.9
https://doi.org/10.1144/SP294.9...
). Break-off of subducted oceanic lithosphere is also proposed as a triggering mechanism for this post-collisional magmatism (Söllner et al. 1987Söllner F., Lammerer B., Weber-Diefenbach K., Hansen B.T. 1987. The Brasiliano orogenesis, age determinations (Rb-Sr and U-Pb) in the coastal mountain region of Espírito Santo, Brazil. Zentralblatt für Geologie und Paläontologie, 7-8:729-741., 2000Söllner F., Lammerer B., Wiedemann C.M. 2000. Dating the Ribeira Mobile Belt of Brazil. Zeitschrift für Angewandte Geologie, 245-255.). In fact, both processes could have taken place synchronously. Other possible mechanism is the onset of a hotspot due to destabilization of the asthenospheric mantle after orogenic collapse, proposed by De Campos et al. (2016De Campos C., Medeiros S., Mendes J., Pedrosa-Soares A.C., Dussin I., Ludka I., Dantas E. 2016. Cambro-Ordovician magmatism in the Araçuaí belt (SE Brazil): snapshots from a post-collisional event. Journal of South American Earth Sciences, 68:248-268. https://doi.org/10.1016/j.jsames.2015.11.016
https://doi.org/10.1016/j.jsames.2015.11...
) to explain post-collisional bimodal intrusive bodies such as Mimoso do Sul, Buarama and Várzea Alegre (ca. 499 to 480 Ma; Söllner et al. 2000Söllner F., Lammerer B., Wiedemann C.M. 2000. Dating the Ribeira Mobile Belt of Brazil. Zeitschrift für Angewandte Geologie, 245-255., Mendes et al. 2005Mendes J.C., Medeiros S.R., McReath I., De Campos C.M.P. 2005. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb-Sr ages, combined with Srand Nd isotopic data of charnockitic rocks from the Varzea Alegre complex. Gondwana Research, 8(3):337-345.) at the Araçuaí Belt.

These models highlight extensive melting of the lower continental crust driven by asthenospheric mantle uplift and the production of mantle-derived tholeiitic magmas, which is not observed in MC, as it comprises a homogenous granitic body with no evidence of associated mafic rocks. Either way, these continental scale processes could have provided the necessary heat to partially melt the continental crust and generate MC.

Post-collisional intrusions in Southern Ribeira Belt (e.g., Anchieta Island quartz-monzonite; Azevedo Sobrinho et al. 2011Azevedo Sobrinho J.M., Janasi V.A., Simonetti A., Heaman L.M., Santoro J., Diniz H.N. 2011. The Ilha Anchieta Quartz Monzonite: the southernmost expression of ca. 500 Ma post-collisional magmatism in the Ribeira Belt. Anais da Academia Brasileira de Ciências, 83(3):891-906. http://dx.doi.org/10.1590/S0001-37652011000300010
http://dx.doi.org/10.1590/S0001-37652011...
) and in Northern Ribeira, and Southern Araçuaí belts transition zone, Espírito Santo State (e.g., Mimoso do Sul, Santa Angélica, Castelo, Pedra Azul and Várzea Alegre) are interpreted to result from the interaction between mantle-derived magmas and partial melting of the lower crust (De Campos et al. 2004De Campos C.P., Mendes J.C., Ludka I.P., Medeiros S.R., Moura J.C., Wallfass C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17:1-39. https://doi.org/10.3809/jvirtex.2004.00106
https://doi.org/10.3809/jvirtex.2004.001...
, 2016De Campos C., Medeiros S., Mendes J., Pedrosa-Soares A.C., Dussin I., Ludka I., Dantas E. 2016. Cambro-Ordovician magmatism in the Araçuaí belt (SE Brazil): snapshots from a post-collisional event. Journal of South American Earth Sciences, 68:248-268. https://doi.org/10.1016/j.jsames.2015.11.016
https://doi.org/10.1016/j.jsames.2015.11...
, Azevedo Sobrinho et al. 2011Azevedo Sobrinho J.M., Janasi V.A., Simonetti A., Heaman L.M., Santoro J., Diniz H.N. 2011. The Ilha Anchieta Quartz Monzonite: the southernmost expression of ca. 500 Ma post-collisional magmatism in the Ribeira Belt. Anais da Academia Brasileira de Ciências, 83(3):891-906. http://dx.doi.org/10.1590/S0001-37652011000300010
http://dx.doi.org/10.1590/S0001-37652011...
). Regarding the latter, De Campos et al. (2016De Campos C., Medeiros S., Mendes J., Pedrosa-Soares A.C., Dussin I., Ludka I., Dantas E. 2016. Cambro-Ordovician magmatism in the Araçuaí belt (SE Brazil): snapshots from a post-collisional event. Journal of South American Earth Sciences, 68:248-268. https://doi.org/10.1016/j.jsames.2015.11.016
https://doi.org/10.1016/j.jsames.2015.11...
) emphasize the complexity and uniqueness of their internal structures and the broadness of magma mixing/mingling evidences, and that they represent the roots of these plutons exposed by deep erosion levels combined with high vertical exposures, which is supported by geobarometric studies that point to intrusions depths around 20 km for these rocks (> 6 kb; Mendes et al. 1997Mendes J.C., McReath I., Wiedemann C.M., Figueiredo M.C.H. 1997. Charnoquitóides do maciço de Várzea Alegre: um exemplo de magmatismo cálcio-alcalino de alto K no arco magmático do Espírito Santo. Revista Brasileira de Geociências, 27(1):13-24., Medeiros et al. 2001Medeiros S.R., Wiedemann C.M., Vriend S. 2001. Evidence of mingling between contrasting magmas in a deep plutonic environment: the example of Várzea Alegre in the Panafrican/Brasiliano Mobile Belt in Brazil. Anais da Academia Brasileira de Ciências, 73(1):99-119. http://dx.doi.org/10.1590/S0001-37652001000100009
http://dx.doi.org/10.1590/S0001-37652001...
).

However, MC and other Cambro-Ordovician intrusive bodies emplaced at the central Ribeira Belt, Rio de Janeiro State, seem to represent a shallower portion of the continental crust, with “undeformed” high-K calc-alkaline to alkali-calcic mainly metaluminous granites and lesser amounts of quartz-monzonites (e.g., Suruí, Pedra Branca, Parati, Silva Jardim, Vila Dois Rios, Nova Friburgo, Mangaratiba, Favela, Andorinha, Teresópolis, Sana, São Pedro, Itaoca, etc.). Post-collisional pegmatites that crop out in the CFTD and are related to the Cajú granite were emplaced at shallow crustal levels, between 1.7 to 3.5 km (Bongiolo et al. 2016Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
http://dx.doi.org/10.1016/j.lithos.2015....
).

Most of these granitoids carry gabbroic, dioritic and quartz-dioritic microgranular enclaves (Valeriano et al. 2016Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
http://dx.doi.org/10.1016/j.jsames.2015....
) which could be related to primitive magma sources, but no mafic enclaves/xenoliths were observed in MC so far. Despite the occurrence of scarce structures interpreted as magma mingling (e.g., Mendes et al. 2002Mendes J.C., Junho M.B., Ghizi A. 2002. Geology and Geochemistry of granitic and dioritic rocks of the São José do Ribeirão intrusive massif, mountain region of Rio de Janeiro State, Brazil. Revista UFRRJ, Série Ciências Exatas e da Terra, 21(2):1-11., Pacheco 2010Pacheco B.T. 2010. Caracterização petrográfica e geoquímica das rochas do Corpo de Conselheiro Paulino (Suíte Nova Friburgo) na Região Serrana do Estado do Rio de Janeiro, RJ. Monography, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, 51 p., Valeriano et al. 2017Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano. Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.), the post-collisional granitoid intrusions of the central Ribeira Belt do not display clear signs of interaction with more primitive (basic) magmas as it is observed in the Araçuaí Belt.

Considering that the CFTD was formed by a west-dipping subduction prior to the Buzios orogeny, this event could have provided extra heating of the upper plate (Costeiro Domain). Thus, the more significant crustal contribution concentrated at the central Ribeira Belt, along with the larger number of known post-collisional intrusions in this sector (Fig. 1), could be related to their proximity to the CFTD. The alignment of post-collisional magmatism along a NE/SW-trending corridor through the Ribeira Belt is concordant with preexisting NE/SW dextral shear zones that could have supported the ascent of post-collisional magmatism after the Búzios orogeny (Schmitt et al. 2016Schmitt R.S., Trouw R., Van Schmus W.R., Armstrong R., Stanton N.S.G. 2016. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin. Brazilian Journal of Geology, 46(Suppl. 1):37-66. http://dx.doi.org/10.1590/2317-4889201620150025
http://dx.doi.org/10.1590/2317-488920162...
, Martins et al. 2016Martins G.G., Mendes J.C., Schmitt R.S., Armstrong R., Valeriano C.M. 2016. 550-490 Ma pre-to post-collisional shoshonitic rocks in the Ribeira Belt (SE Brazil) and their tectonic significance. Precambrian Research, 286:352-369. https://doi.org/10.1016/j.precamres.2016.10.010
https://doi.org/10.1016/j.precamres.2016...
).

CONCLUSIONS

Based on the presented investigation, our study of the post-collisional MC Granite indicates that:

  • The MC granite is a homogeneous, nearly undeformed, tabular syenogranite that was emplaced at the final stages of continental amalgamation at the central Ribeira Belt, during the late Cambrian. U-Pb zircon ages yields a crystallization age of 496 ± 3 Ma;

  • As MC has no evident field or petrographic association to basic/ultrabasic rocks and is classified as an evolved high-K calc-alkaline rock, it is reasonable to assume a major magmatic crustal source, which is stressed by the strong negative εNd value;

  • MC exhibits negative correlations of Al2O3, CaO, MgO, Fe2O3(t) and TiO2 along with positive correlation of K2O with increasing SiO2 contents, strong Eu anomalies, and Nb/Zr vs. Nb plots favoring the fractional crystallization process;

  • The comparison of MC with other Cambro-Ordovician granitic intrusions of the central Ribeira Belt present similar geochemical characteristics. Based on geochemistry, morphology and geochronology we classify MC as belonging to the Nova Friburgo Suite;

  • The age distribution of the main post-collisional magmatism in Central Ribeira Belt spans between 513 to 454 Ma and could be divided into three main pulses of magmatism: 515, 495 and 455 Ma.

ACKNOWLEDGEMENTS

F.R.A. Bione thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the MSc. scholarship in Brazil. This work was mostly funded by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (grant #E-26/111.752/2010 - APQ1). The Programa de Apoio à Pós-Graduação (PROAP) is also acknowledged for financing part of the geochemical analyses. The authors also acknowledge the Centro de Tecnologia Mineral (CETEM) for all the support during sample preparations and two anonymous reviewers of the Brazilian Journal of Geology for their comments that improved the quality of the manuscript.

REFERENCES

  • Almeida G.A. 2010. Revisão Petroquímica dos Granitóides Pós-Colisionais ocorrentes na Folha Baía de Guanabara (1:100000), RJ, Brasil Undergraduate thesis, Instituto de Agronomia, Departamento de Geociências, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 86 p.
  • Altenberger U., Hamm N., Kruhl J. 1987. Movements and metamorphism north of the Insubric Line between Val Loana and Val d’Ossola (Italy). Jahrbuch der Geologischen Bundesanstalt (Austria), 130:365-374.
  • Azevedo Sobrinho J.M., Janasi V.A., Simonetti A., Heaman L.M., Santoro J., Diniz H.N. 2011. The Ilha Anchieta Quartz Monzonite: the southernmost expression of ca. 500 Ma post-collisional magmatism in the Ribeira Belt. Anais da Academia Brasileira de Ciências, 83(3):891-906. http://dx.doi.org/10.1590/S0001-37652011000300010
    » http://dx.doi.org/10.1590/S0001-37652011000300010
  • Bento dos Santos T.M., Munhá J., Tassinari C., Fonseca P., Dias Neto C. 2010. Thermochronology of central Ribeira Fold Belt, SE Brazil: petrological and geochronological evidence for high-temperature maintenance during Western Gondwana amalgamation. Precambrian Research, 180(3-4):285-298. http://dx.doi.org/10.1016/j.precamres.2010.05.002
    » http://dx.doi.org/10.1016/j.precamres.2010.05.002
  • Bento dos Santos T.M., Tassinari C.C.G., Fonseca P.E. 2015. Diachronic collision, slab break-off and long-term high thermal flux in the Brasiliano-Pan-African orogeny: implications for the geodynamic evolution of the Mantiqueira Province. Precambrian Research, 260:1-22. http://dx.doi.org/10.1016/j.precamres.2014.12.018
    » http://dx.doi.org/10.1016/j.precamres.2014.12.018
  • Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2):155-170.
  • Bongiolo E.M., Renac C., Piza P.D., Schmitt R.S., Mexias A.S. 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late-to post-collisional stages of the Gondwana Assembly. Lithos, 240-243:259-275. http://dx.doi.org/10.1016/j.lithos.2015.11.015
    » http://dx.doi.org/10.1016/j.lithos.2015.11.015
  • Boynton W.V. 1984. Geochemistry of the rare earth elements, Meteorite studies. In: Henderson P. (ed.). Rare earth element Geochemistry Amsterdam: Elsevier, p. 63-14.
  • Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
    » http://dx.doi.org/10.5327/Z2317-4889201400030010
  • Campbell I.H., Stepanov A.S., Liang H.-Y., Allen C.M., Norman M.D., Zhang Y.-Q., Xie Y.-W. 2014. The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions to Mineralogy and Petrology, 167:983-1005. https://doi.org/10.1007/s00410-014-0983-9
    » https://doi.org/10.1007/s00410-014-0983-9
  • Claué-Long J.C., Compston W., Roberts J., Fanning C.M. 1995. Two carboniferous ages: 819 a comparison of SHRIMP zircon dating with conventional zircon ages and Ar/Ar analysis. In: Berggren WA, Kent DV, Aubrey MP, Hardenbol J. (eds.). Geochronology Time Scales and Global Stratigraphic Correlation United Kingdom: SEPM Special Publication, 4, p. 3-21.
  • Cox K.G., Bell J.D., Pankhurst R.J. 1979. The Interpretation of Igneous Rocks London: George Allen and Unwin, 450 p.
  • Cunha P.R.C., Melo J.H.G., Silva B.O. 2007. Bacia do Amazonas. Cartas Estratigráficas: Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2):227-251.
  • De Campos C., Medeiros S., Mendes J., Pedrosa-Soares A.C., Dussin I., Ludka I., Dantas E. 2016. Cambro-Ordovician magmatism in the Araçuaí belt (SE Brazil): snapshots from a post-collisional event. Journal of South American Earth Sciences, 68:248-268. https://doi.org/10.1016/j.jsames.2015.11.016
    » https://doi.org/10.1016/j.jsames.2015.11.016
  • De Campos C.P., Mendes J.C., Ludka I.P., Medeiros S.R., Moura J.C., Wallfass C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17:1-39. https://doi.org/10.3809/jvirtex.2004.00106
    » https://doi.org/10.3809/jvirtex.2004.00106
  • DePaolo D.J. 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11):10470-10488. https://doi.org/10.1029/JB086iB11p10470
    » https://doi.org/10.1029/JB086iB11p10470
  • Eirado L.G., Heilbron M., Almeida J.C.H. 2006. Os terrenos tectônicos da Faixa Ribeira na Serra da Bocaina e na Baía da Ilha Grande, sudeste do Brasil. Revista Brasileira de Geociências, 36(3):426-436.
  • Eirado L.G., Heilbron M., Ragatky C.D., Tupinambá M., Peixoto C. 2017. Unidades Metassedimentares Neoproterozoicas da Faixa Ribeira no Estado do Rio de Janeiro Geologia e recursos minerais do estado do Rio de Janeiro: Texto Explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro: CPRM, p. 45-60.
  • Fernandes G.A. 2000. Contribuição ao Entendimento Geológico do Terreno Oriental da Faixa Ribeira na Baía da Ilha Grande, litoral sul fluminense, RJ Dissertation, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 138 p.
  • Fernandes G.L.F., Schmitt R.S., Bongiolo E.M., Basei M.A.S., Mendes J.C. 2015. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (SE Brazil): U-Pb and Lu-Hf provenance data. Precambrian Research, 226:337-360. http://dx.doi.org/10.1016/j.precamres.2015.05.017
    » http://dx.doi.org/10.1016/j.precamres.2015.05.017
  • Fernandez A.N., Gasquet D.R. 1994. Relative rheological evolution of chemically contrasted coeval magmas: example of the Tichka plutonic complex (Morocco). Contributions to Mineralogy and Petrology, 116(3):316-326. https://doi.org/10.1007/BF00306500
    » https://doi.org/10.1007/BF00306500
  • Fonseca M.J.G., Silva Z.C.G., Campos D.A., Tosatto P. 1979. Folhas do Rio de Janeiro, Vitória e Iguape Texto explicativo e Mapa. Brasília: DNPM, 239 p.
  • Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048.
  • Hamilton P.H., O’Nions R.K., Bridgewater D., Nutman A. 1983. Sm-Nd studies of Archean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth and Planetary Science Letters, 62(2):263-272. https://doi.org/10.1016/0012-821X(83)90089-4
    » https://doi.org/10.1016/0012-821X(83)90089-4
  • Heilbron M., Machado N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogen (SE Brazil). Precambrian Research, 125(1-2):87-112. http://dx.doi.org/10.1016/S0301-9268(03)00082-2
    » http://dx.doi.org/10.1016/S0301-9268(03)00082-2
  • Heilbron M., Mohriak W., Valeriano C.M., Milani E., Almeida J.C.H., Tupinambá M. 2000. From collision to extension: the roots of the South-eastern continental margin of Brazil. In: Talwani M. (ed.), Atlantic Rifts and Continental Margin AGU Geophysical Monograph Series, 115. 354 p.
  • Heilbron M., Pedrosa-Soares A.C., Campos Neto M.C., Silva L.C., Trouw R.A.J., Janasi V.A. 2004. Província Mantiqueira. In: Mantesso-Neto V., Bartorelli A., Carneiro C., Dal Ré, Brito-Neves B.B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 203-235.
  • Heilbron M., Tupinambá M., Valeriano C.M., Armstrong R., Silva L.G.E., Melo R.S., Simonetti A., Pedrosa-Soares A.C., Machado N. 2013. The Serra da Bolívia complex: the record of a new Neoproterozoic arc-related unit at Ribeira belt. Precambrian Research, 238:158-175. http://dx.doi.org/10.1016/j.precamres.2013.09.014
    » http://dx.doi.org/10.1016/j.precamres.2013.09.014
  • Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J.C.H., Tupinambá M., Siga Junior O., Trouw R.A.J. 2008. Correlation of Neoproterozoic terranes between Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (eds.), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society of London, Special Publication, 295:211-237.
  • Hibbard M.J. 1995. Petrography to Petrogenesis New Jersey, Prentice Hall, 608 p.
  • Janasi V.A., Haddad R.C., Vlach S.R.F. 1997. Comments on the Sm-Nd isotope systematics of calc-alkaline granitoids from Pinhal-Ipiuna batholith (São Paulo and Minas Gerais, Brazil). In: South American Symposium on Isotope Geology, Campos do Jordão. Extended Abstract…, 147-150.
  • Janasi V.A., Vasconcellos A.C.B.C., Siga Júnior O., Sato K., Machado F.B., Martins L., Garcia M.G.M. 2015. In situ U-Pb dating and Hf isotope geochemistry of zircons from granites of the Costeiro Domain, SE Brazil: timing and source contrasts with neighboring terranes of the Ribeira Belt. In: Hutton Symposium on Granites and Related Rocks, 8., Florianópolis. Annals…, v. 1, p. 69.
  • Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
    » https://doi.org/10.1093/petrology/egl013
  • Junho M.C.B. 1992. Contribuição à petrologia dos maciços graníticos da Pedra Branca, Frades e Nova Friburgo, Rio de Janeiro PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 198 p.
  • Liégeois J.P. 1998. Preface: Some words on the post-collisional magmatismo. Lithos, 45:XV-XVII.
  • Ludka I.P., Mendes J.C., Penha H.M., Belmonte S., Almeida T. 2006. Considerações geoquímicas e idade U-Pb do Granito Parati, sul do estado do Rio de Janeiro. In: Congresso Brasileiro de Geologia, 43., Aracaju. Annals.., p. 253.
  • Ludwig K.R. 2001. SQUID 1.02: A User’s Manual. Berkeley, Berkeley Geochronology Center Special Publication.
  • Ludwig K.R. 2012. User’s Manual for Isoplot 3.75. Berkeley, Berkeley Geochronology Center Special Publication , 75 p.
  • Machado N., Valladares C.S., Heilbron M., Valeriano C.M. 1996. U-Pb geochronology of the central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambrian Research, 79(3-4):347-361. https://doi.org/10.1016/0301-9268(95)00103-4
    » https://doi.org/10.1016/0301-9268(95)00103-4
  • Martins G.G., Mendes J.C., Schmitt R.S., Armstrong R., Valeriano C.M. 2016. 550-490 Ma pre-to post-collisional shoshonitic rocks in the Ribeira Belt (SE Brazil) and their tectonic significance. Precambrian Research, 286:352-369. https://doi.org/10.1016/j.precamres.2016.10.010
    » https://doi.org/10.1016/j.precamres.2016.10.010
  • Medeiros S.R., Wiedemann C.M., Vriend S. 2001. Evidence of mingling between contrasting magmas in a deep plutonic environment: the example of Várzea Alegre in the Panafrican/Brasiliano Mobile Belt in Brazil. Anais da Academia Brasileira de Ciências, 73(1):99-119. http://dx.doi.org/10.1590/S0001-37652001000100009
    » http://dx.doi.org/10.1590/S0001-37652001000100009
  • Medeiros S.R., Wiedemann-Leonardos C., Mendes J.C. 2000. Post-collisional multistage magmatism in the Ribeira Mobile Belt: geochemical and isotopic study of the Varzea Alegre Intrusive Complex, Espirito Santo, Brazil. Revista Brasileira de Geociências, 30(1):30-34.
  • Mendes J.C., Junho M.B., Ghizi A. 2002. Geology and Geochemistry of granitic and dioritic rocks of the São José do Ribeirão intrusive massif, mountain region of Rio de Janeiro State, Brazil. Revista UFRRJ, Série Ciências Exatas e da Terra, 21(2):1-11.
  • Mendes J.C., McReath I., Wiedemann C.M., Figueiredo M.C.H. 1997. Charnoquitóides do maciço de Várzea Alegre: um exemplo de magmatismo cálcio-alcalino de alto K no arco magmático do Espírito Santo. Revista Brasileira de Geociências, 27(1):13-24.
  • Mendes J.C., Medeiros S.R., Chaves E.A. 2011. Assinatura isotópica de Sr e Nd do magmatismo cálcio-alcalino de alto-K na Faixa Ribeira central: o exemplo do Granito São Pedro em Lumiar. RJ. Revista Brasileira de Geociências, 41(3):408-419.
  • Mendes J.C., Medeiros S.R., McReath I., De Campos C.M.P. 2005. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb-Sr ages, combined with Srand Nd isotopic data of charnockitic rocks from the Varzea Alegre complex. Gondwana Research, 8(3):337-345.
  • Middlemost E.A.K. 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1):19-26. https://doi.org/10.1016/0009-2541(89)90011-9
    » https://doi.org/10.1016/0009-2541(89)90011-9
  • Milani E.J., Melo J.H.G., Souza P.A., Fernandes L.A., França A.B. 2007. Bacia do Paraná. Cartas Estratigráficas: Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2):265-287.
  • Moraes J.M. 2009. Geologia do Granito Silva Jardim (RJ): Implicações na evolução tectônica dos Terrenos Oriental e Cabo Frio Thesis, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, 65 p.
  • Morrison G.W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1):97-108. https://doi.org/10.1016/0024-4937(80)90067-5
    » https://doi.org/10.1016/0024-4937(80)90067-5
  • Neto C.C.A., Valeriano C.M., Passarelli C.R., Heilbron M., Lobato M. 2014. Monazite ID-TIMS U-Pb geochronology in the LAGIR laboratory, Rio de Janeiro State University: protocols and first applications to the assembly of Gondwana supercontinent in SE-Brazil. Anais da Academia Brasileira de Ciências, 86(1):171-186. http://dx.doi.org/10.1590/0001-3765201420120005
    » http://dx.doi.org/10.1590/0001-3765201420120005
  • Osbourn E.F. 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9):609-647. http://dx.doi.org/10.2475/ajs.257.9.609
    » http://dx.doi.org/10.2475/ajs.257.9.609
  • Pacheco B.T. 2010. Caracterização petrográfica e geoquímica das rochas do Corpo de Conselheiro Paulino (Suíte Nova Friburgo) na Região Serrana do Estado do Rio de Janeiro, RJ Monography, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, 51 p.
  • Pearce J.A. 1996. Sources and settings of granitic rocks. Episodes, 19(4):120-125.
  • Pearce J.A., Harris N.B.W., Tindle A.J. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983. http://dx.doi.org/10.1093/petrology/25.4.956
    » http://dx.doi.org/10.1093/petrology/25.4.956
  • Peccerillo A., Taylor S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
    » https://doi.org/10.1007/BF00384745
  • Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and Differences between the Brazilian and African Counterparts of the Neoproterozoic Araçuaí-west Congo Orogen. Geological Society Special Publications, 294:153-172. https://doi.org/10.1144/SP294.9
    » https://doi.org/10.1144/SP294.9
  • Platzer S. 1997. Whole-rock geochemistry of the Araçê/Pedra Azul pluton Thesis, University of Utrecht, Netherlands, 58 p.
  • Potratz G.L., Valeriano C.M. 2017. Petrografia e Litogeoquímica do Granito Itaoca, Município de Campos dos Goytacazes, RJ: O Representante Mais Jovem do Magmatismo Pós-Colisional da Faixa Ribeira. Geonomos, 25(1):1-13. https://doi.org/10.18285/geonomos.v25i1.908
    » https://doi.org/10.18285/geonomos.v25i1.908
  • Ribeiro R. 2006. Estudo geológico e geoquímico preliminar do granito Silva Jardim, Rio de Janeiro Monography, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 45 p.
  • Sato K., Tassinari C.C.G., Basei M.A.S., Siga Júnior O., Onoe A.T., Souza M.D. 2014. Sensitive high resolution ion microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP, Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
    » https://doi.org/10.5327/Z1519-874X201400030001
  • Sato K., Tassinari C.C.G., Kawashita K., Petronilho L. 1995. O Método Geocronológico Sm-Nd no IGc/USP e suas Aplicações. Anais da Academia Brasileira de Ciências, 67(3):313-336.
  • Schmitt R.S., Trouw R., Van Schmus W.R., Armstrong R., Stanton N.S.G. 2016. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin. Brazilian Journal of Geology, 46(Suppl. 1):37-66. http://dx.doi.org/10.1590/2317-4889201620150025
    » http://dx.doi.org/10.1590/2317-4889201620150025
  • Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
    » http://dx.doi.org/10.1016/j.precamres.2004.03.010
  • Shand S.J. 1943. The Eruptive Rocks 2nd Ed. New York, John Wiley, 444 p.
  • Sial A.N., McReath I. 1984. Petrologia Ígnea SBG, CNPq, Ed. Bureau, 180 p.
  • Söllner F., Lammerer B., Weber-Diefenbach K., Hansen B.T. 1987. The Brasiliano orogenesis, age determinations (Rb-Sr and U-Pb) in the coastal mountain region of Espírito Santo, Brazil. Zentralblatt für Geologie und Paläontologie, 7-8:729-741.
  • Söllner F., Lammerer B., Wiedemann C.M. 2000. Dating the Ribeira Mobile Belt of Brazil. Zeitschrift für Angewandte Geologie, 245-255.
  • Stacey J.S., Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):207-221. https://doi.org/10.1016/0012-821X(75)90088-6
    » https://doi.org/10.1016/0012-821X(75)90088-6
  • Teixeira A.P.G. 2010. Estudos geoquímicos comparativos de granitos tardi a pós-colisionais no segmento central do Orógeno Ribeira no Estado do Rio de Janeiro Monography, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 45 p.
  • Trouw R.A.J., Heilbron M., Ribeiro A., Paciullo F., Valeriano C., Almeida J.C.H., Tupinambá M., Andreis R.R. 2000. The central segment of the Ribeira belt. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Proceedings of the 31 st International Geological Congress, Rio de Janeiro, Brazil, p. 287-310.
  • Trouw R.A.J., Peternel R., Ribeiro A., Heilbron M., Vinagre R., Duffles P., Trouw C.C., Fontainha M., Kussama H.H. 2013. A new interpretation for the interference zone between the southern Brasília Belt and the central Ribeira Belt, SE Brazil. South American Earth Sciences, 48:43-57. http://dx.doi.org/10.1016/j.jsames.2013.07.012
    » http://dx.doi.org/10.1016/j.jsames.2013.07.012
  • Tupinambá M., Heilbron M., Duarte B.P., Nogueira J.R., Valladares C.S., Almeida J., Silva L.G. do E., Medeiros S.R. de, Almeida C.G. de, Miranda A., Ragatky C.D., Mendes J.C, Ludka I. 2007. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. Geonomos, 15(1):67-79. https://doi.org/10.18285/geonomos.v15i1.108
    » https://doi.org/10.18285/geonomos.v15i1.108
  • Tupinambá M., Heilbron M., Valeriano C., Porto Jr. R., Dios F.B., Machado N., Silva L.G.E., Almeida J.C.H. 2012. Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): implications for Western Gondwana amalgamation. Gondwana Research, 21(2-3):422-438. http://dx.doi.org/10.1016/j.gr.2011.05.012
    » http://dx.doi.org/10.1016/j.gr.2011.05.012
  • Tupinambá M., Teixeira W., Heilbron M. 2000. Neoproterozoic Western Gondwana assembly and subduction-related plutonism: the role of the Rio Negro Complex in the Ribeira belt, South-eastern Brazil. Revista Brasileira de Geociências, 30(1):7-11.
  • Valeriano C.M. 2012. Geologia e Recursos Minerais da Folha Baía de Guanabara, SF-23-ZB-IV, escala 1:100.000, Nota Explicativa Programa Geologia do Brasil. Belo Horizonte, CPRM, 156 p.
  • Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Aguiar Neto C.C., Silva L.G.E. 2017. Magmatismo pós-colisional Neoproterozoico a Ordoviciano Geologia e Recursos Minerais do Estado do Rio de Janeiro: texto explicativo dos Mapas Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Rio de Janeiro, CPRM.
  • Valeriano C.M., Mendes J.C., Tupinambá M., Bongiolo E.M., Heilbron M.C.P.L., Junho M.C.B. 2016. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: a case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, 68:269-281. http://dx.doi.org/10.1016/j.jsames.2015.12.014
    » http://dx.doi.org/10.1016/j.jsames.2015.12.014
  • Valeriano C.M., Tupinambá M., Simonetti A., Heilbron M., Almeida J., Eirado Silva L. 2011. U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician post-collisional granites of the Ribeira Belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. Journal of South American Earth Sciences, 32(4):416-428. http://dx.doi.org/10.1016/j.jsames.2011.03.003
    » http://dx.doi.org/10.1016/j.jsames.2011.03.003
  • Verma S.K., Pandarinath K., Verma S.P. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3):325-347. http://dx.doi.org/10.1080/00206814.2010.543784
    » http://dx.doi.org/10.1080/00206814.2010.543784
  • Verma S.P. 2005. Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría) México, Universidad Nacional Autónoma de México, 186 p.
  • Verma S.P., Cruz-Huicochea R., Díaz-González L., Verma S.K. 2015. A new computer program TecDIA for multidimensional tectonic discrimination of intermediate and acid magmas and its application to the Bohemian Massif, Czech Republic. Journal of Geosciences, 60(4):203-218. http://dx.doi.org/10.3190/jgeosci.201
    » http://dx.doi.org/10.3190/jgeosci.201
  • Verma S.P., Pandarinath K., Verma S.K., Agrawal S. 2013. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos, 168-169:113-123. http://dx.doi.org/10.1016/j.lithos.2013.01.014
    » http://dx.doi.org/10.1016/j.lithos.2013.01.014
  • Verma S.P., Rivera-Gómez M.A. 2013. Computer programs for the classification and nomenclature of igneous rocks. Episodes, 36(2):115-124.
  • Verma S.P., Verma S.K. 2013. First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22:931-995. http://dx.doi.org/10.3906/yer-1204-6
    » http://dx.doi.org/10.3906/yer-1204-6
  • Vernon R.H., Johnson S.E., Melis E.A. 2004. Emplacement-related microstructures in the margin of a deformed tonalite pluton: The San José pluton, Baja Califórnia, México. Journal of Structural Geology, 26(10):1867-1884. https://doi.org/10.1016/j.jsg.2004.02.007
    » https://doi.org/10.1016/j.jsg.2004.02.007
  • Voll G. 1976. Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweizerische Mineralogische und Petrographische Mitteilungen, 56:641-647. http://doi.org/10.5169/seals-43709
    » http://doi.org/10.5169/seals-43709
  • Weaver B.L., Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature, 310:575-577.
  • Wiedemann C.M., Penha H.M, Schmidt-Thomé R. 1987. Granitoids do Espírito Santo and Rio de Janeiro State. Revista Brasileira de Geociências, 17(4):674-689.
  • Wilson M. 1989. Igneous Petrogenesis London, Unwin Hyman Ltd., 466 p.

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20190010.

Supplementary material

Supplementary data associated with this article can be found in the online version: Supplementary Table A1, Supplementary Table A2, Supplementary Table A3, Supplementary Table A4 and Supplementary Table A5.

Publication Dates

  • Publication in this collection
    12 Sept 2019
  • Date of issue
    2019

History

  • Received
    19 Feb 2019
  • Accepted
    24 May 2019
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br