Acessibilidade / Reportar erro

U-Pb SHRIMP dating of basement rocks of the Iriri-Xingu domain, Central Amazonian province, Amazonian craton, Brazil

Abstract

The Iriri-Xingu domain, located in the central part of the Amazonian craton, consists of extensive occurrences of Paleoproterozoic volcanic rocks and granites with published ages of ca. 1990 to 1840 Ma, which show a strong crustal contribution for their magmas. Exposures of basement rocks are small and rare. Samples from two areas were dated in this work by U-Pb SHRIMP in zircon. In the northern Maribel area, a high-grade pelitic paragneiss presented an age of 2160 ± 8 Ma and the leucosome of a migmatitic orthogneiss, probably a diatexite, crystallized at 2149 ± 20 Ma. These Rhyacian ages suggest that it is part of the Bacajá domain, related to the Trans-Amazonian cycle. The Morro Grande area occurs in the central part of Iriri-Xingu domain, where a high-grade muscovite gneiss with a protolith of 2120-2180 Ma is dated at 1982 ± 7 Ma, and the leucosome of a migmatitic orthogneiss is crystallized at 1979 ± 8 Ma. These are the first records of high-grade metamorphism at ca. 1980 Ma in the Central Brazil shield and may be related to the generation of this Orosirian felsic magmatism, which is widespread throughout the nearby Ventuari-Tapajós province.

KEYWORDS:
U-Pb geochronology; sensitive high-resolution ion microprobe (SHRIMP); Iriri-Xungu domain; Amazonian craton

INTRODUCTION

The Central Amazonian province of the Amazonian craton was originally defined by Cordani et al. (1979Cordani U.G., Tassinari C.C.G., Teixeira W., Basei M.A.S., Kawashita K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos. In: Congreso Geologico Chileno, 2., Arica, Chile. Actas..., v. 4, p. 137-148.). Their paper was the first in which the tectonic evolution of the Amazonian craton was considered by means of a mobilistic approach and was characterized as a stable area in relation to the Paleoproterozoic Maroni-Itacaiunas mobile belt to the northeast. The tectonically stabilized Archean nucleus of Carajás region is included in its southeastern part, and its volcanic-sedimentary cover rocks characterize the cratonic nature of the province. The initial work of Cordani et al. (1979Cordani U.G., Tassinari C.C.G., Teixeira W., Basei M.A.S., Kawashita K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos. In: Congreso Geologico Chileno, 2., Arica, Chile. Actas..., v. 4, p. 137-148.) was followed and upgraded by many others, such as Cordani and Teixeira (2007Cordani U.G., Teixeira W. 2007. Proterozoic accretionary belts in the Amazonian Craton. Geological Society of America Memoirs, 200:297-320. https://doi.org/10.1130/2007.1200(14)
https://doi.org/10.1130/2007.1200(14)...
) and Tassinari and Macambira (1999Tassinari C.C.G., Macambira M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3):174-182.), from which Figure 1 has been adapted. Regarding the Central Amazonian province, Tassinari and Macambira (1999Tassinari C.C.G., Macambira M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3):174-182., 2004Tassinari C.C.G., Macambira M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485.) distinguished the Archean Carajás block from Xingu-Iricoumé block, which includes large outcrops of Paleoproterozoic felsic volcanic rocks and granites. Based on the Nd isotopic data presented by Sato and Tassinari (1997Sato K., Tassinari C.C.G. 1997. Principais eventos de acresção continental no Cráton Amazônico, baseados em idade modelo Sm-Nd, calculadas em evoluções de estágio único e estágio duplo. In: Costa M.L., Angélica R.S. (Eds.), Contribuições à Geologia da Amazônia. Belém: Sociedade Brasileira de Geologia , 1, p. 91-142.), the existence of Archean crustal sources for these igneous rocks was proposed, which contrasted with the juvenile sources of coeval igneous rocks occurring within the adjacent Ventuari-Tapajós province to the west.

Figure 1.
Sketch map of geochronological provinces from the Amazonian craton based on Tassinari and Macambira (2004Tassinari C.C.G., Macambira M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485.), with location of the tectonic domains of Vasquez et al. (2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
).

The Iriri-Xingu domain (IXD) comprises large outcrops of Paleoproterozoic felsic volcanic rocks and granites in the southern part of Central Amazonian province (Fig. 1). Direct exposure of dated Archean basement below rocks of the IXD has not been encountered yet. Currently, the only confirmed Archean part of the Central Amazonian province is Carajás block (Cordani et al. 1984Cordani U.G., Tassinari C.C.G., Kawashita K. 1984. A Serra dos Carajás como região limítrofe entre províncias tectônicas. Ciências da Terra, (9):6-11., Tassinari and Macambira 1999Tassinari C.C.G., Macambira M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3):174-182., 2004Tassinari C.C.G., Macambira M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485.).

The regional geology around the IXD is divided into seven tectonic domains characterized by coherence in terms of lithostratigraphy, geochronology, structural trends, and geophysical features (Vasquez et al. 2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
, Fig. 1):

  • Rio Maria domain (RMD) - exposed Mesoarchean (3050-2850 Ma) terrains at the southeastern corner of the Central Amazonian province;

  • Carajás domain (CJD) - exposed Neoarchean terrains (2760-2570 Ma) at the southeastern corner of the Central Amazonian province;

  • Bacajá domain (BJD) - Mesoarchean to Siderian (3000-2300 Ma) terrains reworked during the Rhyacian orogenies of the Transamazonian cycle (2260-2050 Ma), at the southeastern corner of Maroni-Itacaiúnas province;

  • Santana do Araguaia domain (SAD) - Neoarchean and Mesoarchean terrains reworked in Paleoproterozoic time with local reworking by the Transamazonian cycle;

  • IXD - Orosirian volcanic-plutonic igneous rocks of different types overlying the basement of Central Amazonian province, with ages between 1990 and 1840 Ma;

  • Tapajós domain (TJD) - Orosirian volcanic-plutonic igneous rocks, orthogneisses and supracrustal rocks of Ventuari-Tapajós province, some with of juvenile character;

  • Juruena domain (JRD) - Orosirian to Statherian volcanic-plutonic igneous rocks (1820-1770 Ma), which overly rocks of the IXD and TJD.

The IXD is formed by I- and A-type felsic volcanic rocks and granites emplaced in two main pulses: 1990-1970 Ma and 1890-1840 Ma. Based on Nd isotopic data for rocks of the younger pulse, Sato and Tassinari (1997Sato K., Tassinari C.C.G. 1997. Principais eventos de acresção continental no Cráton Amazônico, baseados em idade modelo Sm-Nd, calculadas em evoluções de estágio único e estágio duplo. In: Costa M.L., Angélica R.S. (Eds.), Contribuições à Geologia da Amazônia. Belém: Sociedade Brasileira de Geologia , 1, p. 91-142.) identified Archean crustal sources for these parent magmas, with strongly negative εNd (-5.4 to -12.1) and Mesoarchean to Neoarchean TDM model ages (3.3 to 2.6 Ga). Their measurements contrasted with the mainly juvenile Nd isotope signature of rocks from the TJD in the adjacent Paleoproterozoic Ventuari-Tapajós tectonic province to the west, which forms at least part of the IXD basement.

Based on such considerations, it becomes important to examine all areas in which confirmed basement of the IXD is exposed. A previous geological survey in the 1970s (SUDAM, Geomitec 1972Superintendência de Desenvolvimento da Amazônia (SUDAM), Geologia e Mineração Trabalhos Técnicos Ltda. (Geomitec). 1972. Pesquisa Mineral no Iriri/Curuá. Belém: SUDAM/Departamento de Recursos Naturais, 62 p.) mapped only small outcrops of metamorphic rocks in the western part of the IXD (Morro Grande area), and Vasquez et al. (2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
) mapped another in the northeastern part (Maribel area). These two localities are indicated in Figure 2. In this paper, we present zircon U-Pb ages and discuss their bearing on tectonic evolution of the IXD and of the entire Amazonian craton.

Figure 2.
Geological map of the Iriri-Xingu domain with previous geochronological data and location of the study areas and dated samples (modified after Vasquez et al. 2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
). Detailed geological maps of (A) Maribel and (B) Morro Grande areas.

GEOLOGY OF THE IRIRI-XINGU DOMAIN

Orthogneisses, migmatites, and foliated granitoids were mapped in the southeastern part of the study region (Fig. 2). Their protolith was formed around 2830 Ma (Tab. 1), probably by juvenile accretion of calc-alkaline magmas related to an island arc (Alves et al. 2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
). These basement rocks were related to the SAD (Alves et al. 2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
), but their high-grade metamorphism was not dated to test for reworking during the Rhyacian Trans-Amazonian cycle. Therefore, these high-grade metamorphic rocks might be part of the IXD.

Table 1.
Summary of geochronological data of the Iriri-Xingu domain.

Felsic volcanic and pyroclastic rocks are dominant in the IXD (Fig. 2), but zircon ages have shown an association with different volcanic-plutonic events (Tab. 1). In the original proposal (SUDAM, Geomitec 1972Superintendência de Desenvolvimento da Amazônia (SUDAM), Geologia e Mineração Trabalhos Técnicos Ltda. (Geomitec). 1972. Pesquisa Mineral no Iriri/Curuá. Belém: SUDAM/Departamento de Recursos Naturais, 62 p.), they were named Iriri Formation, but Silva et al. (1974Silva G.G., Lima M.I.C., Andrade A.R.F., Issler R.S., Guimarães G. 1974. Geologia Folhas SB.22 - Araguaia e parte da Folha SC.22 - Tocantins. Projeto Radambrasil, Levantamento de Recursos Naturais. Rio de Janeiro: Departamento Nacional de Produção de Mineral - DNPM, 4, p. 1-143.) revised, changed it to Iriri Group, and individualized some andesites and dacites as the Sobreiro Formation. These felsic rocks have been related to the Uatumã magmatism (Macambira and Vale 1997Macambira E.M.B., Vale A.G. 1997. São Félix do Xingu: Folha SB.22-Y-B, Estado do Pará, escala 1:250.000. Texto Explicativo, Programa Levantamentos Geológicos Básicos do Brasil. Brasília, Companhia de Pesquisas de Recursos Minerais - CPRM, 344 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/8718 >. Accessed on: Sept, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
, Teixeira et al. 2002Teixeira N.P., Fernandes C.M.D., Moura C.A.V., Pinho S.C.C., Bettencourt J.S. 2002. Geologia, geoquímica, geocronologia e isótopos de Sm-Nd de rochas vulcânicas paleoproterozóicas do Grupo Uatumã ocorrentes na região de São Félix do Xingu, Província Mineral de Carajás, Cráton Amazônico, Brasil. In: Simpósio sobre Vulcanismo e Ambientes Associados, 2. Abstracts... Belém, p. 28.), which represents the main Paleoproterozoic volcanic-plutonic event of the Amazonian craton at ca. 1880 Ma (Dall’Agnol et al. 1994Dall’Agnol R., Lafon J.M., Macambira M.J.B. 1994. Proterozoic anorogenic magmatism in the Central Amazonian Craton: geochronological and geochemical aspects. Mineralogy and Petrology, 50(1-3):113-38. https://doi.org/10.1007/BF01160143
https://doi.org/10.1007/BF01160143...
). Zircon ages between 1888 and 1879 Ma (Tab. 1) were obtained on volcanic lavas and pyroclastic rocks, as well as microgranites related to the eastern part of the domain (Santa Rosa Formation), which confirm such correlation. However, the volcanic rocks from the northern and western parts of the IXD (Fig. 2) are composed of dacites, rhyolites, and felsic ignimbrites extruded between 1990 and 1986 Ma (Tab. 1). In the southern part of the domain, Alves et al. (2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
) mapped high-K calc-alkaline quartz latitic to rhyolitic lavas and ignimbrites of 1987 Ma (Jarinã Formation). They show that volcanism of this age is also widespread in the IXD. The youngest dated felsic rock is a dacite at 1840 Ma (Tab. 1) associated with pyroclastic and volcanogenic sedimentary rocks in the southeastern part of the domain.

Fernandes et al. (2011Fernandes C.M.D., Juliani C., Monteiro L.V.S., Lagler B., Echeverri Misas C.M. 2011. High-K calc-alkaline to A-type fissure-controlled volcano-plutonism of the São Félix do Xingu region, Amazonian craton, Brazil: Exclusively crustal sources or only mixed Nd model ages? Journal of South American Earth Sciences, 32(4):351-368. https://doi.org/10.1016/j.jsames.2011.03.004
https://doi.org/10.1016/j.jsames.2011.03...
) identified A-type geochemistry for the rhyolitic rocks of the Santa Rosa Formation and I-type high-K calc-alkaline geochemistry for the andesitic rocks of Sobreiro Formation. Based on trace elements and Nd isotope data, they proposed that the Sobreiro Formation magma was formed by mixing mantle-derived and anatectic melts of Archean age, but A-type magmas of Santa Rosa Formation were a result from anatexis of different Archean crust sources (3.0 to 2.5 Ga).

Vasquez et al. (2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
) mapped several plutons of I- and A-type granites in the western and northern parts of the IXD (Fig. 2). Semblano et al. (2016Semblano F.R.D., Pereira N.C.S., Vasquez M.L., Macambira M.J.B. 2016. Novos dados geológicos e isotópicos para o Domínio Iriri-Xingu, Província Amazônia Central; implicações para a idade do Grupo Iriri. Revista do Instituto de Geociências - USP, Série Científica, 16(3):19-38. https://doi.org/10.11606/issn.2316-9095.v16i3p19-38
https://doi.org/10.11606/issn.2316-9095....
) obtained zircon ages of 1992 and 1986 Ma for two I-type granites, and an age of 1889 Ma for an A-type granite (Tab. 1). Alves et al. (2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
) mapped high-K calc-alkaline granites of the Vila Rica Suite (dated at 1976 and 1968 Ma) in the southeastern part of the domain. Moreover, Macambira and Vale (1997Macambira E.M.B., Vale A.G. 1997. São Félix do Xingu: Folha SB.22-Y-B, Estado do Pará, escala 1:250.000. Texto Explicativo, Programa Levantamentos Geológicos Básicos do Brasil. Brasília, Companhia de Pesquisas de Recursos Minerais - CPRM, 344 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/8718 >. Accessed on: Sept, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
) obtained a Rb-Sr isochron age of 1921 ± 69 Ma for one I-type granite of São Felix do Xingu area and suggested that such plutonic event also occurred in the eastern part of the IXD, which is dominantly composed by A-type granites of 1882 to 1862 Ma (Tab. 1).

Sm-Nd isotopic data (Tab. 1) show that Archean material was the main source of magma for the Orosirian igneous rocks. However, a weak negative εNd (-2.8) and Siderian TDM model age (2.4 Ga) of one I-type granite of the western part of the domain suggests mixing of Archean crustal with Paleoproterozoic juvenile material (Semblano et al. 2016Semblano F.R.D., Pereira N.C.S., Vasquez M.L., Macambira M.J.B. 2016. Novos dados geológicos e isotópicos para o Domínio Iriri-Xingu, Província Amazônia Central; implicações para a idade do Grupo Iriri. Revista do Instituto de Geociências - USP, Série Científica, 16(3):19-38. https://doi.org/10.11606/issn.2316-9095.v16i3p19-38
https://doi.org/10.11606/issn.2316-9095....
). This juvenile source is stronger in the continuation of the Central Amazonian province in the Guiana shield, as shown in the εNd -3.0 to 2.9 and TDM 2.39 to 1.95 Ga of igneous rocks of 1.99-1.98 Ga and 1.89-1.88 Ga (Barreto et al. 2014Barreto C.J.S., Lafon J.M., Rosa-Costa L.T., Lima E.F. 2014. Paleoproterozoic (~1.89 Ga) felsic volcanism of the Iricoumé Group, Guyana Shield, South America: geochemical and Sm-Nd isotopic constraints on sources and tectonic environment. International Geology Review, 56(11):1332-1356. https://doi.org/10.1080/00206814.2014.930800
https://doi.org/10.1080/00206814.2014.93...
, Leal et al. 2018Leal R.E., Lafon J.M., Rosa-Costa L.T., Dantas E.L. 2018. Orosirian magmatic episodes in the Erepecuru-Trombetas domain (southeastern Guyana shield): Implications for the crustal evolution of the Amazonian craton. Journal of South American Earth Sciences, 85:278-297. https://doi.org/10.1016/j.jsames.2018.04.011
https://doi.org/10.1016/j.jsames.2018.04...
). Based on Nd isotope data and absence of Archean heritage, Barreto et al. (2014) have supported a discussion on the occurrence of the Central Amazonian province in this shield and the east limit of Ventuari-Tapajós province.

Most of the Paleoproterozoic sedimentary basins of the IXD are younger than the Orosirian volcanic rocks (Fig. 2). Only in the southwestern part, there is an older sedimentary basin (Castelo dos Sonhos Formation) formed between 2050 and 2011 Ma (Klein et al. 2016Klein E.L., Rodrigues J.B., Queiroz J.D.S., Oliveira R.G., Guimarães S.B., Chaves C.L. 2016. Deposition and tectonic setting of the Palaeoproterozoic Castelo de Sonhos metasedimentary formation, Tapajós Gold Province, Amazonian Craton, Brazil: age and isotopic constraints. International Geology Review, 59(7):864-883. https://doi.org/10.1080/00206814.2016.1237311
https://doi.org/10.1080/00206814.2016.12...
). Metasandstones and meta-conglomerates of this basin represent alluvial fans and braided fluvial sediments, which underwent open folding, local ductile deformation, and low-grade metamorphism. Vasquez et al. (2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
) considered this basin as part of the IXD, but Klein et al. (2016Klein E.L., Rodrigues J.B., Queiroz J.D.S., Oliveira R.G., Guimarães S.B., Chaves C.L. 2016. Deposition and tectonic setting of the Palaeoproterozoic Castelo de Sonhos metasedimentary formation, Tapajós Gold Province, Amazonian Craton, Brazil: age and isotopic constraints. International Geology Review, 59(7):864-883. https://doi.org/10.1080/00206814.2016.1237311
https://doi.org/10.1080/00206814.2016.12...
) relate it to a continental rift system in the early stages of Tapajós domain.

Post-volcanism sedimentary basins (Triunfo and Cubencranquém formations) are composed of quartz-rich sandstones, lithic and arkosic sandstones, red mudstones and polymict conglomerates with volcanic and pyroclastic rocks boulders (Macambira and Vale 1997Macambira E.M.B., Vale A.G. 1997. São Félix do Xingu: Folha SB.22-Y-B, Estado do Pará, escala 1:250.000. Texto Explicativo, Programa Levantamentos Geológicos Básicos do Brasil. Brasília, Companhia de Pesquisas de Recursos Minerais - CPRM, 344 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/8718 >. Accessed on: Sept, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
, Alves et al. 2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
). The distal fallout pyroclastic material is represented by local ash-tuffs, and chert layers are considered as chemical sediments related to volcanic processes coeval with epiclastic sedimentation.

GEOCHRONOLOGY

Sampling locations and analytical methods

Two areas were selected to study the basement rocks of the IXD: Maribel in the northeast, close to the border with the Bacajá Domain, and Morro Grande in the west (Fig. 2). Two types of samples from each area were selected for geochronological work. A pelitic paragneiss and a migmatitic orthogneiss from Maribel and a muscovite gneiss and a migmatitic orthogneiss from Morro Grande.

For each sample, U-Pb SHRIMP determinations on single zircon crystals were carried out, employing the sensitive high-resolution ion microprobe (SHRIMP II) at Universidade de São Paulo (USP). The selected zircon grains were mounted in epoxy resin together with standard fragments, and the mounts were covered by a thin layer of gold (6-8 ηm) to assure uniform electrical conductivity. Scanning electron microscopy (SEM) was applied to produce cathodoluminescence (CL) images before the SHRIMP work, in order to select the best zircon domains for the analyses. The high-resolution CL images of zircon crystals were undertaken in the SEM laboratory of the branch office of CPRM Belém (LAMIN-BE).

Details of the SHRIMP analytical procedures, including calibration methods, were presented by Williams (1998Williams I.S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M.A., Shanks I., Ridley W.C.P., Ridley W.I. (Eds.), Application of Microanalytical Techniques to Understanding Mineralizing Process. El Paso: Society of Economic Geologists, Reviews in Economic Geology, 7, p. 1-35. https://doi.org/10.5382/Rev.07
https://doi.org/10.5382/Rev.07...
), and the work at the São Paulo laboratory was described by Sato et al. (2014Sato K., Tassinari C.C.G., Basei M.A.S., Siga Jr. O., Onoe A.T., Souza M.D. 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP, Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
https://doi.org/10.5327/Z1519-874X201400...
). Uranium abundance and U/Pb ratios were calibrated against the Z6266 (903 ppm, Stern and Ameling 2003Stern R.A., Amelin Y. 2003. Assessment of errors in SIMS zircon U-Pb geochronology using natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197(1-4):111-142. https://doi.org/10.1016/S0009-2541(02)00320-0
https://doi.org/10.1016/S0009-2541(02)00...
) and Temora 2 (416.78 Ma, Black et al. 2004Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J. N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of trace element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2):115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003
https://doi.org/10.1016/j.chemgeo.2004.0...
) standards, respectively, and the individual ages were determined from five successive scans of the mass spectrum.

Age values in tables and figures are given with 2s precision, and the average ages reported in the text are weighted mean 207Pb/206Pb ages with 95% confidence limits. Correction for common Pb was made based on the measured 204Pb, and the typical error component for the 206Pb/238U ratios was less than 2%. Data were reduced by using SQUID software (Ludwig 2009aLudwig K.R. 2009a. SQUID 2: A User’s Manual, rev. 12. Special Publication 5. Berkeley: Geochronology Center, 110 p.), and the Concordia diagrams and cumulative Gaussian plots were prepared using Isoplot/Ex (Ludwig 2009bLudwig K.R. 2009b. User’s Manual for Isoplot 3.70. Special Publication 4. Berkeley: Berkeley Geochronology Center, 76 p.).

Sample descriptions and respective U-Pb zircon ages

In the Maribel area, the high-K calc-alkaline volcanic rocks of ca. 1990 Ma cover an area of supracrustal rocks, pelitic paragneisses, as well as migmatitic orthogneiss (Fig. 3A). The small body (< 2 km2) of Morro Grande, located in the western part of the IXD (Fig. 2), includes a migmatitic orthogneiss and a muscovite gneiss. It is surrounded by felsic volcanic rocks and granitoids of ca. 1990 Ma (Fig. 3B).

Figure 3.
Geological maps of (A) Maribel and (B) Morro Grande areas. Subtitles of geological units and structures are in Figure 2.

Pelitic paragneiss JB-70A

This pelitic paragneiss from Maribel exhibits banding with granolepidoblastic texture and comprises garnet porphyroblasts (Fig. 4A), flakes of red biotite (high-Ti), sillimanite (Fig. 4B) and cordierite (Fig. 4C). This paragneiss was formed in high-grade conditions that correspond to upper amphibolite facies, according to mineral assemblages (Pattison et al. 2003Pattison D.R.M., Chacko T., Farquhar J., McFarlane C.R.M. 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology, 44(5):867-900. https://doi.org/10.1093/petrology/44.5.867
https://doi.org/10.1093/petrology/44.5.8...
, Bucher and Grapes 2011Bucher K., Grapes R. 2011. Petogenesis of metamorphic rocks. Berlin: Springer. 428p.).

Figure 4.
Basement rocks of Maribel area: JB-70A pelitic paragneiss sample: (A and B): plane polarized light; (C) crossed polarized light; (A) Granolepidoblastic texture with quartz (Qtz), K-feldspar (Kfs), porphyroblasts of garnet (Grt) and biotite (Bt); (B) Sillimanite (Sil) fibrous crystal and biotite; (C) Cordierite (cd) and biotite. JB-73 migmatitic orthogneiss sample: (D) Schlieren (Sch) and banding; (E and F) crossed polarized light; (E) Porphyroclast of K-feldspar (Kfs), recrystallized quartz (Qtz) grain in a granoblastic matrix and relicts of zoned plagioclase (Pl); (F) Core-and-mantle (mortar) texture in porphyroclasts of quartz (Qtz) and K-feldspar (Kfs) with mechanically crushed and sub-grain mantles.

One population of zircon grains provided near concordant 207Pb/206Pb ages of about 2500 Ma and 2335 Ma (Fig. 5A). They most probably represent ages of the paragneiss sedimentary protoliths. A selected population of discordant zircon grains yielded an upper intercept of a Discordia straight line at 2160 ± 8 Ma (Fig. 5A). The alignment along the same Discordia straight line towards a zero lower intercept indicates important and relatively recent Pb loss. The older zircon grains show igneous oscillatory zoning, but the younger ones demonstrate patchy and convolute zoning (Fig. 6), which are textures of local recrystallization at medium to high temperature metamorphism (Corfu et al. 2003Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
https://doi.org/10.2113/0530469...
).

Figure 5.
Concordia diagrams with the analytical points of zircon grains from Maribel area: (A) Sample JB-70A; (B) Sample JB-73.

Figure 6.
Cathodoluminescence (CL) images of some zircon crystals with their SHRIMP spots and respective 207Pb/206Pb ages. Some of them exhibit igneous oscillatory zoning, convolute and patchy zoning of local recrystallization, fracturing, metamictic zones and alteration pathways.

Migmatitic orthogneiss JB-73

This granitic rock from Maribel is banded showing schlieren and granitic bands (Fig. 4D). Banding and schlieren could be syn-emplacement structures resulting from the stretching of magmatic enclaves or boudinage of mafic dikes by sub-magmatic flow. However, these structures are also seen in migmatites and are common in the leucosome of migmatites transitional between metatexite and diatexite (Sawyer 2008Sawyer E.W. 2008. Working with migmatites: nomenclature for the constituent parts. In: Sawyer E.W. (Ed.). Working with migmatites. Canada: Mineralogical Association of Canada Short Course Series, 8, p. 1-28.). The porphyroclast and granoblastic fabrics (Fig. 4E) could be formed by solid state flow, which are usual in migmatites (Sawyer 2008Sawyer E.W. 2008. Working with migmatites: nomenclature for the constituent parts. In: Sawyer E.W. (Ed.). Working with migmatites. Canada: Mineralogical Association of Canada Short Course Series, 8, p. 1-28.).

The granoblastic recrystallization of K-feldspar and plagioclase crystals (Fig. 4E) was probably formed by boundary-grain migration at high temperature (> 550ºC), as indicated by Passchier and Trouw (2005Passchier C.W., Trouw R.A.J. 2005. Microtectonics. 2ª ed. Berlin: Springer, 366 p.). However, mortar texture of quartz and K-feldspar (Fig. 4F) indicates mechanical crushing of the porphyroclastic and granoblastic fabrics, as well as recrystallization at lower temperatures (ca. 300ºC) through sub-grain rotation (Passchier and Trouw 2005Passchier C.W., Trouw R.A.J. 2005. Microtectonics. 2ª ed. Berlin: Springer, 366 p.).

Most zircon grains in this sample present high common Pb (Tab. 2), and seven are almost aligned (MSWD = 4.2) along a Discordia line with 2149 ± 20 Ma (Fig. 5B). Three of them yielded an upper intercept age of 2155 ± 8 Ma in the same Concordia diagram, which is interpreted as the possible age of leucosome formation of this migmatitic orthogneiss. The near-concordant zircon 13-1, bearing very little common Pb, supports this age. Another near-concordant zircon, 14-1 (Fig. 5B), with an age close to 2450 Ma, may be interpreted as an inherited grain. The 232Th/238U ratios of 0.14 to 0.80 (Tab. 2) are typical of igneous zircon grains (Hoskin and Schaltegger 2003Hoskin P.W.O., Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
https://doi.org/10.2113/0530027...
). Patchy zoning is present in zircons of this granitic orthogneiss (Fig. 6), as well as fracturing and alteration pathways and metamict zones, indicating a late alteration (Corfu et al. 2003Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
https://doi.org/10.2113/0530469...
). The most altered zircon grains have high common-Pb (> 1.0 in Tab. 3).

Table 2.
Summary of SHRIMP U-Pb zircon data for samples JB-70A and JB-73 from Maribel area.
Table 3.
Summary of SHRIMP U-Pb zircon data for samples JB-86A and JB-86B from Morro Grande area.

Migmatitic orthogneiss JB-86B

This migmatitic orthogneiss from Morro Grande is a banded granite with schlieren, stromatic, and net structures (Fig. 7A). The estimated degree of a partial melting structure (60%) corresponds to that of a transitional migmatite (Sawyer 2008Sawyer E.W. 2008. Working with migmatites: nomenclature for the constituent parts. In: Sawyer E.W. (Ed.). Working with migmatites. Canada: Mineralogical Association of Canada Short Course Series, 8, p. 1-28.). The melanosome (dark portion) is present, but the paleosome is not distinguished. Leucosome or neosome presents porphyroclasts of K-feldspar, quartz, and plagioclase in a granoblastic matrix of quartz-feldspar grains that show interlobate and polygonal grain boundaries (Figs. 7B and 7C), which indicate high-temperature recrystallization (Passchier and Trouw 2005Passchier C.W., Trouw R.A.J. 2005. Microtectonics. 2ª ed. Berlin: Springer, 366 p.).

Figure 7.
Basement rocks of Morro Grande area. All microphotographs of thin sections were taken in crossed polarized light. JB-86B migmatitic orthogneiss sample: (A) Granitoid bands, schlieren, stromatic and net structures (star - selected part); (B) Porphyroclasts of K-feldspar (Kfs), quartz (Qtz) and altered (sericite) plagioclase (Pl) in a granoblastic matrix of quartz and feldspar grains with interlobate and polygonal grain boundaries and recrystallized flakes; biotite (Bt); (C) Ribbons of porphyroclasts of quartz (Qtz) and rounded porphyroclasts of altered (sericite) plagioclase (Pl); (D) Discrete foliation of the muscovite gneiss JB-86A muscovite gneiss sample: (E) Rotated porphyroblast of muscovite (Ms), relict grains of quartz (Qtz) and K-feldspar (Kfs) in a granolepidoblastic matrix with rutile (Rt) crystals; (F) Porphyroclast of altered plagioclase (Pl), aggregates of muscovite flakes (Ms) and elongated grains of quartz (Qtz) in an interlobate and polygonal granoblastic matrix.

Zircon grains generally show igneous oscillatory zoning, radial fracturing, and local patchy zoning (Fig. 6). In the Concordia diagram of Figure 8, the zircon grains are discordant and yielded a Discordia straight line with a combined weighted mean 207Pb/206Pb age of 1983 ± 5 Ma (MSWD = 1.2). It can be interpreted as the crystallization age of the leucosome, which is possibly related to the partial melting of the igneous protolith of this migmatitic rock. The calculated Concordia age of 1979 ± 8 Ma is another way to its calculation (Fig. 8A).

Figure 8.
Concordia diagrams with analytical points of zircon grains from Morro Grande area: (A) Sample JB-86B; (B) Sample JB-86A.

Muscovite gneiss JB-86A

This muscovite gneiss from Morro Grande presents migmatitic structures, as well as a discrete foliation, without banding (Fig. 7D). It shows rotated porphyroblasts of muscovite, porphyroclasts of quartz, and K-feldspar in a granolepidoblastic groundmass (Fig. 7E), with aggregates of fibro-radiated and elongated flakes of muscovite, as well as inter-lobated and polygonal granoblastic aggregates of quartz and K-feldspar (Fig. 7F). The presence of muscovite (30-40%) and absence of orthopyroxene indicate the rocks did not attain granulite-facies metamorphic conditions (Pattison et al. 2003Pattison D.R.M., Chacko T., Farquhar J., McFarlane C.R.M. 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology, 44(5):867-900. https://doi.org/10.1093/petrology/44.5.867
https://doi.org/10.1093/petrology/44.5.8...
, Bucher and Grapes 2011Bucher K., Grapes R. 2011. Petogenesis of metamorphic rocks. Berlin: Springer. 428p.).

Most of the grains were near the Concordia in Figure 7B, and the weighted mean 207Pb/206Pb age of 1990 ± 3 Ma (MSWD = 1.3) for 22 points could be easily interpreted as a magmatic crystallization age. However, in the same diagram, many zircons were aligned along a Discordia straight line of 1981 ± 6 Ma, indicating Pb loss. The apparent 207Pb/206Pb ages between 2120 and 2180 Ma of four other zircon grains (Fig. 7B) are surely due to inherited material. Their ages are like those of granitic rocks from Maribel. Igneous oscillatory zoning is preserved in the zircon grains of 2119, 2164 and between 1968 and 1984 Ma, but it becomes blurred in the grains of 1994 and 2009 Ma (Fig. 6).

DISCUSSION AND CONCLUSIONS

The pelitic paragneiss JB-70A could represent the basis of a volcano-sedimentary sequence that underwent high-grade metamorphism. The oldest zircon grains furnished Neoarchean ages around 2500-2540 Ma, but this rock also includes many younger detrital sources within the 2500-2160 Ma time interval. The histogram inserted in Figure 4A shows three clear peaks at about 2500, 2335 and 2160 Ma, associated with the magmatic crystallization of different groupings of detrital zircons, which may represent the timing of successive magmatic pulses in the regional tectonic history. In addition, as the rock did not present migmatitic structures and was not cut by granitic veins, its Rhyacian zircon grains could represent a younger detrital source and, hence, a maximum age for sediment deposition.

The migmatitic orthogneiss JB-73 presents mesoscopic migmatitic structures, but its microstructures and micro-textures give no conclusive evidence that it was formed through anatexis. The single concordant zircon grain of 2470 Ma shown in Figure 5B may be a xenocryst of the wall rocks or an inherited crystal from partial melting of the protolith. This rock was dated by means of 12 zircon grains in the Concordia diagram of Figure 5B, in which most analytical points were aligned along a Discordia straight line, where the three best aligned grains yielded 2155 ± 8 Ma, interpreted as the possible crystallization age of the leucosome. A magmatic event of similar age (2160 ± 8 Ma) was obtained from the youngest detrital population of the paragneiss JB-70A, located in the same region and, therefore, subjected to the same tectonic evolution. The 2160-2150 Ma magmatic/metamorphic ages yielded by JB-70 and JB-73 are coeval with the Rhyacian tectono-metamorphic episode characteristic of the nearby Bacajá tectonic domain, which occurs to the east of the IXD.

Indeed, pelitic and pelite-psamitic paragneisses with Mesoarchean to Siderian detrital sources that underwent Rhyacian granulite metamorphism are widespread within the western Bacajá domain (Vasquez 2006Vasquez M.L. 2006. Geocronologia em zircão, monazita e granada e isótopos de Nd das associações litológicas da porção oeste do Domínio Bacajá: evolução crustal da porção meridional da província Maroni-Itacaiúnas, sudeste do Cráton Amazônico. PhD Thesis, Universidade Federal do Pará, Belém, 212 p. Available at: <Available at: http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/165/tese_marcelo_vasquez.pdf?sequence=1&isAllowed=y >. Accessed on: Sept, 2019.
http://rigeo.cprm.gov.br/xmlui/bitstream...
, Vasquez et al. 2014Vasquez M.L., Macambira M.J.B., Armstrong R.A. 2014. High grade metamorphism constrained by U-Pb SHRIMP ages: an example of the Bacajá Domain, Amazonian Craton, Brazil. In: South-American Symposium on Isotope Geology, 9. Abstracts… São Paulo, Brazil.). In addition, the Bacajá domain also contains granitoids of 2215-2154 Ma related to Rhyacian magmatic arcs (Vasquez et al. 2008aVasquez M.L., Macambira M.J.B., Armstrong R. 2008a. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution. Precambrian Research, 161(3-4):279-302. https://doi.org/10.1016/j.precamres.2007.09.001
https://doi.org/10.1016/j.precamres.2007...
, Macambira et al. 2009Macambira M.J.B., Vasquez M.L., Silva D.C.C., Galarza M.A., Barros C.E.M., Camelo J.F. 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SE Amazonian craton: Juvenile accrecion vs. reworking. Journal of South America Earth Sciences, 27(4):235-246. https://doi.org/10.1016/j.jsames.2009.02.001
https://doi.org/10.1016/j.jsames.2009.02...
), as well as older igneous rocks yielding ages from ca. 2670 to 2300 Ma (Vasquez et al. 2008aVasquez M.L., Macambira M.J.B., Armstrong R. 2008a. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution. Precambrian Research, 161(3-4):279-302. https://doi.org/10.1016/j.precamres.2007.09.001
https://doi.org/10.1016/j.precamres.2007...
, Macambira et al. 2009Macambira M.J.B., Vasquez M.L., Silva D.C.C., Galarza M.A., Barros C.E.M., Camelo J.F. 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SE Amazonian craton: Juvenile accrecion vs. reworking. Journal of South America Earth Sciences, 27(4):235-246. https://doi.org/10.1016/j.jsames.2009.02.001
https://doi.org/10.1016/j.jsames.2009.02...
). Rocks with such ages could have produced detrital zircons for the protolith of the JB-70A paragneiss. Therefore, considering the possible Rhyacian age of sample JB-73 (Fig. 5B), and the Neoarchean to Rhyacian detrital zircons of sample JB-70A (Fig. 5A), we may propose a correlation of the Maribel basement rocks with the Bacajá domain. This is supported by the relatively close occurrence (< 10 km) of the basement windows to the Bacajá domain (Fig. 2).

The medium to high-grade rocks, JB-86A and JB-86B, are located very close together and they therefore must have undergone the same conditions of metamorphism and ductile deformation. Their Concordia ages (Figs. 8A and 8B) are identical within experimental error, confirming the robust significance of the ca. 1980-1990 Ma age, which is the crystallization age of the igneous protolith.

The muscovite gneiss JB-86A does not have banding and mineral assemblages of granulite facies metamorphism, but its polygonal micro-texture (Fig. 7F) indicates granoblastic recrystallization at high-temperature (>550ºC), corresponding to amphibolite facies metamorphism. Due to the 1982 ± 7 Ma Concordia age of this sample (Fig. 8B), we tentatively consider this as the magmatic crystallization age of a volcanic rock that underwent a potassic hydrothermal alteration before the amphibolite facies metamorphism.

The migmatitic orthogneiss JB-86B presents some typical migmatitic structures that correspond to a transitional migmatite, as characterized by Sawyer (2008Sawyer E.W. 2008. Working with migmatites: nomenclature for the constituent parts. In: Sawyer E.W. (Ed.). Working with migmatites. Canada: Mineralogical Association of Canada Short Course Series, 8, p. 1-28.). Its porphyroclastic and granoblastic micro-textures are typical of a high-temperature solid state deformation. The dated sample very probably corresponds to a portion of the leucosome of this migmatite, which does not include inherited zircon grains. The Concordia diagram of Figure 8A shows the age of 1979 ± 8 Ma, identical, within analytical error, with that of sample JB-86A. This age could represent the anatexis time that formed this migmatite. If this is so, Morro Grande area is the first piece of evidence of formation of igneous rocks of ca. 1980 by partial melting of old crust in the southern part of the Amazonian craton.

The granitoid emplacement climax within the large NW-SE transcurrent shear zones of Tapajós domain occurred between 2000 and 1960 Ma (Vasquez et al. 2002Vasquez M.L., Ricci P.S.F., Klein E.L. 2002. Granitóides pós-colisionais da porção leste da Província Tapajós. In: Klein E.L., Vasquez M.L., Rosa-Costa L.T. (Eds.), Contribuições à Geologia da Amazônia. Belém: Sociedade Brasileira de Geologia , 3, p. 67-84., 2008bVasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
http://www.cprm.gov.br/publique/Geologia...
). The same magmatic event is also present in the IXD (Padilha and Barros 2008Padilha R.A., Barros M.A.S. 2008. Petrologia e geoquímica das suítes intrusivas Vila Rica e Rio Dourado - Província Amazônia Central, borda sudeste do Cráton Amazônico (MT). Revista Brasileira de Geociências, 38(4):642-653. https://doi.org/10.25249/0375-7536.2008384642653
https://doi.org/10.25249/0375-7536.20083...
, Alves et al. 2010Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000. Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
http://rigeo.cprm.gov.br/jspui/handle/do...
, Semblano et al. 2016Semblano F.R.D., Pereira N.C.S., Vasquez M.L., Macambira M.J.B. 2016. Novos dados geológicos e isotópicos para o Domínio Iriri-Xingu, Província Amazônia Central; implicações para a idade do Grupo Iriri. Revista do Instituto de Geociências - USP, Série Científica, 16(3):19-38. https://doi.org/10.11606/issn.2316-9095.v16i3p19-38
https://doi.org/10.11606/issn.2316-9095....
), and many of its rocks exhibit preserved igneous textures with local protomylonitic textures. High-temperature recrystallization and migmatitic structures identified in these rocks of Morro Grande are the first occurrence of high-grade metamorphic rocks formed at about 1980 Ma in the area of the IXD. It is also the first piece of evidence of an Orosirian high-grade metamorphism in the Central Brazil shield, which forms the southern half of the Amazonian craton.

Tassinari et al. (2004Tassinari C.C.G., Munhá J.M.V., Teixeira W., Palácios T., Nutman A.P., Sosa C.S., Santos A.P., Calado B.O. 2004. The Imataca Complex, NW Amazonian Craton, Venezuela: crustal evolution and integration of geochronological and petrological cooling histories. Episodes, 27(1):3-12. https://doi.org/10.18814/epiiugs/2004/v27i1/002
https://doi.org/10.18814/epiiugs/2004/v2...
) identified a high-grade metamorphism of ca. 1.98 Ga in the northwestern corner of the Guiana shield, which is associated with the exhumation that followed high-grade metamorphism of Imataca Complex at 2.07-2.05 Ga. This situation of two successive episodes of high-grade metamorphism is similar to that encountered in the Bakhuis granulite belt of the central part of the shield, in which a late episode of 1.99 to 1.95 Ga succeeded the main high-grade regional metamorphism of the area (2.07 to 2.05 Ga). It has been considered as a late high-grade metamorphism of the Trans-Amazonian cycle (De Roever et al. 2015De Roever E.W.F., Lafon J.M., Delor C., Guerrot C. 2015. Orosirian magmatism and metamorphism in Suriname: new geological constraints. In: Gorayeb P.S.S., Lima A.M.M. (Eds.), Contribuições à geologia da Amazônia. Belém: Sociedade Brasileira de Geologia, 9, p. 343-356., Klaver et al. 2015Klaver M., De Roever E.W.F., Nane J.A.M., Mason P.R.D., Davies G.R. 2015. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, Western Suriname: Evidence for two separate UHT events. Precambrian Research, 262:1-19. http://dx.doi.org/10.1016/j.precamres.2015.02.014
http://dx.doi.org/10.1016/j.precamres.20...
, Kroonenberg et al. 2016Kroonenberg S.B., de Roever E.W.F., Fraga L.M., Reis N.J., Faraco M.T.J., Lafon J.M., Cordani U.G., Wong T.E. 2016. Paleoproterozoic evolution of the Guiana Shield in Surinam: a revised model. Netherlands Journal of Geosciences, 95(4):491-522. https://doi.org/10.1017/njg.2016.10
https://doi.org/10.1017/njg.2016.10...
). Moreover, the ca. 1.98 Ga Orocaima igneous belt formed essentially by felsic volcanic rocks and granites (Reis et al. 2000Reis N.J., Faria M.S.G, Fraga L.M., Haddad R.C. 2000. Orosirian calcalkaline volcanism and the Orocaima event in the Northern Amazonian Craton, Eastern Roraima State, Brazil. Revista Brasileira de Geociências, 30(3):380-383. https://doi.org/10.25249/0375-7536.2000303380383
https://doi.org/10.25249/0375-7536.20003...
) is widespread through the entire Guiana shield, comprising from Venezuela in the west to Suriname in the east, the Cuchivero, Surumu, Iwokrama and Dalbana units.

ACKNOWLEDGEMENTS

We thank the financial support received for the analytical work with the SHRIMP equipment at Universidade de São Paulo (USP), which was provided by grant 2013/12754-0 of the Research Foundation of the State of São Paulo (FAPESP, acronym in Portuguese). We would also like to thank the careful review performed by Robert J. Pankhurst and by an anonymous reviewer for the Brazilian Journal of Geology.

REFERENCES

  • Alves C.L., Sabóia A.M., Martins E.G., Stropper J.L. 2010. Folhas São José do Xingu e Comandante Fontoura, Escala 1:250.000 Projeto Noroeste-Nordeste de Mato Grosso. Goiânia: Companhia de Pesquisas de Recursos Minerais - CPRM. 120 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/11197 >. Accessed on: Sept 30, 2019.
    » http://rigeo.cprm.gov.br/jspui/handle/doc/11197
  • Barreto C.J.S., Lafon J.M., Rosa-Costa L.T., Lima E.F. 2014. Paleoproterozoic (~1.89 Ga) felsic volcanism of the Iricoumé Group, Guyana Shield, South America: geochemical and Sm-Nd isotopic constraints on sources and tectonic environment. International Geology Review, 56(11):1332-1356. https://doi.org/10.1080/00206814.2014.930800
    » https://doi.org/10.1080/00206814.2014.930800
  • Barros M.A.S., Padilha R.A., Rubert R.R., Pimentel M.M., Chemale JR. F. 2006. Iriri volcanism and Rio Dourado Granite: A-Type Paleoproterozoic Magmatism in northeastern Mato Grosso - Brazil. In: Symposium on magmatism, crustal evolution, and metallogenesis of the Amazonian Craton and Workshop on A-type granites and related rocks through time (IGCP 510). Abstracts.. p. 39.
  • Barros M.A.S., Pimentel M.M., Rocha M.L.B.P., Silva F.R., Padilha R.A., Dantas E.L., Moura E. 2011. A Suíte Intrusiva Rio Dourado - um granito tipo A de 1,88 Ga - Sudeste do Craton Amazônico - Mato Grosso - Brasil. Revista Geologia USP, 11(1):75-93. https://doi.org/10.5327/Z1519-874X2011000100005
    » https://doi.org/10.5327/Z1519-874X2011000100005
  • Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J. N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of trace element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2):115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003
    » https://doi.org/10.1016/j.chemgeo.2004.01.003
  • Bucher K., Grapes R. 2011. Petogenesis of metamorphic rocks. Berlin: Springer. 428p.
  • Cordani U.G., Tassinari C.C.G., Kawashita K. 1984. A Serra dos Carajás como região limítrofe entre províncias tectônicas. Ciências da Terra, (9):6-11.
  • Cordani U.G., Tassinari C.C.G., Teixeira W., Basei M.A.S., Kawashita K. 1979. Evolução tectônica da Amazônia com base nos dados geocronológicos. In: Congreso Geologico Chileno, 2., Arica, Chile. Actas.., v. 4, p. 137-148.
  • Cordani U.G., Teixeira W. 2007. Proterozoic accretionary belts in the Amazonian Craton. Geological Society of America Memoirs, 200:297-320. https://doi.org/10.1130/2007.1200(14)
    » https://doi.org/10.1130/2007.1200(14)
  • Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
    » https://doi.org/10.2113/0530469
  • Dall’Agnol R., Lafon J.M., Macambira M.J.B. 1994. Proterozoic anorogenic magmatism in the Central Amazonian Craton: geochronological and geochemical aspects. Mineralogy and Petrology, 50(1-3):113-38. https://doi.org/10.1007/BF01160143
    » https://doi.org/10.1007/BF01160143
  • De Roever E.W.F., Lafon J.M., Delor C., Guerrot C. 2015. Orosirian magmatism and metamorphism in Suriname: new geological constraints. In: Gorayeb P.S.S., Lima A.M.M. (Eds.), Contribuições à geologia da Amazônia Belém: Sociedade Brasileira de Geologia, 9, p. 343-356.
  • Fernandes C.M.D., Juliani C., Monteiro L.V.S., Lagler B., Echeverri Misas C.M. 2011. High-K calc-alkaline to A-type fissure-controlled volcano-plutonism of the São Félix do Xingu region, Amazonian craton, Brazil: Exclusively crustal sources or only mixed Nd model ages? Journal of South American Earth Sciences, 32(4):351-368. https://doi.org/10.1016/j.jsames.2011.03.004
    » https://doi.org/10.1016/j.jsames.2011.03.004
  • Hoskin P.W.O., Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
    » https://doi.org/10.2113/0530027
  • Juliani C., Fernandes C.M.D. 2010. Well-preserved Late Paleoproterozoic volcanic centers in São Felix do Xingu region, Amazonian Craton, Brazil. Journal Volcanology and Geothermal Research, 191(3-4):167-179. https://doi.org/10.1016/j.jvolgeores.2010.01.016
    » https://doi.org/10.1016/j.jvolgeores.2010.01.016
  • Klaver M., De Roever E.W.F., Nane J.A.M., Mason P.R.D., Davies G.R. 2015. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, Western Suriname: Evidence for two separate UHT events. Precambrian Research, 262:1-19. http://dx.doi.org/10.1016/j.precamres.2015.02.014
    » http://dx.doi.org/10.1016/j.precamres.2015.02.014
  • Klein E.L., Rodrigues J.B., Queiroz J.D.S., Oliveira R.G., Guimarães S.B., Chaves C.L. 2016. Deposition and tectonic setting of the Palaeoproterozoic Castelo de Sonhos metasedimentary formation, Tapajós Gold Province, Amazonian Craton, Brazil: age and isotopic constraints. International Geology Review, 59(7):864-883. https://doi.org/10.1080/00206814.2016.1237311
    » https://doi.org/10.1080/00206814.2016.1237311
  • Kroonenberg S.B., de Roever E.W.F., Fraga L.M., Reis N.J., Faraco M.T.J., Lafon J.M., Cordani U.G., Wong T.E. 2016. Paleoproterozoic evolution of the Guiana Shield in Surinam: a revised model. Netherlands Journal of Geosciences, 95(4):491-522. https://doi.org/10.1017/njg.2016.10
    » https://doi.org/10.1017/njg.2016.10
  • Leal R.E., Lafon J.M., Rosa-Costa L.T., Dantas E.L. 2018. Orosirian magmatic episodes in the Erepecuru-Trombetas domain (southeastern Guyana shield): Implications for the crustal evolution of the Amazonian craton. Journal of South American Earth Sciences, 85:278-297. https://doi.org/10.1016/j.jsames.2018.04.011
    » https://doi.org/10.1016/j.jsames.2018.04.011
  • Ludwig K.R. 2009a. SQUID 2: A User’s Manual, rev. 12. Special Publication 5. Berkeley: Geochronology Center, 110 p.
  • Ludwig K.R. 2009b. User’s Manual for Isoplot 3.70 Special Publication 4. Berkeley: Berkeley Geochronology Center, 76 p.
  • Macambira E.M.B., Vale A.G. 1997. São Félix do Xingu: Folha SB.22-Y-B, Estado do Pará, escala 1:250.000. Texto Explicativo, Programa Levantamentos Geológicos Básicos do Brasil. Brasília, Companhia de Pesquisas de Recursos Minerais - CPRM, 344 p. Available at: <Available at: http://rigeo.cprm.gov.br/jspui/handle/doc/8718 >. Accessed on: Sept, 2019.
    » http://rigeo.cprm.gov.br/jspui/handle/doc/8718
  • Macambira M.J.B., Vasquez M.L., Silva D.C.C., Galarza M.A., Barros C.E.M., Camelo J.F. 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SE Amazonian craton: Juvenile accrecion vs. reworking. Journal of South America Earth Sciences, 27(4):235-246. https://doi.org/10.1016/j.jsames.2009.02.001
    » https://doi.org/10.1016/j.jsames.2009.02.001
  • Padilha R.A. 2007. Petrologia e geoquímica dos granitos da Suíte Intrusiva Vila Rica e do Granito Rio Dourado - borda sudeste do Cráton Amazônico (Província Amazônia Central - Área Xingú-Iricoumé - nordeste de Mato Grosso) MSc Dissertation, Universidade Federal do Mato Grosso, Cuiabá, 120 p.
  • Padilha R.A., Barros M.A.S. 2008. Petrologia e geoquímica das suítes intrusivas Vila Rica e Rio Dourado - Província Amazônia Central, borda sudeste do Cráton Amazônico (MT). Revista Brasileira de Geociências, 38(4):642-653. https://doi.org/10.25249/0375-7536.2008384642653
    » https://doi.org/10.25249/0375-7536.2008384642653
  • Passchier C.W., Trouw R.A.J. 2005. Microtectonics. 2ª ed. Berlin: Springer, 366 p.
  • Pattison D.R.M., Chacko T., Farquhar J., McFarlane C.R.M. 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology, 44(5):867-900. https://doi.org/10.1093/petrology/44.5.867
    » https://doi.org/10.1093/petrology/44.5.867
  • Pinho S.C.C., Fernandes C.M.D., Teixeira N.P., Paiva Junior A.L., Cruz V.L., Lamarão C.N., Moura C.A.V. 2006. O magmatismo paleoproterozóico da região de São Félix do Xingu, Província Estanífera do Sul do Pará: Petrografia e geocronologia. Revista Brasileira de Geociências, 36(4):724-732. https://doi.org/10.25249/0375-7536.2006364724732
    » https://doi.org/10.25249/0375-7536.2006364724732
  • Reis N.J., Faria M.S.G, Fraga L.M., Haddad R.C. 2000. Orosirian calcalkaline volcanism and the Orocaima event in the Northern Amazonian Craton, Eastern Roraima State, Brazil. Revista Brasileira de Geociências, 30(3):380-383. https://doi.org/10.25249/0375-7536.2000303380383
    » https://doi.org/10.25249/0375-7536.2000303380383
  • Sato K., Tassinari C.C.G. 1997. Principais eventos de acresção continental no Cráton Amazônico, baseados em idade modelo Sm-Nd, calculadas em evoluções de estágio único e estágio duplo. In: Costa M.L., Angélica R.S. (Eds.), Contribuições à Geologia da Amazônia Belém: Sociedade Brasileira de Geologia , 1, p. 91-142.
  • Sato K., Tassinari C.C.G., Basei M.A.S., Siga Jr. O., Onoe A.T., Souza M.D. 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Geologia USP, Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
    » https://doi.org/10.5327/Z1519-874X201400030001
  • Sawyer E.W. 2008. Working with migmatites: nomenclature for the constituent parts. In: Sawyer E.W. (Ed.). Working with migmatites Canada: Mineralogical Association of Canada Short Course Series, 8, p. 1-28.
  • Semblano F.R.D., Pereira N.C.S., Vasquez M.L., Macambira M.J.B. 2016. Novos dados geológicos e isotópicos para o Domínio Iriri-Xingu, Província Amazônia Central; implicações para a idade do Grupo Iriri. Revista do Instituto de Geociências - USP, Série Científica, 16(3):19-38. https://doi.org/10.11606/issn.2316-9095.v16i3p19-38
    » https://doi.org/10.11606/issn.2316-9095.v16i3p19-38
  • Silva G.G., Lima M.I.C., Andrade A.R.F., Issler R.S., Guimarães G. 1974. Geologia Folhas SB.22 - Araguaia e parte da Folha SC.22 - Tocantins Projeto Radambrasil, Levantamento de Recursos Naturais. Rio de Janeiro: Departamento Nacional de Produção de Mineral - DNPM, 4, p. 1-143.
  • Stern R.A., Amelin Y. 2003. Assessment of errors in SIMS zircon U-Pb geochronology using natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197(1-4):111-142. https://doi.org/10.1016/S0009-2541(02)00320-0
    » https://doi.org/10.1016/S0009-2541(02)00320-0
  • Superintendência de Desenvolvimento da Amazônia (SUDAM), Geologia e Mineração Trabalhos Técnicos Ltda. (Geomitec). 1972. Pesquisa Mineral no Iriri/Curuá Belém: SUDAM/Departamento de Recursos Naturais, 62 p.
  • Tassinari C.C.G., Macambira M.J.B. 1999. Geochronological provinces of the Amazonian Craton. Episodes, 22(3):174-182.
  • Tassinari C.C.G., Macambira M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485.
  • Tassinari C.C.G., Munhá J.M.V., Teixeira W., Palácios T., Nutman A.P., Sosa C.S., Santos A.P., Calado B.O. 2004. The Imataca Complex, NW Amazonian Craton, Venezuela: crustal evolution and integration of geochronological and petrological cooling histories. Episodes, 27(1):3-12. https://doi.org/10.18814/epiiugs/2004/v27i1/002
    » https://doi.org/10.18814/epiiugs/2004/v27i1/002
  • Teixeira N.P., Fernandes C.M.D., Moura C.A.V., Pinho S.C.C., Bettencourt J.S. 2002. Geologia, geoquímica, geocronologia e isótopos de Sm-Nd de rochas vulcânicas paleoproterozóicas do Grupo Uatumã ocorrentes na região de São Félix do Xingu, Província Mineral de Carajás, Cráton Amazônico, Brasil. In: Simpósio sobre Vulcanismo e Ambientes Associados, 2. Abstracts.. Belém, p. 28.
  • Vasquez M.L. 2006. Geocronologia em zircão, monazita e granada e isótopos de Nd das associações litológicas da porção oeste do Domínio Bacajá: evolução crustal da porção meridional da província Maroni-Itacaiúnas, sudeste do Cráton Amazônico PhD Thesis, Universidade Federal do Pará, Belém, 212 p. Available at: <Available at: http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/165/tese_marcelo_vasquez.pdf?sequence=1&isAllowed=y >. Accessed on: Sept, 2019.
    » http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/165/tese_marcelo_vasquez.pdf?sequence=1&isAllowed=y
  • Vasquez M.L., Macambira M.J.B., Armstrong R. 2008a. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution. Precambrian Research, 161(3-4):279-302. https://doi.org/10.1016/j.precamres.2007.09.001
    » https://doi.org/10.1016/j.precamres.2007.09.001
  • Vasquez M.L., Macambira M.J.B., Armstrong R.A. 2014. High grade metamorphism constrained by U-Pb SHRIMP ages: an example of the Bacajá Domain, Amazonian Craton, Brazil. In: South-American Symposium on Isotope Geology, 9. Abstracts… São Paulo, Brazil.
  • Vasquez M.L., Ricci P.S.F., Klein E.L. 2002. Granitóides pós-colisionais da porção leste da Província Tapajós. In: Klein E.L., Vasquez M.L., Rosa-Costa L.T. (Eds.), Contribuições à Geologia da Amazônia Belém: Sociedade Brasileira de Geologia , 3, p. 67-84.
  • Vasquez M.L., Rosa-Costa L.T., Silva C.M.G., Klein E.L. 2008b. Compartimentação tectônica. In: Vasquez M.L., Rosa-Costa L.T. (Eds.), Geologia e Recursos Minerais do Estado do Pará: Sistema de Informações Geográficas - SIG: texto explicativo dos mapas Geológico e Tectônico e de Recursos Minerais do Estado do Pará. Escala 1:1.000.000. Belém, Companhia de Pesquisas de Recursos Minerais - CPRM, p. 39-112. Disponível em: <Disponível em: http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html >. Accessed on: Sept, 2019.
    » http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Cartografia-Geologica-Regional-624.html
  • Williams I.S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M.A., Shanks I., Ridley W.C.P., Ridley W.I. (Eds.), Application of Microanalytical Techniques to Understanding Mineralizing Process El Paso: Society of Economic Geologists, Reviews in Economic Geology, 7, p. 1-35. https://doi.org/10.5382/Rev.07
    » https://doi.org/10.5382/Rev.07

ARTICLE INFORMATION

  • Manuscript ID: 20190067.

Publication Dates

  • Publication in this collection
    21 Oct 2019
  • Date of issue
    2019

History

  • Received
    27 July 2019
  • Accepted
    27 Sept 2019
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br