Acessibilidade / Reportar erro

Petrogenesis of the Riacho do Icó Stock: evidence for Neoproterozoic slab melting during accretion tectonics in the Borborema Province?

Abstract

One of the main characteristics of the Borborema Province in northeastern Brazil is the abundance of granitic domains. The Lagoa das Pedras plutonic-volcanic Complex record remnants of early to late Neoproterozoic primitive to highly evolved magmas. U-Pb SHRIMP determinations and whole-rock geochemistry on the granitic to granodioritic Riacho do Icó Stock, which is the largest plutonic body of this complex, were conducted. Zircon dating reveals that this body was intruded in the crust at 607 ± 3 Ma, whereas metamorphic overgrowths are coeval within uncertainty (600 ± 8 Ma). Geochemical characteristics of this stock suggest that it corresponds to Cordilleran-type magmas injected in the lithosphere above a subduction zone. Sr and Y contents in addition to MgO and SiO2 values are compatible with high-silica adakite-like magmas, interpreted as the result of slab melting in deep-seated regions. Based on the integration of this study and literature data, we suggest that the Riacho do Icó intrusion might be a dismembered part of a major continental magmatic arc described in the Central Subprovince of the Borborema Province, marking the onset of the accretionary stage of the Brasiliano orogeny.

KEYWORDS:
Arc-related to syn-collisional magmatism; possible slab melting episode; accretion tectonics

INTRODUCTION

The generation and emplacement of granitic magmas in the lithosphere has always been a thought-provoking topic for the geological community, once that the proposed petrogenetic processes are quite variable for distinct geological periods and environments (e.g.Chappell & White 1974Chappell B.W., White A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8:173-174., Barbarin 1999Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3):605-626. http://dx.doi.org/10.1016/S0024-4937(98)00085-1
https://doi.org/http://dx.doi.org/10.101...
, Martin et al. 2005Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. 2005. An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
https://doi.org/https://doi.org/10.1016/...
, Bonin 2007Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
https://doi.org/https://doi.org/10.1016/...
, Rollinson 2009Rollinson H. 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos, 112(3-4):603-614. https://doi.org/10.1016/j.lithos.2009.06.006
https://doi.org/https://doi.org/10.1016/...
). Indeed, the investigation of the origin of granitic rocks is critical to understand the evolution of the continental crust, as they represent key records of its growth, recycling, and preservation (Dhuime et al. 2012Dhuime B., Hawkesworth C.J., Cawood P.A., Storey C.D. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335(6074):1334-1336. https://doi.org/10.1126/science.1216066
https://doi.org/https://doi.org/10.1126/...
, Hawkesworth et al. 2010Hawkesworth C.J., Dhuime B., Pietranik A.B., Cawood P.A., Kemp A.I.S., Storey C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2):229-248. http://dx.doi.org/10.1144/0016-76492009-072
https://doi.org/http://dx.doi.org/10.114...
).

Magma emplacement in the crust is most likely associated to space creation in highly deformed regions, which is triggered by the crustal flow (Paterson & Fowler Jr. 1993Paterson S.R., Fowler Jr. T.K. 1993. Re-examining pluton emplacement processes. Journal of Structural Geology, 15(2):191-206. https://doi.org/10.1016/0191-8141(93)90095-R
https://doi.org/https://doi.org/10.1016/...
). In spite of the variety of the proposed mechanisms for plutonic emplacement - including diapirism, ballooning, and stopping -, their practical application may be confusing (see Petford et al. 2000Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
https://doi.org/https://doi.org/10.1038/...
for details), resulting in a number of geochemical and geophysical modeling proposals (e.g. Kusumoto & Takemura 2003Kusumoto S., Takemura K. 2003. Numerical simulation of caldera formation due to collapse of a magma chamber. Geophysical Research Letters, 30(24):2278. http://dx.doi.org/10.1029/2003GL018380
https://doi.org/http://dx.doi.org/10.102...
, Magee et al. 2016Magee C., Muirhead J.D., Karvelas A., Holford S.P., Jackson C.A.L., Bastow I.D., Schofield N., Stevenson C.T.E., McLean C., McCarthy W., Shtukert O. 2016. Lateral magma flow in mafic sill complexes. Geosphere, 12(3):809-841. https://doi.org/10.1130/GES01256.1
https://doi.org/https://doi.org/10.1130/...
, Rochira et al. 2018Rochira F., Caggianelli A., de Lorenzo S. 2018. Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy), Geodinamica Acta, 30(1):225-240. https://doi.org/10.1080/09853111.2018.1488912
https://doi.org/https://doi.org/10.1080/...
). Nevertheless, there is a longstanding consensus that granitic magmas can be generated in a wide range of geological settings, and are valuable markers to investigate crustal and mantle sources. For instance, peraluminous magmas are generally interpreted as the result of partial melting of metasedimentary rocks in collisional zones (Chappell & White 2001Chappell B.W., White A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
https://doi.org/https://doi.org/10.1046/...
), calc-alkaline rocks are typically found in volcanic arcs above subduction zones (Sheth et al. 2002Sheth H.C., Torres-Alvarado I.S., Verma S.P. 2002. What Is the “Calc-alkaline Rock Series”? International Geology Review, 44(8):686-701. https://doi.org/10.2747/0020-6814.44.8.686
https://doi.org/https://doi.org/10.2747/...
) and plagiogranites are interpreted as final products of partial melting and fractionation of basaltic sources in intra-oceanic settings (Koepke et al. 2006Koepke J., Berndt J., Feig S.T., Holtz F. 2006. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153:67-84. http://dx.doi.org/10.1007/s00410-006-0135-y
https://doi.org/http://dx.doi.org/10.100...
).

One of the main features of the Borborema Province in northeastern Brazil is the vast number of granitic batholiths and stocks that are closely related to the regional deformation imposed by the Brasiliano-Pan African Orogeny ­(650-500 Ma; Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 151-182., 2014Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
https://doi.org/http://dx.doi.org/10.532...
). Among them, one of the most intriguing composite plutonic-volcanic domains of the central Borborema Province is the Lagoa das Pedras Complex, which represents a unique record of long-lived superimposed magmatic pulses that were later affected by regional deformation and metamorphism ­(960-600 Ma; Santos 1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.). It is composed of a sequence of mafic-ultramafic rocks interpreted as ophiolite remnants and arc root-related magmas aged at c. 1.0 Ga (Serrote das Pedras Pretas Suite), coeval metagranites and anatexites (Recanto and Riacho do Forno suites), as well as relics of late Neoproterozoic plutons (Riacho do Icó, São João and Serra do Arapuá; Santos 1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p., Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of Early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, Department of Geology, University of Kansas, Lawrence, 199 p.).

Within this complex, the Riacho do Icó stock represents the largest plutonic pulse, presenting both magmatic structures (enclaves, magmatic foliation, and xenoliths) and tectonic markers (ductile and brittle-related). In this paper, the main geological and geochemical characteristics of the Riacho do Icó stock are explored and their first U-Pb zircon determinations are presented in order to contribute to the understanding of the Neoproterozoic crustal evolution of the Borborema Province.

GEOLOGICAL SETTING

Borborema Province

The Borborema Province (Almeida et al. 1981Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1-29. http://doi.org/10.1016/0012-8252(81)90003-9
https://doi.org/http://doi.org/10.1016/0...
) is characterized by minor Archean blocks that are surrounded by Paleoproterozoic basement domains/terranes, as well as major Meso- to Neoproterozoic supracrustal sequences (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 151-182., Van Schmus et al. 1995Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
, 2003Van Schmus W.R., Brito Neves B.B., Williams I.S, Hackspacher P.C., Fetter A.H., Dantas E.L., Babinski M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4):287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
https://doi.org/https://doi.org/10.1016/...
, Dantas et al. 2013Dantas E.L., Souza Z.S., Wernick E., Hackspacher P.C., Martin H., Xiadong D., Li J.W. 2013. Crustal growth in the 3.4-2.7 Ga São José do Campestre Massif, Borborema Province, NE Brazil. Precambrian Research, 227:120-156. http://doi.org/10.1016/j.precamres.2012.08.006
https://doi.org/http://doi.org/10.1016/j...
, Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE-Brazil): Clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
, Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schmus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quiteria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2015Santos L.C.M.L., Dantas E.L., Santos E.J., Santos R.V., Lima H.M. 2015. Early to late Paleoproterozoic magmatism in NE Brazil: The Alto Moxotó Terrane and its tectonic implications for the pre-West Gondwana assembly. Journal of South American Earth Sciences, 58:188-209. http://doi.org/10.1016/j.jsames.2014.07.006
https://doi.org/http://doi.org/10.1016/j...
, Costa et al. 2018Costa F.G., Klein E.L., Lafon J.M., Milhomem Neto J.M., Galarza M.M., Rodrigues J.B., Naleto J.L.C., Lima R.G.C. 2018. Geochemistry and U-Pb-Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil: Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Research, 311:167-194. https://doi.org/10.1016/j.precamres.2018.04.008
https://doi.org/https://doi.org/10.1016/...
). In West Gondwana reconstructions, its continuation can be traced into West Africa through Benin, Nigeria, and Cameroon (Fig. 1; Brito Neves 1975Brito Neves B.B. 1975. Regionalização geotectônica do Pré-Cambriano nordestino. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 198 p., Trompette 1994Trompette R. 1994. Geology of Western Gondwana (2000-500 Ma): pan-African-Brasiliano aggregation of South America and Africa. Rotterdam, Balkema, 350 p., Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, Special Publications, 294:69-99. https://doi.org/10.1144/sp294.5
https://doi.org/https://doi.org/10.1144/...
, Ganade de Araújo et al. 2016Ganade de Araújo C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A.S., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42. https://doi.org/10.1016/j.precamres.2016.01.032
https://doi.org/https://doi.org/10.1016/...
), being commonly divided into northern, central/Transversal and southern subprovinces (Van Schmus et al. 1995Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
, Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 151-182.).

Figure 1.
Tectonic framework of the Borborema Province with the Brasiliano-related granites highlighted, modified from Brito Neves et al. (2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 151-182.).

Granitic domains are abundant and precisely record distinct stages of the Brasiliano orogeny (pre-, syn- and post-tectonic magmatism), having been intensively investigated for decades (Almeida et al. 1967Almeida F.F.M., Leonardos Jr. O.H., Valença J. 1967. Granitic rocks of Northeast South America. In: International Union of Geological Sciences. Recife: IUGS/UNESCO. 37 p., Sial 1987Sial A.N. 1987. Granitic rocks of Northeast Brazil. In: International Symposium on Granites and Associated Mineralizations, 1., Salvador. Extended Abstracts. Salvador: SGM. p. 61-69., Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Guimarães & Silva Filho 2000Guimarães I.P., Silva Filho A.F. 2000. Evidence of multiple sources involved in the genesis of the Neoproterozoic Itapetim granitic complex, NE Brazil, based on geochemical and isotopic data. Journal of South American Earth Sciences, 13(6):561-586. https://doi.org/10.1016/S0895-9811(00)00040-7
https://doi.org/https://doi.org/10.1016/...
, Guimarães et al. 2005Guimarães I.P., Silva Filho A.F., Melo S.C., Macambira M.B. 2005. Petrogenesis of A-type granitoids from the Pajeú-Paraíba Belt, Borborema Province, NE Brazil: constraints from geochemistry and isotopic composition. Gondwana Research, 8(3):347-362. https://doi.org/10.1016/S1342-937X(05)71140-0
https://doi.org/https://doi.org/10.1016/...
, Ferreira et al. 2003Ferreira V.P., Valley J.W., Sial A.N., Spicuzza M. 2003. Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contributions to Mineralogy and Petrology, 145:205-216. https://doi.org/10.1007/s00410-003-0443-4
https://doi.org/https://doi.org/10.1007/...
, Neves et al. 2006Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R. A., Santos L.C.M.L. 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Brazilian Journal of Geology, 46(4):491-508. http://dx.doi.org/10.1590/2317-4889201620160004
https://doi.org/http://dx.doi.org/10.159...
). A review of the overall petrological aspects of the granites can be found in Ferreira et al. (1998Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of Proterozoic granitoids in terranes of Borborema province, northeastern Brazil. Journal of South America Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
https://doi.org/https://doi.org/10.1016/...
), Van Schmus et al. (2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South America Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
), and Sial & Ferreira (2016Sial A.N., Ferreira V.P. 2016. Magma association in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
).

The crustal architecture of the northern subprovince records a series of rocks with magmatic arc affinity ranging from Archean to Neoproterozoic in age, as well as the best-preserved high to ultra-high pressure metamorphic assemblages of the Borborema Province (Nascimento et al. 2015Nascimento M.A.L., Galindo A.C., Medeiros V.C. 2015. Ediacaran to Cambrian magmatic suites in the Rio Grande do Norte domain, extreme Northeastern Borborema Province (NE of Brazil): Current knowledge. Journal of South American Earth Sciences, 58:281-299. https://doi.org/10.1016/j.jsames.2014.09.008
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5:5198. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Santos et al. 2014Santos L.C.M.L., Fuck R.A., Santos E.J., Dantas E.L. 2014. Análise tectônica de terrenos: metodologia, aplicação em cinturões orogênicos e exemplos das províncias Tocantins e Borborema, Brasil. Geonomos, 22(2):51-63. https://doi.org/10.18285/geonomos.v22i2.317
https://doi.org/https://doi.org/10.18285...
). The Central Subprovince is interpreted as the result of a complex crustal assembly history during the Neoproterozoic, limited by expressive NE-SW shear zones. It comprises the São José do Caiano, Piancó-Alto Brígida, Alto Pajeú, Alto Moxotó, and Rio Capibaribe domains/terranes. Terrane assembly and plate tectonics processes such as subduction and continental collision have been invoked as responsible for the Neoproterozoic crustal building of this area (e.g., Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of Early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, Department of Geology, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos PiancóAlto Brígida e Alto Pajeú, domínio da zona transversal NE do Brasil. PhD Thesis. Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
, 2014Santos L.C.M.L., Fuck R.A., Santos E.J., Dantas E.L. 2014. Análise tectônica de terrenos: metodologia, aplicação em cinturões orogênicos e exemplos das províncias Tocantins e Borborema, Brasil. Geonomos, 22(2):51-63. https://doi.org/10.18285/geonomos.v22i2.317
https://doi.org/https://doi.org/10.18285...
, 2017bSantos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. http://doi.org/10.1016/j.jsg.2017.09.012
https://doi.org/http://doi.org/10.1016/j...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R. A., Santos L.C.M.L. 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Brazilian Journal of Geology, 46(4):491-508. http://dx.doi.org/10.1590/2317-4889201620160004
https://doi.org/http://dx.doi.org/10.159...
, Basto et al. 2019Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
https://doi.org/https://doi.org/10.1016/...
), but intracontinental orogenesis is also regarded (Neves 2015Neves S.P. 2015. Constraints from zircon geochronology on the tectonic evolution of the Borborema Province (NE Brazil): Widespread intracontinental Neoproterozoic reworking of a Paleoproterozoic accretionary orogen. Journal of South American Earth Sciences, 58:150-164. http://dx.doi.org/10.1016/j.jsames.2014.08.004
https://doi.org/http://dx.doi.org/10.101...
).

The southern subprovince includes the marginal fold belts that have tectonic vergence toward the São Francisco Craton in the south: i.e. Sergipano, Riacho do Pontal, and Rio Preto belts, as well as the Pernambuco-Alagoas Domain. Archean to early Neoproterozoic rocks are present; however, remnants of Ediacaran subduction-related rocks are interpreted as the main crust forming markers of this subprovince evolution (Silva Filho et al. 2010Silva Filho A.F., Guimarães I.P., Ferreira V.P., Armstrong R., Sial A.N. 2010. Ediacaran Águas Belas pluton, Northeastern Brazil: Evidence on age, emplacement and magma sources during Gondwana amalgamation. Gondwana Research, 17(4):676-687. https://doi.org/10.1016/j.gr.2009.10.002
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: A complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. http://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/http://doi.org/10.1016/j...
, Lima et al. 2018Lima H.M., Pimentel M.M., Fuck R.A., Santos L.C.M.L., Dantas E.L. 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt: Implications for the evolution of the Borborema Province, NE Brazil. Journal of South American Earth Sciences, 86:176-192. https://doi.org/10.1016/j.jsames.2018.06.013
https://doi.org/https://doi.org/10.1016/...
, 2019Lima H.M., Pimentel M.M., Santos L.C.M.L., Dantas E.L. 2019. Isotopic and geochemical characterization of the metavolcano-sedimentary rocks of the Jirau do Ponciano dome: A structural window to a Paleoproterozoic continental arc root within the Southern Borborema Province, Northeast Brazil. Journal of South American Earth Sciences, 90:54-69. https://doi.org/10.1016/j.jsames.2018.12.002
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014aCaxito F.A., Uhlein A., Dantas E.L. 2014a. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. https://doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/https://doi.org/10.1016/...
, 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: Implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. http://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/http://doi.org/10.1016/j...
, Alcântara et al. 2017Alcântara D.C.B.G., Uhlein A., Caxito F.A., Dussin I., Pedrosa-Soares A.C. 2017. Stratigraphy, tectonics and detrital zircon U-Pb (LA-ICP-MS) geochronology of the Rio Preto Belt and northern Paramirim corridor, NE, Brazil. Brazilian Journal of Geology, 47(2):261-273. http://dx.doi.org/10.1590/2317-4889201720160102
https://doi.org/http://dx.doi.org/10.159...
); important oceanic crust remnants of probable Cryogenian age fingerprint Neoproterozoic plate tectonics processes in this region (Caxito et al. 2014bCaxito F.A., Ulhein A., Stevenson R., Ulhein G. 2014b. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. https://doi.org/10.1130/G35479.1
https://doi.org/https://doi.org/10.1130/...
).

The Alto Pajeú Terrane and the Lagoa das Pedras Complex

The Alto Pajeú Terrane is bounded to the Alto Moxotó and Piancó Alto Brígida terranes by the Serra de Jabitacá Nappe and Riacho do Caboclo Shear Zone, respectively (Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Santos et al. 2017bSantos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. http://doi.org/10.1016/j.jsg.2017.09.012
https://doi.org/http://doi.org/10.1016/j...
, 2018Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J. 2018. Accretion tectonics in Western Gondwana deduced from Sm-Nd Isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics, 37(8):2727-2743. https://doi.org/10.1029/2018TC005130
https://doi.org/https://doi.org/10.1029/...
). Unlike other domains of the Borborema Province, Paleoproterozoic crust is rare and the general lithostratigraphic record comprises metaplutonic and supracrustal rocks related to the Stenian-Tonian Cariris Velhos Event (1.0-0.9 Ga; Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
). The general geochemical and isotope signature of metagranites, orthogneisses and metavolcanic sequences points out to an episode of ocean-continent convergence (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of Early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, Department of Geology, University of Kansas, Lawrence, 199 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014aCaxito F.A., Uhlein A., Dantas E.L. 2014a. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. https://doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/https://doi.org/10.1016/...
), including preserved ophiolite remnants (Lages & Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó mafic-ultramafic complexes, western Borborema Province, Brazil: geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
). However, based on the geochemistry of Cariris Velhos metaplutonic units, Guimarães et al. (2016Guimarães I.P., Brito M.F.L., Lages G.A., Silva Filho A.F., Santos L., Brasilino R.G. 2016. Tonian granitic magmatism of the Borborema Province, NE Brazil: A review. Journal of South American Earth Sciences, 68:97-112. https://doi.org/10.1016/j.jsames.2015.10.009
https://doi.org/https://doi.org/10.1016/...
) suggest instead that these rocks correspond to magmas generated in a within-plate regime. Calc-alkaline and shoshonitic granitoids intrude these sequences, ranging from 650 to 620 Ma (Sial & Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma association in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
and references therein).

The São Caetano Complex corresponds to the largest unit of the Alo Pajeú Terrane, hosting most of the granitic intrusions. This complex encompasses metasedimentary and metavolcanic rocks, aged 806 (Guimarães et al. 2012Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M.B., Silva Filho A.F., Armstrong R. 2012. U-Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: Onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. Precambrian Research, 192-195:52-77. https://doi.org/10.1016/j.precamres.2011.10.008
https://doi.org/https://doi.org/10.1016/...
) and 858 Ma (Santos et al. 2019Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:1-22. https://doi.org/10.1016/j.jsames.2019.102384
https://doi.org/https://doi.org/10.1016/...
), being in contact with the Lagoa das Pedras Complex (Fig. 2), which corresponds to a set of (meta)plutonic/volcanic rocks deformed by NE-SW shear zones that impose regional folding (Lima et al. 1985Lima M.I.C., Gava A., Fernandes P.E.C.A., Pires J.L., Siga Jr. O. 1985. Projeto ferro titanado de Floresta. Minérios de Pernambuco/Radambrasil. v. 1. 314 p.). Such structural arrangement is related to the thrust structure that bounds these rocks against the Archean and Paleoproterozoic crust of the Alto Moxotó Terrane (Santos et al. 2017aSantos L.C.M.L., Dantas E.L., Cawood P.A., Santos E.J., Fuck R.A. 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. Journal of South American Earth Sciences, 79:342-363. http://doi.org/10.1016/j.jsames.2017.08.013
https://doi.org/http://doi.org/10.1016/j...
, Lages et al. 2019Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
https://doi.org/https://doi.org/10.1016/...
) and the strong influence of a regional sinistral strike-slip splay of shear zones known as Afogados da Ingazeira Shear System (Santos 1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.).

Figure 2.
(A) Tectonic sketch of the central subprovince of the Borborema Province following Santos (1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.) and Santos & Medeiros (1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
); (B) simplified geological map of the Lagoa das Pedras Complex. Figure compiled from Santos (1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.) and Lages & Dantas (2016Lages G.A., Marinho M.S., Nascimento M.A.L., Medeiros V.C., Dantas E.L. 2016. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana. Brazilian Hournal of Geology, 46:41-61. ).

The Lagoa das Pedras Pretas Complex occupies an area of 800 km2, being divided into two geochronological groups:

  • Stenian-Tonian;

  • Ediacaran intrusions.

The oldest unit is the 1.0 Ga Serrote das Pedras Pretas mafic-ultramafic suite. It is composed of metagabbros, amphibolites, peridotites, and metapyroxenites that form a cluster of gently folded small bodies and lenses characterized by eclogitic mineral assemblages as well as Fe-Ti-V mineralization (Santos 1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p., Lages & Dantas 2016Lages G.A., Marinho M.S., Nascimento M.A.L., Medeiros V.C., Dantas E.L. 2016. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana. Brazilian Hournal of Geology, 46:41-61. ).

Granites with ages ranging from 960 to 920 Ma include the Recanto and Riacho do Forno plutons that are interpreted as the result of regional anatexis, cropping out as tabular sheets along SSE-verging thrust surfaces. The former occurs as metagranodiorites to metamonzogranites, and might bear augen and mylonitic structures, whereas the latter is characterized by local migmatization, showing well-developed neosome and strongly folded leucosome layers, including two mica diatexites. Lastly, the Riacho do Icó Stock is the dominant late Neoproterozoic granitic body, being coeval to similar granitic intrusions, such as the Serra do Arapuá, São Pedro and São João granites.

THE RIACHO DO ICÓ STOCK

Field relationships

The Riacho do Icó stock displays en cornue shape oriented in the E-W direction; its tail follows the NE trend of the Afogados da Ingazeira Shear Zone as the result of crustal shortening and shearing. In the mesoscopic scale, rocks from this intrusion are mostly leucocratic and can be divided into two well-defined facies. In the core of the intrusion, coarse-grained to porphyritic biotite- and amphibole-bearing granites predominate. The magmatic fabric is characterized by the orientation of amphibole clots and potassic feldspar phenocrystals that delineate a moderately developed magmatic foliation. The central portion of the intrusion presents, 2 to 12 cm-ranged subrounded to elliptic mafic (dioritic) autholiths (Fig. 3A), whereas amphibolitic, gneissic, breccia-type, and mylonitic xenoliths (Fig. 3B) are widespread and interpreted as relicts of early Neoproterozoic host-rocks units such as the São Caetano Complex.

Figure 3.
Field relationships of the Riacho do Icó Stock. (A) Subrounded diorite enclave showing injection of felsic material from the host rock. (B) Metric angular xenoliths of the host rock showing a well-developed breccia structure. (C) Hectometric exploited Ti-bearing xenolhitic orebody from the Serrote das Pedras Pretas Suite within the Riacho do Icó Stock. (D) Mineral stretching lineation showing high pitch and dipping toward the central portion of the intrusion. (E) Asymmetrically deformed potassic feldspar porphyroclast showing sinistral movement related to the Afogados da Ingazeira Shear System. (F) Chilled contact between granitic member of the Riacho do Icó Stock and migmatized schist of the São Caetano Complex.

Mega xenoliths/roof pendants of ultramafic rocks including Ti-bearing ore bodies of the Serrote das Pedras Pretas Suite (SPP) cover large areas in the interior of the stock (Fig. 3C). This region is also characterized by local nappes, including tabular granitic sheets that partially obliterate early magmatic fabrics, being interpreted as the first tectonic overprint within the stock. Deformed members of this facies show low-dipping foliations and inclined mica-bearing planes with crenulated lineations that gently dip toward the inner portions of the stock (Fig. 3D).

The second facies on the Riacho do Icó Stock occurs on its southern margin. Progressive deformation related to the Afogados da Ingazeira Shear Zone imposes strain gradation from tabular granitic sheets to gneissic and mylonitic members. Strongly deformed members (e.g., the NE tail) include planar-linear tectonites with sub- to vertical foliation planes (> 65º) that are associated with biotite, amphibole, and muscovite-rich horizontal mineral stretching lineations. Such markers associated with mesoscale kinematic criteria, including S-C type surfaces and σ-type porphyroclasts (Fig. 3E) confirm the sinistral vorticity of the related ductile structures, whereas C’ extensional shear bands and asymmetric boudins indicate a transition between strike-slip and extensional regimes. Along the granitic boundaries, the contact between the intrusion and host rocks is tectonic, but chilled margins can be observed (Fig. 3F).

Petrography

Point count classification of the studied rocks (50 points from each sample on average) indicates that they correspond to monzogranites and granodiorites (Fig. 4). In samples collected in the inner portions of the intrusion, the hypidiomorphic texture is dominant, however, a granophyric arrangement of crystals might be observed in fine-grained members. A prevalent xenomorphic groundmass occurs in coarse-grained samples, including the porphyritic granites. In the marginal zones, rocks tend to develop mylonitic structures, characterized by K-feldspar rotation and recrystallized quartz crystals, forming ribbons along minor foliation planes composed of bent-flake mica.

Figure 4.
Modal classification of the plutonic rocks of the Riacho do Icó Stock using the Q-A-P triangular diagram from Streckeisen (1976Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1):1-33. https://doi.org/10.1016/0012-8252(76)90052-0
https://doi.org/https://doi.org/10.1016/...
). Magmatic series trends are from Lameyre & Bowden (1982Lameyre J., Bowden P. 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14(1-2):169-186. https://doi.org/10.1016/0377-0273(82)90047-6
https://doi.org/https://doi.org/10.1016/...
).

The samples are leuco- and mesocratic (color index < 25%) and their main mineralogy include quartz (20-25%), potassium feldspar (microcline and orthoclase, 10-20%), plagioclase ­(15-25%), greenish- to dark blue hornblende (5%), and biotite (5%). Accessory phases include apatite, titanite, and epidote varieties such as allanite, epidote, and clinozoisite, composing no more than 10% of the rock. Chlorite crystals are rare and occur as biotite alteration. Zircon and opaque minerals are generally represented by tiny inclusions in quartz, feldspar or biotite lamellae. Quartz crystals occur as automorphic grains or as polygonal aggregates in deformed marginal zones, often exhibiting undulose extinction. When arranged with stretched biotite, they show clear evidence of magmatic foliation in the micro-scale (Fig. 5A).

Figure 5.
Photomicrographs of samples of the Riacho do Icó Stock. (A) Anhedral quartz crystals and biotite lamellae oriented along the main magmatic foliation (crossed nicols). (B) Film perthite in subhedral orthoclase phenocryst that also contains minor quartz inclusions (crossed nicols). (C) Subhedral hornblende associated with sub- to euhedral titanite crystals (parallel nicols). (D) Zoned allanite crystal with fractured inner core as the result of metamictization processes (parallel nicols).

Microcline crystals usually exhibit well-developed hatched-twining, whereas film perthite texture is common in orthoclase phenocrysts (Fig. 5B). This mineral also contains several minor inclusions, such as variable-sized subhedral quartz and biotite grains. Plagioclase crystals are mostly subhedral, being classified as oligoclase-andesine. It presents simple Ca-Na zonation, tiny myrmekite intergrowths and moderate degrees of sericitization. Hornblende crystals are mostly subhedral and are generally associated with subhedral to euhedral titanite crystals. They also form elongated aggregates along planar magmatic flow (Fig. 5C).

Allanite exhibits strong zonation as well as inner fractured core, which is an evidence of local metamictization (Fig. 5D). Secondary clinozoisite and epidote occur as products of plagioclase alteration.

ANALYTICAL PROCEDURES

One sample was selected for U-Pb sensitive high-resolution ion microprobe (SHRIMP) analysis at the Research School of Earth Sciences of the Australian National University. It was polished and characterized through various image types, including visual and back-scattered, being coated with a conductive material to avoid sample charging. All analyses were guided by previously obtained cathodoluminescence images in order to obtain information about the inner structures of the zircon crystals. The standard used was the FC1 (1099 Ma; Paces & Miller 1993Paces J.B., Miller Jr. J.D. 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98(B8):13997-14013. https://doi.org/10.1029/93JB01159
https://doi.org/https://doi.org/10.1029/...
). A detailed analytical procedure used in this analysis can be found in Williams (1998Williams I.S. 1998. U-Th-Pb geochronology by ion micro-probe. In: McKibben M.A., Shanks III W.C., Ridley W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralization Processes. Reviews in Economic Geology 7, El Paso, Texas, p. 1-75.) and Stern (1997Stern R.A. 1997. The GSC Sensitive High-Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In: Radiogenic age and isotopic studies: Report 10; Geological Survey of Canada, Current Research 1997-F, p. 1-31. https://doi.org/10.4095/209089
https://doi.org/https://doi.org/10.4095/...
). Data were reduced in Isoplot 4.5 (Ludwig 2012Ludwig K.R. 2012. User’s Manual for Isoplot Version 3.75-4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 5.).

For the geochemical investigation, twelve samples were selected, avoiding those with evidence of deformation and alteration, and then analyzed for major and trace element distributions at the GEOSOL and NEG-LABISE laboratories in Brazil. Oxides of major elements were determined using a Varian Vista Pro Inductively Plasma Atomic Emission Spectrometer (ICP-AES) as well as an X-Ray Fluorescence Rigaku ZSX Primus II spectrometer. Trace elements were determined via Perkin-Elmer Sciex ELAN 6000 inductively coupled plasma mass spectrometer (ICP-MS). Analytical precision was 1-5% for major oxides and ± 10% for trace elements. The selected geochemical diagrams were acquired in the GCDkit software (Janoušek et al. 2006Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
https://doi.org/https://doi.org/10.1093/...
) and by in-house reproduced excel spreadsheets.

U-Pb GEOCHRONOLOGY

The Sample ES-15 was selected for U-Pb SHRIMP zircon determinations and corresponds to a hornblende-biotite granodiorite that lacks any evidence of tectonic deformation (geographical coordinates 8º28’27”S and 38º35’41”W). Analytical determinations are presented in Table 1. Zircon crystals from this sample are euhedral, mostly translucent, and form 80-220 µm elongated prisms. Their axial ratios range between 2:1 and 5:1 and they present well-developed oscillatory zoning. Also, rim overgrowths are widespread (Fig. 6A).

Table 1.
Summary of U-Pb sensitive high-resolution ion microprobe (SHRIMP) data of zircon grains from sample ES-15.

Figure 6.
(A) Cathodoluminescence images of representative zircon grains from sample ES-15; (B) U-Pb SHRIMP zircon ages of crystals with Th/U ratios higher than 0.1 from sample ES-15; (C) U-Pb SHRIMP zircon ages of crystals with Th/U ratios lower than 0.1 from sample ES-15.

U and Th contents of the analyzed zircon crystals are wide ranged, i.e. between 49 and 1,049, and 1 and 1,045 ppm, respectively. Three groups of zircon crystals were identified. The first is composed of crystals that show strongly developed oscillatory zoning and present Th/U ratios higher than 0.1. They yielded a Concordia age of 607 ± 3 Ma (Fig. 6B), which is interpreted as the crystallization age of the granodiorite.

On the other hand, several spots were conducted in crystals with recrystallization rims that are characterized by very low Th/U ratios. They yield a Concordia age of 600 ± 8 Ma (Fig. 6C), which probably represents a local metamorphic event, such as migmatization, once that it is coeval to the interpreted magmatic ages. Three crystals (not plotted) are slightly older, presenting ages at around 950 Ma (#17.3, 13.2, and 6.2), which are interpreted as an inheritance of host rocks.

WHOLE-ROCK GEOCHEMISTRY

In the studied samples, major element distribution is homogeneous (Tab. 2). They present high SiO2 ­(66.5-71.9 wt%) and Al2O3 (13.8-15.9 wt%), moderate Na2O (4.09-4.74 wt%) and K2O (3.75-4.38 wt%) and low contents of CaO ­(1.86-2.56 wt%), Fe2O3 (1.98-3.45 wt%), and MgO (0.61-1.14 wt%). This pattern is reflected in the R1-R2 diagram from De la Roche et al. (1980De La Roche H., Leterrier J., Grandclaude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses: its relationships with current nomenclature. Chemical Geology, 29(1-4):183-210. https://doi.org/10.1016/0009-2541(80)90020-0
https://doi.org/https://doi.org/10.1016/...
), where samples plot in the granite and granodiorite fields (Fig. 7A), which is in accordance with the petrographic modal count. On the SiO2 vs. Na2O + K2O - CaO diagram from Frost et al. (2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
https://doi.org/https://doi.org/10.1093/...
), the samples correspond to calc-alkalic granites, with three samples plotting on the alkali-calcic field (Fig. 7B). On the SiO2 vs. FeOt(FeOt + MgO) diagram from Frost et al. (2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
https://doi.org/https://doi.org/10.1093/...
), they plot in the magnesian field, sharing similarities with Cordilleran related-granites (Fig. 7B) and metaluminous magmas (Fig. 7D), based on the Al2O3/(Na2O + K2O) vs. Al2O3/(CaO + Na2O + K2O) molar diagram modified by Maniar & Piccoli (1989Maniar P.D., Piccoli P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletim, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
).

Table 2.
Major elements composition (wt.%) and trace elements (ppm) of samples of the Riacho do Icó Stock.

Figure 7.
Geochemical characteristics of samples from the Riacho do Icó Stock. (A) R1-R2 diagram (De la Roche et al. 1980De La Roche H., Leterrier J., Grandclaude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses: its relationships with current nomenclature. Chemical Geology, 29(1-4):183-210. https://doi.org/10.1016/0009-2541(80)90020-0
https://doi.org/https://doi.org/10.1016/...
); (B) SiO2+ Na2O + K2O = CaO diagram (Frost et al. 2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
https://doi.org/https://doi.org/10.1093/...
); (C) FeOt/(FeOt + MgO) diagram (Frost et al. 2001Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
https://doi.org/https://doi.org/10.1093/...
); (D) A/CNK vs. A/NK diagram (Maniar & Piccoli 1989Maniar P.D., Piccoli P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletim, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
).

The chondrite-normalized (Nakamura 1974Nakamura N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5):757-775. https://doi.org/10.1016/0016-7037(74)90149-5
https://doi.org/https://doi.org/10.1016/...
) spidergram for the samples displays moderate to high values of Large Ion Lithophile Elements (LILE) and low contents of High-Field Strength Elements (HFSE). This is reflected on positive peaks of Rb, K, and Ba and negative anomalies of Nb, P, Ti, and Y (Fig. 8A). Figure 8B displays the chondrite-normalized (Sun & McDonough 1989Sun S.S., McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.). Magmatism in the ocean basins. London, Geological Society of London Special Publication, 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
https://doi.org/https://doi.org/10.1144/...
) Rare Earth Element (REE) patterns of the studied rocks, which are characterized by moderate to strong fractionation between light and heavy REE ([La/Yb]N = 30-113) and lack Eu anomalies (Eu/Eu* = 0.80-0.91). Based on the Y vs. Nb tectonic discriminating diagram, the studied samples represent products of volcanic arcs and collisional settings (Fig. 9).

Figure 8.
Trace element distribution on samples of the Riacho do Icó Stock. (A) Spidergram normalized to the Chondrite of Nakamura (1974Nakamura N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5):757-775. https://doi.org/10.1016/0016-7037(74)90149-5
https://doi.org/https://doi.org/10.1016/...
); (B) rare Earth elements (REE) distribution diagram normalized to the Chondrite of Sun & McDonough (1989Sun S.S., McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.). Magmatism in the ocean basins. London, Geological Society of London Special Publication, 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
https://doi.org/https://doi.org/10.1144/...
).

Figure 9.
Y vs. Nb tectonic setting discriminating diagram for samples of the Riacho do Icó Stock.

DISCUSSION

Magma emplacement

Due to the variety of contrasting geological features of the Riacho do Icó Stock, they might bring out distinct hypotheses for magma emplacement, which has already been partially discussed by Santos (1995Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.) and even now, still needs further investigations. For instance, as commonly invoked to explain plutonic injection in middle to upper crustal levels in several orogenic belts worldwide (e.g., Cruden 1990Cruden A.R. 1990. Flow and fabric development during the diapiric rise of magma. The Journal of Geology, 98(5):681-698.), part of the Riacho do Icó parental magma might represent buoyant material that formed via diapirism, forcing host/wall supracrustal and adjoining metaplutonic rocks upward. The main evidence for this hypothesis include:

  • roughly rounded to ellipsoidal shape of the intrusion;

  • deviation of the host-rocks foliation;

  • low-angle tectonic foliation and high-pitch down-dip lineation that converge to the center of the intrusion.

Such a model has been widely used to explain the famous “space problem” of granites, especially in post-orogenic conditions (e.g., Bateman 1989Bateman R. 1989. Cannibal Creek Granite: Post-tectonic “ballooning” pluton or pre-tectonic piercement diapir?: A Discussion. The Journal of Geology, 97(6):766-768. http://dx.doi.org/10.1086/629360
https://doi.org/http://dx.doi.org/10.108...
). A clear problem faced in our case is that the 607 Ma age put this intrusion in a syn-collisional/contractional regime (e.g., Brito Neves et al. 2003Brito Neves B.B., Passarelli C.R., Basei M.A.S., Santos E.J. 2003. Idades U-Pb em zircão de alguns granitos clássicos da Província Borborema. Geologia USP - Série Científica, 3:25-38. https://doi.org/10.5327/S1519-874X2003000100003
https://doi.org/https://doi.org/10.5327/...
, Weinberg et al. 2004Weinberg R.F., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
https://doi.org/https://doi.org/10.1130/...
, Ganade de Araújo et al. 2014cGanade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
https://doi.org/https://doi.org/10.1111/...
, Sial & Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma association in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
) instead of in a post-orogenic stage.

Nonetheless, the presence of several metric-scale xenoliths of different host rock types, including mafic-ultramafic bodies and those that exhibit breccia structure are widespread throughout the Riacho do Icó Stock. The xenoliths present tabular, rounded to irregular shapes that may be concordant to the intrusion magmatic foliation, also presenting remnants of early deformation stages. Evidence of a mixed population of xenoliths and stepped contacts between the granite and host/wall rocks suggests a component of crustal stopping, in which the roof collapse by crustal subsidence would explain forceful magmatic injection (Glazner & Bartley 2006Glazner A.F., Bartley J.M. 2006. Is stoping a volumetrically significant pluton emplacement process? Geological Society of America Bulletin, 118(9-10):1185-1195. https://doi.org/10.1130/B25738.1
https://doi.org/https://doi.org/10.1130/...
, Žák & Paterson 2006Žák J., Paterson S.R. 2006. Roof and walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. Journal of Structural Geology, 28(4):575-587. https://doi.org/10.1016/j.jsg.2005.12.017
https://doi.org/https://doi.org/10.1016/...
).

In spite of local granitic sheets related to thrust tectonics verging top-to-the south that are present throughout the Alto Pajeú Terrane, from the central portion of the intrusion to its marginal zones, well-developed magmatic flux is progressively transposed by strike-slip foliation, especially in its southern margin. It has been long recognized that transcurrent shear zones might act as important sites of crust dilatation and magma percolation (Tikoff & Teysser 1994Tikoff B., Teyssier C. 1994. Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology, 16(11):1575-1588. https://doi.org/10.1016/0191-8141(94)90034-5
https://doi.org/https://doi.org/10.1016/...
), including examples from the Borborema Province (e.g., Vauchez et al. 1995Vauchez A., Neves S.P., Caby R., Corsini M., Edydio-Silva M., Arthaud M., Amaro V.E. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/https://doi.org/10.1016/...
, Viegas et al. 2013Viegas L.G.F., Archanjo C., Vauchez A. 2013. Fabrics of migmatites and the relationships between partial melting and deformation in high-grade transpressional shear zones: the Espinho Branco anatexite (Borborema Province, NE Brazil). Journal of Structural Geology, 48:45-56. https://doi.org/10.1016/j.jsg.2012.12.008
https://doi.org/https://doi.org/10.1016/...
, Lima et al. 2017Lima J.V., Guimarães I.P., Santos L., Amorim J.V.A., Farias D.J.S. 2017. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75:116-133. https://doi.org/10.1016/j.jsames.2017.02.004
https://doi.org/https://doi.org/10.1016/...
). Also, tectonic foliation is associated to well-developed sub- to horizontal mineral and stretching lineations, which might be solely the result of stress rotation or may suggest shallow lateral magma propagation from the feeder zone during its ascent, which is typical from laccolith-type intrusions (e.g., Petford et al. 2000Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
https://doi.org/https://doi.org/10.1038/...
, Gutiérrez et al. 2018Gutiérrez F., Payacán I., Szymanowski D., Guillong M., Bachmann O., Parada M.A. 2018. Lateral magma propagation during the emplacement of La Gloria Pluton, Central Chile. Geology, 46(12):1051-1054. https://doi.org/10.1130/G45361.1
https://doi.org/https://doi.org/10.1130/...
).

In the western Borborema Province, en cornue plutons are clear indicators of shear-zone control and a direct result of synkinematic pluton emplacement (Weinberg et al. 2004Weinberg R.F., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
https://doi.org/https://doi.org/10.1130/...
). In an ideal model, this mechanism involves changes in the rheological properties of rocks adjoining shear zones, creating fragile, dilational, low-mean-pressure triple points into which ascending magmas intrude, giving rise to plutons (Cruden & Weinberg 2018Cruden A.R., Weinberg R.F. 2018. Mechanisms of magma transport and storage in the lower and middle crust - magma segregation, ascent and emplacement. Volcanic and Igneous Plumbing Systems, 13-53. http://doi.org/10.1016/b978-0-12-809749-6.00002-9
https://doi.org/http://doi.org/10.1016/b...
). Another example of en cornue granites older than 600 Ma is the ~650 Ma Tavares Batolith of the Piancó-Alto Brígida Fold Belt (Brito Neves et al. 2003Brito Neves B.B., Passarelli C.R., Basei M.A.S., Santos E.J. 2003. Idades U-Pb em zircão de alguns granitos clássicos da Província Borborema. Geologia USP - Série Científica, 3:25-38. https://doi.org/10.5327/S1519-874X2003000100003
https://doi.org/https://doi.org/10.5327/...
, Weinberg et al. 2004Weinberg R.F., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
https://doi.org/https://doi.org/10.1130/...
). It suggests that the transcurrent regime might precede other accepted ages for lateral movements in the province (i.e. ~560 Ma, Viegas et al. 2014Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. http://dx.doi.org/10.1016/j.precamres.2013.12.020
https://doi.org/http://dx.doi.org/10.101...
), but still lacks regional significance.

Based on the presented data, we suggest that hybrid mechanisms might have acted during the Riacho do Icó magma emplacement, involving forced intrusion, roof collapse and coeval shearing in a possible fossil deep-seated discontinuity that might have been triggered in a triple point from the Pernambuco and Afogados da Ingazeira Shear Systems. In such a model, crustal space would be generated between crustal step-overs and oblique shearing (Fig. 10), which has been already described in several deformed orogenic belts worldwide (Hutton 1988Hutton D.H.W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh, 79(2-3):245-255. https://doi.org/10.1017/S0263593300014255
https://doi.org/https://doi.org/10.1017/...
and references therein). It is important to notice that the described shear system might have been associated to pull-apart tectonics to create crustal space. Such structures coincide with regional geophysical lineaments that present strong density gradients as well as magnetic susceptibility, representing a possible terrane boundary (Oliveira & Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
).

Figure 10.
Proposed emplacement model for the Riacho do Icó Stock, involving (A) magma ascent and stopping, (B) followed by transtensional tectonics related to the regional shear zones.

Magma source and tectonic setting

Samples of the Riacho do Icó Stock present granitic to granodioritic compositions and the U-Pb zircon dated sample via SHRIMP methodology yielded a crystallization age of 607 ± 3 Ma, which is coeval to abundant magmatism related to the Brasiliano Orogeny in South America (Brito Neves et al. 2014Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
https://doi.org/http://dx.doi.org/10.532...
). Associated rocks present major geochemical characteristics compatible with Cordilleran magmas that crystallized as I-type granites. The presence of modal hornblende and biotite as well as the color index, support these interpretations. ­Flame/­film perthites observed in the studied samples are particularly well-developed in coarse-grained members, being generally interpreted as subsolidus magmatic exsolution that reflects systematic replacement reactions between Na-K and Ca-K during two-feldspar crystallization (Yuguchi & Nishiyama 2008Yuguchi T., Nishiyama T. 2008. The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos, 106(3-4):237-260. https://doi.org/10.1016/j.lithos.2008.07.017
https://doi.org/https://doi.org/10.1016/...
).

The chondrite normalized trace-element spidergram shows evident enrichment of LILE and depletion of HFSE, including negative anomalies of Nb, P, and Ti. Such a pattern might be explained by Ti-rich phases controlling the partition coefficient of these elements in the source region, such as rutile, titanomagnetite, and sphene (Foley et al. 2000Foley S.F., Barth M.G., Jenner G.A. 2000. Rutile/melt partition coefficient for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
https://doi.org/https://doi.org/10.1016/...
). REE distribution shows moderate to high fractionation, in which low contents on heavy REE may reflect the presence of garnet or amphibole in the melt residuum, whilst the lack of evident negative Eu anomalies suggest an absence of plagioclase fractionation and high oxygen fugacity (fO2). In addition, the discrete Ce anomaly would reflect the incorporation of pelagic sediments and seawater in the source region (Neal and Taylor 1989Neal C.R., Taylor L.A. 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimoca Acta, 53(5):1035-1040. https://doi.org/10.1016/0016-7037(89)90208-1
https://doi.org/https://doi.org/10.1016/...
).

The distribution of trace elements is compatible with magmas generated in modern-like subduction zones (Gill 1981Gill J.B. 1981. Orogenic andesites and plate tectonics. Berlin: Springer., McMillan et al. 1989McMillan N.J., Harmon R.S., Moorbath S., Lopez-Escobar L., Strong D.F. 1989. Crustal sources involved in continental arc magmatism: A case study of volcan Mocho-Choshuenco, southern Chile. Geology, 17(12):1152-1156. https://doi.org/10.1130/0091-7613(1989)017<1152:CSIICA>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Klemme et al. 2006Klemme S., Günther D., Hametner K., Prowatke S., Zack T. 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3-4):251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005
https://doi.org/https://doi.org/10.1016/...
). Arc-related magmas tend to result from upper mantle melting followed by fractional crystallization during emplacement in the crust (Sisson & Grove 1993Sisson T.W., Grove T.L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113:143-166. https://doi.org/10.1007/BF00283225
https://doi.org/https://doi.org/10.1007/...
). Despite that, it might only reflect the source characteristics, the interpretation of “arc-related” magmatism for the Riacho do Icó intrusion is also supported by plots on the discriminating diagram of Pearce et al. (1984Pearce J.A., Harris N.B.W., Tindle A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
https://doi.org/https://doi.org/10.1093/...
).

Specific geochemical aspects of rocks from the Riacho do Icó stock, including high SiO2, Na2O, and Ni contents are commonly ascribed to plutonic and volcanic rocks derived from adakitic magmas. In their definition of adakite and related rocks, Defant & Drummond (1990Defant M.J., Drummond M.S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347:662-665. https://doi.org/10.1038/347662a0
https://doi.org/https://doi.org/10.1038/...
) gave strong emphasis on the characteristic high Sr and low Y contents of these magmas, reflecting high Sr/Y (avg. 100) ratios, which is unusual in “normal” arc-related magmas, being a distinctive feature. This pattern is seen in samples of the Riacho do Icó Stock (Fig. 11A). Also,Martin et al. (2005Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. 2005. An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
https://doi.org/https://doi.org/10.1016/...
) proposed that adakites might be grouped as Low-Silica (LSA) and High-Silica groups (HSA), and we suggest that our samples correspond to the latter (Fig. 11B).

Figure 11.
Plots of samples from the Riacho do Icó Suite: (A) Sr/Y diagram with fields of adakites and “normal” calc-alkaline rocks from Defant & Drummond (1990Defant M.J., Drummond M.S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347:662-665. https://doi.org/10.1038/347662a0
https://doi.org/https://doi.org/10.1038/...
). (B) MgO vs. SiO2 diagram discriminating high-silica groups (has) and low-silica (LSA) from Martin et al. (2005Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. 2005. An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
https://doi.org/https://doi.org/10.1016/...
). (C) MgO. vs. SiO2 diagram discriminating sources for adakitic magmas with fields/data compiled from Rapp et al. (1999Rapp R.P., Shimizu N., Norman M.D., Applegate G.S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4):335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
https://doi.org/https://doi.org/10.1016/...
, 2002Rapp R.P., Xiao L., Shimuzu N. 2002. Experimental constraints on the origin of potassium-rich adakite in east China. Acta Petrologica Sinica, 18(3):293-302. ), Sen & Dunn (1994Sen C., Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: implication for the origin of adakites. Contributions to Mineralogy and Petrology, 117:394-409. https://doi.org/10.1007/BF00307273
https://doi.org/https://doi.org/10.1007/...
), Rapp & Watson (1995Rapp R.P., Watson E.B. 1995. Dehydration melting of metabasalt at 8-32 kbar, implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
https://doi.org/https://doi.org/10.1093/...
), Skjerlie & Patiño Douce (2002Skjerlie K.P., Patiño Douce A.E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 Gpa: implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43(2):291-314. https://doi.org/10.1093/petrology/43.2.291
https://doi.org/https://doi.org/10.1093/...
), and Wang et al. (2006Wang Q., Xu J.-F., Jian P., Bao Z.-W., Zhao Z.-H., Li C.-F., Xiong X.-L., Ma J.-L. 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070
https://doi.org/https://doi.org/10.1093/...
).

Adakitic melts might be generated in a number of tectonic settings, including pristine products of slab melting during hot subduction, and consequently, upper mantle melting has a minor influence on magma generation (Castillo 2012Castillo P.R. 2012. Adakite petrogenesis. Lithos, 134-135:304-316. https://doi.org/10.1016/j.lithos.2011.09.013
https://doi.org/https://doi.org/10.1016/...
and references therein). In addition, distinct stages of ongoing subduction might also generate adakite-like magmas, including convergent termination (Sajona et al. 1996Sajona F.G., Maury R.C., Bellon H., Cotten J., Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3):693-726. https://doi.org/10.1093/petrology/37.3.693
https://doi.org/https://doi.org/10.1093/...
), collisional settings (Sajona et al. 2000Sajona F.G., Maury R.C., Pubellier M., Leterrier J., Bellon H., Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, 54(3-4):173-206. https://doi.org/10.1016/S0024-4937(00)00019-0
https://doi.org/https://doi.org/10.1016/...
), slab detachment (Gao et al. 2007Gao Y., Hou Z., Kamber B.S., Wei R., Meng X., Zhao R. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153:105-120. https://doi.org/10.1007/s00410-006-0137-9
https://doi.org/https://doi.org/10.1007/...
), and ridge subduction (Tang et al. 2010Tang G., Wang Q., Wyman D.A., Li Z.-X., Zhao Z.-H., Jia X.-H., Jiang Z.-Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277(3-4):281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012
https://doi.org/https://doi.org/10.1016/...
). In addition, MgO wt%. has been used as a source marker, since this oxide is usually controlled by deep-seated phases. On the SiO2 vs. MgO diagram proposed by Martin et al. (2005Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. 2005. An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
https://doi.org/https://doi.org/10.1016/...
), samples from the Riacho do Icó Stock are akin to adakites formed by slab melting (Fig. 11C), which is coherent with the HSA group proposal.

The identification of pure adakites is known to be difficult and, especially in Precambrian and strongly deformed regions such as the Borborema Province, it should be taken with caution, since several processes including Assimilation-Fractional Crystallization (AFC) might lead to a wide range of rocks that present similar characteristics (Castillo 2012Castillo P.R. 2012. Adakite petrogenesis. Lithos, 134-135:304-316. https://doi.org/10.1016/j.lithos.2011.09.013
https://doi.org/https://doi.org/10.1016/...
). However, based on the data presented herein, it is suggested that subduction stages of the Brasiliano orogeny might have involved some degree of melting of a metamorphosed basaltic slab in deep-seated regions (garnet-bearing source) during early Ediacaran convergence or an underplated arc basalt source. This assumption is reinforced by the close spatial association with the SPP Suite that record high-grade metamorphism (eclogitic facies) at 625 Ma and could mark the transition between subduction to a syn-collisional regime (Lages & Dantas 2016Lages G.A., Marinho M.S., Nascimento M.A.L., Medeiros V.C., Dantas E.L. 2016. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana. Brazilian Hournal of Geology, 46:41-61. ). Lastly, it is pointed out that our interpretations represent the first attempt to test such a petrogenetic hypothesis for granitic rocks within the Alto Pajeú Terrane and must further be tested and expanded to other stocks and batholiths.

Regional Constraints

The Brasiliano-Pan African Orogeny was the major tectonic event that built-up the South American Neoproterozoic provinces, resulting from collisional episodes between major cratonic blocks (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America. 31st International Geological Congress. Rio de Janeiro, p. 151-182.). Crustal collage occurred in four major intervals:

  • 800-740 Ma;

  • 660-610 Ma;

  • 590-560 Ma;

  • 520-500 Ma (Brito Neves et al. 2014Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
    https://doi.org/http://dx.doi.org/10.532...
    ).

In the Borborema Province, early magmatism related to accretion tectonics is recorded in the northern subprovince, represented by the Tamboril-Santa Quitéria arc-system (Santos et al. 2008Santos T.J.S., Fetter A.H., Hackspacher P.C., Schmus W.R.V., Nogueira Neto J.A. 2008. Neoproterozoic tectonic and magmatic episodes in the NW sector of the Borborema Province, NE Brazil, during assembly of western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. http://dx.doi.org/10.1016/j.jsames.2007.05.006
https://doi.org/http://dx.doi.org/10.101...
). In this orogenic complex, long-lived magmatism comprises a juvenile arc that evolved to a mature stage between ca. 880-660 Ma, followed by a final stage of crustal anatexis at ca. 615-600 Ma (Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE-Brazil): Clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
).

In contrast, other domains of the Borborema Province, including the Alto Pajeú Terrane, present magmatic activity related to the Brasiliano orogeny ranging from 650 to 550 Ma (Sial 1990Sial A.N. 1990. Epidote-bearing calc-alkaline granitoids in Northeast Brazil. Revista Brasileira de Geociências, 20(1-4):88-100.). Despite discrete differences on geochemical and isotopic aspects of the vast number of granites described in the central subprovince, they can be grouped as follows:

  • normal to high-K calc-alkaline granites dated at c. 640-600 Ma;

  • high-K calc-alkaline and shoshonitic granites dated at 590-580 Ma;

  • post-collision alkaline granites dated at c. 570 Ma;

  • anorogenic granites aged at c. 540-510 Ma (Guimarães et al. 2004Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granite magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
    https://doi.org/https://doi.org/10.1016/...
    ).

A similar subdivision is presented by Sial & Ferreira (2016Sial A.N., Ferreira V.P. 2016. Magma association in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
). Based on the geochronological determinations obtained in this study, the Riacho do Icó Stock fits with the first group and thus would be related to a final stage of the first episodes of the Brasiliano tectono-magmatic activity. Granites of this group are generally related to flat-lying foliation related to thrust tectonics due to initial plate motion (Guimarães et al. 2004Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granite magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
https://doi.org/https://doi.org/10.1016/...
, Archanjo et al. 2008Archanjo C.J., Hollanda M.H., Rodrigues S.O., Brito Neves B.B., Armstrong R. 2008. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 30(3):310-326. http://dx.doi.org/10.1016/j.jsg.2007.11.011
https://doi.org/http://dx.doi.org/10.101...
).

Based on the proposed emplacement model for the Riacho do Icó Stock, which is closely related to the Afogados da Ingazeira Shear System, it is possible that early strike-slip movements (and progressive transition from thrust to lateral tectonics) might have resulted from lateral escape or extrusion tectonics, that can lead to local magma percolation along major crustal discontinuities, including reactivated suture zones (e.g., Tapponnier et al. 1982Tapponnier P., Peltzer G., Le Dain A.Y., Armijo R., Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12):611-616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
). If this was the case, the Riacho do Icó Stock would be related to the continental collision of the Amazonian-West Africa Craton and the Paleoproterozoic basement of the Borborema Province, which is interpreted as a first Neoproterozoic collisional stage in the province (Ganade de Araújo et al. 2014cGanade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
https://doi.org/https://doi.org/10.1111/...
).

It has been proposed that a wide magmatic arc was formed in the northernmost portion of the central subprovince (Piancó Alto Brigída Terrane/Fold Belt), presenting several stages of magma generation covering early calc-alkaline granites that evolved to post-collisional magmas, i.e. from 635 to 580 Ma (Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R. A., Santos L.C.M.L. 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Brazilian Journal of Geology, 46(4):491-508. http://dx.doi.org/10.1590/2317-4889201620160004
https://doi.org/http://dx.doi.org/10.159...
). Based on our investigation and on a number of papers published on the central Borborema Province (e.g., Santos & Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Guimarães et al. 2004Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granite magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
https://doi.org/https://doi.org/10.1016/...
, 2011Guimarães I.P., Silva Filho A.F., Almeida C.N., Macambira M.B., Armstrong R. 2011. U-Pb SHRIMP data constraints on calc-alkaline granitoids with 1.3-1.6 Ga Nd TDM model ages from the central domain of the Borborema province, NE Brazil. Journal of South American Earth Sciences, 31(4):383-396. https://doi.org/10.1016/j.jsames.2011.03.001
https://doi.org/https://doi.org/10.1016/...
, Lages et al. 2016Lages G.A., Marinho M.S., Nascimento M.A.L., Medeiros V.C., Dantas E.L. 2016. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana. Brazilian Hournal of Geology, 46:41-61. , Lima et al. 2017Lima J.V., Guimarães I.P., Santos L., Amorim J.V.A., Farias D.J.S. 2017. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75:116-133. https://doi.org/10.1016/j.jsames.2017.02.004
https://doi.org/https://doi.org/10.1016/...
), we suggest that the Riacho do Icó Stock might be part of this continental magmatic arc, that would be extended to the Alto Pajeú Terrane and that it represents a disjoint fragment of crust dislocated by transcurrent movements, which are one of the most remarkable characteristics of the Central Subprovince of the Borborema Province.

CONCLUSIONS

  • The Riacho do Icó Stock corresponds to perthitic biotite-amphibole monzogranites and granodiorites that represent the largest Ediacaran plutonic exposure of the Riacho das Pedras Complex of the Alto Pajeú Terrane. It is dated at ca. 607 Ma, which represents the age of the rock crystallization. Coeval and local metamorphism is marked by ca. 600 Ma aged overgrowth zircon crystal rims;

  • Field evidence suggests that hybrid mechanisms took place during magmatic ascent. They include a widespread and heterogeneous population of angular xenoliths, host-rock foliation deviation, and the development of mylonitic members at the intrusion rims. We suggest that the crustal discontinuity magma flow (progressive deformation, intrusion shape and close relationship with sinistral shear zones) in a triple point generated step-overs and crustal space along the Afogados da Ingazeira System, marking local extensional sites during plate convergence.

  • Whole-rock geochemistry suggests that the Riacho do Icó magma was generated in a transitional setting between late orogenic and syn-collisional conditions. In addition, it is also suggested that slab melting might have been involved in the source region, despite the classical upper mantle origin suggested for classical calc-alkaline arc magmas in the central subprovince. Lastly, based on the obtained geochronological determinations, it is possible that the Riacho do Icó Stock belongs to the long-lived magmatic arc proposed in the central subprovince, representing a dismembered fragment within the Alto Pajeú Terrane.

ACKNOWLEDGMENTS

This paper is kindly dedicated to the memory of Edilton José dos Santos, known as “professor”. The Riacho do Icó Stock represents one of his many geological curiosities and the authors are pleased for the opportunity to add information on the knowledge of the Borborema Province granites. Part of the geochemical data was obtained in the NEG-LABISE laboratory and we kindly appreciate the lab staff. We would like to thank Alcides Sial, Valderez Ferreira and Claudio Riccomini for the opportunity and the reviewers for their suggestions. This research was funded by the National Institute of Science and Technology for Tectonic Studies (INCT), Brazil.

REFERENCES

  • Alcântara D.C.B.G., Uhlein A., Caxito F.A., Dussin I., Pedrosa-Soares A.C. 2017. Stratigraphy, tectonics and detrital zircon U-Pb (LA-ICP-MS) geochronology of the Rio Preto Belt and northern Paramirim corridor, NE, Brazil. Brazilian Journal of Geology, 47(2):261-273. http://dx.doi.org/10.1590/2317-4889201720160102
    » https://doi.org/http://dx.doi.org/10.1590/2317-4889201720160102
  • Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1-29. http://doi.org/10.1016/0012-8252(81)90003-9
    » https://doi.org/http://doi.org/10.1016/0012-8252(81)90003-9
  • Almeida F.F.M., Leonardos Jr. O.H., Valença J. 1967. Granitic rocks of Northeast South America. In: International Union of Geological Sciences. Recife: IUGS/UNESCO. 37 p.
  • Archanjo C.J., Hollanda M.H., Rodrigues S.O., Brito Neves B.B., Armstrong R. 2008. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 30(3):310-326. http://dx.doi.org/10.1016/j.jsg.2007.11.011
    » https://doi.org/http://dx.doi.org/10.1016/j.jsg.2007.11.011
  • Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3):605-626. http://dx.doi.org/10.1016/S0024-4937(98)00085-1
    » https://doi.org/http://dx.doi.org/10.1016/S0024-4937(98)00085-1
  • Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.11.002
  • Bateman R. 1989. Cannibal Creek Granite: Post-tectonic “ballooning” pluton or pre-tectonic piercement diapir?: A Discussion. The Journal of Geology, 97(6):766-768. http://dx.doi.org/10.1086/629360
    » https://doi.org/http://dx.doi.org/10.1086/629360
  • Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
    » https://doi.org/https://doi.org/10.1016/j.lithos.2006.12.007
  • Brito Neves B.B. 1975. Regionalização geotectônica do Pré-Cambriano nordestino PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 198 p.
  • Brito Neves B.B., Fuck R.A., Pimentel M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518. http://dx.doi.org/10.5327/Z2317-4889201400030010
    » https://doi.org/http://dx.doi.org/10.5327/Z2317-4889201400030010
  • Brito Neves B.B., Passarelli C.R., Basei M.A.S., Santos E.J. 2003. Idades U-Pb em zircão de alguns granitos clássicos da Província Borborema. Geologia USP - Série Científica, 3:25-38. https://doi.org/10.5327/S1519-874X2003000100003
    » https://doi.org/https://doi.org/10.5327/S1519-874X2003000100003
  • Brito Neves B.B., Santos E.J., Fuck R. A., Santos L.C.M.L. 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Brazilian Journal of Geology, 46(4):491-508. http://dx.doi.org/10.1590/2317-4889201620160004
    » https://doi.org/http://dx.doi.org/10.1590/2317-4889201620160004
  • Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic History of the Borborema Province. In: Cordani U.G., Milani E.J., Tomaz Filho A., Campos D.A. (eds.), Tectonic Evolution of South America 31st International Geological Congress. Rio de Janeiro, p. 151-182.
  • Castillo P.R. 2012. Adakite petrogenesis. Lithos, 134-135:304-316. https://doi.org/10.1016/j.lithos.2011.09.013
    » https://doi.org/https://doi.org/10.1016/j.lithos.2011.09.013
  • Caxito F.A., Uhlein A., Dantas E.L. 2014a. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. https://doi.org/10.1016/j.jsames.2013.12.012
    » https://doi.org/https://doi.org/10.1016/j.jsames.2013.12.012
  • Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: Implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana Precambrian Research, 282:97-120. http://doi.org/10.1016/j.precamres.2016.07.001
    » https://doi.org/http://doi.org/10.1016/j.precamres.2016.07.001
  • Caxito F.A., Ulhein A., Stevenson R., Ulhein G. 2014b. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. https://doi.org/10.1130/G35479.1
    » https://doi.org/https://doi.org/10.1130/G35479.1
  • Chappell B.W., White A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8:173-174.
  • Chappell B.W., White A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    » https://doi.org/https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • Costa F.G., Klein E.L., Lafon J.M., Milhomem Neto J.M., Galarza M.M., Rodrigues J.B., Naleto J.L.C., Lima R.G.C. 2018. Geochemistry and U-Pb-Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil: Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Research, 311:167-194. https://doi.org/10.1016/j.precamres.2018.04.008
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.04.008
  • Cruden A.R. 1990. Flow and fabric development during the diapiric rise of magma. The Journal of Geology, 98(5):681-698.
  • Cruden A.R., Weinberg R.F. 2018. Mechanisms of magma transport and storage in the lower and middle crust - magma segregation, ascent and emplacement. Volcanic and Igneous Plumbing Systems, 13-53. http://doi.org/10.1016/b978-0-12-809749-6.00002-9
    » https://doi.org/http://doi.org/10.1016/b978-0-12-809749-6.00002-9
  • Dantas E.L., Souza Z.S., Wernick E., Hackspacher P.C., Martin H., Xiadong D., Li J.W. 2013. Crustal growth in the 3.4-2.7 Ga São José do Campestre Massif, Borborema Province, NE Brazil. Precambrian Research, 227:120-156. http://doi.org/10.1016/j.precamres.2012.08.006
    » https://doi.org/http://doi.org/10.1016/j.precamres.2012.08.006
  • De La Roche H., Leterrier J., Grandclaude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses: its relationships with current nomenclature. Chemical Geology, 29(1-4):183-210. https://doi.org/10.1016/0009-2541(80)90020-0
    » https://doi.org/https://doi.org/10.1016/0009-2541(80)90020-0
  • Defant M.J., Drummond M.S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347:662-665. https://doi.org/10.1038/347662a0
    » https://doi.org/https://doi.org/10.1038/347662a0
  • Dhuime B., Hawkesworth C.J., Cawood P.A., Storey C.D. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335(6074):1334-1336. https://doi.org/10.1126/science.1216066
    » https://doi.org/https://doi.org/10.1126/science.1216066
  • Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of Proterozoic granitoids in terranes of Borborema province, northeastern Brazil. Journal of South America Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
    » https://doi.org/https://doi.org/10.1016/S0895-9811(98)00027-3
  • Ferreira V.P., Valley J.W., Sial A.N., Spicuzza M. 2003. Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contributions to Mineralogy and Petrology, 145:205-216. https://doi.org/10.1007/s00410-003-0443-4
    » https://doi.org/https://doi.org/10.1007/s00410-003-0443-4
  • Fetter A.H., Santos T.J.S., Van Schmus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quiteria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70975-8
  • Foley S.F., Barth M.G., Jenner G.A. 2000. Rutile/melt partition coefficient for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
    » https://doi.org/https://doi.org/10.1016/S0016-7037(99)00355-5
  • Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    » https://doi.org/https://doi.org/10.1093/petrology/42.11.2033
  • Ganade de Araújo C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A.S., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42. https://doi.org/10.1016/j.precamres.2016.01.032
    » https://doi.org/https://doi.org/10.1016/j.precamres.2016.01.032
  • Ganade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE-Brazil): Clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
    » https://doi.org/https://doi.org/10.1016/j.lithos.2014.05.015
  • Ganade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5:5198. https://doi.org/10.1038/ncomms6198
    » https://doi.org/https://doi.org/10.1038/ncomms6198
  • Ganade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
    » https://doi.org/https://doi.org/10.1111/ter.12084
  • Gao Y., Hou Z., Kamber B.S., Wei R., Meng X., Zhao R. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153:105-120. https://doi.org/10.1007/s00410-006-0137-9
    » https://doi.org/https://doi.org/10.1007/s00410-006-0137-9
  • Gill J.B. 1981. Orogenic andesites and plate tectonics Berlin: Springer.
  • Glazner A.F., Bartley J.M. 2006. Is stoping a volumetrically significant pluton emplacement process? Geological Society of America Bulletin, 118(9-10):1185-1195. https://doi.org/10.1130/B25738.1
    » https://doi.org/https://doi.org/10.1130/B25738.1
  • Guimarães I.P., Brito M.F.L., Lages G.A., Silva Filho A.F., Santos L., Brasilino R.G. 2016. Tonian granitic magmatism of the Borborema Province, NE Brazil: A review. Journal of South American Earth Sciences, 68:97-112. https://doi.org/10.1016/j.jsames.2015.10.009
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.10.009
  • Guimarães I.P., Silva Filho A.F. 2000. Evidence of multiple sources involved in the genesis of the Neoproterozoic Itapetim granitic complex, NE Brazil, based on geochemical and isotopic data. Journal of South American Earth Sciences, 13(6):561-586. https://doi.org/10.1016/S0895-9811(00)00040-7
    » https://doi.org/https://doi.org/10.1016/S0895-9811(00)00040-7
  • Guimarães I.P., Silva Filho A.F., Almeida C.N., Macambira M.B., Armstrong R. 2011. U-Pb SHRIMP data constraints on calc-alkaline granitoids with 1.3-1.6 Ga Nd TDM model ages from the central domain of the Borborema province, NE Brazil. Journal of South American Earth Sciences, 31(4):383-396. https://doi.org/10.1016/j.jsames.2011.03.001
    » https://doi.org/https://doi.org/10.1016/j.jsames.2011.03.001
  • Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granite magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.07.004
  • Guimarães I.P., Silva Filho A.F., Melo S.C., Macambira M.B. 2005. Petrogenesis of A-type granitoids from the Pajeú-Paraíba Belt, Borborema Province, NE Brazil: constraints from geochemistry and isotopic composition. Gondwana Research, 8(3):347-362. https://doi.org/10.1016/S1342-937X(05)71140-0
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)71140-0
  • Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M.B., Silva Filho A.F., Armstrong R. 2012. U-Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: Onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. Precambrian Research, 192-195:52-77. https://doi.org/10.1016/j.precamres.2011.10.008
    » https://doi.org/https://doi.org/10.1016/j.precamres.2011.10.008
  • Gutiérrez F., Payacán I., Szymanowski D., Guillong M., Bachmann O., Parada M.A. 2018. Lateral magma propagation during the emplacement of La Gloria Pluton, Central Chile. Geology, 46(12):1051-1054. https://doi.org/10.1130/G45361.1
    » https://doi.org/https://doi.org/10.1130/G45361.1
  • Hawkesworth C.J., Dhuime B., Pietranik A.B., Cawood P.A., Kemp A.I.S., Storey C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2):229-248. http://dx.doi.org/10.1144/0016-76492009-072
    » https://doi.org/http://dx.doi.org/10.1144/0016-76492009-072
  • Hutton D.H.W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh, 79(2-3):245-255. https://doi.org/10.1017/S0263593300014255
    » https://doi.org/https://doi.org/10.1017/S0263593300014255
  • Janoušek V., Farrow C.M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6):1255-1259. https://doi.org/10.1093/petrology/egl013
    » https://doi.org/https://doi.org/10.1093/petrology/egl013
  • Klemme S., Günther D., Hametner K., Prowatke S., Zack T. 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3-4):251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2006.05.005
  • Koepke J., Berndt J., Feig S.T., Holtz F. 2006. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153:67-84. http://dx.doi.org/10.1007/s00410-006-0135-y
    » https://doi.org/http://dx.doi.org/10.1007/s00410-006-0135-y
  • Kozuch M. 2003. Isotopic and trace element geochemistry of Early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting PhD Thesis, Department of Geology, University of Kansas, Lawrence, 199 p.
  • Kusumoto S., Takemura K. 2003. Numerical simulation of caldera formation due to collapse of a magma chamber. Geophysical Research Letters, 30(24):2278. http://dx.doi.org/10.1029/2003GL018380
    » https://doi.org/http://dx.doi.org/10.1029/2003GL018380
  • Lages G.A., Dantas E.L. 2016. Floresta and Bodocó mafic-ultramafic complexes, western Borborema Province, Brazil: geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
    » https://doi.org/https://doi.org/10.1016/j.precamres.2016.04.017
  • Lages G.A., Marinho M.S., Nascimento M.A.L., Medeiros V.C., Dantas E.L. 2016. Geocronologia e aspectos estruturais e petrológicos do Pluton Bravo, Domínio Central da Província Borborema, Nordeste do Brasil: um granito transalcalino precoce no estágio pós-colisional da Orogênese Brasiliana. Brazilian Hournal of Geology, 46:41-61.
  • Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.02.003
  • Lameyre J., Bowden P. 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14(1-2):169-186. https://doi.org/10.1016/0377-0273(82)90047-6
    » https://doi.org/https://doi.org/10.1016/0377-0273(82)90047-6
  • Lima M.I.C., Gava A., Fernandes P.E.C.A., Pires J.L., Siga Jr. O. 1985. Projeto ferro titanado de Floresta Minérios de Pernambuco/Radambrasil. v. 1. 314 p.
  • Lima J.V., Guimarães I.P., Santos L., Amorim J.V.A., Farias D.J.S. 2017. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75:116-133. https://doi.org/10.1016/j.jsames.2017.02.004
    » https://doi.org/https://doi.org/10.1016/j.jsames.2017.02.004
  • Lima H.M., Pimentel M.M., Fuck R.A., Santos L.C.M.L., Dantas E.L. 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt: Implications for the evolution of the Borborema Province, NE Brazil. Journal of South American Earth Sciences, 86:176-192. https://doi.org/10.1016/j.jsames.2018.06.013
    » https://doi.org/https://doi.org/10.1016/j.jsames.2018.06.013
  • Lima H.M., Pimentel M.M., Santos L.C.M.L., Dantas E.L. 2019. Isotopic and geochemical characterization of the metavolcano-sedimentary rocks of the Jirau do Ponciano dome: A structural window to a Paleoproterozoic continental arc root within the Southern Borborema Province, Northeast Brazil. Journal of South American Earth Sciences, 90:54-69. https://doi.org/10.1016/j.jsames.2018.12.002
    » https://doi.org/https://doi.org/10.1016/j.jsames.2018.12.002
  • Ludwig K.R. 2012. User’s Manual for Isoplot Version 3.75-4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 5.
  • Magee C., Muirhead J.D., Karvelas A., Holford S.P., Jackson C.A.L., Bastow I.D., Schofield N., Stevenson C.T.E., McLean C., McCarthy W., Shtukert O. 2016. Lateral magma flow in mafic sill complexes. Geosphere, 12(3):809-841. https://doi.org/10.1130/GES01256.1
    » https://doi.org/https://doi.org/10.1130/GES01256.1
  • Maniar P.D., Piccoli P.M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletim, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. 2005. An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
    » https://doi.org/https://doi.org/10.1016/j.lithos.2004.04.048
  • McMillan N.J., Harmon R.S., Moorbath S., Lopez-Escobar L., Strong D.F. 1989. Crustal sources involved in continental arc magmatism: A case study of volcan Mocho-Choshuenco, southern Chile. Geology, 17(12):1152-1156. https://doi.org/10.1130/0091-7613(1989)017<1152:CSIICA>2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1989)017<1152:CSIICA>2.3.CO;2
  • Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos PiancóAlto Brígida e Alto Pajeú, domínio da zona transversal NE do Brasil PhD Thesis. Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 200 p.
  • Nakamura N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5):757-775. https://doi.org/10.1016/0016-7037(74)90149-5
    » https://doi.org/https://doi.org/10.1016/0016-7037(74)90149-5
  • Nascimento M.A.L., Galindo A.C., Medeiros V.C. 2015. Ediacaran to Cambrian magmatic suites in the Rio Grande do Norte domain, extreme Northeastern Borborema Province (NE of Brazil): Current knowledge. Journal of South American Earth Sciences, 58:281-299. https://doi.org/10.1016/j.jsames.2014.09.008
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.09.008
  • Neal C.R., Taylor L.A. 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimoca Acta, 53(5):1035-1040. https://doi.org/10.1016/0016-7037(89)90208-1
    » https://doi.org/https://doi.org/10.1016/0016-7037(89)90208-1
  • Neves S.P. 2015. Constraints from zircon geochronology on the tectonic evolution of the Borborema Province (NE Brazil): Widespread intracontinental Neoproterozoic reworking of a Paleoproterozoic accretionary orogen. Journal of South American Earth Sciences, 58:150-164. http://dx.doi.org/10.1016/j.jsames.2014.08.004
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2014.08.004
  • Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
    » https://doi.org/https://doi.org/10.1016/j.precamres.2006.06.005
  • Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: A complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. http://doi.org/10.1016/j.precamres.2010.05.014
    » https://doi.org/http://doi.org/10.1016/j.precamres.2010.05.014
  • Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.07.004
  • Paces J.B., Miller Jr. J.D. 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98(B8):13997-14013. https://doi.org/10.1029/93JB01159
    » https://doi.org/https://doi.org/10.1029/93JB01159
  • Paterson S.R., Fowler Jr. T.K. 1993. Re-examining pluton emplacement processes. Journal of Structural Geology, 15(2):191-206. https://doi.org/10.1016/0191-8141(93)90095-R
    » https://doi.org/https://doi.org/10.1016/0191-8141(93)90095-R
  • Pearce J.A., Harris N.B.W., Tindle A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
    » https://doi.org/https://doi.org/10.1093/petrology/25.4.956
  • Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
    » https://doi.org/https://doi.org/10.1038/35047000
  • Rapp R.P., Shimizu N., Norman M.D., Applegate G.S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4):335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
    » https://doi.org/https://doi.org/10.1016/S0009-2541(99)00106-0
  • Rapp R.P., Xiao L., Shimuzu N. 2002. Experimental constraints on the origin of potassium-rich adakite in east China. Acta Petrologica Sinica, 18(3):293-302.
  • Rapp R.P., Watson E.B. 1995. Dehydration melting of metabasalt at 8-32 kbar, implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
    » https://doi.org/https://doi.org/10.1093/petrology/36.4.891
  • Rochira F., Caggianelli A., de Lorenzo S. 2018. Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy), Geodinamica Acta, 30(1):225-240. https://doi.org/10.1080/09853111.2018.1488912
    » https://doi.org/https://doi.org/10.1080/09853111.2018.1488912
  • Rollinson H. 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos, 112(3-4):603-614. https://doi.org/10.1016/j.lithos.2009.06.006
    » https://doi.org/https://doi.org/10.1016/j.lithos.2009.06.006
  • Sajona F.G., Maury R.C., Bellon H., Cotten J., Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3):693-726. https://doi.org/10.1093/petrology/37.3.693
    » https://doi.org/https://doi.org/10.1093/petrology/37.3.693
  • Sajona F.G., Maury R.C., Pubellier M., Leterrier J., Bellon H., Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, 54(3-4):173-206. https://doi.org/10.1016/S0024-4937(00)00019-0
    » https://doi.org/https://doi.org/10.1016/S0024-4937(00)00019-0
  • Santos E.J. 1995. O complexo granítico Lagoa das Pedras: acreção e colisão na região de Floresta (Pernambuco), Província Borborema PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 228 p.
  • Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE-Brazil. Revista Brasileira de Geociências, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
    » https://doi.org/https://doi.org/10.25249/0375-7536.1999297384
  • Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2009.07.003
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J. 2018. Accretion tectonics in Western Gondwana deduced from Sm-Nd Isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics, 37(8):2727-2743. https://doi.org/10.1029/2018TC005130
    » https://doi.org/https://doi.org/10.1029/2018TC005130
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:1-22. https://doi.org/10.1016/j.jsames.2019.102384
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.102384
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Santos E.J., Fuck R.A. 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. Journal of South American Earth Sciences, 79:342-363. http://doi.org/10.1016/j.jsames.2017.08.013
    » https://doi.org/http://doi.org/10.1016/j.jsames.2017.08.013
  • Santos L.C.M.L., Dantas E.L., Santos E.J., Santos R.V., Lima H.M. 2015. Early to late Paleoproterozoic magmatism in NE Brazil: The Alto Moxotó Terrane and its tectonic implications for the pre-West Gondwana assembly. Journal of South American Earth Sciences, 58:188-209. http://doi.org/10.1016/j.jsames.2014.07.006
    » https://doi.org/http://doi.org/10.1016/j.jsames.2014.07.006
  • Santos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. http://doi.org/10.1016/j.jsg.2017.09.012
    » https://doi.org/http://doi.org/10.1016/j.jsg.2017.09.012
  • Santos L.C.M.L., Fuck R.A., Santos E.J., Dantas E.L. 2014. Análise tectônica de terrenos: metodologia, aplicação em cinturões orogênicos e exemplos das províncias Tocantins e Borborema, Brasil. Geonomos, 22(2):51-63. https://doi.org/10.18285/geonomos.v22i2.317
    » https://doi.org/https://doi.org/10.18285/geonomos.v22i2.317
  • Santos T.J.S., Fetter A.H., Hackspacher P.C., Schmus W.R.V., Nogueira Neto J.A. 2008. Neoproterozoic tectonic and magmatic episodes in the NW sector of the Borborema Province, NE Brazil, during assembly of western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. http://dx.doi.org/10.1016/j.jsames.2007.05.006
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2007.05.006
  • Sen C., Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: implication for the origin of adakites. Contributions to Mineralogy and Petrology, 117:394-409. https://doi.org/10.1007/BF00307273
    » https://doi.org/https://doi.org/10.1007/BF00307273
  • Sheth H.C., Torres-Alvarado I.S., Verma S.P. 2002. What Is the “Calc-alkaline Rock Series”? International Geology Review, 44(8):686-701. https://doi.org/10.2747/0020-6814.44.8.686
    » https://doi.org/https://doi.org/10.2747/0020-6814.44.8.686
  • Sial A.N. 1987. Granitic rocks of Northeast Brazil. In: International Symposium on Granites and Associated Mineralizations, 1., Salvador. Extended Abstracts Salvador: SGM. p. 61-69.
  • Sial A.N. 1990. Epidote-bearing calc-alkaline granitoids in Northeast Brazil. Revista Brasileira de Geociências, 20(1-4):88-100.
  • Sial A.N., Ferreira V.P. 2016. Magma association in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.10.005
  • Silva Filho A.F., Guimarães I.P., Ferreira V.P., Armstrong R., Sial A.N. 2010. Ediacaran Águas Belas pluton, Northeastern Brazil: Evidence on age, emplacement and magma sources during Gondwana amalgamation. Gondwana Research, 17(4):676-687. https://doi.org/10.1016/j.gr.2009.10.002
    » https://doi.org/https://doi.org/10.1016/j.gr.2009.10.002
  • Sisson T.W., Grove T.L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113:143-166. https://doi.org/10.1007/BF00283225
    » https://doi.org/https://doi.org/10.1007/BF00283225
  • Skjerlie K.P., Patiño Douce A.E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 Gpa: implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43(2):291-314. https://doi.org/10.1093/petrology/43.2.291
    » https://doi.org/https://doi.org/10.1093/petrology/43.2.291
  • Stern R.A. 1997. The GSC Sensitive High-Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In: Radiogenic age and isotopic studies: Report 10; Geological Survey of Canada, Current Research 1997-F, p. 1-31. https://doi.org/10.4095/209089
    » https://doi.org/https://doi.org/10.4095/209089
  • Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1):1-33. https://doi.org/10.1016/0012-8252(76)90052-0
    » https://doi.org/https://doi.org/10.1016/0012-8252(76)90052-0
  • Sun S.S., McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.). Magmatism in the ocean basins London, Geological Society of London Special Publication, 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    » https://doi.org/https://doi.org/10.1144/GSL.SP.1989.042.01.19
  • Tang G., Wang Q., Wyman D.A., Li Z.-X., Zhao Z.-H., Jia X.-H., Jiang Z.-Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277(3-4):281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2010.08.012
  • Tapponnier P., Peltzer G., Le Dain A.Y., Armijo R., Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12):611-616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
  • Tikoff B., Teyssier C. 1994. Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology, 16(11):1575-1588. https://doi.org/10.1016/0191-8141(94)90034-5
    » https://doi.org/https://doi.org/10.1016/0191-8141(94)90034-5
  • Trompette R. 1994. Geology of Western Gondwana (2000-500 Ma): pan-African-Brasiliano aggregation of South America and Africa Rotterdam, Balkema, 350 p.
  • Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00013-6
  • Van Schmus W.R., Brito Neves B.B., Williams I.S, Hackspacher P.C., Fetter A.H., Dantas E.L., Babinski M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4):287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
    » https://doi.org/https://doi.org/10.1016/S0301-9268(03)00197-9
  • Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South America Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
    » https://doi.org/https://doi.org/10.1016/j.jsames.2011.02.010
  • Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, Special Publications, 294:69-99. https://doi.org/10.1144/sp294.5
    » https://doi.org/https://doi.org/10.1144/sp294.5
  • Vauchez A., Neves S.P., Caby R., Corsini M., Edydio-Silva M., Arthaud M., Amaro V.E. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00012-5
  • Viegas L.G.F., Archanjo C., Vauchez A. 2013. Fabrics of migmatites and the relationships between partial melting and deformation in high-grade transpressional shear zones: the Espinho Branco anatexite (Borborema Province, NE Brazil). Journal of Structural Geology, 48:45-56. https://doi.org/10.1016/j.jsg.2012.12.008
    » https://doi.org/https://doi.org/10.1016/j.jsg.2012.12.008
  • Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. http://dx.doi.org/10.1016/j.precamres.2013.12.020
    » https://doi.org/http://dx.doi.org/10.1016/j.precamres.2013.12.020
  • Wang Q., Xu J.-F., Jian P., Bao Z.-W., Zhao Z.-H., Li C.-F., Xiong X.-L., Ma J.-L. 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070
    » https://doi.org/https://doi.org/10.1093/petrology/egi070
  • Weinberg R.F., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
    » https://doi.org/https://doi.org/10.1130/G20290.1
  • Williams I.S. 1998. U-Th-Pb geochronology by ion micro-probe. In: McKibben M.A., Shanks III W.C., Ridley W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralization Processes Reviews in Economic Geology 7, El Paso, Texas, p. 1-75.
  • Yuguchi T., Nishiyama T. 2008. The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos, 106(3-4):237-260. https://doi.org/10.1016/j.lithos.2008.07.017
    » https://doi.org/https://doi.org/10.1016/j.lithos.2008.07.017
  • Žák J., Paterson S.R. 2006. Roof and walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. Journal of Structural Geology, 28(4):575-587. https://doi.org/10.1016/j.jsg.2005.12.017
    » https://doi.org/https://doi.org/10.1016/j.jsg.2005.12.017

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20190127.

Publication Dates

  • Publication in this collection
    27 Apr 2020
  • Date of issue
    2020

History

  • Received
    31 Aug 2019
  • Accepted
    08 Jan 2020
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br