Acessibilidade / Reportar erro

Sedimentary and tectonic breccias at the base of the Ediacaran Tamengo Formation (Corumbá Group): a comparative study

Abstract

The Corumbá Group is a Neoproterozoic succession of terrigenous and carbonate sedimentary rocks located at the southern Paraguay Belt, central Brazil. The upper units of the Corumbá Group include the Ediacaran carbonate Bocaina and Tamengo formations, whose limit is characterized by polymictic breccias recognized in several sites from Corumbá to Serra da Bodoquena, Mato Grosso do Sul. Despite the widespread occurrence, the breccias are poorly described and their origin is uncertain. The aim of this study is to present the differences between sedimentary and tectonic breccias of the Corumbá Group and propose a genesis model for each. The sedimentary breccias comprise mainly matrix-supported chaotic facies that formed by submarine mass flows on slope aprons. Sea level fall and/or increased faulting rates exposed the underlying units and triggered the gravity fluxes by creating a steep slope. The base of the sedimentary breccia represents a major unconformity within the carbonate sedimentation of the Corumbá Group, with potential correlation to other Ediacaran units. The subsequent development of the Paraguay fold-thrust belt caused the formation of tectonic breccias in reverse fault zones. Cataclasis and mylonitization deformed the dolomitic host rock by fracturing and produced a fine foliated matrix.

KEYWORDS:
Ediacaran; sedimentary breccia; fault breccia; Tamengo Formation; Corumbá Group

INTRODUCTION

From a descriptive point of view, breccias are rocks composed of coarse angular fragments, fine matrix and/or cement (Laznicka 1988Laznicka P. 1988. Breccias and coarse fragmentites: petrology, environments, associations, ores. Amsterdam: Elsevier Science.), and can be formed by several processes, in sedimentary, tectonic and igneous contexts or a combination of these (Shukla and Sharma 2018Shukla M.K., Sharma A. 2018. A brief review on breccia: it’s contrasting origin and diagnostic signatures. Solid Earth Sciences, 3(2):50-59. https://doi.org/10.1016/j.sesci.2018.03.001
https://doi.org/https://doi.org/10.1016/...
). Sedimentary breccias can be formed by karst collapse (Loucks 1999Loucks R.G. 1999. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83(11):1795-1834. https://doi.org/10.1306/e4fd426f-1732-11d7-8645000102c1865d
https://doi.org/https://doi.org/10.1306/...
, He et al. 2019He J., Qing H., Xu B. 2019. The unconformity-related palaeokarst in the uppermost Ediacaran carbonate rocks in the northwestern Tarim Block, NW China: implication for sedimentary evolution during the Ediacaran–Cambrian transition. International Geology Review, 61(7):839-852. https://doi.org/10.1080/00206814.2018.1474498
https://doi.org/https://doi.org/10.1080/...
), submarine mass flow (McIlreath and James 1978McIlreath I.A., James N.P. 1978. Facies models 13. Carbonate slopes. Geoscience Canada, 5(4):189-199., Krause and Oldershaw 1979Krause F., Oldershaw A.E. 1979. Submarine carbonate breccia beds – a depositional model for two-layer, sediment gravity flows from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 16(1):189-199. https://doi.org/10.1139/e79-017
https://doi.org/https://doi.org/10.1139/...
, Spence and Tucker 1997Spence G.H., Tucker M.E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology, 112(3-4):163-193. https://doi.org/10.1016/S0037-0738(97)00036-5
https://doi.org/https://doi.org/10.1016/...
), subaerial mass flow (Bertran and Texier 1999Bertran P., Texier J.P. 1999. Facies and microfacies of slope deposits. Catena, 35(2-4):99-121. https://doi.org/10.1016/S0341-8162(98)00096-4
https://doi.org/https://doi.org/10.1016/...
), talus sedimentation (Veevers and Roberts 1966Veevers J.J., Roberts J. 1966. Littoral talus breccia and probable beach rock from the Viséan of the Bonaparte Gulf Basin. Journal of the Geological Society of Australia, 13(2):387-403. https://doi.org/10.1080/00167616608728620
https://doi.org/https://doi.org/10.1080/...
, Tanner and Hubert 1991Tanner L.H., Hubert J.F. 1991. Basal breccias and conglomerates in the lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: Differentiation of talus and debris-flow deposits. Journal of Sedimentary Petrology, 61(1):15-27.), evaporite dissolution (Blount and Moore Jr. 1969Blount D.N., Moore Jr. C.H. 1969. Depositional and non-depositional carbonate breccias, Chiantla Quadrangle, Guatemala. Geological Society of America Bulletin, 80(3):429-442. https://doi.org/10.1130/0016-7606(1969)80[429:DANCBC]2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
, Kendall and Warren 1987Kendall C.G., Warren J. 1987. A review of the origin and setting of tepees and their associated fabrics. Sedimentology, 34(6):1007-1027. https://doi.org/10.1111/j.1365-3091.1987.tb00590.x
https://doi.org/https://doi.org/10.1111/...
) and in glacial environments (Eyles et al. 1983Eyles N., Eyles C.H., Miall A.D. 1983. Lithofacies types and vertical profiles models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology, 30(3):393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
https://doi.org/https://doi.org/10.1111/...
). Carbonate breccias, specifically, may provide key information regarding controlling influences in the sedimentary system and basin evolution (Madden et al. 2017Madden R.H., Wilson M.E., Mihaljevic M., Pandolfi J.M., Welsh K. 2017. Unravelling the depositional origins and diagenetic alteration of carbonate breccias. Sedimentary Geology, 357:33-52. https://doi.org/10.1016/j.sedgeo.2017.05.002
https://doi.org/https://doi.org/10.1016/...
), but their origins are not always obvious (Morrow 1982Morrow D.W. 1982. Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks. Bulletin of Canadian Petroleum Geology, 30(3):227-229.). Each process prints specific sedimentological and paleontological features that allow each breccia to be distinguished. Nevertheless, in Precambrian successions, the lack of widespread macroscopic fossils complicates the interpretation of sedimentary systems.

Regarding tectonic breccias, cataclasis is the main process during their formation (Engelder 1974Engelder J. 1974. Cataclasis and the generation of fault gouge. Geological Society of America Bulletin, 85(10):1515-1522. https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
), in extensional, strike-slip or compressive fault zones. It operates at relatively shallow levels (ca. 5 km) through macro (e.g. fracturing and rotation) and micro-mechanisms (e.g. chipping and intragranular extensional fracturing) in grains (Billi 2010Billi A. 2010. Microtectonics of low-P low-T carbonate fault rocks. Journal of Structural Geology, 32(9):1392-1402. https://doi.org/10.1016/j.jsg.2009.05.007
https://doi.org/https://doi.org/10.1016/...
, Ferraro et al. 2018Ferraro F., Grieco D.S., Agosta F., Prosser G. 2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110:45-64. https://doi.org/10.1016/j.jsg.2018.02.007
https://doi.org/https://doi.org/10.1016/...
), displacing fragments of a host rock. Typically, fault rocks in the damage zone and in the fault core differ regarding matrix proportion, fragments size and their fractal organization (Blenkinsop 1991Blenkinsop T.G. 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, 136:59-86. https://doi.org/10.1007/BF00878888
https://doi.org/https://doi.org/10.1007/...
, Billi and Storti 2004Billi A., Storti F. 2004. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics, 384(1-4):115-128. https://doi.org/10.1016/j.tecto.2004.03.015
https://doi.org/https://doi.org/10.1016/...
).

In the Corumbá Group, the limit between the Bocaina and Tamengo formations comprises a thick (tens of meters) polymictic breccia with large clasts found within the exposition along the Corumbá and Serra da Bodoquena regions. Boggiani (1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo.) first described this breccia as a cuneiform body that crops out along the Bonito–Bodoquena Road, Porto Morrinhos and Corumbá, and interpreted its origin as resedimentation in slope margins of the paleocontinent. In contrast, Oliveira et al. (2019Oliveira R.S., Nogueira A.C.R., Romero G.R., Truckenbrodt W., Bandeira J.C.S. 2019. Ediacaran ramp depositional model of the Tamengo Formation, Brazil. Journal of South American Earth Sciences, 96:102348. https://doi.org/10.1016/j.jsames.2019.102348
https://doi.org/https://doi.org/10.1016/...
) suggested that the breccia was formed in a carbonate inner ramp by wave reworking. Ramos (2019Ramos M.E.F. 2019. Sedimentological, petrographic, and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group). PhD Thesis, Universidade de Brasília, Brasília.) interpreted the breccia origin as sediment loading on local grabens during an interval of extensional tectonics. Therefore, despite its widespread occurrence and key stratigraphic importance, the genesis and significance of this sedimentation interval is uncertain. Moreover, tectonic breccias, which occur closely to the sedimentary breccias at the Bocaina–Tamengo limit, have their origin often misunderstood as sedimentary.

This paper presents new data on the sedimentology of the Bocaina–Tamengo limit based on investigation of outcrops along Corumbá and the east side of Serra da Bodoquena. The sedimentary polymictic breccia located in the Bocaina–Tamengo boundary is described and analyzed together with associated deposits in order to establish details of its depositional setting, provenance, and potential tectonic and paleoenvironmental relevance.

GEOLOGICAL SETTING

The Paraguay Belt is a Neoproterozoic to early Cambrian fold-thrust belt located southeast of the Amazonia Craton and east of the Rio Apa Cratonic Terrane, created during the amalgamation of western Gondwana (Alvarenga et al. 2009Alvarenga C.J.S., Boggiani P.C., Babinski M., Dardenne M.A., Figueiredo M.F., Santos R.V., Dantas E.L. 2009. The Amazonian Paleocontinent. In: Gaucher C., Sial A.N., Halverson G.P., Frimmel H.E. (Eds.). Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwest Gondwana. Developments in Precambrian Geology. Amsterdam: Elsevier, p. 15-28. https://doi.org/10.1016/S0166-2635(09)01602-8
https://doi.org/https://doi.org/10.1016/...
, Campanha et al. 2011Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
https://doi.org/https://doi.org/10.5327/...
). It is divided in two parts, with the Cenozoic Pantanal Basin in between (Fig. 1A). The southern and northern parts of the Paraguay Belt hold significant differences regarding lithostratigraphy and age distribution (Boggiani and Alvarenga 2004Boggiani P.C., Alvarenga C.J.S. 2004. 07. Faixa Paraguai In: Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 113-120., Alvarenga et al. 2011Alvarenga C.J.S., Boggiani P.C., Babinski M., Dardenne M.A., Figueiredo M.F., Dantas E.L., Uhlein A., Santos R.V., Sial A.N., Trompette R. 2011. Glacially influenced sedimentation of the Puga Formation, Cuiabá Group and Jacadigo Group, and associated carbonates of the Araras and Corumbá Groups, Paraguay Belt, Brazil. Geological Society, London, Memoirs, 36(1):487-497. https://doi.org/10.1144/M36.45
https://doi.org/https://doi.org/10.1144/...
, Babinski et al. 2018Babinski M., McGee B., Tokashiki C.C., Tassinari C.C.G., Saes G.S., Pinho F.E.C. 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences, 85:6-42. https://doi.org/10.1016/j.jsames.2018.04.009
https://doi.org/https://doi.org/10.1016/...
).

Figure 1.
(A) Geological map of the Paraguay Belt. Black rectangles indicate the study areas (modified from Babinski et al. 2018Babinski M., McGee B., Tokashiki C.C., Tassinari C.C.G., Saes G.S., Pinho F.E.C. 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences, 85:6-42. https://doi.org/10.1016/j.jsames.2018.04.009
https://doi.org/https://doi.org/10.1016/...
). (B) Geological map of the Corumbá region (based on the CPRM Mato Grosso do Sul 1:1,000,000 map). (C) Geological map of the Serra da Bodoquena region (modified from Campanha et al. 2011Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
https://doi.org/https://doi.org/10.5327/...
).

In the southern Paraguay Belt, the orogenic front migration to the west deformed the rocks of the Corumbá Group during the evolution of the fold-thrust belt (D’el-Rey Silva et al. 2016D’el-Rey Silva L.J.H., Walde D.H.G., Saldanha D.O. 2016. The Neoproterozoic–Cambrian Paraguay Belt, central Brazil: Part I — New structural data and a new approach on the regional implications. Tectonophysics, 676:20-41. https://doi.org/10.1016/J.TECTO.2016.03.019
https://doi.org/https://doi.org/10.1016/...
). Moreover, the main thrusts likely reactivated listric faults originated during the rift stage (Campanha et al. 2011Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
https://doi.org/https://doi.org/10.5327/...
). In the Serra da Bodoquena region, an important 50km long thrust fault truncates the rocks at the Bocaina–Tamengo limit. This fault (Veneza Fault; Fig. 1) is oriented roughly at N-S/45ºE and bears the cataclastic rocks studied in this work.

The Corumbá Group occurs both in the cratonic area and in the fold-thrust belt domain. It is divided in five units, namely the Cadiueus, Cerradinho, Bocaina, Tamengo and Guaicurus formations, from base to top (Almeida 1965Almeida F.F.M. 1965. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia, 219:1-96., (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo.). The two lower units are often associated to the rift stage of the Corumbá Basin evolution, whereas the upper section is traditionally related to the passive margin setting (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo., Boggiani et al. 2010Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R. 2010. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182(4):382-401. https://doi.org/10.1016/j.precamres.2010.06.003
https://doi.org/https://doi.org/10.1016/...
). However, recent studies suggested that the sedimentation of the upper units took place in a foreland basin context, after the basin inversion (Campanha et al. 2011Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
https://doi.org/https://doi.org/10.5327/...
, McGee et al. 2018McGee B., Babinski M., Trindade R., Collins A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 307:1-33. https://doi.org/10.1016/j.precamres.2017.12.030
https://doi.org/https://doi.org/10.1016/...
).

In the Cadiueus and Cerradinho formations, terrigenous facies predominate, specifically conglomerates, arkosic sandstones and shales (Almeida 1965Almeida F.F.M. 1965. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia, 219:1-96., (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo., Boggiani et al. 2010Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R. 2010. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182(4):382-401. https://doi.org/10.1016/j.precamres.2010.06.003
https://doi.org/https://doi.org/10.1016/...
). Gaucher et al. (2003Gaucher C., Boggiani P.C., Sprechmann P., Sial A.N., Fairchild T.R. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120(3-4):241-278. https://doi.org/10.1016/S0301-9268(02)00140-7
https://doi.org/https://doi.org/10.1016/...
) described organic-walled microfossils in the Cerradinho Formation, which are consistent with an Ediacaran age. The Bocaina Formation marks the onset of carbonate sedimentation, with stromatolitic dolomudstone facies and phosphorite layers (Boggiani et al. 1993Boggiani P.C., Fairchild T.R., Coimbra A.M. 1993. O Grupo Corumbá (Neoproterozóico-Cambriano) na região Central da Serra da Bodoquena, Mato Grosso do Sul (Faixa Paraguai). Revista Brasileira de Geociências, 23(3):301-305. https://doi.org/10.25249/0375-7536.1993233301305
https://doi.org/https://doi.org/10.25249...
, (Fontaneta 2012Fontaneta G.T. 2012. Dolomitização e fosfogênese na Formação Bocaina, Grupo Corumbá (Ediacarano). MS Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo, 148 p.), with a Doushantuo-Pertatataka-like acritarch fossil assemblage (Morais et al. 2021Morais L., Fairchild T.R., Freitas B.T., Rudnitzki I.D., Silva E.P., Lahr D., Moreira A.C., Abrahão Filho E.A., Leme J.M., Trindade R.I.F. 2021. Doushantuo-Pertatataka-Like Acritarchs from the Late Ediacaran Bocaina Formation (Corumbá Group, Brazil). Frontiers in Earth Sciences, 9:787011. https://doi.org/10.3389/feart.2021.787011
https://doi.org/https://doi.org/10.3389/...
). The Tamengo Formation comprises breccias, grainstones and wackestones interbedded with shales, with Cloudina and Corumbella skeletonized fossils (Hahn et al. 1982Hahn G., Hahn R., Leonardos O.H., Pflug H.D. 1982. Kfrperlich erhaltene Scyphozoen-reste aus dem Jungprekambrium Brasiliens. Geologika et Paleontologica, 16:1-18., Hahn and Pflug 1985Hahn G., Pflug H.D. 1985. Die cloudinidae n. farm., Kalk-Rfhren aus dem Vendium und Unter-Kambrium. Senckenbergiana, 65:413-431., Adorno et al. 2017Adorno R.R., Carmo D.A., Germs G., Walde D.H., Denezine M., Boggiani P.C., Sousa e Silva S.C., Vasconcelos J.R., Tobias T.C., Guimarães E.M., Vieira L.C., Figueiredo M.F., Moraes R., Caminha S.A., Suarez P.A.Z., Rodrigues C.V., Caixeta G.M., Pinho D., Schneider G., Muyambag R. 2017. Cloudina lucianoi (Beurlen and Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Research, 301:19-35. https://doi.org/10.1016/j.precamres.2017.08.023
https://doi.org/https://doi.org/10.1016/...
, Becker-Kerber et al. 2017Becker-Kerber B., Pacheco M.L.A.F., Rudnitzki I.D., Galante D., Rodrigues F., de Moraes Leme J. 2017. Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports, 7:5482. https://doi.org/10.1038/s41598-017-05753-8
https://doi.org/https://doi.org/10.1038/...
, Zaine and Fairchild 1985Zaine M.F., Fairchild T.R. 1985. Comparison of Aulophycus lucianoi Beurlen & Sommer from Ladário (MS) and the genus Cloudina Germs, Ediacaran of Namibia. Anais da Academia Brasileira de Ciências, 57(1):130., 1987Zaine M.F., Fairchild T.R. 1987. Novas considerações sobre os fósseis da Formação Tamengo, Grupo Corumbá, SW do Brasil. In: Congresso Brasileiro de Paleontologia, 10., 1987, Rio de Janeiro. Anais… p. 797–807.), acritarchs (Zaine 1991Zaine M.F. 1991. Análise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental. PhD Thesis, Universidade de São Paulo, São Paulo, Brazil., Gaucher et al. 2003Gaucher C., Boggiani P.C., Sprechmann P., Sial A.N., Fairchild T.R. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120(3-4):241-278. https://doi.org/10.1016/S0301-9268(02)00140-7
https://doi.org/https://doi.org/10.1016/...
), macroalgae (Diniz et al. 2021Diniz C.Q.C., Leme J.M., Boggiani P.C. 2021. New species of macroalgae from Tamengo Formation, Ediacaran, Brazil. Frontiers in Earth Sciences, 9:748876. https://doi.org/10.3389/feart.2021.748876
https://doi.org/https://doi.org/10.3389/...
) and vendotaenids (Becker-Kerber et al. 2021Becker-Kerber B., Abd Elmola A., Zhuravlev A., Gaucher C., Simões M.G., Prado G.M.E.M., Gámez Vintaned J.A., Fontaine C., Lino L.M., Ferreira Sánchez D., Galante D., Paim P.S.G., Callefo F., Kerber G., Meunier A., El Albani A. 2021. Clay templates in Ediacaran vendotaeniaceans: Implications for the taphonomy of carbonaceous fossils. GSA Bulletin. https://doi.org/10.1130/B36033.1
https://doi.org/https://doi.org/10.1130/...
). Lastly, the younger unit of the Corumbá Group is the Guaicurus Formation, characterized by a thick succession of organic-rich black shales (Boggiani et al. 2010Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R. 2010. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182(4):382-401. https://doi.org/10.1016/j.precamres.2010.06.003
https://doi.org/https://doi.org/10.1016/...
, Fazio et al. 2019Fazio G., Guimarães E.M., Walde D.W.G., do Carmo D.A., Adorno R.R., Vieira L.C., Denezine M., Silva C.B. da, Godoy H.V. de, Borges P.C., Pinho D. 2019. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations, (Corumbá Group – MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences, 90:487-503. https://doi.org/10.1016/j.jsames.2018.11.025
https://doi.org/https://doi.org/10.1016/...
, Amorim et al. 2020Amorim K.B., Afonso J.W.L., Leme J.M., Diniz C.Q.C., Rivera L.C.M., Gómez-Gutiérrez J.C., Boggiani P.C., Trindade R.I.F. 2020. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 67(7):3422-3450. https://doi.org/10.1111/sed.12749
https://doi.org/https://doi.org/10.1111/...
), with organic-walled microfossils (Gaucher et al. 2003Gaucher C., Boggiani P.C., Sprechmann P., Sial A.N., Fairchild T.R. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120(3-4):241-278. https://doi.org/10.1016/S0301-9268(02)00140-7
https://doi.org/https://doi.org/10.1016/...
). The Guaicurus Formation marks the final stages of sedimentation of the Corumbá Group, likely during the Late Ediacaran and Early Cambrian (McGee et al. 2018McGee B., Babinski M., Trindade R., Collins A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 307:1-33. https://doi.org/10.1016/j.precamres.2017.12.030
https://doi.org/https://doi.org/10.1016/...
).

The base of the Tamengo Formation is marked by the polymictic sedimentary breccia studied in detail in this paper. U-Pb ages for ash beds at the top of the Bocaina Formation of 555.18 ± 0.30 Ma and at the upper Tamengo Formation of 541.85 ± 0.75 Ma (Parry et al. 2017Parry L., Boggiani P.C., Condon D., Garwood R., Leme J.M., McIlroy D., Brasier M.D., Trindade R., Campanha G.A.C., Pachecho M.L.A.F., Diniz C.Q.C., Liu A.G. 2017. Ichnological evidence for meiofaunal bilaterians from the Ediacaran-Cambrian transition of Brazil. Nature Ecology & Evolution, 1(10):1455-1464. https://doi.org/10.1038/s41559-017-0301-9
https://doi.org/https://doi.org/10.1038/...
) allows for the erosional and depositional processes responsible for the breccia formation to be placed within this interval, once the breccia bed is stratigraphically located between these two units. Importantly, this sedimentary breccia crops out both in the Serra da Bodoquena and Corumbá regions, over 250 km apart (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo.). Where the Tamengo Formation overlies other units than the Bocaina Formation, the breccia is absent (Almeida 1965Almeida F.F.M. 1965. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia, 219:1-96.), implying a stratigraphic and paleogeographic control of its occurrence.

METHODS

The breccias facies were analyzed in outcrops in the Serra da Bodoquena and Corumbá regions (Figs. 1B and 1C), where one columnar section in each location was surveyed, focusing on clasts lithologies and sedimentary structures. During the field work, in the Laginha Quarry, all the clasts with a diameter greater than 0.5 cm in 1 m x 1 m in situ squares located in four different stratigraphic positions along the Tamengo Formation basal breccia body (lower, lower middle, upper middle and upper; Fig. 2A) were counted. In total, 537 clasts were considered for a more statistically accurate distribution. Additionally, petrographic analysis of 22 thin sections of the breccia facies and associated rocks were carried out.

Figure 2.
Photographs of the Tamengo Formation sedimentary breccia in Corumbá. (A) Laginha Quarry outcrop with the approximate stratigraphic positions of the squares where the clasts were counted. (B) Angular granite clast. (C) Rounded quartzite clast. (D) Pocket of white sparry calcite. (E) Reddish sandstone clast.

Tectonic breccias were classified according to the descriptive nomenclature of fault rocks proposed by Woodcock and Mort (2008Woodcock N.H., Mort K. 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145(3):435-440. https://doi.org/10.1017/S0016756808004883
https://doi.org/https://doi.org/10.1017/...
), which considers the proportion of large clasts (> 2 mm), small clasts (0.1 to 2 mm) and matrix (< 0.1 mm). This is a useful method of field and petrographic classification, and contrasts with most of the genetic classifications available for fault rocks. The carbonate sedimentary facies description followed the traditional classification of Dunham (1962Dunham R.J. 1962. Classification of carbonate rocks according to depositional textures. In: Ham W.E. (Ed.). Classification of carbonate rocks: a symposium. United States: American Association of Petroleum Geologists, p. 108-121. https://doi.org/10.1306/M1357
https://doi.org/https://doi.org/10.1306/...
).

RESULTS

Serra da Bodoquena region

In the Serra da Bodoquena region, the breccias crop out continuously along the Bonito–Bodoquena road up to the Horii Quarry Hill, for nearly 60km in extension (Fig. 1). There are two thick (ca. 30 m) sedimentary breccia beds, B1 and B2 (Fig. 3), separated by layers of dolomudstone and dolomitic ooid wackestone. At the top of B2, there is a tectonic contact with rocks from the Veneza Fault (B3). The layers are oriented roughly at N-S/40ºE, following the regional structure of the Paraguay Belt.

Figure 3.
Columnar sections of the Bocaina – Tamengo limit at the Veneza Farm (Serra da Bodoquena), Laginha Quarry (Corumbá, from (Ramos 2019Ramos M.E.F. 2019. Sedimentological, petrographic, and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group). PhD Thesis, Universidade de Brasília, Brasília.) and Noroeste do Brasil Railway (Corumbá). Yellow squares indicate the stratigraphic position of photomicrographs of Figures 5, 7 and 8. Red blocks represent basement clasts.

Both B1 and B2 are dolomitic matrix-supported to clast-supported carbonate breccia facies (Fig. 4) and do not present paleocurrent structures. B1 contains poorly sorted subrounded to angular clasts of dolomudstone (62%) (Fig. 5), phosphorite (14%), silexite (9%), limestone (6%), sandstone (5%), and ooid grainstone (4%) (Fig. 4D), whereas B2 mainly contains clasts of dolomudstone (> 99%) and sandstone (< 1%) (Fig. 4A). Some of the ooid grainstone clasts present giant ooids (diameter > 2 mm; Sumner and Grotzinger 1993Sumner D.Y., Grotzinger J.P. 1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Research, 63(5):974-982. https://doi.org/10.1306/D4267C5D-2B26-11D7-8648000102C1865D
https://doi.org/https://doi.org/10.1306/...
), as shown in Figure 5C, which are usually reported in sedimentary facies of the Bocaina Formation (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo.). The clast sizes, in both beds, range from 0.2 cm to nearly 70 cm in diameter, with a rough fining-upwards tendency. The overall matrix proportion ranges from 15 to 55% (Figs. 4A to 4C). The matrix of B1 and B2 shows different degrees of recrystallization, even within the same breccia layer, from widely to locally recrystallized (Figs. 5A, 5B and 5E). Moreover, the amount of quartz in the matrix is minimal, with only few sparse angular crystals (Fig. 5A). Diagenetic features of B1 and B2 include bladed calcite crystals as cement (Fig. 5D), recrystallization and dolomitization.

Figure 4.
Photographs of the Tamengo Formation sedimentary breccia at the Serra da Bodoquena region. (A) Angular sandstone clast amidst abundant dolomudstone matrix. (B) Orthobreccia facies with grayish dolomudstone and silexite clasts. (C) Parabreccia facies with blackish angular silexite clasts. (D) Rounded ooid grainstone clast.

Figure 5.
Photomicrographs of the Tamengo Formation sedimentary breccia at the Serra da Bodoquena region. (A) Recrystallized dolomitic matrix, with rhombohedral dolomite (blue arrows) and quartz. (B) Partially recrystallized dolomitic matrix, with incipient rhombohedral dolomite and dark dolomicrite. (C) Contact between the dolomitic matrix and an ooid grainstone clast with giant ooids (> 2 mm). (D) Bladed calcite crystals in B2 facies. (E) Dolomudstone clasts (yellow arrows) in dolomitic matrix with sparry dolomite (blue arrow). (F) Dolomudstone clasts in dolomicritic quartz-rich matrix. Only (D) is planepolarized.

The B3 rocks vary greatly in the different zones of the Veneza Fault regarding textural parameters. Nevertheless, the limits of these zones are not well defined and local variations are frequent, suggesting a highly heterogeneous shear. In the damage zone, the breccia comprises angular and fractured ooid grainstone, sandstone and dolomudstone fragments that have frequent points of contact with each other (Fig. 6A), supporting an incipient calcite-rich matrix.

Figure 6.
Veneza Fault rocks, in the Serra da Bodoquena region. (A) Damage zone with fractured dolomitic host rock. (B) Transition zone with foliated matrix and dolomudstone fragments. (C) Transition zone with dolomudstone fragments of different sizes and white sparry calcite filling fractures. (D) Transition zone with elongated dolomudstone fragments and abundant matrix. (E) Deflected matrix and fragments around a bigger dolomudstone fragment. (F) Classification of the Veneza Fault rocks from estimated proportion of grain sizes (nomenclature from Woodcock and Mort 2008Woodcock N.H., Mort K. 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145(3):435-440. https://doi.org/10.1017/S0016756808004883
https://doi.org/https://doi.org/10.1017/...
).

In the transition between the damage zone and the core of the Veneza Fault, the matrix proportion of the fault breccia is greater than 60% and lower than 90%. Matrix shows a well-developed foliation deflected around bigger dolomudstone fragments (Fig. 6). These fragments present small-scale faults, which are indicative of shear and rotation. Petrographic details reveal that the matrix is composed of oriented calcite crystals (Figs. 7A, 7B and 7C). In this portion, contacts between fragments are less common.

Figure 7.
Photomicrographs of the Veneza Fault rocks. (A) Cataclastic breccia from the transition zone, with dolomudstone fragments and oriented calcitic matrix. (B) Highly oriented calcite crystals from the matrix. (C) Ultracataclasite portion, with highly oriented small calcite crystals. (D) Contact (yellow arrow) between a calcite vein and the ultracataclasite.

The fault core presents a highly oriented calcitic matrix, with proportion greater than 90% (Fig. 6D). Sparry calcite in veins is common in both matrix and fragments (Figs. 6C and 7D). The Veneza Fault rocks evolve from mosaic breccias to ultracataclasites, as they edge towards the fault core (Fig. 6F). The cataclasite nomenclature was chosen instead of mylonite due to the interpretation of cataclasis as the main deformation mechanism, although ductile processes likely took place as well.

Corumbá region

The polymictic breccia at the base of the Tamengo Formation holds different characteristics in the Serra da Bodoquena and Corumbá regions, despite its occurrence at the same stratigraphic position in both locations (Fig. 3). The most exposed sections of the Tamengo basal breccia in Corumbá are located in the Laginha Quarry and in the Noroeste do Brasil Railway, 1.3 km apart, with only a few sedimentological differences. No cataclastic breccias associated to the Tamengo Formation were found in the Corumbá region.

In the Laginha Quarry, the breccia bed is nearly 12 m thick and shows both the basal erosional contact with dolomites of the Bocaina Formation and the superior contact with ooid wackestones, presenting a general orientation of N70º/40ºSE (Fig. 2A). Ramos (2019Ramos M.E.F. 2019. Sedimentological, petrographic, and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group). PhD Thesis, Universidade de Brasília, Brasília.) described a 25 cm thick friable yellowish-brown muddy sandstone with lithoclasts and argillaceous matrix right above the breccia layer in the same section. The breccia contains a calcitic matrix, occasionally recrystallized (Fig. 8). The clasts consist of several lithologies, including silexite, dolomudstone, limestone, sandstone, gneiss, phyllite, granite, shale, conglomerate, quartzite (Figs. 2B to 2E), and phosphorite (Fig. 8A). Clasts are subrounded to angular and some are up to 60 cm in diameter. The clast counting shows that changes on lithologies within the breccia bed are not evident (Fig. 9), with nearly all types of clasts being present in all stratigraphic positions.

Figure 8.
Photomicrographs of the Tamengo Formation sedimentary breccia in the Corumbá region. (A) Angular phosphorite clast in recrystallized calcitic matrix. (B) Dolomudstone matix amidst micritic quartzrich matrix. (C) Silicified ooid structure (red arrow) amidst micritic matrix. (D) Partially recrystallized calcite matrix. Only (C) is plane-polarized.

Figure 9.
Relative distribution of clasts lithology in the sedimentary breccia of Tamengo Formation at the Laginha Quarry section, Corumbá.

In the Noroeste do Brasil Railway section, the breccia is nearly 11 m thick. The matrix is calcitic in nature, locally recrystallized, and with a great proportion of quartz grains, up to 60% (Fig. 8B). The matrix proportion also increases to the top, from 30 to 70% (Fig. 2). The main clast types are dolomudstone, sandstone, silexite and lithologies from the crystalline basement (granite, gneiss and quartzite). Their proportions change stratigraphically, with basement clasts occurring only in the first 5m. In thin section, silicified ooid fragments are present (Fig. 8C). Paleocurrent and imbrications structures are absent, but the entire breccia body comprises a fining-upwards bundle, once the biggest clast diameter decreases to the top, from 55 cm to 20 cm (Fig. 2).

Regarding diagenetic features, stylolites surfaces are frequent in the breccia matrix, as well as portions with sparry calcite and fluorite as centimetric venules and pockets. Moreover, elliptic ooids are recorded in the ooid wackestone facies right above the breccia layer, indicating mechanical compaction.

DISCUSSION

The sedimentary and tectonic breccias of the upper Corumbá Group differ greatly regarding petrographic and structural aspects, recording processes of different natures, as discussed below.

Tamengo Formation sedimentary breccia

Depositional setting

Previous investigations developed on the Tamengo Formation display different viewpoints and explanations regarding the genesis of the breccia interval. Oliveira et al. (2019Oliveira R.S., Nogueira A.C.R., Romero G.R., Truckenbrodt W., Bandeira J.C.S. 2019. Ediacaran ramp depositional model of the Tamengo Formation, Brazil. Journal of South American Earth Sciences, 96:102348. https://doi.org/10.1016/j.jsames.2019.102348
https://doi.org/https://doi.org/10.1016/...
) proposed a carbonate ramp model for the Tamengo Formation, in which the breccia would be formed in a wave-dominated inner ramp. However, reworking by wave alone could explain neither the occurrence of angular igneous and metamorphic clasts nor the abundance of a fine matrix, as well as the wide regional distribution of the breccia. Amorim et al. (2020Amorim K.B., Afonso J.W.L., Leme J.M., Diniz C.Q.C., Rivera L.C.M., Gómez-Gutiérrez J.C., Boggiani P.C., Trindade R.I.F. 2020. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 67(7):3422-3450. https://doi.org/10.1111/sed.12749
https://doi.org/https://doi.org/10.1111/...
), on the other hand, proposed the ramp model only for the Tamengo Formation above the basal breccia, without including it in the model. Regardless of the proposed interpretation, the stratigraphic position of the breccia layer at the basal Tamengo Formation and above the Bocaina Formation seems to be consensus. Therefore, the stratigraphic and sedimentological similarities, as will be shown, indicate that the breccia facies at Corumbá and Serra da Bodoquena are genetically related.

The poorly sorted nature of the breccia, with subrounded to angular clasts, points to relatively short reworking distances and rapid deposition. In addition, high energy is also required to displace and movement meter-scale clasts. The lack of tractive sedimentary structures suggests a high-density cohesive flux, which is endorsed by the abundance of fine carbonate matrix in most outcrops. We propose that the sedimentological data presented herein are consistent with reworking by gravity flows downslope, such as slumps, slides and debris flows. Such mass fluxes occur on the steep margins of carbonate platforms, are poorly channelized (Nichols 2009Nichols G. 2009. Sedimentology and stratigraphy. UK: John Wiley & Sons.) and can be triggered by several processes, such as earthquakes, wave or tidal loading, pore-water pressure, subaerial exposure and sediment accumulation (Spence and Tucker 1997Spence G.H., Tucker M.E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology, 112(3-4):163-193. https://doi.org/10.1016/S0037-0738(97)00036-5
https://doi.org/https://doi.org/10.1016/...
, Locat and Lee 2005Locat J., Lee H. 2005. Subaqueous debris flows. In: Jakob M., Hungr O. (Eds.). Debris-flow hazards and related phenomena. Berlin: Springer, p. 203-245. https://doi.org/10.1007/3-540-27129-5_9
https://doi.org/https://doi.org/10.1007/...
) in deepwater environment. Sea-level fall exposes the underlying units and causes sediment instability at the top of the slope. Moreover, the normal faulting rate also influences the timing of depositional cycles and the initiation of the gravity flows on carbonate slopes by steepening the topography (Quiquerez et al. 2013Quiquerez A., Sarih S., Allemand P., Garcia J-P. 2013. Fault rate controls on carbonate gravity-flow deposits of the Liassic of Central High Atlas (Morocco). Marine and Petroleum Geology, 43:349-369. https://doi.org/10.1016/j.marpetgeo.2013.01.002
https://doi.org/https://doi.org/10.1016/...
, Jo et al. 2015Jo A., Eberli G.P., Grasmueck M. 2015. Margin collapse and slope failure along southwestern Great Bahama Bank. Sedimentary Geology, 317:43-52. https://doi.org/10.1016/j.sedgeo.2014.09.004
https://doi.org/https://doi.org/10.1016/...
), although there are no evidences of synsedimentary faulting for the Tamengo Formation. The steepened palaeotopography could also be inherited from the Bocaina Formation carbonate shelf, which may have generated a steep reef slope. As Ramos (2019Ramos M.E.F. 2019. Sedimentological, petrographic, and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group). PhD Thesis, Universidade de Brasília, Brasília.) suggests, the genesis of the breccia is related to rapid sediment infill in grabens formed by normal faulting, both sea-level fall and high faulting rate may have controlled the gravity flows that formed the basal beccia facies. The diverse and complex clast composition also does not point to a single control to trigger these fluxes (Reijmer et al. 2015Reijmer J.J.G., Mulder T., Borgomano J. 2015. Carbonate slopes and gravity deposits. Sedimentary Geology, 317:1-8. https://doi.org/10.1016/j.sedgeo.2014.12.001
https://doi.org/https://doi.org/10.1016/...
).

The fining-upwards tendency at the Noroeste do Brasil Railway section suggests that the breccia was formed in a single sedimentation pulse, with decrease in the supply of coarse clasts (e.g. (Surlyk 1978Surlyk F. 1978. Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic-Cretaceous boundary, East Greenland). Gronlands Geologiske Undersogelse Bulletin, 128:108., Eyles and Januszczak 2007Eyles N., Januszczak N. 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciations? Basin Research, 19(2):179-198. https://doi.org/10.1111/j.1365-2117.2007.00319.x
https://doi.org/https://doi.org/10.1111/...
). On the other hand, in the Serra da Bodoquena region, each facies (B1 and B2) likely record several pulses, once thicker beds are more likely to represent multiple flows (Eyles and Januszczak 2007Eyles N., Januszczak N. 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciations? Basin Research, 19(2):179-198. https://doi.org/10.1111/j.1365-2117.2007.00319.x
https://doi.org/https://doi.org/10.1111/...
). This difference and the variable thickness of the breccia layers denote a highly heterogeneous process, despite its lateral continuity of over 250 km, indicating that the flows occurred in slope aprons, not being fed by discrete points, such as localized submarine fans or turbidite channels (Mutti 1985Mutti E. 1985. Turbidite systems and their relations to depositional sequences. In: Zuffa G.G. (Ed.). Provenance of Arenites. Amsterdam: Springer, p. 65-93.).

The breccia also underwent several diagenetic processes. Neomorphism is the most evident, with wide matrix recrystallization in both the Corumbá and Serra da Bodoquena regions. Stylolites indicate pressure dissolution due to chemical compaction. Mechanical compaction can be inferred by the elliptical ooids in the ooid wackestone facies right above the breccia bed in the Corumbá sections. Bladed calcite crystals indicate cementation under phreatic or vadose marine conditions (Dias-(Brito 2017Dias-Brito D. 2017. Guia petrográfico dos carbonatos do Brasil. Rio Claro: UNESP, IGCE-UNESPetro. Obra 4.), preferentially with little Mg2+ in solution (Badiozamani et al. 1977Badiozamani K., Mackenzie F.T., Thorstenson D.C. 1977. Experimental carbonate cementation: salinity, temperature and vadose-phreatic effects. Journal of Sedimentary Research, 47(2):529-542. https://doi.org/10.1306/212F71CB-2B24-11D7-8648000102C1865D
https://doi.org/https://doi.org/10.1306/...
). Furthermore, venules of sparry centimetric calcite and fluorite indicate fluid circulation.

Therefore, the sedimentation model for the Tamengo Formation basal breccia comprises the following main processes:
  • sea level fall and/or increased faulting rate exposes rocks of underlying units, causing fracturing and displacement of clasts, creating a steepened topography;

  • slumps, slides and debris flows on a reef slope apron, likely inherited from the Bocaina Formation palaeotopography, reworks these clasts amidst a micritic/dolomicritic matrix;

  • the breccia is deposited at the lower slope, where it locally undergoes seafloor cementation.

Provenance and regional relevance

The polymictic nature of the breccia reflects the complexity of the source area (McIlreath and James 1978McIlreath I.A., James N.P. 1978. Facies models 13. Carbonate slopes. Geoscience Canada, 5(4):189-199.) and allows for interpretation of its provenance. Dolomudstone, phosphorite, silexite and ooid grainstone, with giant ooids, are all facies of the Bocaina Formation that appear as clasts in the breccia, implying that this formation was likely a source unit. The same logic can be applied to sandstone, shale and phyllite facies for the Cerradinho Formation, and granite, gneiss and quartzite for the igneous and metamorphic basement, with the difference that these lithologies appear less frequently as clasts in the breccia. Some of the sandstone clasts may be syndepositional. The basement rocks in the Corumbá region occur in the northernmost part of the Rio Apa Cratonic Terrane (Faleiros et al. 2016Faleiros F.M., Pavan M., Remédio M.J., Rodrigues J.B., Almeida V.V., Caltabeloti F.P., Pinto L.G.R., Oliveira A.A., Pinto de Azevedo E.J., Costa V.S. 2016. Zircon U-Pb ages of rocks from the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): new insights for its connection with the Amazonian Craton in pre-Gondwana times. Gondwana Research, 34:187-204. https://doi.org/10.1016/j.gr.2015.02.018
https://doi.org/https://doi.org/10.1016/...
). They present K-Ar (biotite) ages of 1730 ± 22 Ma, K-Ar (K-feldspar) ages of 889 ± 7 Ma for granites (Hasui and Almeida 1970Hasui Y., Almeida F.F.A. 1970. Geocronologia do Centro-Oeste brasileiro. Boletim da Sociedade Brasileira de Geologia, 19:5-26.) and U-Pb SHRIMP ages of 1808 ± 7 Ma for felsic gneiss (McGee et al. 2018McGee B., Babinski M., Trindade R., Collins A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 307:1-33. https://doi.org/10.1016/j.precamres.2017.12.030
https://doi.org/https://doi.org/10.1016/...
). These are in accordance with the obtained ages for detrital zircon, from 900 to 1900 Ma, for the Tamengo Formation (Babinski et al. 2008Babinski M., Boggiani P.C., Fanning C.M., Fairchild T.R., Simon C.M., Sial A.N. 2008. U-Pb shrimp geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, southern Paraguay belt, Brazil. In: South American Symposium on Isotope Geology, Buenos Aires. Abstracts…). Therefore, the occurrence of igneous and metamorphic clasts in the basal breccia represents further evidence indicating that the Rio Apa is the basement source for the lower Tamengo Formation.

The studied sedimentary breccia marks the change in the sedimentation regime and chemistry, from dolomitic tidal plain of the Bocaina Formation (Boggiani 1998Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. PhD Thesis, Universidade de São Paulo, São Paulo., (Fontaneta 2012Fontaneta G.T. 2012. Dolomitização e fosfogênese na Formação Bocaina, Grupo Corumbá (Ediacarano). MS Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo, 148 p.) to calcitic storm-dominated ramp, which coincides with the first appearances of the Cloudina fossils in the Tamengo Formation (Oliveira et al. 2019Oliveira R.S., Nogueira A.C.R., Romero G.R., Truckenbrodt W., Bandeira J.C.S. 2019. Ediacaran ramp depositional model of the Tamengo Formation, Brazil. Journal of South American Earth Sciences, 96:102348. https://doi.org/10.1016/j.jsames.2019.102348
https://doi.org/https://doi.org/10.1016/...
, Amorim et al. 2020Amorim K.B., Afonso J.W.L., Leme J.M., Diniz C.Q.C., Rivera L.C.M., Gómez-Gutiérrez J.C., Boggiani P.C., Trindade R.I.F. 2020. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 67(7):3422-3450. https://doi.org/10.1111/sed.12749
https://doi.org/https://doi.org/10.1111/...
). As paleogeographic studies indicate that the Rio Apa and Amazonia cratons were likely at high (Li et al. 2008Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
https://doi.org/https://doi.org/10.1016/...
) to mid paleolatitudes (Tohver and Trindade 2014Tohver T., Trindade R.I.F. 2014. Comment on was there an Ediacaran Clymenne Ocean in central South America by U.G. Cordani and others. American Journal of Science, 314(3):805-813. https://doi.org/10.2475/03.2014.03
https://doi.org/https://doi.org/10.2475/...
) around 550 Ma, carbonate sedimentation of the Tamengo Formation and breccia deposition on steep slopes are relevant paleogeographic indicators that may question the validity of these magnetic poles and paleogeographic models. The possible link between the breccia deposition and the Corumbá Basin inversion, from passive margin to foreland setting, as proposed by Campanha et al. (2011Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
https://doi.org/https://doi.org/10.5327/...
), cannot be ruled out, although further studies regarding sedimentary provenance must be carried on.

U-Pb ages of ash beds at the top of both Bocaina and Tamengo formations place the erosional episode responsible for the breccia formation between 555 and 542 Ma (Parry et al. 2017Parry L., Boggiani P.C., Condon D., Garwood R., Leme J.M., McIlroy D., Brasier M.D., Trindade R., Campanha G.A.C., Pachecho M.L.A.F., Diniz C.Q.C., Liu A.G. 2017. Ichnological evidence for meiofaunal bilaterians from the Ediacaran-Cambrian transition of Brazil. Nature Ecology & Evolution, 1(10):1455-1464. https://doi.org/10.1038/s41559-017-0301-9
https://doi.org/https://doi.org/10.1038/...
). The breccia represents a key unconformity within the carbonate units of the Corumbá Group, matching some of the criteria to place it as a first-order sea-level change, such as its great areal extent, the magnitude of the deepening of sea-level and the degree of change in sedimentary regime (Catuneanu et al. 2005Catuneanu O., Martins-Neto M.A., Erkisson P.G. 2005. Precambrian Sequence Stratigraphy. Sediementary Geology, 176(1-2):67-95. https://doi.org/10.1016/j.sedgeo.2004.12.009
https://doi.org/https://doi.org/10.1016/...
). Thus, the Tamengo Formation basal breccia may contribute to the correlation with its counterparts in Southwestern Gondwana as similar stratigraphic patterns are recognized in other Ediacaran units (Misi et al. 2007Misi A., Kaufman A.J., Veizer J., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1-2):143-167. https://doi.org/10.1016/j.chemgeo.2006.06.019
https://doi.org/https://doi.org/10.1016/...
) and geochronologial markers are often scarce.

Correlations

Possible counterparts for the Tamengo Formation basal breccia may be found in the Arroyo del Soldado, Sierras Bayas, Nama and Cango Caves groups. In the Arroyo del Soldado Group (Uruguay), the Polanco Formation records sea-level fall and negative δ13C values in Cloudina-bearing carbonates (Gaucher et al. 2004Gaucher C., Sial A.N., Blanco G., Sprechmann P. 2004. Chemostratigraphy of the lower Arroyo del Soldado Group (Vendian, Uruguay) and Paleoclimatic Implications. Gondwana Research, 7(3):715-730. https://doi.org/10.1016/S1342-937X(05)71058-3
https://doi.org/https://doi.org/10.1016/...
, Frei et al. 2011Frei R., Gaucher C., Døssing L.N., Sial A.N., 2011. Chromium isotopes in carbonates – a tracer for climate change and for reconstructing the redox state of ancient seawater. Earth and Planetary Science Letters, 312(1-2):114-125. https://doi.org/10.1016/j.epsl.2011.10.009
https://doi.org/https://doi.org/10.1016/...
), similarly to the basal Tamengo Formation (Boggiani et al. 2010Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R. 2010. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182(4):382-401. https://doi.org/10.1016/j.precamres.2010.06.003
https://doi.org/https://doi.org/10.1016/...
, Spangenberg et al. 2014Spangenberg J.E., Bagnoud-Velásquez M., Boggiani P.C., Gaucher C. 2014. Redox variations and bioproductivity in the Ediacaran: Evidence from inorganic and organic geochemistry of the Corumbá Group, Brazil. Gondwana Research, 26(3-4):1186-1207. https://doi.org/10.1016/j.gr.2013.08.014
https://doi.org/https://doi.org/10.1016/...
). Due to its mid-shelf depositional environment, deeper than the Tamengo Formation, it did not come to breccia deposition, only cross-bedded calcarenite. The Barriga Negra Formation is a thick breccia and conglomerate unit in the Arroyo del Soldado Group, also interpreted as gravity flows on faulted margins (Demarco et al. 2019Demarco P.N., Masquelin H., Peel E., Bettucci L.S. 2019. Stratigraphy and tectonic setting of the Barriga Negra Formation in Uruguay: an update. Brazilian Journal of Geology, 49(1):e20180047. https://doi.org/10.1590/2317-4889201920180047
https://doi.org/https://doi.org/10.1590/...
). However, it is now considered the base of the group, related to older (Paleoproterozoic) carbonates, characterized by low 87Sr/86Sr ratios (0.7044 – 0.7050) (Frei et al. 2013Frei R., Gaucher C., Stolper D., Canfield D.E. 2013. Fluctuations in late Neoproterozoic atmospheric oxidation — Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Research, 23(2):797-811. https://doi.org/10.1016/j.gr.2012.06.004
https://doi.org/https://doi.org/10.1016/...
, (Gaucher 2014Gaucher C. 2014. Grupo Arroyo del Soldado. In: Bossi J., Gaucher C. (Eds.). Geología del Uruguay. Montevideo: Polo, p. 313-339. Tomo 1: Predevónico.). In the Sierras Bayas Group (Argentina), carbonate, phosphate-bearing breccias assigned to the Avellaneda Formation (Arrouy et al. 2015Arrouy M.J., Poire D.G., Gómez Peral L., Canalicchio J. 2015. Sedimentología y estratigrafía del Grupo La Providencia (nom. nov.): cubierta superior neoproterozoica, Sistema de Tandilia, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 22(2):171-189.) overlie limestones of the Loma Negra Formation (Barrio et al. 1991Barrio C., Poiré D.G., Iñiguez A.M. 1991. El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro, un ejemplo de paleokarst, Olavarría, provincia de Buenos Aires. Revista Asociación Geológica Argentina, 46(1):69-76., Gaucher and Poiré 2009Gaucher C., Poiré D.G. 2009. Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C., Sial A.N., Halverson G.P., Frimmel H.E. (Eds.). Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology. Elsevier, 16:123-130.). The occurrence of Cloudina in the Loma Negra Formation (Gaucher et al. 2005Gaucher C., Poiré D.G., Gómez Peral L., Chiglino L. 2005. Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de la Plata (Uruguay y Argentina). Latin American Journal of Sedimentology and Basin Analysis, 12:145-160.) suggests an age similar to the Tamengo Formation.

Another important correlation is proposed by Germs and Gaucher (2012Germs G.J.B., Gaucher C. 2012. Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa. South African Journal of Geology, 115(1):91-102. https://doi.org/10.2113/gssajg.115.91
https://doi.org/https://doi.org/10.2113/...
), associating the breccia in the Tamengo Formation to the Vingerbreek Unconformity, which is recognized in the upper Kuibis and lower Schwarzrand subgroups in the Nama Group (Namibia), as well as in the Kombuis Member of the Matjies River Formation in the Cango Caves Group (South Africa) (Praekelt et al. 2008Praekelt H.E., Germs G.J.B., Kennedy J.H. 2008. A distinct unconformity in the Cango Caves Group of the Neoproterozoic to early Paleozoic Saldania Belt in South Africa: its regional significance. South African Journal of Geology, 111(4):357-368. https://doi.org/10.2113/gssajg.111.4.357
https://doi.org/https://doi.org/10.2113/...
). This unconformity was formed by a glacial event (Vingerbreek Glaciation; Hofmann et al. 2015Hofmann M., Linnemann U., Hoffmann K., Germs G., Gerdes A., Marko L., Eckelmann K., Gärtner A., Krause R. 2015. The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles. Precambrian Research, 259:176-188. https://doi.org/10.1016/j.precamres.2014.07.021
https://doi.org/https://doi.org/10.1016/...
) and is related to Cloudina-bearing limestones and negative δ13C excursions down to –3‰ (Germs and Gaucher 2012Germs G.J.B., Gaucher C. 2012. Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa. South African Journal of Geology, 115(1):91-102. https://doi.org/10.2113/gssajg.115.91
https://doi.org/https://doi.org/10.2113/...
). The Vingerbreek Unconformity is tightly constrained between 549 ± 1 Ma and 545 ± 1 Ma (Grotzinger et al. 1995Grotzinger J.P., Bowring S.A., Saylor B.Z., Kaufman A.J. 1995. Biostratigraphic and Geochronological Constraints on Early Animal Evolution. Science, 270(5236):598-604. https://doi.org/10.1126/science.270.5236.598
https://doi.org/https://doi.org/10.1126/...
, Germs and Gaucher 2012Germs G.J.B., Gaucher C. 2012. Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa. South African Journal of Geology, 115(1):91-102. https://doi.org/10.2113/gssajg.115.91
https://doi.org/https://doi.org/10.2113/...
). Therefore, the sea-level drop responsible for the breccia at the base of the Tamengo Formation may be glacio-eustatic in origin and correlated to other units of the Southwestern Gondwana.

Veneza Fault’s tectonic breccias

The tectonic breccias occur in the Veneza Fault zone, in the Serra da Bodoquena region. The main process responsible for their formation was cataclasis, which was caused by three major mechanisms:
  • fracturing of the host rock (in this case, dolomudstone, dolomitic breccia and other facies of the Bocaina and Tamengo formations);

  • rotation of fragments;

  • matrix foliation.

As a result, a textural difference can be found in distinct parts of the fault zone, with increasing overall matrix proportion from the damage zone to the fault core.

Time evolution models of carbonate fault rocks can be widely found in the literature (e.g. Billi et al. 2003Billi A., Salvini F., Storti F. 2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25(11):1779-1794. https://doi.org/10.1016/S0191-8141(03)00037-3
https://doi.org/https://doi.org/10.1016/...
, Billi and Storti 2004Billi A., Storti F. 2004. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics, 384(1-4):115-128. https://doi.org/10.1016/j.tecto.2004.03.015
https://doi.org/https://doi.org/10.1016/...
, Ferraro et al. 2018Ferraro F., Grieco D.S., Agosta F., Prosser G. 2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110:45-64. https://doi.org/10.1016/j.jsg.2018.02.007
https://doi.org/https://doi.org/10.1016/...
), although models that consider foliated matrix are rare. Usually, the cataclasis onset is the fracturing of the host rock, which then progresses to brecciation, with formation of angular fragments and an incipient matrix. The matrix proportion, then, increases as the faulting proceeds and more comminution occurs in the grains, displacement of fragments and abrasion. The endmembers of fault rocks developed in this model are ultracataclasites and ultramylonites, with more than 90% of matrix. The rocks of Veneza Fault follow this model, with the addition of generating foliated matrix due to intense shear (Fig. 10). Although cataclasis was the main process of deformation, ductile mechanisms can also be inferred, mainly from the foliated matrix and elongated fragments, implying that these rocks were formed near the brittle–ductile transition for carbonates.

Figure 10.
Time evolution model for tectonic breccias of the Veneza Fault. (A) Damage zone with orthogonal fractures in the dolomitic host rock. (B) Brecciation onset and comminution of fragments. (C) Fragmentation, rotation and rounding of fragments. It is also at this stage that occurs the dedolomitization and formation of foliated matrix. (D) More intense comminution, rounding and orientation of fragments according to foliation, with deposition of sparry calcite in veins.

Moreover, these fault rocks likely underwent dedolomitization prior to, or during, matrix foliation, once comminution alone would not change the mineralogy of fine fragments that compose the matrix. In that sense, we presume that calcite substituted dolomite, a process that appears in the literature in the context of carbonate fault rocks (e.g. (Tapp 1988Tapp B. 1988. Fabric development in carbonate shear zones, Virginia Great Valley, central Appalachians, U.S.A. Transactions of the American Geophysical Union, 69:1434., (Erickson 1994Erickson S.G. 1994. Deformation of shale and dolomite in the Lewis thrust fault zone, northwest Montana, U.S.A. Canadian Journal of Earth Sciences, 31(9):1440-1447. https://doi.org/10.1139/e94-127
https://doi.org/https://doi.org/10.1139/...
, Hajri and Abdallah 2020Hajri H., Abdallah H. 2020. Fluid flow and late diagenesis of fault-infill carbonates in the Aptian dolostones at Jabel Semmama, Kasserine area, western-central Tunisia. Marine and Petroleum Geology, 111:1-20. https://doi.org/10.1016/j.marpetgeo.2019.07.051
https://doi.org/https://doi.org/10.1016/...
). Therefore, percolation of calcite-rich fluids in the fault zone provided the dedolomitization at near-surface depths, and then deformation caused the matrix to foliate. The presence of sparry calcite in the veins is an indicator that fluids with this characteristic percolated within the matrix and the fragments of the fault breccias.

The age of the Veneza Fault is uncertain. McGee et al. (2018McGee B., Babinski M., Trindade R., Collins A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 307:1-33. https://doi.org/10.1016/j.precamres.2017.12.030
https://doi.org/https://doi.org/10.1016/...
) proposed that final sedimentation and deformation of the southern Paraguay Belt took place during the early Cambrian (540–510 Ma). In that sense, the cataclastic rocks associated with reverse faults of the deformational front would be early Cambrian in age, up to 45 Ma younger than the Tamengo Formation basal sedimentary breccia. Furthermore, the Bocaina–Tamengo limit, marked by the sedimentary breccia, is a major discontinuity of the Corumbá Group, ideal to host deformation and form fault rocks as the fold-thrust belt developed. Therefore, this accounts for the close occurrence of these two types of breccia in the Serra da Bodoquena region.

CONCLUSION

  • There are sedimentary and tectonic breccias in the Serra da Bodoquena region that, despite their close occurrence, are products of processes of distinct natures and times within the Corumbá Group;

  • The sedimentary polymictic breccia marks the Bocaina–Tamengo limit and is an important stratigraphic mark for the Corumbá Group. The breccia was formed by submarine mass flows such as slumps, slides and debris flows. Sea level fall and/or increased faulting rates caused these processes on steep slope aprons;

  • The clast lithologies of the sedimentary breccia imply that both Bocaina and Cerradinho formations, as well as the Rio Apa crystalline basement, acted as source units for the lower Tamengo Formation, which is in accordance with previous provenance studies;

  • Tectonic breccias occur in the Veneza Fault, on the east side of Serra da Bodoquena. Their textural characteristics vary from the damage zone to the fault core. Cataclasis acted by fracturing and rotating fragments of the dolomitic host rock in relatively shallow depths. Their matrix underwent dedolomitization due to calcitic fluid percolation and foliation due to shear;

  • The age of the sedimentary breccia at the base of the Tamengo Formation is placed between 555 and 542 Ma. The age of the rocks related to the Veneza Fault is unknown, but they are likely early Cambrian.

ACKNOWLEDGEMENTS

We would like to thank the São Paulo Research Foundation (FAPESP) for funding this project (2018/17854-6) and the corresponding thematic project grant (2016/06114-6). Paulo Boggiani and Ricardo Trindade are fellows of the Brazilian National Council for Scientific and Technological Development (CNPq). Finally, we thank EDEM Agrominerais and Votorantim Cimentos for the support during the field work.

REFERENCES

  • Adorno R.R., Carmo D.A., Germs G., Walde D.H., Denezine M., Boggiani P.C., Sousa e Silva S.C., Vasconcelos J.R., Tobias T.C., Guimarães E.M., Vieira L.C., Figueiredo M.F., Moraes R., Caminha S.A., Suarez P.A.Z., Rodrigues C.V., Caixeta G.M., Pinho D., Schneider G., Muyambag R. 2017. Cloudina lucianoi (Beurlen and Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Research, 301:19-35. https://doi.org/10.1016/j.precamres.2017.08.023
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.08.023
  • Almeida F.F.M. 1965. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia, 219:1-96.
  • Alvarenga C.J.S., Boggiani P.C., Babinski M., Dardenne M.A., Figueiredo M.F., Dantas E.L., Uhlein A., Santos R.V., Sial A.N., Trompette R. 2011. Glacially influenced sedimentation of the Puga Formation, Cuiabá Group and Jacadigo Group, and associated carbonates of the Araras and Corumbá Groups, Paraguay Belt, Brazil. Geological Society, London, Memoirs, 36(1):487-497. https://doi.org/10.1144/M36.45
    » https://doi.org/https://doi.org/10.1144/M36.45
  • Alvarenga C.J.S., Boggiani P.C., Babinski M., Dardenne M.A., Figueiredo M.F., Santos R.V., Dantas E.L. 2009. The Amazonian Paleocontinent. In: Gaucher C., Sial A.N., Halverson G.P., Frimmel H.E. (Eds.). Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwest Gondwana. Developments in Precambrian Geology Amsterdam: Elsevier, p. 15-28. https://doi.org/10.1016/S0166-2635(09)01602-8
    » https://doi.org/https://doi.org/10.1016/S0166-2635(09)01602-8
  • Amorim K.B., Afonso J.W.L., Leme J.M., Diniz C.Q.C., Rivera L.C.M., Gómez-Gutiérrez J.C., Boggiani P.C., Trindade R.I.F. 2020. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil). Sedimentology, 67(7):3422-3450. https://doi.org/10.1111/sed.12749
    » https://doi.org/https://doi.org/10.1111/sed.12749
  • Arrouy M.J., Poire D.G., Gómez Peral L., Canalicchio J. 2015. Sedimentología y estratigrafía del Grupo La Providencia (nom. nov.): cubierta superior neoproterozoica, Sistema de Tandilia, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 22(2):171-189.
  • Babinski M., Boggiani P.C., Fanning C.M., Fairchild T.R., Simon C.M., Sial A.N. 2008. U-Pb shrimp geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, southern Paraguay belt, Brazil. In: South American Symposium on Isotope Geology, Buenos Aires. Abstracts
  • Babinski M., McGee B., Tokashiki C.C., Tassinari C.C.G., Saes G.S., Pinho F.E.C. 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences, 85:6-42. https://doi.org/10.1016/j.jsames.2018.04.009
    » https://doi.org/https://doi.org/10.1016/j.jsames.2018.04.009
  • Badiozamani K., Mackenzie F.T., Thorstenson D.C. 1977. Experimental carbonate cementation: salinity, temperature and vadose-phreatic effects. Journal of Sedimentary Research, 47(2):529-542. https://doi.org/10.1306/212F71CB-2B24-11D7-8648000102C1865D
    » https://doi.org/https://doi.org/10.1306/212F71CB-2B24-11D7-8648000102C1865D
  • Barrio C., Poiré D.G., Iñiguez A.M. 1991. El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro, un ejemplo de paleokarst, Olavarría, provincia de Buenos Aires. Revista Asociación Geológica Argentina, 46(1):69-76.
  • Becker-Kerber B., Abd Elmola A., Zhuravlev A., Gaucher C., Simões M.G., Prado G.M.E.M., Gámez Vintaned J.A., Fontaine C., Lino L.M., Ferreira Sánchez D., Galante D., Paim P.S.G., Callefo F., Kerber G., Meunier A., El Albani A. 2021. Clay templates in Ediacaran vendotaeniaceans: Implications for the taphonomy of carbonaceous fossils. GSA Bulletin. https://doi.org/10.1130/B36033.1
    » https://doi.org/https://doi.org/10.1130/B36033.1
  • Becker-Kerber B., Pacheco M.L.A.F., Rudnitzki I.D., Galante D., Rodrigues F., de Moraes Leme J. 2017. Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports, 7:5482. https://doi.org/10.1038/s41598-017-05753-8
    » https://doi.org/https://doi.org/10.1038/s41598-017-05753-8
  • Bertran P., Texier J.P. 1999. Facies and microfacies of slope deposits. Catena, 35(2-4):99-121. https://doi.org/10.1016/S0341-8162(98)00096-4
    » https://doi.org/https://doi.org/10.1016/S0341-8162(98)00096-4
  • Billi A. 2010. Microtectonics of low-P low-T carbonate fault rocks. Journal of Structural Geology, 32(9):1392-1402. https://doi.org/10.1016/j.jsg.2009.05.007
    » https://doi.org/https://doi.org/10.1016/j.jsg.2009.05.007
  • Billi A., Salvini F., Storti F. 2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25(11):1779-1794. https://doi.org/10.1016/S0191-8141(03)00037-3
    » https://doi.org/https://doi.org/10.1016/S0191-8141(03)00037-3
  • Billi A., Storti F. 2004. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics, 384(1-4):115-128. https://doi.org/10.1016/j.tecto.2004.03.015
    » https://doi.org/https://doi.org/10.1016/j.tecto.2004.03.015
  • Blenkinsop T.G. 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, 136:59-86. https://doi.org/10.1007/BF00878888
    » https://doi.org/https://doi.org/10.1007/BF00878888
  • Blount D.N., Moore Jr. C.H. 1969. Depositional and non-depositional carbonate breccias, Chiantla Quadrangle, Guatemala. Geological Society of America Bulletin, 80(3):429-442. https://doi.org/10.1130/0016-7606(1969)80[429:DANCBC]2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0016-7606(1969)80[429:DANCBC]2.0.CO;2
  • Boggiani P.C. 1998. Análise estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul PhD Thesis, Universidade de São Paulo, São Paulo.
  • Boggiani P.C., Alvarenga C.J.S. 2004. 07. Faixa Paraguai In: Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 113-120.
  • Boggiani P.C., Fairchild T.R., Coimbra A.M. 1993. O Grupo Corumbá (Neoproterozóico-Cambriano) na região Central da Serra da Bodoquena, Mato Grosso do Sul (Faixa Paraguai). Revista Brasileira de Geociências, 23(3):301-305. https://doi.org/10.25249/0375-7536.1993233301305
    » https://doi.org/https://doi.org/10.25249/0375-7536.1993233301305
  • Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R. 2010. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182(4):382-401. https://doi.org/10.1016/j.precamres.2010.06.003
    » https://doi.org/https://doi.org/10.1016/j.precamres.2010.06.003
  • Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá F.A., Zuquim M.P.A., Piacentini T. 2011. A faixa de dobramento Paraguai na Serra da Bodoquena e Depressão do Rio Miranda, Mato Grosso do Sul. Geologia USP. Série Científica, 11(3):79-96. https://doi.org/10.5327/z1519-874x2011000300005
    » https://doi.org/https://doi.org/10.5327/z1519-874x2011000300005
  • Catuneanu O., Martins-Neto M.A., Erkisson P.G. 2005. Precambrian Sequence Stratigraphy. Sediementary Geology, 176(1-2):67-95. https://doi.org/10.1016/j.sedgeo.2004.12.009
    » https://doi.org/https://doi.org/10.1016/j.sedgeo.2004.12.009
  • D’el-Rey Silva L.J.H., Walde D.H.G., Saldanha D.O. 2016. The Neoproterozoic–Cambrian Paraguay Belt, central Brazil: Part I — New structural data and a new approach on the regional implications. Tectonophysics, 676:20-41. https://doi.org/10.1016/J.TECTO.2016.03.019
    » https://doi.org/https://doi.org/10.1016/J.TECTO.2016.03.019
  • Demarco P.N., Masquelin H., Peel E., Bettucci L.S. 2019. Stratigraphy and tectonic setting of the Barriga Negra Formation in Uruguay: an update. Brazilian Journal of Geology, 49(1):e20180047. https://doi.org/10.1590/2317-4889201920180047
    » https://doi.org/https://doi.org/10.1590/2317-4889201920180047
  • Dias-Brito D. 2017. Guia petrográfico dos carbonatos do Brasil Rio Claro: UNESP, IGCE-UNESPetro. Obra 4.
  • Diniz C.Q.C., Leme J.M., Boggiani P.C. 2021. New species of macroalgae from Tamengo Formation, Ediacaran, Brazil. Frontiers in Earth Sciences, 9:748876. https://doi.org/10.3389/feart.2021.748876
    » https://doi.org/https://doi.org/10.3389/feart.2021.748876
  • Dunham R.J. 1962. Classification of carbonate rocks according to depositional textures. In: Ham W.E. (Ed.). Classification of carbonate rocks: a symposium. United States: American Association of Petroleum Geologists, p. 108-121. https://doi.org/10.1306/M1357
    » https://doi.org/https://doi.org/10.1306/M1357
  • Engelder J. 1974. Cataclasis and the generation of fault gouge. Geological Society of America Bulletin, 85(10):1515-1522. https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
  • Erickson S.G. 1994. Deformation of shale and dolomite in the Lewis thrust fault zone, northwest Montana, U.S.A. Canadian Journal of Earth Sciences, 31(9):1440-1447. https://doi.org/10.1139/e94-127
    » https://doi.org/https://doi.org/10.1139/e94-127
  • Eyles N., Eyles C.H., Miall A.D. 1983. Lithofacies types and vertical profiles models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology, 30(3):393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
    » https://doi.org/https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
  • Eyles N., Januszczak N. 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciations? Basin Research, 19(2):179-198. https://doi.org/10.1111/j.1365-2117.2007.00319.x
    » https://doi.org/https://doi.org/10.1111/j.1365-2117.2007.00319.x
  • Faleiros F.M., Pavan M., Remédio M.J., Rodrigues J.B., Almeida V.V., Caltabeloti F.P., Pinto L.G.R., Oliveira A.A., Pinto de Azevedo E.J., Costa V.S. 2016. Zircon U-Pb ages of rocks from the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): new insights for its connection with the Amazonian Craton in pre-Gondwana times. Gondwana Research, 34:187-204. https://doi.org/10.1016/j.gr.2015.02.018
    » https://doi.org/https://doi.org/10.1016/j.gr.2015.02.018
  • Fazio G., Guimarães E.M., Walde D.W.G., do Carmo D.A., Adorno R.R., Vieira L.C., Denezine M., Silva C.B. da, Godoy H.V. de, Borges P.C., Pinho D. 2019. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations, (Corumbá Group – MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences, 90:487-503. https://doi.org/10.1016/j.jsames.2018.11.025
    » https://doi.org/https://doi.org/10.1016/j.jsames.2018.11.025
  • Ferraro F., Grieco D.S., Agosta F., Prosser G. 2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110:45-64. https://doi.org/10.1016/j.jsg.2018.02.007
    » https://doi.org/https://doi.org/10.1016/j.jsg.2018.02.007
  • Fontaneta G.T. 2012. Dolomitização e fosfogênese na Formação Bocaina, Grupo Corumbá (Ediacarano) MS Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo, 148 p.
  • Frei R., Gaucher C., Døssing L.N., Sial A.N., 2011. Chromium isotopes in carbonates – a tracer for climate change and for reconstructing the redox state of ancient seawater. Earth and Planetary Science Letters, 312(1-2):114-125. https://doi.org/10.1016/j.epsl.2011.10.009
    » https://doi.org/https://doi.org/10.1016/j.epsl.2011.10.009
  • Frei R., Gaucher C., Stolper D., Canfield D.E. 2013. Fluctuations in late Neoproterozoic atmospheric oxidation — Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Research, 23(2):797-811. https://doi.org/10.1016/j.gr.2012.06.004
    » https://doi.org/https://doi.org/10.1016/j.gr.2012.06.004
  • Gaucher C. 2014. Grupo Arroyo del Soldado. In: Bossi J., Gaucher C. (Eds.). Geología del Uruguay Montevideo: Polo, p. 313-339. Tomo 1: Predevónico.
  • Gaucher C., Boggiani P.C., Sprechmann P., Sial A.N., Fairchild T.R. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120(3-4):241-278. https://doi.org/10.1016/S0301-9268(02)00140-7
    » https://doi.org/https://doi.org/10.1016/S0301-9268(02)00140-7
  • Gaucher C., Poiré D.G. 2009. Palaeoclimatic events. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C., Sial A.N., Halverson G.P., Frimmel H.E. (Eds.). Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in Precambrian Geology Elsevier, 16:123-130.
  • Gaucher C., Poiré D.G., Gómez Peral L., Chiglino L. 2005. Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cámbrico del Cratón del Río de la Plata (Uruguay y Argentina). Latin American Journal of Sedimentology and Basin Analysis, 12:145-160.
  • Gaucher C., Sial A.N., Blanco G., Sprechmann P. 2004. Chemostratigraphy of the lower Arroyo del Soldado Group (Vendian, Uruguay) and Paleoclimatic Implications. Gondwana Research, 7(3):715-730. https://doi.org/10.1016/S1342-937X(05)71058-3
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)71058-3
  • Germs G.J.B., Gaucher C. 2012. Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa. South African Journal of Geology, 115(1):91-102. https://doi.org/10.2113/gssajg.115.91
    » https://doi.org/https://doi.org/10.2113/gssajg.115.91
  • Grotzinger J.P., Bowring S.A., Saylor B.Z., Kaufman A.J. 1995. Biostratigraphic and Geochronological Constraints on Early Animal Evolution. Science, 270(5236):598-604. https://doi.org/10.1126/science.270.5236.598
    » https://doi.org/https://doi.org/10.1126/science.270.5236.598
  • Hahn G., Hahn R., Leonardos O.H., Pflug H.D. 1982. Kfrperlich erhaltene Scyphozoen-reste aus dem Jungprekambrium Brasiliens. Geologika et Paleontologica, 16:1-18.
  • Hahn G., Pflug H.D. 1985. Die cloudinidae n. farm., Kalk-Rfhren aus dem Vendium und Unter-Kambrium. Senckenbergiana, 65:413-431.
  • Hajri H., Abdallah H. 2020. Fluid flow and late diagenesis of fault-infill carbonates in the Aptian dolostones at Jabel Semmama, Kasserine area, western-central Tunisia. Marine and Petroleum Geology, 111:1-20. https://doi.org/10.1016/j.marpetgeo.2019.07.051
    » https://doi.org/https://doi.org/10.1016/j.marpetgeo.2019.07.051
  • Hasui Y., Almeida F.F.A. 1970. Geocronologia do Centro-Oeste brasileiro. Boletim da Sociedade Brasileira de Geologia, 19:5-26.
  • He J., Qing H., Xu B. 2019. The unconformity-related palaeokarst in the uppermost Ediacaran carbonate rocks in the northwestern Tarim Block, NW China: implication for sedimentary evolution during the Ediacaran–Cambrian transition. International Geology Review, 61(7):839-852. https://doi.org/10.1080/00206814.2018.1474498
    » https://doi.org/https://doi.org/10.1080/00206814.2018.1474498
  • Hofmann M., Linnemann U., Hoffmann K., Germs G., Gerdes A., Marko L., Eckelmann K., Gärtner A., Krause R. 2015. The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles. Precambrian Research, 259:176-188. https://doi.org/10.1016/j.precamres.2014.07.021
    » https://doi.org/https://doi.org/10.1016/j.precamres.2014.07.021
  • Jo A., Eberli G.P., Grasmueck M. 2015. Margin collapse and slope failure along southwestern Great Bahama Bank. Sedimentary Geology, 317:43-52. https://doi.org/10.1016/j.sedgeo.2014.09.004
    » https://doi.org/https://doi.org/10.1016/j.sedgeo.2014.09.004
  • Kendall C.G., Warren J. 1987. A review of the origin and setting of tepees and their associated fabrics. Sedimentology, 34(6):1007-1027. https://doi.org/10.1111/j.1365-3091.1987.tb00590.x
    » https://doi.org/https://doi.org/10.1111/j.1365-3091.1987.tb00590.x
  • Krause F., Oldershaw A.E. 1979. Submarine carbonate breccia beds – a depositional model for two-layer, sediment gravity flows from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 16(1):189-199. https://doi.org/10.1139/e79-017
    » https://doi.org/https://doi.org/10.1139/e79-017
  • Laznicka P. 1988. Breccias and coarse fragmentites: petrology, environments, associations, ores. Amsterdam: Elsevier Science.
  • Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
    » https://doi.org/https://doi.org/10.1016/j.precamres.2007.04.021
  • Locat J., Lee H. 2005. Subaqueous debris flows. In: Jakob M., Hungr O. (Eds.). Debris-flow hazards and related phenomena Berlin: Springer, p. 203-245. https://doi.org/10.1007/3-540-27129-5_9
    » https://doi.org/https://doi.org/10.1007/3-540-27129-5_9
  • Loucks R.G. 1999. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83(11):1795-1834. https://doi.org/10.1306/e4fd426f-1732-11d7-8645000102c1865d
    » https://doi.org/https://doi.org/10.1306/e4fd426f-1732-11d7-8645000102c1865d
  • Madden R.H., Wilson M.E., Mihaljevic M., Pandolfi J.M., Welsh K. 2017. Unravelling the depositional origins and diagenetic alteration of carbonate breccias. Sedimentary Geology, 357:33-52. https://doi.org/10.1016/j.sedgeo.2017.05.002
    » https://doi.org/https://doi.org/10.1016/j.sedgeo.2017.05.002
  • McGee B., Babinski M., Trindade R., Collins A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research, 307:1-33. https://doi.org/10.1016/j.precamres.2017.12.030
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.12.030
  • McIlreath I.A., James N.P. 1978. Facies models 13. Carbonate slopes. Geoscience Canada, 5(4):189-199.
  • Misi A., Kaufman A.J., Veizer J., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1-2):143-167. https://doi.org/10.1016/j.chemgeo.2006.06.019
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2006.06.019
  • Morais L., Fairchild T.R., Freitas B.T., Rudnitzki I.D., Silva E.P., Lahr D., Moreira A.C., Abrahão Filho E.A., Leme J.M., Trindade R.I.F. 2021. Doushantuo-Pertatataka-Like Acritarchs from the Late Ediacaran Bocaina Formation (Corumbá Group, Brazil). Frontiers in Earth Sciences, 9:787011. https://doi.org/10.3389/feart.2021.787011
    » https://doi.org/https://doi.org/10.3389/feart.2021.787011
  • Morrow D.W. 1982. Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks. Bulletin of Canadian Petroleum Geology, 30(3):227-229.
  • Mutti E. 1985. Turbidite systems and their relations to depositional sequences. In: Zuffa G.G. (Ed.). Provenance of Arenites Amsterdam: Springer, p. 65-93.
  • Nichols G. 2009. Sedimentology and stratigraphy UK: John Wiley & Sons.
  • Oliveira R.S., Nogueira A.C.R., Romero G.R., Truckenbrodt W., Bandeira J.C.S. 2019. Ediacaran ramp depositional model of the Tamengo Formation, Brazil. Journal of South American Earth Sciences, 96:102348. https://doi.org/10.1016/j.jsames.2019.102348
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.102348
  • Parry L., Boggiani P.C., Condon D., Garwood R., Leme J.M., McIlroy D., Brasier M.D., Trindade R., Campanha G.A.C., Pachecho M.L.A.F., Diniz C.Q.C., Liu A.G. 2017. Ichnological evidence for meiofaunal bilaterians from the Ediacaran-Cambrian transition of Brazil. Nature Ecology & Evolution, 1(10):1455-1464. https://doi.org/10.1038/s41559-017-0301-9
    » https://doi.org/https://doi.org/10.1038/s41559-017-0301-9
  • Praekelt H.E., Germs G.J.B., Kennedy J.H. 2008. A distinct unconformity in the Cango Caves Group of the Neoproterozoic to early Paleozoic Saldania Belt in South Africa: its regional significance. South African Journal of Geology, 111(4):357-368. https://doi.org/10.2113/gssajg.111.4.357
    » https://doi.org/https://doi.org/10.2113/gssajg.111.4.357
  • Quiquerez A., Sarih S., Allemand P., Garcia J-P. 2013. Fault rate controls on carbonate gravity-flow deposits of the Liassic of Central High Atlas (Morocco). Marine and Petroleum Geology, 43:349-369. https://doi.org/10.1016/j.marpetgeo.2013.01.002
    » https://doi.org/https://doi.org/10.1016/j.marpetgeo.2013.01.002
  • Ramos M.E.F. 2019. Sedimentological, petrographic, and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group) PhD Thesis, Universidade de Brasília, Brasília.
  • Reijmer J.J.G., Mulder T., Borgomano J. 2015. Carbonate slopes and gravity deposits. Sedimentary Geology, 317:1-8. https://doi.org/10.1016/j.sedgeo.2014.12.001
    » https://doi.org/https://doi.org/10.1016/j.sedgeo.2014.12.001
  • Shukla M.K., Sharma A. 2018. A brief review on breccia: it’s contrasting origin and diagnostic signatures. Solid Earth Sciences, 3(2):50-59. https://doi.org/10.1016/j.sesci.2018.03.001
    » https://doi.org/https://doi.org/10.1016/j.sesci.2018.03.001
  • Spangenberg J.E., Bagnoud-Velásquez M., Boggiani P.C., Gaucher C. 2014. Redox variations and bioproductivity in the Ediacaran: Evidence from inorganic and organic geochemistry of the Corumbá Group, Brazil. Gondwana Research, 26(3-4):1186-1207. https://doi.org/10.1016/j.gr.2013.08.014
    » https://doi.org/https://doi.org/10.1016/j.gr.2013.08.014
  • Spence G.H., Tucker M.E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology, 112(3-4):163-193. https://doi.org/10.1016/S0037-0738(97)00036-5
    » https://doi.org/https://doi.org/10.1016/S0037-0738(97)00036-5
  • Sumner D.Y., Grotzinger J.P. 1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Research, 63(5):974-982. https://doi.org/10.1306/D4267C5D-2B26-11D7-8648000102C1865D
    » https://doi.org/https://doi.org/10.1306/D4267C5D-2B26-11D7-8648000102C1865D
  • Surlyk F. 1978. Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic-Cretaceous boundary, East Greenland). Gronlands Geologiske Undersogelse Bulletin, 128:108.
  • Tanner L.H., Hubert J.F. 1991. Basal breccias and conglomerates in the lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: Differentiation of talus and debris-flow deposits. Journal of Sedimentary Petrology, 61(1):15-27.
  • Tapp B. 1988. Fabric development in carbonate shear zones, Virginia Great Valley, central Appalachians, U.S.A. Transactions of the American Geophysical Union, 69:1434.
  • Tohver T., Trindade R.I.F. 2014. Comment on was there an Ediacaran Clymenne Ocean in central South America by U.G. Cordani and others. American Journal of Science, 314(3):805-813. https://doi.org/10.2475/03.2014.03
    » https://doi.org/https://doi.org/10.2475/03.2014.03
  • Veevers J.J., Roberts J. 1966. Littoral talus breccia and probable beach rock from the Viséan of the Bonaparte Gulf Basin. Journal of the Geological Society of Australia, 13(2):387-403. https://doi.org/10.1080/00167616608728620
    » https://doi.org/https://doi.org/10.1080/00167616608728620
  • Woodcock N.H., Mort K. 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145(3):435-440. https://doi.org/10.1017/S0016756808004883
    » https://doi.org/https://doi.org/10.1017/S0016756808004883
  • Zaine M.F. 1991. Análise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental PhD Thesis, Universidade de São Paulo, São Paulo, Brazil.
  • Zaine M.F., Fairchild T.R. 1985. Comparison of Aulophycus lucianoi Beurlen & Sommer from Ladário (MS) and the genus Cloudina Germs, Ediacaran of Namibia. Anais da Academia Brasileira de Ciências, 57(1):130.
  • Zaine M.F., Fairchild T.R. 1987. Novas considerações sobre os fósseis da Formação Tamengo, Grupo Corumbá, SW do Brasil. In: Congresso Brasileiro de Paleontologia, 10., 1987, Rio de Janeiro. Anais… p. 797–807.

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20210062.
    How to cite this article: Fernandes H.A., Boggliani P.C., Afonso J.W.L., Amorim K.B., Trindade R.I.F. Sedimentary and tectonic breccias at the base of the Ediacaran Tamengo Formation (Corumbá Group): a comparative study. Brazilian Journal of Geology, 52(2):e20210062, 2022. https://doi.org/10.1590/2317-4889202220210062.

Publication Dates

  • Publication in this collection
    03 June 2022
  • Date of issue
    2022

History

  • Received
    01 Apr 2021
  • Accepted
    11 Feb 2022
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br