Acessibilidade / Reportar erro

Paleoenvironmental significance of Benthic Foraminifera and Ostracoda from the late Quaternary of the Ceará Basin, Brazilian Equatorial Margin

Abstract

Benthic foraminifera, ostracods and pteropods are reliable paleoenvironmental indicators in Quaternary deposits. However, in the Ceará Basin, on the Brazilian Equatorial Margin, these microfossils are poorly studied. This paper investigates environmental changes during the Pleistocene–Holocene transition in the Icaraí subbasin based on micropaleontological analysis of the core ANP 1011. Seventy-four taxa of benthic foraminifera, represented predominantly by Globocassidulina, Uvigerina, Pyrgo and Melonis, have been identified. The ostracod assemblages are composed mainly by the families Macrocyprididae, Cytheruridae, Trachyleberididae, Pontocyprididae and Krithidae, of which the genus Krithe was the most abundant. The composition of the ostracod assemblages identified in this study area differs somewhat from other regions of the Brazilian Margin. The assemblages of foraminifera and ostracod characterize a typical bathyal paleoenvironment. The occurrence of pteropods and dominance of epifaunal foraminifera taxa, mainly Pyrgo sp. and Miliolinella sp. in the lower portion of the core (Pleistocene), indicates higher phytodetritus input and oxygen concentration. A conspicuous environmental change was observed in the upper portion of the core, which corresponds to the Holocene, where the increase of infaunal foraminifera (e.g., Uvigerina, Globocassidulina and Melonis) suggests reduction in the organic matter input and, probably, increased bacterial density and depletion in dissolved oxygen in the sediment.

Keywords:
Pleistocene-Holocene; paleoceanography; bathyal; calcareous microfossils; paleoecology

INTRODUCTION

Ecological studies using benthic foraminifera and ostracods are important for understanding present environments and interpreting past oceanic conditions (Morigi et al. 2001Morigi C., Jorrissen F.J., Gervais A., Guichard S., Boersetti A.M. 2001. Benthic foraminiferal faunas in surface sediments off NW África: Relationship with organic flux the ocean floor. Marine Micropaleontology, 31(4):350-368. https://doi.org/10.2113/0310350
https://doi.org/10.2113/0310350...
, Yasuhara et al. 2017Yasuhara M., Tittensor D.P., Hillebrand H., Worm B. 2017. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 92(1):199-215. https://doi.org/10.1111/brv.12223
https://doi.org/10.1111/brv.12223...
, Bergue et al. 2021Bergue C.T., Ritter M.D.N., Coimbra J.C., Costa K.B. 2021. Climatically induced changes in late Quaternary bathyal ostracod assemblages of the Camamu Basin, Brazil. Brazilian Journal of Geology, 51(4):1-11. https://doi.org/10.1590/2317-4889202120210039
https://doi.org/10.1590/2317-48892021202...
, De Almeida et al. 2022De Almeida F.K., De Mello R.M., Rodrigues A.R., Bastos A.C. 2022. Bathymetric and regional benthic foraminiferal distribution on the Espírito Santo Basin slope, Brazil (SW Atlantic). Deep Sea Research Part I: Oceanographic Research Papers, 181:103688. https://doi.org/10.1016/j.dsr.2022.103688
https://doi.org/10.1016/j.dsr.2022.10368...
). Due to their adaptive potential, benthic foraminifera are spread in a variety of environments such as estuaries, lagoons and even extreme ecosystems such as abyssal plains and subduction zones (Murray 1991Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
https://doi.org/10.4324/9781315846101...
, 2001Murray J.W. 2001. The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology, 41(1-2):1-7. https://doi.org/10.1016/S0377-8398(00)00057-8
https://doi.org/10.1016/S0377-8398(00)00...
). Benthic foraminifera can be differentiated by microhabitats in epifaunal, which live in the upper 1 cm of sediment, and infaunal, which burrow into soft sediment below 1 cm of the sediment (Corliss and Chen 1988Corliss B.H., Chen C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, 16(8):716-719. https://doi.org/10.1130/0091-7613(1988)016%3C0716:MPONSD%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1988)0...
, Corliss 1991Corliss B.H. 1991. Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology, 17(3-4):195-236. https://doi.org/10.1016/0377-8398(91)90014-W
https://doi.org/10.1016/0377-8398(91)900...
, Murray 1991Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
https://doi.org/10.4324/9781315846101...
, Jorissen et al. 1995Jorissen F.J., de Stigter H.C., Widmark J.G. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine micropaleontology, 26(1-4):3-15. https://doi.org/10.1016/0377-8398(95)00047-X
https://doi.org/10.1016/0377-8398(95)000...
). Significant changes in diversity and abundance of benthic foraminifera are recorded worldwide in response to hydrological changes linked to glacial-interglacial cycles (Schnitker 1980Schnitker D. 1980. Quaternary deep-sea benthic foraminifers and water masses. Annual Review of Earth and Planetary Sciences, 8:343-370. https://doi.org/10.1146/ANNUREV.EA.08.050180.002015
https://doi.org/10.1146/ANNUREV.EA.08.05...
, Lukashira and Bashirova 2015Lukashira N.P., Bashirova L.D. 2015. Deep water masses in the Iceland Basin during the Last interglacial (MIS 5e): Evidence from benthic foraminiferal data. Oceanologia, 57(2):212-221. https://doi.org/10.1016/j.oceano.2014.11.004
https://doi.org/10.1016/j.oceano.2014.11...
) and their influence on productivity (Schmiedl and Mackensen 1997Schmiedl G., Mackensen A. 1997. Late Quaternary paleoproductivity and deep-water circulation in the eastern South Atlantic Ocean: evidence from benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1-4):43-80. https://doi.org/10.1016/S0031-0182(96)00137-X
https://doi.org/10.1016/S0031-0182(96)00...
, Ohkushi et al. 1999Ohkushi K.I., Thomas E., Kawahata H. 1999. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology, 38(2):119-147. https://doi.org/10.1016/S0377-8398(99)00040-7
https://doi.org/10.1016/S0377-8398(99)00...
).

The distribution of deep-sea benthic foraminifera in the sediment is controlled by several factors, mainly the organic flux to the ocean floor (its quantity, quality and periodicity) and bottom water oxygenation (Fontanier et al. 2002Fontanier C., Jorissen F.J., Licari L., Alexandre A., Anschutz P., Carbonel P. 2002. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research I, 49(4):751-785. https://doi.org/10.1016/S0967-0637(01)00078-4
https://doi.org/10.1016/S0967-0637(01)00...
, 2003Fontanier C., Jorissen F.J., Chaillou G., David C., Anschutz P., Lafon V. 2003. Seasonal and interannual variability of benthic foraminiferal faunas at 550m depth in the Bay of Biscay. Deep-Sea Research I, 50(4):457-494. https://doi.org/10.1016/S0967-0637(02)00167-X
https://doi.org/10.1016/S0967-0637(02)00...
, Hayward et al. 2002Hayward B.W., Neil H., Carter R., Grenfell H.R., Hayward J.J. 2002. Factors influencing the distribution patterns of Recent deep-sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean. Marine Micropaleontology, 46(1-2):139-176. https://doi.org/10.1016/S0377-8398(02)00047-6
https://doi.org/10.1016/S0377-8398(02)00...
, Gooday et al. 2010Gooday A.J., Malzone M.G., Bett B.J., Lamont P.A. 2010. Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep Sea Research Part II. Topical Studies in Oceanography, 57(15):1362-1382. https://doi.org/10.1016/J.DSR2.2010.01.012
https://doi.org/10.1016/J.DSR2.2010.01.0...
, Murray 2001Murray J.W. 2001. The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology, 41(1-2):1-7. https://doi.org/10.1016/S0377-8398(00)00057-8
https://doi.org/10.1016/S0377-8398(00)00...
, Jorissen et al. 2007Jorissen F.J., Fontanier C., Thomas E. 2007. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Developments in Marine Geology, 1:263-325. https://doi.org/10.1016/S1572-5480(07)01012-3
https://doi.org/10.1016/S1572-5480(07)01...
). In the deepest part of ocean basins, where strongly oligotrophic conditions prevail, the corrosiveness of the bottom waters (highest in the Antarctic Bottom Water [AABW]) may control the distribution of cosmopolitan taxa (Mackensen et al. 1995Mackensen A., Schmiedl G., Harloff J., Giese M. 1995. Deep-sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41(4):342-358. https://doi.org/10.2307/1485808
https://doi.org/10.2307/1485808...
, Schmiedl et al. 1997Schmiedl, G., Mackensen, A., Müller, P.J. 1997. Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. Marine Micropaleontology, 32(3-4):249-287. https://doi.org/10.1016/S0377-8398(97)00023-6
https://doi.org/10.1016/S0377-8398(97)00...
, Jorissen et al. 2007Jorissen F.J., Fontanier C., Thomas E. 2007. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Developments in Marine Geology, 1:263-325. https://doi.org/10.1016/S1572-5480(07)01012-3
https://doi.org/10.1016/S1572-5480(07)01...
).

Ostracods are microcrustaceans with a bivalve chitin-calcitic carapace and an abundant fossil record in both nonmarine and marine depositional sequences (Rodriguez-Lazaro and Ruiz-Muñoz 2012Rodriguez-Lazaro J., Ruiz-Muñoz F. 2012. A general introduction to ostracods: morphology, distribution, fossil record and applications. Developments in Quaternary Science, 17:1-14. https://doi.org/10.1016/B978-0-444-53636-5.00001-9
https://doi.org/10.1016/B978-0-444-53636...
). As they are sensitive to changes in environmental parameters (e.g., temperature, salinity and productivity), ostracods are considered reliable paleoecological indicators (Armstrong and Brasier 2005Armstrong H.A., Brasier M.D. 2005. Ostracods. In: Armstrong H.A., Brasier M.D. (eds). Microfossils. 2. ed. Oxford: Blackwell, 296, p. 224-248., Rodriguez-Lazaro and Ruiz-Muñoz 2012Rodriguez-Lazaro J., Ruiz-Muñoz F. 2012. A general introduction to ostracods: morphology, distribution, fossil record and applications. Developments in Quaternary Science, 17:1-14. https://doi.org/10.1016/B978-0-444-53636-5.00001-9
https://doi.org/10.1016/B978-0-444-53636...
). Although taxonomic analysis provides essential data for the characterization of depositional environments, more accurate ecological interpretation also demands to differentiate autochthonous from allochthonous carapaces (van Harten 1986van Harten D. 1986. Use of ostracodes to recognize downslope contamination in paleobathymetry and a preliminary reappraisal of the paleodepth of the Prasas Marls (Pliocene), Crete, Greece. Geology, 14(10):856-859. https://doi.org/10.1130/0091-7613(1986)14<856:UOOTRD>2.0.CO;2
https://doi.org/10.1130/0091-7613(1986)1...
, Whatley 1988Whatley R.C. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In: De Deckker P. Colin J.P., Peypouquet J.P. (eds.). Ostracoda in the Earth Sciences. Amsterdam: Elsevier, 245-256., Zhou and Zhao 1999Zhou B., Zhao Q. 1999. Allochthonous ostracods in the South China Sea and their significance in indicating downslope sediment contamination. Marine Geology, 156(1-4):187-195. https://doi.org/10.1016/S0025-3227(98)00178-9
https://doi.org/10.1016/S0025-3227(98)00...
, Boomer et al. 2003Boomer I., Horne D.J., Slipper I.J. 2003. The use of ostracods in palaeoenvironmental studies or what can you do with an Ostracod shell. The Paleontological Society Papers 9:153-180. https://doi.org/10.1017/s1089332600002199
https://doi.org/10.1017/s108933260000219...
).

Despite their paleoceanographic potential, studies on bathyal Quaternary calcareous microfossils in the Brazilian Equatorial Margin are still scarce. The main objective of this work was to study benthic foraminifera, ostracods and pteropods from a sediment core from the offshore portion of the Ceará Basin during the Pleistocene–Holocene transition to reconstruct the environmental changes at this site.

STUDY AREA

The study area is part of the Icaraí subbasin (Ceará Basin), which lies between the Acaraú and Mundaú subbasins (Fig. 1). It is separated from the Mundaú subbasin by the Forquilha fault and from the Acaraú subbasin by the northern extension of the Transbrasiliano lineament (Antunes et al. 2008Antunes A.F., Jardim E.F.S., Araújo R.G. da S., Lima Neto F.F. 2008. Caracterização tectonoestrutural do Campo de Xaréu (Sub-Bacia de Mundaú, Bacia do Ceará – NE do Brasil): abordagem multiescala e pluriferramental. Revista Brasileira de Geociências, 38(1):88-105.).

Figure 1.
Location map of the core ANP 1011 in the Ceará Basin showing the surface circulation in the Brazilian Equatorial Margin, the physiography of the study area, and current arrows are superimposed on their speed (Noucoucouk et al. 2021Noucoucouk A.A., Melo R.M., Freire G.S.S., Menor E.D.A. 2021. Upper Pleistocene–Holocene in the Continental Slope of the Ceará Basin: an integrated analysis based on planktic foraminifera, sedimentological and Geochemical Aspects. Revista Brasileira de Paleontologia, 24(3):179-194. https://doi.org/10.4072/rbp.2021.3.02
https://doi.org/10.4072/rbp.2021.3.02...
).

Surface waters of the Equatorial Atlantic Ocean are presently influenced by the North Brazilian Current (NBC), the North Equatorial Sub-Current, the North Equatorial Counter-Current and the North Equatorial Current (Silveira et al. 2004Silveira I.C.A., Calado L., Castro B.M., Cirano M., Lima J.A.M., Mascarenhas A.D.S. 2004. On the baroclinic structure of Brazil Current – Intermediate Western Boundary Current system at 22°-23°S. Geophysical Research Letters, 31(14):14308. https://doi.org/10.1029/2004GL020036
https://doi.org/10.1029/2004GL020036...
). The NBC stems from the bifurcation of the southern branch of the South Equatorial Current when it reaches the Brazilian Continental Margin, between 10°S and 15°S (Schott et al. 2004Schott F.A., Mccreary J.P., Johnson G.C. 2004. Shallow overturning circulations of the tropical-subtropical oceans, in earth climate: the ocean-atmosphere interaction. In: Wang C., Xie S.P., Carton J.A. (eds.). Earth’s Climate: The Ocean-Atmosphere Interaction, AGU, 147, Geophysical Monograph Series, p. 261-304. https://doi.org/10.1029/147GM15
https://doi.org/10.1029/147GM15...
, Talley 2011Talley L.D. 2011. Descriptive physical oceanography: an introduction. Academic Press, 560 p.). According to Johns et al. (1998Johns W.E., Lee T.N., Beardsley R.C., Candela J., Limeburger R., Castro B. 1998. Annual cycle and variability of the North Brazil Current. Journal of Physical Oceanography, 28(1):103-128. https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)0...
), the mobility of NBC coincides with changes in surface transport, associated with the wind shear in the tropical Atlantic and the seasonal migration of the ITCZ. The NBC is the largest surface flow component of the Atlantic meridional overturning circulation, through the northward surface water transport and the inter-hemispheric oceanic heat exchange (Zhang et al. 2011Zhang D., Msadek R., Mcphaden M.J., Delworth,T. 2011. Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. Journal of Geophysical Research Letters, 116(C4). https://doi.org/10.1029/2010JC006812
https://doi.org/10.1029/2010JC006812...
).

A total of five water masses exert influence in the study area, from the surface to the 2,125 m water depth where the core ANP 1011 was obtained: the Tropical Water (the surface water TW, 0–150 m), the South Atlantic Central Water (the pycnoclinic water SACW, 150–500 m), the Antarctic Intermediate Water (the intermediate water AAIW, 500–1,300 m), the Upper Circumpolar Water (the intermediate water UCPW, 500–1,300 m), and the North Atlantic Deep Water (the deep water NADW, 1,300–3,500 m) (Silveira et al. 2020Silveira I.C.A., Napolitano D.C., Farias I.U. 2020. Water Masses and Oceanic Circulation of the Brazilian Continental Margin and Adjacent Abyssal Plain. In: Sumida P.Y.G., Bernardino A.F., De Léo F.C. (eds.). Brazilian Deep-Sea Biodiversity. Brazilian Marine Biodiversity. Cham: Springer, 7-36. https://doi.org/10.1007/978-3-030-53222-2_2
https://doi.org/10.1007/978-3-030-53222-...
). The TW presents the highest values of temperature and salinity of the water column (Emilsson 1961Emilsson I. 1961. The shelf and coastal waters off southern Brazil. Boletim do Instituto Oceanográfico, 11(2):101-112. https://doi.org/10.1590/S0373-55241961000100004
https://doi.org/10.1590/S0373-5524196100...
). The SACW, near its origin in the tropics, is characterized by the largest variation of temperature and salinity due to its position at the pycnocline level (Tomczak and Godfrey 1994Tomczak M., Godfrey J.S. 1994. Regional oceanography: an introduction. Oxford: Pergamon, 422 p.). The AAIW is characterized by the high values of oxygen and low salinity (Reid et al. 1977Reid J.L., Nowlin W.D., Patzert W.C. 1977. On the characteristics and circulation of the southwestern Atlantic Ocean. Journal of Physical Oceanography, 7:62-91. https://doi.org/10.1175/1520-0485(1977)007<0062:OTCACO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1977)0...
, Reid 1994Reid J.L. 1994. On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports. Progress in Oceanography, 33(1):1-92. https://doi.org/10.1016/0079-6611(94)90014-0
https://doi.org/10.1016/0079-6611(94)900...
). The UCPW presents lower oxygen concentrations and salinity and high dissolved nutrients associated with intense local silicate (Stramma and England 1999Stramma L., England M. 1999. On the water masses and mean circulation of the South Atlantic Ocean, Journal of Geophysical Research, 104(C9):20863-20883. https://doi.org/10.1029/1999JC900139
https://doi.org/10.1029/1999JC900139...
, Mémery et al. 2000Mémery L., Arhan M., Álvarez-Salgado X.A., Messias M.J., Mercier H., Castro C.G., Rios A.F. 2000. The water masses along the western boundary of the south and equatorial Atlantic. Progress in Oceanography, 47(1):69-98. https://doi.org/10.1016/S0079-6611(00)00032-X
https://doi.org/10.1016/S0079-6611(00)00...
). The NADW is characterized by high values of oxygen and temperature, a secondary salinity maximum and low local levels of nutrients (Maamaatuaiahutapu et al. 1994Maamaatuaiahutapu K., Garçon V.C., Provost C., Boulahdid M., Bianchi A.A. 1994. Spring and winter water mass composition in the Brazil-Malvinas Confluence. Journal of Marine Research, 52(3):397-426. https://doi.org/10.1357/0022240943077064
https://doi.org/10.1357/0022240943077064...
). Moreover, this water mass is not corrosive to aragonite (Gerhardt et al. 2000Gerhardt S., Groth H., Rühlemann C., Henrich R. 2000. Aragonite preservation in late Quaternary sediment cores on the Brazilian Continental Slope: implications for intermediate water circulation. International Journal of Earth Sciences, 88(4):607-618. https://doi.org/10.1594/PANGAEA.712059
https://doi.org/10.1594/PANGAEA.712059...
).

MATERIALS AND METHODS

The studied samples were obtained from the piston-core ANP 1011 (39°23’22’’W/2°13’03’’S, 2,125 m water depth), which was given by the Agência Nacional do Petróleo, Gás Natural e BioCombustível (ANP) to the Laboratório de Geologia Marinha e Aplicada (LGMA) da Universidade Federal do Ceará (UFA). The studied interval measures 151.5 cm in length, wherein approximately 15 samples of 46 g in mass were prepared for carbonatic microfossil analysis. The chronostratigraphic positioning of the section, according to planktic foraminifera, corresponds to the Upper Pleistocene (Biozone Y) and Holocene (Biozone Z, subzones Z2 and Z1) (Noucoucouk et al. 2021Noucoucouk A.A., Melo R.M., Freire G.S.S., Menor E.D.A. 2021. Upper Pleistocene–Holocene in the Continental Slope of the Ceará Basin: an integrated analysis based on planktic foraminifera, sedimentological and Geochemical Aspects. Revista Brasileira de Paleontologia, 24(3):179-194. https://doi.org/10.4072/rbp.2021.3.02
https://doi.org/10.4072/rbp.2021.3.02...
).

Sample preparation followed the standard methodology for Quaternary calcareous microfossils adapted from Murray (2006Murray J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 426 p.), which consists of washing in tap water on a sieve of 0.062-mm mesh and oven-drying at 60°C. After drying, another sieving on a 0.150-mm mesh was carried out, and from this residue, all the benthic foraminifera, ostracods, and pteropods were collected under a stereomicroscope and stored in micropaleontological slides (see Suppl. Mat.). In line with the objectives of this study, we chose to use only 0.150 mm for all groups studied. According to Cappelli and Austin (2019Cappelli E.L.G., Austin W.E. 2019. Size matters: analyses of benthic foraminiferal assemblages across differing size fractions. Frontiers in Marine Science, 6:752. https://doi.org/10.3389/fmars.2019.00752
https://doi.org/10.3389/fmars.2019.00752...
), the benthic foraminiferal assemblages picked from the large size fraction (> 150 mm) still provide useful information on prevailing environmental conditions and remain useful for an overview of environmental change. Well-preserved specimens of each morphotype were photographed and examined in a scanning electron microscope (SEM) PHENOM XL at Laboratório de Micropaleontologia Aplicada (LMA) of Universidade Federal de Pernambuco (UFPE).

The identification of benthic foraminifera follows basically Loeblich and Tappan (1988Loeblich Jr. A.R., Tappan H. 1988. Foraminiferal Genera and Their Classification. New York: van Nostrand Reinhold Company, 970 p., 1994Loeblich Jr. A.R., Tappan H. 1994. Foraminifera of the Sahul shelf and Timor Sea. Cushman Foundation Special Publication, 31, 661 p.), van Morkhoven et al. (1986van Morkhoven F.M., Berggren W.A., Edwards A.S. 1986. Cenozoic cosmopolitan deep - water benthic foraminifera. Bulletin des Centres de Recherches Exploration, 11:1-421.), Boltovskoy et al. (1980Boltovskoy E., Giussani G., Watanabe S. Wright R. 1980. Atlas of benthic shelf foraminifera of Southwest Atlantic. The Hague: Junk, 147 p.), and the World Register of Marine Species (WoRMS), an online taxonomic database (https://www.marinespecies.org/foraminifera/) for suprageneric taxonomy. The suprageneric taxonomy of Ostracoda followed Liebau (2005Liebau A. 2005. A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia, 538:115-137. https://doi.org/10.1007/PL00021865
https://doi.org/10.1007/PL00021865...
). Previous studies on Quaternary Ostracoda also were consulted to identify taxa at the species level (e.g., Brandão 2004aBrandão S.N. 2004a. Brazilian deep-sea Macrocyprididae Müller, 1912 (Crustacea, Ostracoda, Macrocypridoidea). Arquivos do Museu Nacional, 62(2):151-172., 2004bBrandão S.N. 2004b. Species of Macrocyprina Triebel, 1960 (Crustacea, Ostracoda, Macrocyprididae) collected by the REVIZEE program along Brazilian coast. Hydrobiologia, 529:157-168. https://doi.org/10.1007/s10750-004-6402-x
https://doi.org/10.1007/s10750-004-6402-...
, 2010, Yasuhara et al. 2009Yasuhara M., Okahashi H., Cronin T.M. 2009b. Taxonomy of Quaternary deep-sea ostracods from the western North Atlantic Ocean. Palaeontology, 52(4):879-931. https://doi.org/10.1111/j.1475-4983.2009.00888.x
https://doi.org/10.1111/j.1475-4983.2009...
b, 2015, Bergue et al. 2021Bergue C.T., Ritter M.D.N., Coimbra J.C., Costa K.B. 2021. Climatically induced changes in late Quaternary bathyal ostracod assemblages of the Camamu Basin, Brazil. Brazilian Journal of Geology, 51(4):1-11. https://doi.org/10.1590/2317-4889202120210039
https://doi.org/10.1590/2317-48892021202...
, Maia et al. 2021Maia R.J.A., Piovesan E.K., Bergue C.T., Zerfass G.S.A., Melo R.M. 2021. Bathyal ostracods from the Upper Pleistocene of the Rio Grande Cone, Pelotas Basin, Brazil. Revue de Micropaléontologie, 71:100483. https://doi.org/10.1016/J.REVMIC.2021.100483
https://doi.org/10.1016/J.REVMIC.2021.10...
, Yasuhara et al. 2021Yasuhara M., Okahashi H., May Huang H., Hong Y., Iwatani H., Wai Ching Chu R., Hunt G. 2021. Quaternary equatorial Atlantic deep-sea ostracodes: evidence for a distinct tropical fauna in the deep sea. Journal of Paleontology, 95(S86), 1-41. https://doi.org/10.1017/jpa.2021.52
https://doi.org/10.1017/jpa.2021.52...
). Finally, the pteropods were identified according to Janssen (2012Janssen A.W. 2012. Late Quaternary to Recent holoplanktonic Mollusca (Gastropoda) from bottom samples of the eastern Mediterranean Sea: systematics, morphology. Bollettino Malacologico, 48(9):1-105.), and references therein. All figured specimens are held in the collections of the LMA under the curatorial numbers 00357–00428, 00513.

The paleoecological interpretation of benthic foraminifera was based on Boltovskoy and Wright (1976Boltovskoy E., Wright R. 1976. Recent foraminifera. Dordrecht: Springer, 519 p.), van Morkhoven et al. (1986van Morkhoven F.M., Berggren W.A., Edwards A.S. 1986. Cenozoic cosmopolitan deep - water benthic foraminifera. Bulletin des Centres de Recherches Exploration, 11:1-421.), Jones (1994Jones R.W. 1994. The Challenger Foraminifera. Oxford: Oxford University Press, 149 p.), and Murray (1991Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
https://doi.org/10.4324/9781315846101...
, 2006Murray J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 426 p.), and microhabitats (epifaunal and infaunal) were based on test morphology (Corliss and Chen 1988Corliss B.H., Chen C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, 16(8):716-719. https://doi.org/10.1130/0091-7613(1988)016%3C0716:MPONSD%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1988)0...
, Murray 1991Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
https://doi.org/10.4324/9781315846101...
, Fontanier et al. 2003Fontanier C., Jorissen F.J., Chaillou G., David C., Anschutz P., Lafon V. 2003. Seasonal and interannual variability of benthic foraminiferal faunas at 550m depth in the Bay of Biscay. Deep-Sea Research I, 50(4):457-494. https://doi.org/10.1016/S0967-0637(02)00167-X
https://doi.org/10.1016/S0967-0637(02)00...
, Schweizer 2006Schweizer M. 2006. Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliida, Foraminifera). Doctoral dissertation, University of Utrecht, Utrecht.). The relative abundance (RA) of benthic foraminifera and ostracods corresponds to the ratio between the number of individuals of a species (N) and the number of individuals of all species in the same sample (T): RA = (N × 100)/T. The RA values are expressed in percentage, and the data obtained were classified as rare (< 5%), common (5–19%), and abundant (> 20%). In addition, the RA for agglutinated, porcelaneous, and hyaline tests of benthic foraminifera was calculated for each sample. Because some samples presented low recovery of specimens, only samples with > 80 specimens were considered in the statistical analyses. The richness of ostracods corresponds to the absolute number of species.

The carbonate content in the samples was obtained through the digestion of approximately 0.5 g of sample in an Erlenmeyer flask with 10 mL of hydrochloric acid (HCl), stirred periodically over 24 h. Then, the supernatant was removed, and the decarbonated sample was washed with distilled water to remove HCl, residues. Later, the sample was oven-dried at 60°C and weighed again. The calcium carbonate content in the sample was calculated through the mass difference before and after decarbonation. To determine the content of organic matter and organic carbon, the method of Walkley (1947Walkley A. 1947. A critical examination of a rapid method for determining organic carbon in soil. Soil Science, 63(4):251-264.), as modified by Loring and Rantala (1992Loring D.H., Rantala R.T.T. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sciences Research, 32(4):235-283. https://doi.org/10.1016/0012-8252(92)90001-A
https://doi.org/10.1016/0012-8252(92)900...
), was adopted.

RESULTS

The analysis of the core ANP 1011 allowed identification of abundant and diversified assemblages of foraminifera (Figs. 2 and 3) and, to a lesser degree, of ostracods (Fig. 4) and pteropods (Fig. 3). The list of the taxa of benthic foraminifera and Ostracoda with their complete names (authors and dates), identified and cited in the present study, can be consulted in Suppl. Mat. 1 and 2.

Figure 2.
Benthic foraminifers > 0.150 mm from the core ANP 1011: 1. Siphotextularia flintii; LMA-00357; 2. Massilina sp.; LMA-00358; 3. Miliolinella sp.; LMA-00359; 4. Miliolinella subrotunda; LMA-00360; 5. Pyrgo quadrata; LMA-00361; 6. Pyrgo murrhina; LMA-00362; 7. Pyrgo aff. P. depressa; LMA-00363; 8. Pyrgo lucernula?; LMA-00364; 9. Pyrgo sp.; LMA-00365; 10. Quinqueloculina sp.; LMA-00366; 11. Sigmoilopsis schumbergeri; LMA-00367; 12. Triloculina sommeri; LMA-00368; 13. Triloculina sp.; LMA-00369; 14. Triloculinella sp.; LMA-00370; 15. Spirillina decorata; LMA-00371; 16. Lagena hispidula; LMA-00372; 17. Lagena sp.; LMA-00373; 18. Lagena arquata; LMA-00374; 19. Lagenosolenia sp.; LMA-00375; 20. Nodosaria sp.; LMA-00376; 21. Amphicoryna sp.; LMA-00377; 22. Fissurina circularis; LMA-00378; 23. Bolivina interjuncta; LMA-00379; 24. Bolivina britanica; LMA-00380; 25. Bolivinita quadrilatera; LMA-00381; 26. Bolivinita sp.; LMA-00382; 27. Globobulimina affinis; LMA-00383; 28. Globobulimina sp.; LMA-00384; 29. Uvigerina auberiana; LMA-00385; 30. Uvigerina peregrina; LMA-00386; 31. Uvigerina proboscidea; LMA-00387; 32. Uvigerina cf. U. hispida; LMA-00388; 33–34. Uvigerina spp.; LMA-00389. Scale bar =100 μm.
Figure 3.
Benthic foraminifera and pteropods >0.150 mm from the core ANP 1011: 1. Cassidulina sp.; LMA-00390; 2. Cassidulinoides sp.; LMA-00391; 3. Globocassidulina subglobosa; LMA-00392; 4. Globocassidulina sp.; LMA-00393; 5. Fursekoina sp.; LMA-00394; 6. Anomalinoides sp.; LMA-00395; 7. Chilostomella globata; LMA-00396; 8a-b. Oridorsalis umbonatus; LMA-00397; 9a-b. Osangularia culter; LMA-00398; 10. Cancris nuttalli; LMA-00399; 11. Valvulineria glabra; LMA-00400; 12a-b. Rosalina bradyi; LMA-00401; 13. Melonis barleeanum; LMA-00402; 14. Melonis pompilioides; LMA-00403; 15. Pullenia bulloides; LMA-00404; 16. Cibicides sp.; LMA-00405; 17a-b. Cibicides kullenbergi; LMA-00406; 18. Cibicidoides lobatulus; LMA-00407; 19. Cibicidoides wuellerstorfi; LMA-00408; 20. Cibicidoides incrassatus; LMA-00409; 21. Cibicidoides cicatricosus; LMA-00410; 22. Cibicidoides aff. C. bradyi; LMA-00411; 23. Cibicidoides aff. C. mundulus; LMA-00412; 24. Cibicidoides sp.; LMA-00413; 25. Lamacinidae (Heliconoides sp.); LMA-00414; 26. Atlantidae (Atlanta sp.); LMA-00415; 27. Cavoliniidae (Creseis? sp.); LMA-00416. Scale bar = 100 μm.
Figure 4.
Bathyal ostracods > 0.150 mm from the core ANP 1011: 1. Macromckenziea sp.; LMA-00417; 1a. RV, lateral view; 1b. RV, internal view; 1c. adductor scars detail; 2. Macropyxis bathyalensis; 2a. LMA-00418, RV, lateral view; 2b. LMA-00513, LV, internal view; 2b. RV, internal view; 3. Argilloecia labri; LMA-00419; 3a. LV, lateral view; 3b. LV, internal view; 4. Argilloecia sp.; LMA-00420; 4a. LV, lateral view; 4b. LV, internal view; 5. Bythoceratina scaberrima; RV, lateral view; LMA-00421. 6. Cytheropteron sp.; RV, lateral view; LMA-00422; 7. Ambocythere cf. A. circumporus; LV, lateral view; LMA-00423; 8. Ambocythere sp. 1; RV, lateral view; LMA-00424; 9. Gen. et sp. indet.; RV, lateral view; LMA-00425; 10. Rugocythereis sp.; LV, lateral view; LMA-00426; 11. Krithe sinuosa; LMA-00427; 11a. RV, lateral view; 11b. RV, internal view; 12. Krithe morkhoveni; LMA-00428; 12a. RV, lateral view; 12b. RV, internal view. LV: left valve; RV: right valve. Scale bar = 200 μm.

Foraminifera

A total of 2,233 benthic foraminifera were examined and identified 74 species, distributed in 42 genera (Suppl. Mat. 3), with the genera Globocassidulina and Uvigerina classified as abundant with RA above 20%. The taxa Melonis barleeanum (Williamson, 1858), Pyrgo murrhina (Schwager, 1866), Pyrgo sp., Quinqueloculina sp., Uvigerina auberiana (d’Orbigny, 1839), and Uvigerina proboscidea (Schwager, 1866) presented values of RA between 5 and 19%, which is considered common.

The genera Miliolinella, Quinqueloculina, Cibicides, and Cibicidoides showed the same RA values of 6.7% in the sample 110–107 cm (Pleistocene) (Fig. 5), while Fisurina and Triloculina reached peaks of 12.4 and 10.1%, respectively, in this same sample. The genus Uvigerina was frequent in all intervals, showing a high RA (17.3%) in the Pleistocene (90–87 cm) and an abundant RA in the Pleistocene-Holocene transition (82–79 cm) (Fig. 5).

Figure 5.
Graphic representation of (A) the relative abundance (RA) of main genera and species of benthic foraminifera and (B) of the absolute abundance (AA) ostracods identified in core ANP 1011.

The RA of epifaunal species is higher in 110–107 cm (56.2%) and 130–127 cm (53.7%), which correspond to the Biozone Y (Fig. 6). The RA of infaunal species revealed the highest abundance in the core top (Biozone Z), with values above 60% (Fig. 6). Hyaline tests are predominant in all samples, varying between 97.9% in the sample 70–67 cm and 61.8% in the sample 110–107 cm (Fig. 6).

Figure 6.
Integration and interpretation of data in the ANP 1011 core: calcium carbonate, organic material and organic carbon, absolute abundance (AA) of ostracods, pteropods and benthic foraminifera, relative abundance (RA) of agglutinated, porcelaneous and hyaline tests of benthic foraminifera, and relative abundance of infaunal and epifaunal foraminifera of the ANP 1011 core: (1) Quinqueloculina sp.; (2) Pyrgo murrhina; (3) Uvigerina proboscidea; (4, 13) Lamacinidae (Heliconoides sp.); (5, 11) Krithe sinuosa; (6) Uvigerina peregrina; (7) Uvigerina auberiana; (8) Melonis barleeanum, (9) Globocassidulina sp.; (10) Macromckenziea sp.; (12) Atlantidae (Atlanta sp.).

Ostracods and pteropods

A total of 86 ostracod specimens (Suppl. Mat.), corresponding to 7 genera and 11 bathyal species, were recovered (Fig. 4). The sample 130–127 cm was the most abundant with 21 specimens, followed by the samples 70–67, 50–47, and 42–39 cm with 16, 12, and 12 specimens, respectively. Only the genus Krithe represented by Krithe sinuosa Ciampo, 1986 and Krithe morkhoveni van den Bold, 1960van den Bold W.A. 1960. Eocene and Oligocene Ostracoda from Trinidad. Micropaleontology, 6(2):145-196., was abundant (75.5% of the total specimens). Juvenile individuals of this genus were also recovered, but identification at the species level was not feasible. The genera Argilloecia (8.1%) and Macromckenziea (5.81%) were classified as common, and the genera Bythoceratina, Cytheropteron, Ambocythere, and Rugocythereis as rare (1.16–3.48%). One species (1.16%), represented only by a juvenile specimen, was left in open nomenclature (Gen. et sp. indet.). The distribution of the most representative taxa is presented in Fig. 5.

The highest abundance (53 specimens, corresponding to 61.62%) and richness (11 species) were verified in the Holocene, which registers Argilloecia labri Yasuhara and Okahashi, 2015Yasuhara M., Okahashi M. 2015. Late Quaternary deep-sea ostracod taxonomy of the eastern North Atlantic Ocean. Journal of Micropalaeontology, 34(1):21-49. https://doi.org/10.1144/jmpaleo2013-022
https://doi.org/10.1144/jmpaleo2013-022...
, Argilloecia sp., Cytheropteron sp., Ambocythere cf. A. circumporus Bergue et al. 2017Bergue C.T., Coimbra J.C., Pivel M.A.G., Petró S.M., Mizusaki A.M.P. 2017. Taxonomy and climatic zonation of the Late Quaternary bathyal ostracods from the Campos Basin, Brazil. Revue de Micropaleontologie, 60(4):493-509. https://doi.org/10.1016/j.revmic.2017.07.001
https://doi.org/10.1016/j.revmic.2017.07...
, Ambocythere sp., Macropyxis bathyalensis (Hullings 1967), Bythoceratina scaberrima (Brady 1866), and Krithe morkhoveni.

Pteropod assemblages are mainly composed of taxa belonging to the families Lamacinidae (Heliconoides sp.), Atlantidae (Atlanta sp.), and Cavoliniidae (Creseis? sp.) (Fig. 3). Abundance peaks were recorded in the samples 28–25 cm (1,017 specimens), 110–107 cm (727 specimens), 102–99 cm (145 specimens), and 62–59 cm (106 specimens).

Carbonate and organic matter content

The carbonate content analysis revealed values between 78.61 and 27.06% (Suppl. Mat.; Fig. 6). The highest values were observed in the middle (90–59 cm), decreasing toward the core top (6–0 cm). Concerning the organic matter content, the analyses revealed values between 0.9 and 2.3%, with an average of 1.4%, with the highest values at 70–67 and 42–39 cm (Fig. 6). Similar variation was observed in organic carbon levels, which ranged from 0.5 to 1.4%, with an average of 0.8%. The highest values also occur in the samples 70–67 and 42–39 cm (Fig. 6).

DISCUSSION

Foraminifera

The foraminifera assemblages of the core ANP 1011 characterize a typical bathyal paleoenvironment, as indicated by Cibicidoides wuellerstorfi (Schwager, 1866), Melonis pompilioides (Fichtel and Moll, 1798), Globocassidulina subglobosa, and Pyrgo murrhina (Douglas and Heitman 1979Douglas R.G., Heitman H.L. 1979. Slope and basin benthic foraminifera of the California borderland. In: Doyle L.J., Pilkey O.H. (eds.), The Society of Economic Paleontologists and Mineralogists. (SEPM) Special Publication, v. 27, p. 231-246. https://doi.org/10.2110/pec.79.27.0231
https://doi.org/10.2110/pec.79.27.0231...
, Murray 1991Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
https://doi.org/10.4324/9781315846101...
, Rathburn and Corliss 1994Rathburn A.E., Corliss B.H. 1994. The ecology of living (stained) benthic foraminifera from the Sulu Sea. Paleoceanography, 9(1):87-150. https://doi.org/10.1029/93PA02327
https://doi.org/10.1029/93PA02327...
).

Murgese and De Deckker (2005Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
https://doi.org/10.1016/J.MARMICRO.2005....
) argued that the calcareous infaunal rate indicates high carbon influx and low dissolved oxygen, whereas the porcelaneous rate indicates high dissolved oxygen. Most miliolids are sensitive to oxygen depletion (Bernhard and Sen Gupta 1999Bernhard J.M., Sen Gupta B.K. 1999. Foraminifera in oxygen-depleted environments. In: Sen Gupta B.K. (ed.). Modern Foraminifera. Dordrecht: Kluwer, p. 201-216. https://doi.org/10.1007/0-306-48104-9_12
https://doi.org/10.1007/0-306-48104-9_12...
); however, in deep environments, the vertical distribution of foraminifera is controlled mainly by food availability in oligotrophic settings (e.g., abyssal plains) (Jorissen et al. 1995Jorissen F.J., de Stigter H.C., Widmark J.G. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine micropaleontology, 26(1-4):3-15. https://doi.org/10.1016/0377-8398(95)00047-X
https://doi.org/10.1016/0377-8398(95)000...
). Miliolids are associated with oxygen-rich North Atlantic Deep Water (Peterson and Lohmann 1982Peterson L.C., Lohmann G.P. 1982. Major Change in Atlantic Deep and Bottom Waters 700,000 yr Ago: Benthic Foraminiferal Evidence from the South Atlantic1. Quaternary Research, 17(1):26-38. https://doi.org/10.1016/0033-5894(82)90043-6
https://doi.org/10.1016/0033-5894(82)900...
).

The linkage of foraminifera’s assemblage composition with environmental parameters, such as occurrence, microhabitats, organic carbon flux, and dissolved oxygen (Table 1), allowed the characterization of two environmental settings (Fig. 6).

Table 1.
Paleoecological inferences and microhabitat preferences of benthic foraminifera found in the core ANP 1011.

Environmental setting I

This environmental setting corresponds to Biozone Y (Fig. 6) and is characterized by the dominance of the epifaunal taxa Cibicidoides, Miliolinella, Triloculina, Pyrgo, and Quinqueloculina. The higher abundance of epifaunal species in the sample 110–107 cm suggests an increase in phytodetritus input and oxygenation (Caralp 1984Caralp M.H. 1984. Quaternary calcareous benthic foraminifers, Leg 80. Initial Reports of the Deep-Sea Drilling Project, 80:725-755., 1988Caralp M.H. 1988. Late Glacial to Recent Deep-Sea Benthic Foraminifera from the Northeastern Atlantic (Cadiz Gulf) and Western Mediterranean (Alboran Sea): Paleoceanographic Results. Marine Micropaleontology, 13(3):265-289. https://doi.org/10.1016/0377-8398(88)90006-0
https://doi.org/10.1016/0377-8398(88)900...
, Lutze and Coulbourn 1984Lutze G.F., Coulbourn W.T. 1984. Recent benthic foraminifera from the continental margin of Northwest Africa: community structure and distribution. Marine Micropaleontology, 8(5):361-401. https://doi.org/10.1016/0377-8398(84)90002-1
https://doi.org/10.1016/0377-8398(84)900...
, Gupta and Thomas 2003Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)0...
). Cibicidoides wuellerstorfi and Pyrgo murrhina were relatively abundant in the core ANP 1011 during the Pleistocene, which suggests a cold and highly oxygenated scenario (Gupta and Satapathy 2000Gupta A.K., Satapathy S.K. 2000. Latest Miocene–Pleistocene abyssal benthic foraminifera from west-central Indian Ocean DSDP Site 236: Paleoceanographic and paleoclimatic inferences. Journal of Paleontological Society of India, 45:33-48., Gupta and Thomas 2003Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)0...
). Cibicidoides wuellerstorfi characterizes cold environments with active currents, low-to-intermediate organic flux, and high oxygenation (Gupta and Thomas 2003Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)0...
, Sousa et al. 2006Sousa S.H.D.M., Passos R.F., Fukumoto M., da Silveira I.C.A., Figueira R.C.L., Koutsoukos E.A., Rezende C.E. 2006. Mid-lower bathyal benthic foraminifera of the Campos Basin, Southeastern Brazilian margin: Biotopes and controlling ecological factors. Marine Micropaleontology, 61(1-3):40-57. https://doi.org/10.1016/j.marmicro.2006.05.003
https://doi.org/10.1016/j.marmicro.2006....
) (Tab. 1). Furthermore, Pyrgo murrhina lives in low organic carbon environments (Lutze and Coulbourn 1984Lutze G.F., Coulbourn W.T. 1984. Recent benthic foraminifera from the continental margin of Northwest Africa: community structure and distribution. Marine Micropaleontology, 8(5):361-401. https://doi.org/10.1016/0377-8398(84)90002-1
https://doi.org/10.1016/0377-8398(84)900...
) and prefers cold and well-ventilated waters (Caralp 1984Caralp M.H. 1984. Quaternary calcareous benthic foraminifers, Leg 80. Initial Reports of the Deep-Sea Drilling Project, 80:725-755., Gupta and Srinivasan 1996Gupta A.K., Srinivasan M.S. 1996. Multivariate analyses of Pliocene–Pleistocene benthic foraminifera from DSDP Site 214, eastern Indian Ocean: paleoceanic and paleoclimatic implications. In: Pandey J., Azmi R.J., Bhandari A., Dave A. (eds.). Contributions to XV Indian Colloquium on Micropaleontology and Stratigraphy. Dehra Dun, p. 339-355., Gupta and Thomas 2003Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)0...
, Murgese and De Deckker 2005Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
https://doi.org/10.1016/J.MARMICRO.2005....
).

Species of Quinqueloculina are highly mobile in fine-grained sediments in both shallow (Severin et al. 1982Severin K.P., Culver S.J., Blanpied C. 1982. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment. Sedimentology, 29(6):897-901. https://doi.org/10.1111/J.1365-3091.1982.TB00093.X
https://doi.org/10.1111/J.1365-3091.1982...
) and deep waters (Gross 2000Gross O. 2000. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments. In: Liebezeit G., Dittmann S., Kröncke I. (eds.), Life at interfaces and under extreme conditions. Dordrecht: Springer, p. 123-137.). These movements probably respond to the oxygen depletion in deeper layers combined with the presence of labile food at the water-sediment interface (Gooday et al. 2010Gooday A.J., Malzone M.G., Bett B.J., Lamont P.A. 2010. Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep Sea Research Part II. Topical Studies in Oceanography, 57(15):1362-1382. https://doi.org/10.1016/J.DSR2.2010.01.012
https://doi.org/10.1016/J.DSR2.2010.01.0...
). Some species migrate upward and downward in response to changes in the thickness of the oxygenated layer associated with the decomposition of organic matter (Ohga and Kitazato 1997Ohga T., Kitazato H. 1997. Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan). Terra Nova, 9(1):33-37. https://doi.org/10.1046/j.1365-3121.1997.d01-6.x
https://doi.org/10.1046/j.1365-3121.1997...
, Kitazato et al. 2000Kitazato H., Shirayama Y., Nakatsuka T., Fujiwara S., Shimanaga M., Kato Y., Okada Y., Kanda J., Yamaoka A., Masuzawa T., Suzuki K. 2000. Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996–1999”. Marine Micropaleontology, 40(3):135-149. https://doi.org/10.1016/S0377-8398(00)00036-0
https://doi.org/10.1016/S0377-8398(00)00...
).

According to Gooday (2002Gooday A.J. 2002. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography, 58:305-332. https://doi.org/10.1023/A:1015865826379
https://doi.org/10.1023/A:1015865826379...
), the accumulation of phytodetritus on the seabed usually occurs in areas with highly seasonal primary production. Our data demonstrate that epifaunal species are related to higher phytodetritus input and oxygen concentration during the Pleistocene (glacial period). Similar results were obtained by De Almeida et al. (2015De Almeida F.K., De Mello R.M., Costa K.B., Toledo F.A. 2015. The response of deep-water benthic foraminiferal assemblages to changes in paleoproductivity during the Pleistocene (last 769.2 kyr), western South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 440:201-212. https://doi.org/10.1016/j.palaeo.2015.09.005
https://doi.org/10.1016/j.palaeo.2015.09...
) in the Santos Basin and Rodrigues et al. (2018Rodrigues A.R., Pivel M.A.G., Schmitt P., de Almeida F.K., Bonetti C. 2018. Infaunal and epifaunal benthic foraminifera species as proxies of organic matter paleofluxes in the Pelotas Basin, south-western Atlantic Ocean. Marine Micropaleontology, 144:38-49. https://doi.org/10.1016/j.marmicro.2018.05.007
https://doi.org/10.1016/j.marmicro.2018....
) in the Pelotas Basin, where the phytodetritus influx was higher during the glacial stages than in the interglacial MIS 5. The decrease in infaunal species, calcium carbonate content, and organic carbon in the sample 110–107 cm results probably from the decrease in the availability of organic matter. In the present study, the high RA of porcelaneous foraminifera during the Pleistocene (Biozone Y, sample 122–119 cm) may be related to oxygenation (Murgese and De Deckker 2005Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
https://doi.org/10.1016/J.MARMICRO.2005....
).

Environmental setting II

This interval corresponds to Biozone Z (Fig. 6) and is characterized by environmental instability with a tendency to increase (predominance of uvigerinids) or decrease (predominance of cassidulinids) oxygenation. Oxygen concentration and nutrient are highly influential on infaunal assemblages’ composition (De Rijk et al. 1999De Rijk S., Troelstra S.R., Rohling E.J. 1999. Benthic foraminiferal distribution in the Mediterranean Sea. Journal of Foraminiferal Research, 29(2):93-103. https://doi.org/10.2113/gsjfr.29.2.93
https://doi.org/10.2113/gsjfr.29.2.93...
, Jorissen et al. 2007Jorissen F.J., Fontanier C., Thomas E. 2007. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Developments in Marine Geology, 1:263-325. https://doi.org/10.1016/S1572-5480(07)01012-3
https://doi.org/10.1016/S1572-5480(07)01...
). The increase in infaunal taxa (Uvigerina and Melonis) in the core ANP 1011 in the Pleistocene-Holocene transition indicates higher concentrations of organic carbon and nutrient and lower oxygenation (Miao and Thunell 1993Miao Q., Thunell R.C. 1993. Recent deep-sea benthic foraminiferal distributions in the south China and Sulu Seas. Marine Micropaleontology, 22(1-2):1-32. https://doi.org/10.1016/0377-8398(93)90002-F
https://doi.org/10.1016/0377-8398(93)900...
, Gooday 1994Gooday A.J. 1994. The biology of deep-sea foraminifers: A review of some advances and their applications in Paleoceanography. Palaios, 9(1):14-31. https://doi.org/10.2307/3515075
https://doi.org/10.2307/3515075...
, Mackensen et al. 1995Mackensen A., Schmiedl G., Harloff J., Giese M. 1995. Deep-sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41(4):342-358. https://doi.org/10.2307/1485808
https://doi.org/10.2307/1485808...
, Fontanier et al. 2002Fontanier C., Jorissen F.J., Licari L., Alexandre A., Anschutz P., Carbonel P. 2002. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research I, 49(4):751-785. https://doi.org/10.1016/S0967-0637(01)00078-4
https://doi.org/10.1016/S0967-0637(01)00...
, Martins et al. 2006Martins V., Jouanneau J., Weber O., Rocha F. 2006. Tracing the late Holocene evolution of the NW Iberian upwelling system. Marine Micropaleontology, 59(1):35-55. https://doi.org/10.1016/j.marmicro.2005.12.002
https://doi.org/10.1016/j.marmicro.2005....
, Murray 2006Murray J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press, 426 p., Eichler et al. 2008Eichler P.P.B., Sen Gupta B.K., Eichler B.B., Braga E.S., Campos E.J. 2008. Benthic foraminiferal assemblages of the South Brazil: relationship to water masses and nutrient distributions. Campos Continental Shelf Research, 28(13):1674-1686. https://doi.org/10.1016/J.CSR.2007.10.012
https://doi.org/10.1016/J.CSR.2007.10.01...
, Nagai et al. 2009Nagai R.H., Sousa S.H.M., Burone L., Mahiques M.M. 2009. Paleoproductivity changes during the Holocene in the inner shelf of Cabo Frio, southeastern Brazilian continental margin: benthic foraminifera and sedimentological proxies. Quaternary International, 206(1-2):62-71. https://doi.org/10.1016/j.quaint.2008.10.014
https://doi.org/10.1016/j.quaint.2008.10...
).

Higher abundances of Uvigerina peregrina Cushman 1923, Uvigerina auberiana, Uvigerina sp., Melonis barleeanum, and Globocassidulina subglobosa in the core top (Biozone Z) point to increased availability of organic carbon during warm intervals (Gupta and Thomas 2003Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)0...
). According to Lohmann (1978Lohmann G.P. 1978. Abyssal benthic foraminifera as hydrographic indicators in the Western South Atlantic Ocean. Journal of Foraminiferal Research, 8(1):6-34. https://doi.org/10.2113/gsjfr.8.1.6
https://doi.org/10.2113/gsjfr.8.1.6...
) and Streeter and Shackleton (1979Streeter S.S., Shackleton N.J. 1979. Paleocirculation of the deep North Atlantic: 150,000-year record of benthic foraminifera and oxygen-18. Science, 203(4376):168-171. https://doi.org/10.1126/science.203.4376.168
https://doi.org/10.1126/science.203.4376...
), the presence of Uvigerina is usually congruent with low oxygenation between 2,000 and 4,000 m throughout the Atlantic. Higher Uvigerina percentages have also been observed in areas of high surface productivity and organic carbon-rich sediments (Woodruff and Douglas 1981Woodruff F., Douglas R.G. 1981. Response of deep-sea benthic foraminifera to Miocene paleoclimatic events, DSDP Site 289. Marine Micropaleontology, 6(5-6):617-632. https://doi.org/10.1016/0377-8398(81)90024-4
https://doi.org/10.1016/0377-8398(81)900...
, Boersma 1986Boersma A. 1986. Biostratigraphy and biogeography of Tertiary bathyal benthic foraminifers: Tasman Sea, Coral Sea, and on the Chatham Rise (Deep Sea Drilling Project, Leg 90). Initial Reports of the Deep-Sea Drilling Project, 90:961-1035. https://doi.org/10.2973/dsdp.proc.90.120.1986
https://doi.org/10.2973/dsdp.proc.90.120...
, Lutze 1986Lutze G.F. 1986. Uvigerina species of the eastern North Atlantic. Utrecht Micropaleontological Bulletins, 35:21-46., Boyle 1990Boyle E.A. 1990. Quaternary deep water paleoceanography. Science, 249(4971):863-870. https://doi.org/10.1126/science.249.4971.863
https://doi.org/10.1126/science.249.4971...
, Maia et al. 2022Maia R.J.A., Piovesan E.K., Anjos-Zerfass G.S., Melo R.M. 2022. Quaternary Ostracoda and Foraminifera from the Pelotas Basin, southernmost Brazil: Assemblage variation in gas-hydrate bearing sediments. Micropaleontology, 68(3):273-289. http://doi.org/10.47894/mpal.68.3.06
https://doi.org/10.47894/mpal.68.3.06...
). The species Uvigerina peregrina is typical of low-oxygen waters and/or organic-rich sediments in modern oceans (Peterson 1984Peterson L.C. 1984. Recent abyssal benthic foraminiferal biofacies of the eastern equatorial Indian Ocean. Marine Micropaleontology, 8(6):479-519. https://doi.org/10.1016/0377-8398(84)90010-0
https://doi.org/10.1016/0377-8398(84)900...
, Mackensen et al. 1995Mackensen A., Schmiedl G., Harloff J., Giese M. 1995. Deep-sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41(4):342-358. https://doi.org/10.2307/1485808
https://doi.org/10.2307/1485808...
). The common presence of Uvigerina proboscidea, at the top of the Pleistocene (Suppl. Mat.) in the core ANP 1011, demonstrates higher surface productivity and perhaps higher biogenic sediment accumulation (Kroon et al. 1991Kroon D., Steens T., Troelstra S.R. 1991. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers1. In Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), 117, p. 257-263., Gupta and Srinivasan 1992Gupta A.K., Srinivasan M.S. 1992. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP Site 214 during the Late Neogene. Marine Micropaleontology, 19(4):355-367. https://doi.org/10.1016/0377-8398(92)90038-L
https://doi.org/10.1016/0377-8398(92)900...
). Uvigerina proboscidea is abundant in regions of high productivity in the Atlantic (Thomas et al. 1995Thomas E., Booth L., Maslin M., Shackleton N.J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography, 10(3):545-562. https://doi.org/10.1029/94PA03056
https://doi.org/10.1029/94PA03056...
), Indian (Gupta and Thomas 1999Gupta A.K., Thomas E. 1999. Latest Miocene–Pleistocene productivity and deep-sea ventilation in the northwestern Indian Ocean (Deep Sea Drilling Project Site 219). Paleoceanography, 14(1):62-73. https://doi.org/10.1029/1998PA900006
https://doi.org/10.1029/1998PA900006...
, Almogi-Labin et al. 2008Almogi-Labin A., Edelman-Furstenberg Y., Hemleben C. 2008. Variations in the biodiversity of thecosomatous pteropods during the Late Quaternary as a response to environmental changes in the Gulf of Aden-Red Sea-Gulf of Aqaba ecosystem. In: Por F.D. (eds). The Improbable Gulf: Environment, Biodiversity and Preservation. Jerusalem: The Hebrew University Magnes Press, p. 31-48.), and Pacific (Woodruff 1985Woodruff F. 1985. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: Relationship to paleoceanography. Geological Society of America Memoir, 163:131-176. https://doi.org/10.1130/MEM163-p131
https://doi.org/10.1130/MEM163-p131...
), particularly when the productivity is high throughout the year and food supply presents low or absent seasonality (Ohkushi et al. 1999Ohkushi K.I., Thomas E., Kawahata H. 1999. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology, 38(2):119-147. https://doi.org/10.1016/S0377-8398(99)00040-7
https://doi.org/10.1016/S0377-8398(99)00...
). In addition, Uvigerina proboscidea characterizes areas of high carbon flux and low dissolved oxygen concentration (Murgese and De Deckker 2005Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
https://doi.org/10.1016/J.MARMICRO.2005....
).

High abundances of Melonis barleeanum in both the North (Thomas et al. 1995Thomas E., Booth L., Maslin M., Shackleton N.J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography, 10(3):545-562. https://doi.org/10.1029/94PA03056
https://doi.org/10.1029/94PA03056...
) and South Atlantic (Schmiedl and Mackensen 1997Schmiedl G., Mackensen A. 1997. Late Quaternary paleoproductivity and deep-water circulation in the eastern South Atlantic Ocean: evidence from benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1-4):43-80. https://doi.org/10.1016/S0031-0182(96)00137-X
https://doi.org/10.1016/S0031-0182(96)00...
) characterize high productivity with sustained flow of organic matter. On the contrary, in the Indian Ocean, Melonis barleeanum indicates moderate organic flow with intermediate to high seasonality (Murgese and De Deckker 2005Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
https://doi.org/10.1016/J.MARMICRO.2005....
).

The increase of the infaunal taxa Globocassidulina in the early Holocene indicates well-oxygenated deep waters with strongly pulsed food supply and good carbonate preservation in oligotrophic environments (Ohkushi et al. 1999Ohkushi K.I., Thomas E., Kawahata H. 1999. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology, 38(2):119-147. https://doi.org/10.1016/S0377-8398(99)00040-7
https://doi.org/10.1016/S0377-8398(99)00...
, Singh and Gupta 2004Singh R.K., Gupta A.K. 2004. Late Oligocene–Miocene paleoceanographic evolution of the southeastern Indian Ocean: Evidence from deep-sea benthic foraminifera (ODP Site 757). Marine Micropaleontology, 51(1-2):153-170. https://doi.org/10.1016/J.MARMICRO.2003.10.003
https://doi.org/10.1016/J.MARMICRO.2003....
). The succession of low and high incidences of Globocassidulina subglobosa indicates variations in the intensity of organic matter input, probably in response to climatic and oceanographic changes (Rodrigues et al. 2018Rodrigues A.R., Pivel M.A.G., Schmitt P., de Almeida F.K., Bonetti C. 2018. Infaunal and epifaunal benthic foraminifera species as proxies of organic matter paleofluxes in the Pelotas Basin, south-western Atlantic Ocean. Marine Micropaleontology, 144:38-49. https://doi.org/10.1016/j.marmicro.2018.05.007
https://doi.org/10.1016/j.marmicro.2018....
). Peterson and Lohmann (1982Peterson L.C., Lohmann G.P. 1982. Major Change in Atlantic Deep and Bottom Waters 700,000 yr Ago: Benthic Foraminiferal Evidence from the South Atlantic1. Quaternary Research, 17(1):26-38. https://doi.org/10.1016/0033-5894(82)90043-6
https://doi.org/10.1016/0033-5894(82)900...
) related this taxon to the poorly oxygenated circumpolar deep water, while Corliss (1979Corliss B.H. 1979. Recent deep-sea benthic foraminiferal distributions in the southeast Indian Ocean: Inferred bottom water routes and ecological implications. Marine Geology, 31(1-2):115-138. https://doi.org/10.1016/0025-3227(79)90059-8
https://doi.org/10.1016/0025-3227(79)900...
) found it associated with the AABW in the southwestern Indian Ocean. This taxon is often abundant in regions with low organic matter input and strong bottom currents (Schmiedl et al. 1997Schmiedl, G., Mackensen, A., Müller, P.J. 1997. Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. Marine Micropaleontology, 32(3-4):249-287. https://doi.org/10.1016/S0377-8398(97)00023-6
https://doi.org/10.1016/S0377-8398(97)00...
, Nees and Struck 1999Nees S., Struck U. 1999. Benthic foraminiferal response to major paleoceanographic changes. In: Abrantes F., Mix A. (eds.). Reconstructing Ocean History: A Window into the Future. New York: Kluwer Academic Plenum Publishers, p. 195-216.). According to Noucoucouk et al. (2020Noucoucouk A.A., Freire G.S.S., Melo R.M., de Albuquerque Menor E., de Almeida N.M. 2020. Aspectos sedimentológicos e geoquímicos do testemunho ANP 1040, do talude continental, porção Oeste do estado do Ceará. Estudos Geológicos, 30(2):26-37. https://doi.org/10.18190/1980-8208/estudosgeologicos.v30n2p26-37
https://doi.org/10.18190/1980-8208/estud...
, 2021Noucoucouk A.A., Melo R.M., Freire G.S.S., Menor E.D.A. 2021. Upper Pleistocene–Holocene in the Continental Slope of the Ceará Basin: an integrated analysis based on planktic foraminifera, sedimentological and Geochemical Aspects. Revista Brasileira de Paleontologia, 24(3):179-194. https://doi.org/10.4072/rbp.2021.3.02
https://doi.org/10.4072/rbp.2021.3.02...
), conditions of increased organic matter influx predominated in the study area, during the Holocene, causing environmental variations and affecting the distribution of the biota.

Ostracods

The ostracod assemblages registered are composed mostly of macrocypridids, krithids, trachyleberidids, pontocypridids, and cytherurids. The presence of Krithe, Argilloecia, Macromckenziea, Macropyxis, Ambocythere, Bythoceratina, and Rugocythereis (Suppl. Mat.) characterizes a typical bathyal environment, as observed in previous studies (e.g., Dingle et al. 1990Dingle R.V., Lord A.R., Boomer I. 1990. Deep-water Quaternary Ostracoda from the continental margin off south-western Africa (SE Atlantic Ocean). Annals of the South African Museum, 99:245-366., Bergue et al. 2006Bergue C.T., Costa K., Dwyer G., Moura C. 2006. Bathyal ostracode diversity in the Santos Basin, Brazilian southeast margin: Response to Late Quaternary climate changes. Revista Brasileira de Paleontologia, 9(2):201-210. https://doi.org/10.4072/RBP.2006.2.04
https://doi.org/10.4072/RBP.2006.2.04...
, 2016Bergue C.T., Coimbra J.C., Ramos M.I.F. 2016. Taxonomy and bathymetric distribution of the outer neritic/upper bathyal ostracodes (Crustacea: Ostracoda) from the southernmost Brazilian continental margin. Zootaxa, 4079(1):65-86. http://doi.org/10.11646/zootaxa.4079.1.5
https://doi.org/10.11646/zootaxa.4079.1....
, 2021Bergue C.T., Ritter M.D.N., Coimbra J.C., Costa K.B. 2021. Climatically induced changes in late Quaternary bathyal ostracod assemblages of the Camamu Basin, Brazil. Brazilian Journal of Geology, 51(4):1-11. https://doi.org/10.1590/2317-4889202120210039
https://doi.org/10.1590/2317-48892021202...
, Brandão 2010Brandão S.N. 2010. Macrocyprididae (Ostracoda) from the Southern Ocean: taxonomic revision, macroecological patterns, and biogeographical implications. Zoological Journal of the Linnean Society, 159(3):567-672. https://doi.org/10.1111/j.1096-3642.2009.00624.x
https://doi.org/10.1111/j.1096-3642.2009...
, Yasuhara et al. 2013Yasuhara M., Hunt G., Okahashi M., Brandão S.N. 2013. The ‘Oxycythereis’ problem: Taxonomy and palaeobiogeography of deep-sea ostracod genera Pennyella and Rugocythereis. Palaeontology, 56(5):1045-1080. https://doi.org/10.1111/pala.12035
https://doi.org/10.1111/pala.12035...
, 2021Yasuhara M., Okahashi H., May Huang H., Hong Y., Iwatani H., Wai Ching Chu R., Hunt G. 2021. Quaternary equatorial Atlantic deep-sea ostracodes: evidence for a distinct tropical fauna in the deep sea. Journal of Paleontology, 95(S86), 1-41. https://doi.org/10.1017/jpa.2021.52
https://doi.org/10.1017/jpa.2021.52...
, Maia et al. 2021Maia R.J.A., Piovesan E.K., Bergue C.T., Zerfass G.S.A., Melo R.M. 2021. Bathyal ostracods from the Upper Pleistocene of the Rio Grande Cone, Pelotas Basin, Brazil. Revue de Micropaléontologie, 71:100483. https://doi.org/10.1016/J.REVMIC.2021.100483
https://doi.org/10.1016/J.REVMIC.2021.10...
, 2022Maia R.J.A., Piovesan E.K., Anjos-Zerfass G.S., Melo R.M. 2022. Quaternary Ostracoda and Foraminifera from the Pelotas Basin, southernmost Brazil: Assemblage variation in gas-hydrate bearing sediments. Micropaleontology, 68(3):273-289. http://doi.org/10.47894/mpal.68.3.06
https://doi.org/10.47894/mpal.68.3.06...
).

This is the first study on deep-sea ostracods from the Brazilian Equatorial Margin, but the paucity of material prevents detailed comparison with other studies in the Brazilian Margin. The macrocypridid Macromckenzia is widely distributed in bathyal regions along the Atlantic Ocean (Brandão 2010Brandão S.N. 2010. Macrocyprididae (Ostracoda) from the Southern Ocean: taxonomic revision, macroecological patterns, and biogeographical implications. Zoological Journal of the Linnean Society, 159(3):567-672. https://doi.org/10.1111/j.1096-3642.2009.00624.x
https://doi.org/10.1111/j.1096-3642.2009...
), but it is represented here by a species different from all others registered in the South Atlantic (Maddocks 1990Maddocks R.F. 1990. Living and Fossil Macrocyprididae (Ostracoda). The University of Kansas Paleontological Contributions. Monograph 2. Lawrence: The University of Kansas Paleontological Institute, 404 p., Brandão 2004Brandão S.N. 2004a. Brazilian deep-sea Macrocyprididae Müller, 1912 (Crustacea, Ostracoda, Macrocypridoidea). Arquivos do Museu Nacional, 62(2):151-172.a, 2004b, 2010). On the contrary, Macropyxis bathyalensis is a typical North Atlantic species, and it is registered for the first time in the Brazilian Equatorial Margin. Krithe morkhoveni and K. sinuosa have wide distribution in the Atlantic Ocean and Mediterranean (van den Bold 1960van den Bold W.A. 1960. Eocene and Oligocene Ostracoda from Trinidad. Micropaleontology, 6(2):145-196., Coles et al. 1994Coles G.P., Whatley R.C., Moguilevsky A. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology, 37:71-120., Rodriguez-Lazaro and Cronin 1999Rodriguez-Lazaro J., Cronin T. 1999. Quaternary glacial and deglacial Ostracoda in the thermocline of the Little Bahama Bank (NW Atlantic): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(3-4):339-364. https://doi.org/10.1016/S0031-0182(99)00048-6
https://doi.org/10.1016/S0031-0182(99)00...
). The highest species richness occurs in the sample 28–25 cm, where nine species are registered. In the samples 142–139 and 130–127 cm, Krithe was more frequently associated with the epifaunal foraminifera Pyrgo sp. In the samples 70–67 and 42–39 cm, the association occurred with the infaunal taxon Globocasidulina sp. The same zoogeographic pattern is presented by Bythoceratina scaberrima.

Two species of Ambocythere, a genus diverse in the Atlantic Ocean deep waters (Yasuhara et al. 2015Yasuhara M., Hunt G., Okahashi H., Brandão S. 2015. Taxonomy of Deep-Sea Trachyleberidid, Thaerocytherid, and Hemicytherid Genera (Ostracoda). Smithsonian Contributions to Paleobiology, 96:1-216. https://doi.org/10.5479/si.1943-6688.96
https://doi.org/10.5479/si.1943-6688.96...
), have been registered in this study. One of them has a strong similarity to Ambocythere circumporus, however, with stronger longitudinal ribs and a caudal process that is more acuminate and less spinose. Another species of the genus herein recorded, Ambocythere sp., differs in having a conspicuous perforate spine near the posterior cardinal angle and subdued ornamentation. The nearest study on deep-sea ostracods was carried out at ODP site 925, Ceará Rise (Yasuhara et al. 2009Yasuhara M., Hunt G., Cronin T.M., Okahashi H. 2009a. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106(51):21717-21720. https://doi.org/10.1073/pnas.0910935106
https://doi.org/10.1073/pnas.0910935106...
a, 2021); however, the taxonomic similarity between the two sites is represented only by Argilloecia labri, possibly due to the low abundance of the material herein studied.

Pteropods

Several studies have shown the sensitivity of late Quaternary pteropods to temperature, oxygen concentration, and salinity, proving their importance for paleoclimatic reconstructions (Herman 1971Herman Y. 1971. Vertical and horizontal distribution of pteropods in Quaternary sequences. In: Funnell B.M., Reidel W.R. (eds.). The Micropalaeontology of Oceans. Cambridge: Cambridge University Press, p. 463-486., Singh et al. 2005Singh A., Nisha N.R., Joydas T., Joydas V. 2005. Distribution patterns of Recent pteropods in surface sediments of the western continental shelf of India. Journal of Micropalaeontology, 24(1):39-54. https://doi.org/10.1144/jm.24.1.39
https://doi.org/10.1144/jm.24.1.39...
, Wall-Palmer et al. 2014Wall-Palmer D., Smart C.W., Hart M.B., Leng M.J., Borghini M., Manini E., Aliani S., Conversi A. 2014. Late Pleistocene pteropods, heteropods and planktic foraminifera from the Caribbean Sea, Mediterranean Sea and Indian Ocean. Micropaleontology, 60(6):557-578. https://doi.org/10.47894/mpal.60.6.05
https://doi.org/10.47894/mpal.60.6.05...
, Giamali et al. 2020Giamali C., Kontakiotis G., Koskeridou E., Ioakim C., Antonarakou A. 2020. Key Environmental Factors Controlling Planktic Foraminiferal and Pteropod Community’s Response to Late Quaternary Hydroclimate Changes in the South Aegean Sea (Eastern Mediterranean). Journal of Marine Science and Engineering, 8(9):709. https://doi.org/10.3390/jmse8090709
https://doi.org/10.3390/jmse8090709...
, 2021Giamali C., Kontakiotis G., Antonarakou A., Koskeridou E. 2021. Ecological Constraints of Plankton Bio-Indicators for Water Column Stratification and Productivity: A Case Study of the Holocene North Aegean Sedimentary Record. Journal of Marine Science and Engineering, 9(11):1249. https://doi.org/10.3390/jmse9111249
https://doi.org/10.3390/jmse9111249...
). Peaks of abundances of pteropods are positively correlated with aragonite saturation state, O2 concentration, pH, salinity, and temperature and negatively correlated with nutrient concentration (Howes et al. 2015Howes E.L., Stemmann L., Assailly C., Irisson J.O., Dima M., Bijma J., Gattuso J.P. 2015. Pteropod time series from the North Western Mediterranean (1967-2003): impacts of pH and climate variability. Marine Ecology Progress Series, 531:193-206. https://doi.org/10.3354/MEPS11322
https://doi.org/10.3354/MEPS11322...
, Johnson et al. 2020Johnson R., Manno C., Ziveri P. 2020. Spring distribution of shelled pteropods across the Mediterranean Sea. Biogeosciences Discussions, [preprint]. https://doi.org/10.5194/bg-2020-53
https://doi.org/10.5194/bg-2020-53...
, Giamali et al. 2021Giamali C., Kontakiotis G., Antonarakou A., Koskeridou E. 2021. Ecological Constraints of Plankton Bio-Indicators for Water Column Stratification and Productivity: A Case Study of the Holocene North Aegean Sedimentary Record. Journal of Marine Science and Engineering, 9(11):1249. https://doi.org/10.3390/jmse9111249
https://doi.org/10.3390/jmse9111249...
). Two genera of pteropods were identified in the present study: Heliconoides d’Orbigny, 1835 and Atlanta Lesueur, 1817; a third was tentatively identified as Creseis Rang, 1828. Two peaks of abundance are observed in the core ANP 1011 (base and top, Fig. 6), both associated with epifaunal foraminifera, reinforcing the hypothesis of a higher oxygenated paleoenvironment with a lower concentration of nutrients. The variations observed in the distribution of pteropods may be caused by displacement of water masses, with good preservation indicating NADW influence and poor preservation (due to corrosion) related to climatically induced variations of intermediate water masses (Gerhardt et al. 2000Gerhardt S., Groth H., Rühlemann C., Henrich R. 2000. Aragonite preservation in late Quaternary sediment cores on the Brazilian Continental Slope: implications for intermediate water circulation. International Journal of Earth Sciences, 88(4):607-618. https://doi.org/10.1594/PANGAEA.712059
https://doi.org/10.1594/PANGAEA.712059...
).

CONCLUSION

The integrated analysis of calcareous microfossils (i.e., foraminifera, ostracods, and pteropods) demonstrated to be a valuable approach for paleoceanographic studies in late Quaternary deposits in the Ceará Basin. Benthic foraminifera recovered in the > 0.150 mm fraction is abundant and diverse, although we are aware that our analysis would possibly benefit from an additional > 0.062 mm fraction. The model based on the ecological characteristics of the benthic foraminifers allowed the characterization of two ecological settings during the Pleistocene-Holocene transition. The environmental setting I corresponds to the glacial period (late Pleistocene), and it is characterized by the abundance of epifaunal species, high productivity, phytodetritus input, increased oxygen concentration, but lower organic carbon. The environmental setting II corresponds to the interglacial period (Holocene) and is characterized by environmental instability, with periods of lower oxygenation (predominance of uvigerinids) and higher oxygenation (predominance of cassidulinids). During this environmental setting, there is also a higher organic carbon, nutrient, and food supply. Studies focused on the fraction of >0.062 mm, however, are necessary for a more detailed paleoenvironmental scenario. The taxonomic composition of ostracod assemblages herein studied differs in some degree compared to other regions of the Brazilian Margin. The low richness of the ostracod fauna reflects probably the low abundance; however, the higher richness during the Holocene in relation to the Pleistocene is in accordance with previous studies in the Atlantic Ocean. More studies focused on the taxonomy of ostracods are necessary to assess the actual diversity and relationship with adjacent oceanic areas.

Acknowledgments

This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorBrazil (CAPES) – Financing Code 001. The authors would like to thank the Laboratório de Geologia Marinha e Aplicada (LGMA/UFC), Laboratório de Micropaleontologia Aplicada (LMA/LITPEG/UFPE), Laboratório de Geoquímica Aplicada (LGA/UFC), and Laboratório de Paleoceanografia do Atlântico Sul (LaPAS/IOUSP) for the analyses. EKP thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (grant n. 309766/2021-4). We express our gratitude also to the two anonymous reviewers, whose contributions improved the earlier version of this work.

Supplementary data

Supplementary data associated with this article can be found in the online version: Supplementary Appendix A and B and Supplementary Tables.

ARTICLE INFORMATION

  • Manuscript ID: 20220030.
    How to cite this article: Noucoucouk A.A., Silva M.R., Melo R.M., Maia R.J.A., Bergue C.T., Piovensan E.K. 2023. Paleoenvironmental significance of Benthic Foraminifera and Ostracoda from the late Quaternary of the Ceará Basin, Brazilian Equatorial Margin. Brazilian Journal of Geology, 53(1): e20220030. https://doi.org/10.1590/2317-4889202220220030

REFERENCES

  • Almogi-Labin A., Edelman-Furstenberg Y., Hemleben C. 2008. Variations in the biodiversity of thecosomatous pteropods during the Late Quaternary as a response to environmental changes in the Gulf of Aden-Red Sea-Gulf of Aqaba ecosystem. In: Por F.D. (eds). The Improbable Gulf: Environment, Biodiversity and Preservation. Jerusalem: The Hebrew University Magnes Press, p. 31-48.
  • Antunes A.F., Jardim E.F.S., Araújo R.G. da S., Lima Neto F.F. 2008. Caracterização tectonoestrutural do Campo de Xaréu (Sub-Bacia de Mundaú, Bacia do Ceará – NE do Brasil): abordagem multiescala e pluriferramental. Revista Brasileira de Geociências, 38(1):88-105.
  • Armstrong H.A., Brasier M.D. 2005. Ostracods. In: Armstrong H.A., Brasier M.D. (eds). Microfossils 2. ed. Oxford: Blackwell, 296, p. 224-248.
  • Bergue C.T., Coimbra J.C., Pivel M.A.G., Petró S.M., Mizusaki A.M.P. 2017. Taxonomy and climatic zonation of the Late Quaternary bathyal ostracods from the Campos Basin, Brazil. Revue de Micropaleontologie, 60(4):493-509. https://doi.org/10.1016/j.revmic.2017.07.001
    » https://doi.org/10.1016/j.revmic.2017.07.001
  • Bergue C.T., Coimbra J.C., Ramos M.I.F. 2016. Taxonomy and bathymetric distribution of the outer neritic/upper bathyal ostracodes (Crustacea: Ostracoda) from the southernmost Brazilian continental margin. Zootaxa, 4079(1):65-86. http://doi.org/10.11646/zootaxa.4079.1.5
    » https://doi.org/10.11646/zootaxa.4079.1.5
  • Bergue C.T., Costa K., Dwyer G., Moura C. 2006. Bathyal ostracode diversity in the Santos Basin, Brazilian southeast margin: Response to Late Quaternary climate changes. Revista Brasileira de Paleontologia, 9(2):201-210. https://doi.org/10.4072/RBP.2006.2.04
    » https://doi.org/10.4072/RBP.2006.2.04
  • Bergue C.T., Ritter M.D.N., Coimbra J.C., Costa K.B. 2021. Climatically induced changes in late Quaternary bathyal ostracod assemblages of the Camamu Basin, Brazil. Brazilian Journal of Geology, 51(4):1-11. https://doi.org/10.1590/2317-4889202120210039
    » https://doi.org/10.1590/2317-4889202120210039
  • Bernhard J.M., Sen Gupta B.K. 1999. Foraminifera in oxygen-depleted environments. In: Sen Gupta B.K. (ed.). Modern Foraminifera Dordrecht: Kluwer, p. 201-216. https://doi.org/10.1007/0-306-48104-9_12
    » https://doi.org/10.1007/0-306-48104-9_12
  • Boersma A. 1986. Biostratigraphy and biogeography of Tertiary bathyal benthic foraminifers: Tasman Sea, Coral Sea, and on the Chatham Rise (Deep Sea Drilling Project, Leg 90). Initial Reports of the Deep-Sea Drilling Project, 90:961-1035. https://doi.org/10.2973/dsdp.proc.90.120.1986
    » https://doi.org/10.2973/dsdp.proc.90.120.1986
  • Boltovskoy E., Giussani G., Watanabe S. Wright R. 1980. Atlas of benthic shelf foraminifera of Southwest Atlantic. The Hague: Junk, 147 p.
  • Boltovskoy E., Wright R. 1976. Recent foraminifera Dordrecht: Springer, 519 p.
  • Boomer I., Horne D.J., Slipper I.J. 2003. The use of ostracods in palaeoenvironmental studies or what can you do with an Ostracod shell. The Paleontological Society Papers 9:153-180. https://doi.org/10.1017/s1089332600002199
    » https://doi.org/10.1017/s1089332600002199
  • Boyle E.A. 1990. Quaternary deep water paleoceanography. Science, 249(4971):863-870. https://doi.org/10.1126/science.249.4971.863
    » https://doi.org/10.1126/science.249.4971.863
  • Brandão S.N. 2004a. Brazilian deep-sea Macrocyprididae Müller, 1912 (Crustacea, Ostracoda, Macrocypridoidea). Arquivos do Museu Nacional, 62(2):151-172.
  • Brandão S.N. 2004b. Species of Macrocyprina Triebel, 1960 (Crustacea, Ostracoda, Macrocyprididae) collected by the REVIZEE program along Brazilian coast. Hydrobiologia, 529:157-168. https://doi.org/10.1007/s10750-004-6402-x
    » https://doi.org/10.1007/s10750-004-6402-x
  • Brandão S.N. 2010. Macrocyprididae (Ostracoda) from the Southern Ocean: taxonomic revision, macroecological patterns, and biogeographical implications. Zoological Journal of the Linnean Society, 159(3):567-672. https://doi.org/10.1111/j.1096-3642.2009.00624.x
    » https://doi.org/10.1111/j.1096-3642.2009.00624.x
  • Burone L., Sousa S.H.M., Mahiques M.M., Valente P., Ciotti A., Yamashita C. 2011. Benthic foraminiferal distribution on the southeastern Brazilian shelf and upper slope. Marine Biology, 158:159-179. https://doi.org/10.1007/s00227-010-1549-7
    » https://doi.org/10.1007/s00227-010-1549-7
  • Cappelli E.L.G., Austin W.E. 2019. Size matters: analyses of benthic foraminiferal assemblages across differing size fractions. Frontiers in Marine Science, 6:752. https://doi.org/10.3389/fmars.2019.00752
    » https://doi.org/10.3389/fmars.2019.00752
  • Caralp M.H. 1984. Quaternary calcareous benthic foraminifers, Leg 80. Initial Reports of the Deep-Sea Drilling Project, 80:725-755.
  • Caralp M.H. 1988. Late Glacial to Recent Deep-Sea Benthic Foraminifera from the Northeastern Atlantic (Cadiz Gulf) and Western Mediterranean (Alboran Sea): Paleoceanographic Results. Marine Micropaleontology, 13(3):265-289. https://doi.org/10.1016/0377-8398(88)90006-0
    » https://doi.org/10.1016/0377-8398(88)90006-0
  • Coles G.P., Whatley R.C., Moguilevsky A. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology, 37:71-120.
  • Corliss B.H. 1979. Recent deep-sea benthic foraminiferal distributions in the southeast Indian Ocean: Inferred bottom water routes and ecological implications. Marine Geology, 31(1-2):115-138. https://doi.org/10.1016/0025-3227(79)90059-8
    » https://doi.org/10.1016/0025-3227(79)90059-8
  • Corliss B.H. 1991. Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Marine Micropaleontology, 17(3-4):195-236. https://doi.org/10.1016/0377-8398(91)90014-W
    » https://doi.org/10.1016/0377-8398(91)90014-W
  • Corliss B.H., Chen C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, 16(8):716-719. https://doi.org/10.1130/0091-7613(1988)016%3C0716:MPONSD%3E2.3.CO;2
    » https://doi.org/10.1130/0091-7613(1988)016%3C0716:MPONSD%3E2.3.CO;
  • De Almeida F.K., De Mello R.M., Costa K.B., Toledo F.A. 2015. The response of deep-water benthic foraminiferal assemblages to changes in paleoproductivity during the Pleistocene (last 769.2 kyr), western South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 440:201-212. https://doi.org/10.1016/j.palaeo.2015.09.005
    » https://doi.org/10.1016/j.palaeo.2015.09.005
  • De Almeida F.K., De Mello R.M., Rodrigues A.R., Bastos A.C. 2022. Bathymetric and regional benthic foraminiferal distribution on the Espírito Santo Basin slope, Brazil (SW Atlantic). Deep Sea Research Part I: Oceanographic Research Papers, 181:103688. https://doi.org/10.1016/j.dsr.2022.103688
    » https://doi.org/10.1016/j.dsr.2022.103688
  • De Rijk S., Troelstra S.R., Rohling E.J. 1999. Benthic foraminiferal distribution in the Mediterranean Sea. Journal of Foraminiferal Research, 29(2):93-103. https://doi.org/10.2113/gsjfr.29.2.93
    » https://doi.org/10.2113/gsjfr.29.2.93
  • Dingle R.V., Lord A.R., Boomer I. 1990. Deep-water Quaternary Ostracoda from the continental margin off south-western Africa (SE Atlantic Ocean). Annals of the South African Museum, 99:245-366.
  • Douglas R.G., Heitman H.L. 1979. Slope and basin benthic foraminifera of the California borderland. In: Doyle L.J., Pilkey O.H. (eds.), The Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication, v. 27, p. 231-246. https://doi.org/10.2110/pec.79.27.0231
    » https://doi.org/10.2110/pec.79.27.0231
  • Eichler P.P.B., Sen Gupta B.K., Eichler B.B., Braga E.S., Campos E.J. 2008. Benthic foraminiferal assemblages of the South Brazil: relationship to water masses and nutrient distributions. Campos Continental Shelf Research, 28(13):1674-1686. https://doi.org/10.1016/J.CSR.2007.10.012
    » https://doi.org/10.1016/J.CSR.2007.10.012
  • Emilsson I. 1961. The shelf and coastal waters off southern Brazil. Boletim do Instituto Oceanográfico, 11(2):101-112. https://doi.org/10.1590/S0373-55241961000100004
    » https://doi.org/10.1590/S0373-55241961000100004
  • Fontanier C., Jorissen F.J., Chaillou G., David C., Anschutz P., Lafon V. 2003. Seasonal and interannual variability of benthic foraminiferal faunas at 550m depth in the Bay of Biscay. Deep-Sea Research I, 50(4):457-494. https://doi.org/10.1016/S0967-0637(02)00167-X
    » https://doi.org/10.1016/S0967-0637(02)00167-X
  • Fontanier C., Jorissen F.J., Licari L., Alexandre A., Anschutz P., Carbonel P. 2002. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research I, 49(4):751-785. https://doi.org/10.1016/S0967-0637(01)00078-4
    » https://doi.org/10.1016/S0967-0637(01)00078-4
  • Gerhardt S., Groth H., Rühlemann C., Henrich R. 2000. Aragonite preservation in late Quaternary sediment cores on the Brazilian Continental Slope: implications for intermediate water circulation. International Journal of Earth Sciences, 88(4):607-618. https://doi.org/10.1594/PANGAEA.712059
    » https://doi.org/10.1594/PANGAEA.712059
  • Giamali C., Kontakiotis G., Antonarakou A., Koskeridou E. 2021. Ecological Constraints of Plankton Bio-Indicators for Water Column Stratification and Productivity: A Case Study of the Holocene North Aegean Sedimentary Record. Journal of Marine Science and Engineering, 9(11):1249. https://doi.org/10.3390/jmse9111249
    » https://doi.org/10.3390/jmse9111249
  • Giamali C., Kontakiotis G., Koskeridou E., Ioakim C., Antonarakou A. 2020. Key Environmental Factors Controlling Planktic Foraminiferal and Pteropod Community’s Response to Late Quaternary Hydroclimate Changes in the South Aegean Sea (Eastern Mediterranean). Journal of Marine Science and Engineering, 8(9):709. https://doi.org/10.3390/jmse8090709
    » https://doi.org/10.3390/jmse8090709
  • Gooday A.J. 1994. The biology of deep-sea foraminifers: A review of some advances and their applications in Paleoceanography. Palaios, 9(1):14-31. https://doi.org/10.2307/3515075
    » https://doi.org/10.2307/3515075
  • Gooday A.J. 2002. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography, 58:305-332. https://doi.org/10.1023/A:1015865826379
    » https://doi.org/10.1023/A:1015865826379
  • Gooday A.J., Malzone M.G., Bett B.J., Lamont P.A. 2010. Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep Sea Research Part II. Topical Studies in Oceanography, 57(15):1362-1382. https://doi.org/10.1016/J.DSR2.2010.01.012
    » https://doi.org/10.1016/J.DSR2.2010.01.012
  • Gross O. 2000. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments. In: Liebezeit G., Dittmann S., Kröncke I. (eds.), Life at interfaces and under extreme conditions Dordrecht: Springer, p. 123-137.
  • Gupta A.K., Mélice J.L. 2003. Orbital forcing of the Plio-Pleistocene Indian monsoons: benthic foraminiferal proxies from ODP Site 758. Current Science, 85(2), 179-184.
  • Gupta A.K., Satapathy S.K. 2000. Latest Miocene–Pleistocene abyssal benthic foraminifera from west-central Indian Ocean DSDP Site 236: Paleoceanographic and paleoclimatic inferences. Journal of Paleontological Society of India, 45:33-48.
  • Gupta A.K., Srinivasan M.S. 1992. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP Site 214 during the Late Neogene. Marine Micropaleontology, 19(4):355-367. https://doi.org/10.1016/0377-8398(92)90038-L
    » https://doi.org/10.1016/0377-8398(92)90038-L
  • Gupta A.K., Srinivasan M.S. 1996. Multivariate analyses of Pliocene–Pleistocene benthic foraminifera from DSDP Site 214, eastern Indian Ocean: paleoceanic and paleoclimatic implications. In: Pandey J., Azmi R.J., Bhandari A., Dave A. (eds.). Contributions to XV Indian Colloquium on Micropaleontology and Stratigraphy Dehra Dun, p. 339-355.
  • Gupta A.K., Thomas E. 1999. Latest Miocene–Pleistocene productivity and deep-sea ventilation in the northwestern Indian Ocean (Deep Sea Drilling Project Site 219). Paleoceanography, 14(1):62-73. https://doi.org/10.1029/1998PA900006
    » https://doi.org/10.1029/1998PA900006
  • Gupta A.K., Thomas E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31(1):47-50. https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2
    » https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;
  • Hayward B.W., Neil H., Carter R., Grenfell H.R., Hayward J.J. 2002. Factors influencing the distribution patterns of Recent deep-sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean. Marine Micropaleontology, 46(1-2):139-176. https://doi.org/10.1016/S0377-8398(02)00047-6
    » https://doi.org/10.1016/S0377-8398(02)00047-6
  • Herman Y. 1971. Vertical and horizontal distribution of pteropods in Quaternary sequences. In: Funnell B.M., Reidel W.R. (eds.). The Micropalaeontology of Oceans Cambridge: Cambridge University Press, p. 463-486.
  • Holbourn A.E., Henderson A.S. 2002. Re-illustration and revised taxonomy for selected deep-sea benthic foraminifera. Palaeontologia Electronica, 4:34.
  • Howes E.L., Stemmann L., Assailly C., Irisson J.O., Dima M., Bijma J., Gattuso J.P. 2015. Pteropod time series from the North Western Mediterranean (1967-2003): impacts of pH and climate variability. Marine Ecology Progress Series, 531:193-206. https://doi.org/10.3354/MEPS11322
    » https://doi.org/10.3354/MEPS11322
  • Janssen A.W. 2012. Late Quaternary to Recent holoplanktonic Mollusca (Gastropoda) from bottom samples of the eastern Mediterranean Sea: systematics, morphology. Bollettino Malacologico, 48(9):1-105.
  • Johns W.E., Lee T.N., Beardsley R.C., Candela J., Limeburger R., Castro B. 1998. Annual cycle and variability of the North Brazil Current. Journal of Physical Oceanography, 28(1):103-128. https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;2
    » https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;
  • Johnson R., Manno C., Ziveri P. 2020. Spring distribution of shelled pteropods across the Mediterranean Sea. Biogeosciences Discussions, [preprint]. https://doi.org/10.5194/bg-2020-53
    » https://doi.org/10.5194/bg-2020-53
  • Jones R.W. 1994. The Challenger Foraminifera. Oxford: Oxford University Press, 149 p.
  • Jorissen F.J., de Stigter H.C., Widmark J.G. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine micropaleontology, 26(1-4):3-15. https://doi.org/10.1016/0377-8398(95)00047-X
    » https://doi.org/10.1016/0377-8398(95)00047-X
  • Jorissen F.J., Fontanier C., Thomas E. 2007. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Developments in Marine Geology, 1:263-325. https://doi.org/10.1016/S1572-5480(07)01012-3
    » https://doi.org/10.1016/S1572-5480(07)01012-3
  • Kaiho K. 1994. Benthic foraminiferal dissolved oxygen index and dissolved oxygen levels in the modern ocean. Geology, 22(8):719-722. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
    » https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;
  • Katz M.E., Miller K.G. 1993. Latest Oligocene to Earliest Pliocene benthic foraminiferal biofacies of the northeastern Gulf of Mexico. Micropaleontology, 39(4):367-403. https://doi.org/10.2307/1485856
    » https://doi.org/10.2307/1485856
  • Kawagata S., Hayward B.W., Gupta A.K. 2006. Benthic foraminiferal extinctions linked to late Pliocene–Pleistocene deep-sea circulation changes in the northern Indian Ocean (ODP Sites 722 and 758). Marine Micropaleontology, 58(3):219-242. https://doi.org/10.1016/j.marmicro.2005.11.003
    » https://doi.org/10.1016/j.marmicro.2005.11.003
  • Kitazato H., Shirayama Y., Nakatsuka T., Fujiwara S., Shimanaga M., Kato Y., Okada Y., Kanda J., Yamaoka A., Masuzawa T., Suzuki K. 2000. Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996–1999”. Marine Micropaleontology, 40(3):135-149. https://doi.org/10.1016/S0377-8398(00)00036-0
    » https://doi.org/10.1016/S0377-8398(00)00036-0
  • Kouwenhoven T.J. 2000. Survival under stress: benthic foraminiferal patterns and Cenozoic biotic crises. Geologica Ultraiectina, 186:1-206.
  • Kroon D., Steens T., Troelstra S.R. 1991. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers1. In Proceedings of the Ocean Drilling Program, Scientific Results College Station, TX (Ocean Drilling Program), 117, p. 257-263.
  • Liebau A. 2005. A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia, 538:115-137. https://doi.org/10.1007/PL00021865
    » https://doi.org/10.1007/PL00021865
  • Loeblich Jr. A.R., Tappan H. 1988. Foraminiferal Genera and Their Classification New York: van Nostrand Reinhold Company, 970 p.
  • Loeblich Jr. A.R., Tappan H. 1994. Foraminifera of the Sahul shelf and Timor Sea Cushman Foundation Special Publication, 31, 661 p.
  • Lohmann G.P. 1978. Abyssal benthic foraminifera as hydrographic indicators in the Western South Atlantic Ocean. Journal of Foraminiferal Research, 8(1):6-34. https://doi.org/10.2113/gsjfr.8.1.6
    » https://doi.org/10.2113/gsjfr.8.1.6
  • Loring D.H., Rantala R.T.T. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sciences Research, 32(4):235-283. https://doi.org/10.1016/0012-8252(92)90001-A
    » https://doi.org/10.1016/0012-8252(92)90001-A
  • Loubere P. 1991. Deep-sea benthic foraminiferal assemblage response to a surface ocean productivity gradient: a test. Paleoceanography, 6(2):193-204. https://doi.org/10.1029/90PA02612
    » https://doi.org/10.1029/90PA02612
  • Loubere P. 1994. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera. Paleoceanography, 9(5):723-737. https://doi.org/10.1029/94PA01624
    » https://doi.org/10.1029/94PA01624
  • Lukashira N.P., Bashirova L.D. 2015. Deep water masses in the Iceland Basin during the Last interglacial (MIS 5e): Evidence from benthic foraminiferal data. Oceanologia, 57(2):212-221. https://doi.org/10.1016/j.oceano.2014.11.004
    » https://doi.org/10.1016/j.oceano.2014.11.004
  • Lutze G.F. 1986. Uvigerina species of the eastern North Atlantic. Utrecht Micropaleontological Bulletins, 35:21-46.
  • Lutze G.F., Coulbourn W.T. 1984. Recent benthic foraminifera from the continental margin of Northwest Africa: community structure and distribution. Marine Micropaleontology, 8(5):361-401. https://doi.org/10.1016/0377-8398(84)90002-1
    » https://doi.org/10.1016/0377-8398(84)90002-1
  • Maamaatuaiahutapu K., Garçon V.C., Provost C., Boulahdid M., Bianchi A.A. 1994. Spring and winter water mass composition in the Brazil-Malvinas Confluence. Journal of Marine Research, 52(3):397-426. https://doi.org/10.1357/0022240943077064
    » https://doi.org/10.1357/0022240943077064
  • Mackensen A., Schmiedl G., Harloff J., Giese M. 1995. Deep-sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41(4):342-358. https://doi.org/10.2307/1485808
    » https://doi.org/10.2307/1485808
  • Maddocks R.F. 1990. Living and Fossil Macrocyprididae (Ostracoda) The University of Kansas Paleontological Contributions. Monograph 2. Lawrence: The University of Kansas Paleontological Institute, 404 p.
  • Maia R.J.A., Piovesan E.K., Anjos-Zerfass G.S., Melo R.M. 2022. Quaternary Ostracoda and Foraminifera from the Pelotas Basin, southernmost Brazil: Assemblage variation in gas-hydrate bearing sediments. Micropaleontology, 68(3):273-289. http://doi.org/10.47894/mpal.68.3.06
    » https://doi.org/10.47894/mpal.68.3.06
  • Maia R.J.A., Piovesan E.K., Bergue C.T., Zerfass G.S.A., Melo R.M. 2021. Bathyal ostracods from the Upper Pleistocene of the Rio Grande Cone, Pelotas Basin, Brazil. Revue de Micropaléontologie, 71:100483. https://doi.org/10.1016/J.REVMIC.2021.100483
    » https://doi.org/10.1016/J.REVMIC.2021.100483
  • Martins V., Jouanneau J., Weber O., Rocha F. 2006. Tracing the late Holocene evolution of the NW Iberian upwelling system. Marine Micropaleontology, 59(1):35-55. https://doi.org/10.1016/j.marmicro.2005.12.002
    » https://doi.org/10.1016/j.marmicro.2005.12.002
  • Mémery L., Arhan M., Álvarez-Salgado X.A., Messias M.J., Mercier H., Castro C.G., Rios A.F. 2000. The water masses along the western boundary of the south and equatorial Atlantic. Progress in Oceanography, 47(1):69-98. https://doi.org/10.1016/S0079-6611(00)00032-X
    » https://doi.org/10.1016/S0079-6611(00)00032-X
  • Miao Q., Thunell R.C. 1993. Recent deep-sea benthic foraminiferal distributions in the south China and Sulu Seas. Marine Micropaleontology, 22(1-2):1-32. https://doi.org/10.1016/0377-8398(93)90002-F
    » https://doi.org/10.1016/0377-8398(93)90002-F
  • Miller K.G., Janecek T.R., Katz M.E., Keil D.J. 1987. Abyssal circulation and benthic foraminiferal changes near the Paleocene/Eocene boundary. Paleoceanography, 2(6):741-761. https://doi.org/10.1029/PA002I006P00741
    » https://doi.org/10.1029/PA002I006P00741
  • Morigi C., Jorrissen F.J., Gervais A., Guichard S., Boersetti A.M. 2001. Benthic foraminiferal faunas in surface sediments off NW África: Relationship with organic flux the ocean floor. Marine Micropaleontology, 31(4):350-368. https://doi.org/10.2113/0310350
    » https://doi.org/10.2113/0310350
  • Murgese D.S., De Deckker P. 2005. The distribution of deep-sea benthic foraminifera in core tops from the eastern Indian Ocean. Marine Micropaleontology, 56(1-2):25-49. https://doi.org/10.1016/J.MARMICRO.2005.03.005
    » https://doi.org/10.1016/J.MARMICRO.2005.03.005
  • Murray J.W. 1991. Ecology and palaeoecology of benthic foraminifera. Harlow: Longman Scientific and Technical. https://doi.org/10.4324/9781315846101
    » https://doi.org/10.4324/9781315846101
  • Murray J.W. 2001. The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology, 41(1-2):1-7. https://doi.org/10.1016/S0377-8398(00)00057-8
    » https://doi.org/10.1016/S0377-8398(00)00057-8
  • Murray J.W. 2006. Ecology and Applications of Benthic Foraminifera Cambridge: Cambridge University Press, 426 p.
  • Nagai R.H., Sousa S.H.M., Burone L., Mahiques M.M. 2009. Paleoproductivity changes during the Holocene in the inner shelf of Cabo Frio, southeastern Brazilian continental margin: benthic foraminifera and sedimentological proxies. Quaternary International, 206(1-2):62-71. https://doi.org/10.1016/j.quaint.2008.10.014
    » https://doi.org/10.1016/j.quaint.2008.10.014
  • Nees S., Struck U. 1999. Benthic foraminiferal response to major paleoceanographic changes. In: Abrantes F., Mix A. (eds.). Reconstructing Ocean History: A Window into the Future. New York: Kluwer Academic Plenum Publishers, p. 195-216.
  • Noucoucouk A.A., Freire G.S.S., Melo R.M., de Albuquerque Menor E., de Almeida N.M. 2020. Aspectos sedimentológicos e geoquímicos do testemunho ANP 1040, do talude continental, porção Oeste do estado do Ceará. Estudos Geológicos, 30(2):26-37. https://doi.org/10.18190/1980-8208/estudosgeologicos.v30n2p26-37
    » https://doi.org/10.18190/1980-8208/estudosgeologicos.v30n2p26-37
  • Noucoucouk A.A., Melo R.M., Freire G.S.S., Menor E.D.A. 2021. Upper Pleistocene–Holocene in the Continental Slope of the Ceará Basin: an integrated analysis based on planktic foraminifera, sedimentological and Geochemical Aspects. Revista Brasileira de Paleontologia, 24(3):179-194. https://doi.org/10.4072/rbp.2021.3.02
    » https://doi.org/10.4072/rbp.2021.3.02
  • Ohga T., Kitazato H. 1997. Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan). Terra Nova, 9(1):33-37. https://doi.org/10.1046/j.1365-3121.1997.d01-6.x
    » https://doi.org/10.1046/j.1365-3121.1997.d01-6.x
  • Ohkushi K.I., Thomas E., Kawahata H. 1999. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology, 38(2):119-147. https://doi.org/10.1016/S0377-8398(99)00040-7
    » https://doi.org/10.1016/S0377-8398(99)00040-7
  • Peterson L.C. 1984. Recent abyssal benthic foraminiferal biofacies of the eastern equatorial Indian Ocean. Marine Micropaleontology, 8(6):479-519. https://doi.org/10.1016/0377-8398(84)90010-0
    » https://doi.org/10.1016/0377-8398(84)90010-0
  • Peterson L.C., Lohmann G.P. 1982. Major Change in Atlantic Deep and Bottom Waters 700,000 yr Ago: Benthic Foraminiferal Evidence from the South Atlantic1. Quaternary Research, 17(1):26-38. https://doi.org/10.1016/0033-5894(82)90043-6
    » https://doi.org/10.1016/0033-5894(82)90043-6
  • Pflum C.E., Frerichs W.E. 1976. Gulf of Mexico deep- water foraminifers. Special Publication of the Cushman Foundation, 14:1-125.
  • Rathburn A.E., Corliss B.H. 1994. The ecology of living (stained) benthic foraminifera from the Sulu Sea. Paleoceanography, 9(1):87-150. https://doi.org/10.1029/93PA02327
    » https://doi.org/10.1029/93PA02327
  • Reid J.L. 1994. On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports. Progress in Oceanography, 33(1):1-92. https://doi.org/10.1016/0079-6611(94)90014-0
    » https://doi.org/10.1016/0079-6611(94)90014-0
  • Reid J.L., Nowlin W.D., Patzert W.C. 1977. On the characteristics and circulation of the southwestern Atlantic Ocean. Journal of Physical Oceanography, 7:62-91. https://doi.org/10.1175/1520-0485(1977)007<0062:OTCACO>2.0.CO;2
    » https://doi.org/10.1175/1520-0485(1977)007<0062:OTCACO>2.0.CO;
  • Rodrigues A.R., Pivel M.A.G., Schmitt P., de Almeida F.K., Bonetti C. 2018. Infaunal and epifaunal benthic foraminifera species as proxies of organic matter paleofluxes in the Pelotas Basin, south-western Atlantic Ocean. Marine Micropaleontology, 144:38-49. https://doi.org/10.1016/j.marmicro.2018.05.007
    » https://doi.org/10.1016/j.marmicro.2018.05.007
  • Rodriguez-Lazaro J., Cronin T. 1999. Quaternary glacial and deglacial Ostracoda in the thermocline of the Little Bahama Bank (NW Atlantic): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(3-4):339-364. https://doi.org/10.1016/S0031-0182(99)00048-6
    » https://doi.org/10.1016/S0031-0182(99)00048-6
  • Rodriguez-Lazaro J., Ruiz-Muñoz F. 2012. A general introduction to ostracods: morphology, distribution, fossil record and applications. Developments in Quaternary Science, 17:1-14. https://doi.org/10.1016/B978-0-444-53636-5.00001-9
    » https://doi.org/10.1016/B978-0-444-53636-5.00001-9
  • Schmiedl G., Mackensen A. 1997. Late Quaternary paleoproductivity and deep-water circulation in the eastern South Atlantic Ocean: evidence from benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1-4):43-80. https://doi.org/10.1016/S0031-0182(96)00137-X
    » https://doi.org/10.1016/S0031-0182(96)00137-X
  • Schmiedl, G., Mackensen, A., Müller, P.J. 1997. Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. Marine Micropaleontology, 32(3-4):249-287. https://doi.org/10.1016/S0377-8398(97)00023-6
    » https://doi.org/10.1016/S0377-8398(97)00023-6
  • Schnitker D. 1980. Quaternary deep-sea benthic foraminifers and water masses. Annual Review of Earth and Planetary Sciences, 8:343-370. https://doi.org/10.1146/ANNUREV.EA.08.050180.002015
    » https://doi.org/10.1146/ANNUREV.EA.08.050180.002015
  • Schott F.A., Mccreary J.P., Johnson G.C. 2004. Shallow overturning circulations of the tropical-subtropical oceans, in earth climate: the ocean-atmosphere interaction. In: Wang C., Xie S.P., Carton J.A. (eds.). Earth’s Climate: The Ocean-Atmosphere Interaction, AGU, 147, Geophysical Monograph Series, p. 261-304. https://doi.org/10.1029/147GM15
    » https://doi.org/10.1029/147GM15
  • Schweizer M. 2006. Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliida, Foraminifera) Doctoral dissertation, University of Utrecht, Utrecht.
  • Severin K.P., Culver S.J., Blanpied C. 1982. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment. Sedimentology, 29(6):897-901. https://doi.org/10.1111/J.1365-3091.1982.TB00093.X
    » https://doi.org/10.1111/J.1365-3091.1982.TB00093.X
  • Silveira I.C.A., Calado L., Castro B.M., Cirano M., Lima J.A.M., Mascarenhas A.D.S. 2004. On the baroclinic structure of Brazil Current – Intermediate Western Boundary Current system at 22°-23°S. Geophysical Research Letters, 31(14):14308. https://doi.org/10.1029/2004GL020036
    » https://doi.org/10.1029/2004GL020036
  • Silveira I.C.A., Napolitano D.C., Farias I.U. 2020. Water Masses and Oceanic Circulation of the Brazilian Continental Margin and Adjacent Abyssal Plain. In: Sumida P.Y.G., Bernardino A.F., De Léo F.C. (eds.). Brazilian Deep-Sea Biodiversity Brazilian Marine Biodiversity. Cham: Springer, 7-36. https://doi.org/10.1007/978-3-030-53222-2_2
    » https://doi.org/10.1007/978-3-030-53222-2_2
  • Singh A., Nisha N.R., Joydas T., Joydas V. 2005. Distribution patterns of Recent pteropods in surface sediments of the western continental shelf of India. Journal of Micropalaeontology, 24(1):39-54. https://doi.org/10.1144/jm.24.1.39
    » https://doi.org/10.1144/jm.24.1.39
  • Singh R.K., Gupta A.K. 2004. Late Oligocene–Miocene paleoceanographic evolution of the southeastern Indian Ocean: Evidence from deep-sea benthic foraminifera (ODP Site 757). Marine Micropaleontology, 51(1-2):153-170. https://doi.org/10.1016/J.MARMICRO.2003.10.003
    » https://doi.org/10.1016/J.MARMICRO.2003.10.003
  • Smart C.W. 2008. Abyssal NE Atlantic benthic foraminifera during the last 15 kyr: Relation to variations in seasonality of productivity. Marine Micropaleontology, 69(2):193-211. https://doi.org/10.1016/j.marmicro.2008.07.007
    » https://doi.org/10.1016/j.marmicro.2008.07.007
  • Sousa S.H.D.M., Passos R.F., Fukumoto M., da Silveira I.C.A., Figueira R.C.L., Koutsoukos E.A., Rezende C.E. 2006. Mid-lower bathyal benthic foraminifera of the Campos Basin, Southeastern Brazilian margin: Biotopes and controlling ecological factors. Marine Micropaleontology, 61(1-3):40-57. https://doi.org/10.1016/j.marmicro.2006.05.003
    » https://doi.org/10.1016/j.marmicro.2006.05.003
  • Stramma L., England M. 1999. On the water masses and mean circulation of the South Atlantic Ocean, Journal of Geophysical Research, 104(C9):20863-20883. https://doi.org/10.1029/1999JC900139
    » https://doi.org/10.1029/1999JC900139
  • Streeter S.S., Shackleton N.J. 1979. Paleocirculation of the deep North Atlantic: 150,000-year record of benthic foraminifera and oxygen-18. Science, 203(4376):168-171. https://doi.org/10.1126/science.203.4376.168
    » https://doi.org/10.1126/science.203.4376.168
  • Talley L.D. 2011. Descriptive physical oceanography: an introduction. Academic Press, 560 p.
  • Thomas E., Booth L., Maslin M., Shackleton N.J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography, 10(3):545-562. https://doi.org/10.1029/94PA03056
    » https://doi.org/10.1029/94PA03056
  • Tomczak M., Godfrey J.S. 1994. Regional oceanography: an introduction. Oxford: Pergamon, 422 p.
  • van den Bold W.A. 1960. Eocene and Oligocene Ostracoda from Trinidad. Micropaleontology, 6(2):145-196.
  • van Harten D. 1986. Use of ostracodes to recognize downslope contamination in paleobathymetry and a preliminary reappraisal of the paleodepth of the Prasas Marls (Pliocene), Crete, Greece. Geology, 14(10):856-859. https://doi.org/10.1130/0091-7613(1986)14<856:UOOTRD>2.0.CO;2
    » https://doi.org/10.1130/0091-7613(1986)14<856:UOOTRD>2.0.CO;
  • van Morkhoven F.M., Berggren W.A., Edwards A.S. 1986. Cenozoic cosmopolitan deep - water benthic foraminifera. Bulletin des Centres de Recherches Exploration, 11:1-421.
  • Walkley A. 1947. A critical examination of a rapid method for determining organic carbon in soil. Soil Science, 63(4):251-264.
  • Wall-Palmer D., Smart C.W., Hart M.B., Leng M.J., Borghini M., Manini E., Aliani S., Conversi A. 2014. Late Pleistocene pteropods, heteropods and planktic foraminifera from the Caribbean Sea, Mediterranean Sea and Indian Ocean. Micropaleontology, 60(6):557-578. https://doi.org/10.47894/mpal.60.6.05
    » https://doi.org/10.47894/mpal.60.6.05
  • Whatley R.C. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In: De Deckker P. Colin J.P., Peypouquet J.P. (eds.). Ostracoda in the Earth Sciences Amsterdam: Elsevier, 245-256.
  • Woodruff F. 1985. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: Relationship to paleoceanography. Geological Society of America Memoir, 163:131-176. https://doi.org/10.1130/MEM163-p131
    » https://doi.org/10.1130/MEM163-p131
  • Woodruff F., Douglas R.G. 1981. Response of deep-sea benthic foraminifera to Miocene paleoclimatic events, DSDP Site 289. Marine Micropaleontology, 6(5-6):617-632. https://doi.org/10.1016/0377-8398(81)90024-4
    » https://doi.org/10.1016/0377-8398(81)90024-4
  • Yasuhara M., Hunt G., Cronin T.M., Okahashi H. 2009a. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106(51):21717-21720. https://doi.org/10.1073/pnas.0910935106
    » https://doi.org/10.1073/pnas.0910935106
  • Yasuhara M., Hunt G., Okahashi M., Brandão S.N. 2013. The ‘Oxycythereis’ problem: Taxonomy and palaeobiogeography of deep-sea ostracod genera Pennyella and Rugocythereis Palaeontology, 56(5):1045-1080. https://doi.org/10.1111/pala.12035
    » https://doi.org/10.1111/pala.12035
  • Yasuhara M., Hunt G., Okahashi H., Brandão S. 2015. Taxonomy of Deep-Sea Trachyleberidid, Thaerocytherid, and Hemicytherid Genera (Ostracoda). Smithsonian Contributions to Paleobiology, 96:1-216. https://doi.org/10.5479/si.1943-6688.96
    » https://doi.org/10.5479/si.1943-6688.96
  • Yasuhara M., Okahashi M. 2015. Late Quaternary deep-sea ostracod taxonomy of the eastern North Atlantic Ocean. Journal of Micropalaeontology, 34(1):21-49. https://doi.org/10.1144/jmpaleo2013-022
    » https://doi.org/10.1144/jmpaleo2013-022
  • Yasuhara M., Okahashi H., Cronin T.M. 2009b. Taxonomy of Quaternary deep-sea ostracods from the western North Atlantic Ocean. Palaeontology, 52(4):879-931. https://doi.org/10.1111/j.1475-4983.2009.00888.x
    » https://doi.org/10.1111/j.1475-4983.2009.00888.x
  • Yasuhara M., Okahashi H., May Huang H., Hong Y., Iwatani H., Wai Ching Chu R., Hunt G. 2021. Quaternary equatorial Atlantic deep-sea ostracodes: evidence for a distinct tropical fauna in the deep sea. Journal of Paleontology, 95(S86), 1-41. https://doi.org/10.1017/jpa.2021.52
    » https://doi.org/10.1017/jpa.2021.52
  • Yasuhara M., Tittensor D.P., Hillebrand H., Worm B. 2017. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 92(1):199-215. https://doi.org/10.1111/brv.12223
    » https://doi.org/10.1111/brv.12223
  • Zhang D., Msadek R., Mcphaden M.J., Delworth,T. 2011. Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. Journal of Geophysical Research Letters, 116(C4). https://doi.org/10.1029/2010JC006812
    » https://doi.org/10.1029/2010JC006812
  • Zhou B., Zhao Q. 1999. Allochthonous ostracods in the South China Sea and their significance in indicating downslope sediment contamination. Marine Geology, 156(1-4):187-195. https://doi.org/10.1016/S0025-3227(98)00178-9
    » https://doi.org/10.1016/S0025-3227(98)00178-9

Publication Dates

  • Publication in this collection
    12 May 2023
  • Date of issue
    2023

History

  • Received
    06 Apr 2022
  • Accepted
    02 Jan 2023
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br