Acessibilidade / Reportar erro

Human pressures degrade the ecological condition of the Upper Graipu River

Pressões humanas degradam a condição ecológica do Alto Ribeirão Graipu

ABSTRACT

Environmental degradation from human pressures includes the conversion of native vegetation cover into pastures and cropland, as well as riparian deforestation, leading to river siltation, biotic homogenization, and loss of ecosystem services. The objective of our study was to evaluate water quality and benthic macroinvertebrate assemblage structure in response to changes in land use at local and buffer spatial extents. We assumed that human disturbances negatively affect water quality and macroinvertebrate assemblage condition. Greater human influence was observed at the local extent (Local Disturbance Index – LDI) than at the buffer (Buffer Disturbance Index – BDI) extent. Likewise, biological metric responses were stronger relative to the LDI than to the BDI or to the Integrated Disturbance Index (IDI). These results support establishing a biomonitoring program for assessing water body quality in the Doce River basin to facilitate conserving aquatic biodiversity and ecosystem services in the upper Graipu River.

Keywords:
Degradation; Bioindicators; Water quality; Benthic macroinvertebrates

RESUMO

A degradação ambiental causada por pressões antrópicas inclui a conversão de cobertura vegetal nativa em pastagens e terras agrícolas, bem como o desmatamento de zonas ripárias, levando ao assoreamento de rios, à homogeneização biótica e à perda de serviços ecossistêmicos. O objetivo do nosso estudo foi avaliar a qualidade de água e a estrutura de assembleia de macroinvertebrados bentônicos em resposta a mudanças no uso da terra em extensões espaciais locais e de microbacia (buffer). Para tanto, assumimos que os distúrbios humanos afetam negativamente a qualidade de água e a assembleia de macroinvertebrados bentônicos. Maior influência humana foi observada na escala local (Índice de Distúrbio Local – LDI) do que na escala de buffer (Índice de Distúrbio Buffer – BDI). Da mesma forma, as respostas das métricas biológicas foram mais correlacionadas ao LDI do que ao BDI ou o Índice Integrado de Distúrbio (IDI). Esses resultados apoiam o estabelecimento de um programa de biomonitoramento para avaliar a qualidade de corpos hídricos na bacia do rio Doce, fomentando a conservação de biodiversidade aquática e serviços ecossistêmicos no alto ribeirão Graipu.

Palavras-chave:
Degradação; Bioindicadores; Qualidade de água; Macroinvertebrados bentônicos

INTRODUCTION

The conservation of freshwater ecosystems and their biodiversity is essential to guarantee the maintenance of ecosystem goods and services, including water supply for multiple uses and climate regulation (Dudgeon et al., 2006Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163-182. http://dx.doi.org/10.1017/S1464793105006950.
http://dx.doi.org/10.1017/S1464793105006...
). One way to assess the ecological quality of aquatic ecosystems is by using benthic macroinvertebrates as bioindicators (Callisto et al., 2019aCallisto, M., Macedo, D. R., Castro, D. M. P., & Alves, C. B. M. (2019a). Bases conceituais para conservação e manejo de bacias hidrográficas. Belo Horizonte: CEMIG. https://doi.org/10.17648/bacias-hidrograficas.
https://doi.org/10.17648/bacias-hidrogra...
; Linares et al., 2019Linares, M. S., Assis, W., Castro Solar, R. R., Leitão, R. P., Hughes, R. M., & Callisto, M. (2019). Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Research and Applications, 35(6), 725-735. https://doi.org/10.1002/rra.3442.
https://doi.org/10.1002/rra.3442...
; Macedo et al., 2022Macedo, D. R., Callisto, M., Linares, M. S., Hughes, R. M., Romano, B. M. L., Rothe-neves, M., & Silveira, J. S. (2022). Urban stream rehabilitation in a densely populated Brazilian metropolis. Frontiers in Environmental Science, 10, 1-16. http://dx.doi.org/10.3389/fenvs.2022.921934.
http://dx.doi.org/10.3389/fenvs.2022.921...
).

Benthic macroinvertebrates inhabit the bottom substrate (sediment, macrophytes, filamentous algae, twigs) of freshwater ecosystems during at least part of their life cycles (Rosenberg & Resh, 1993Rosenberg, D., & Resh, V. H. 1993. Freshwater biomonitoring and benthic macroinvertebrates (Vol. 40, 158 p.). New York: Chapman & Hall. Retrieved in 2023, October 12, from https://onlinelibrary.wiley.com/doi/10.1002/aqc.3270040110
https://onlinelibrary.wiley.com/doi/10.1...
; Mugnai et al., 2010Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro (174 p.). Rio de Janeiro: Technical Books.). These assemblages can indicate anthropogenic disturbances of ecosystems and their catchments through their taxonomic composition, presence, abundance, functional traits, and distribution. If studies are designed and analyzed appropriately, benthic macroinvertebrates can distinguish anthropogenic from natural disturbances (Cao & Wang, 2023Cao, Y., & Wang, L. (2023). How to statistically disentangle the effects of environmental factors and human disturbances: a review. Water, 15(4), 1-14. http://dx.doi.org/10.3390/w15040734.
http://dx.doi.org/10.3390/w15040734...
; Holt & Miller, 2010Holt, E. A., & Miller, S. W. (2010). Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge, 3(10), 8. Retrieved in 2023, October 12, from https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/
https://www.nature.com/scitable/knowledg...
; Moya et al., 2011Moya, N., Hughes, R. M., Domínguez, E., Gibon, F. M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840-847. http://dx.doi.org/10.1016/j.ecolind.2010.10.012.
http://dx.doi.org/10.1016/j.ecolind.2010...
; Silva et al., 2017Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.
http://dx.doi.org/10.1016/j.ecolind.2017...
). These organism responses to multiple anthropogenic pressures enable assessing rapid causal link responses between environmental stressors and aquatic biota (Rosenberg & Resh, 1993Rosenberg, D., & Resh, V. H. 1993. Freshwater biomonitoring and benthic macroinvertebrates (Vol. 40, 158 p.). New York: Chapman & Hall. Retrieved in 2023, October 12, from https://onlinelibrary.wiley.com/doi/10.1002/aqc.3270040110
https://onlinelibrary.wiley.com/doi/10.1...
; Barbour et al., 1999Barbour, M. T., Faulkner, C., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish (2nd ed., 337 p.). Retrieved in 2023, October 12, from https://www.epa.gov/sites/default/files/2019-02/documents/rapid-bioassessment-streams-rivers-1999.pdf
https://www.epa.gov/sites/default/files/...
; França & Callisto, 2019França, J. S., & Callisto, M. (2019). Monitoramento participativo de rios urbanos por estudantes-cientistas. Belo Horizonte: J. S. França. http://dx.doi.org/10.17648/ufmg-monitoramento.
http://dx.doi.org/10.17648/ufmg-monitora...
). Furthermore, benthic macroinvertebrates play key roles in food chains, serving as food for other invertebrates and vertebrates, including fish, amphibians, reptiles, and birds (Agouridis et al., 2015Agouridis, C. T., Wesley, E. T., Sanderson, T. M., & Newton, B. L. (2015). Aquatic macroinvertebrates: biological indicators of stream health. Agriculture and Natural Resources Publications, 5, 1-5.; Rosa et al., 2023Rosa, D. M., Monteiro, A. B., Faria, L. D. B., & Pompeu, P. S. (2023). The influence of non-native invertebrate species in the food web structure of two Neotropical reservoirs. Aquatic Invasions, 18(2), 277-293. http://dx.doi.org/10.3391/ai.2023.18.2.103850.
http://dx.doi.org/10.3391/ai.2023.18.2.1...
; Simeone, 2023Simeone, D. (2023). Effect of logged forests on diet of small characids from Neotropical streams. Ecology Freshwater Fish, 32. In press. http://dx.doi.org/10.1111/eff.12743.
http://dx.doi.org/10.1111/eff.12743...
). Benthic macroinvertebrates are commonly used in biomonitoring programs for diagnosing and assessing biotic condition in river basins in response to anthropogenic pressures (Karr, 1999Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41(2), 221-234. http://dx.doi.org/10.1046/j.1365-2427.1999.00427.x.
http://dx.doi.org/10.1046/j.1365-2427.19...
; Callisto et al., 2019aCallisto, M., Macedo, D. R., Castro, D. M. P., & Alves, C. B. M. (2019a). Bases conceituais para conservação e manejo de bacias hidrográficas. Belo Horizonte: CEMIG. https://doi.org/10.17648/bacias-hidrograficas.
https://doi.org/10.17648/bacias-hidrogra...
; Feio et al., 2022Feio, M. J., Hughes, R. M., Serra, S. R. Q., Nichols, S. J., Kefford, B. J., Lintermans, M., Robinson, W., Odume, O. N., Callisto, M., Macedo, D. R., Harding, J. S., Yates, A. G., Monk, W., Nakamura, K., Mori, T., Sueyoshi, M., Mercado-Silva, N., Chen, K., Baek, M. J., & Sharma, S. (2022). Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Global Change Biology, 29(2), 355-374. http://dx.doi.org/10.1111/gcb.16439.
http://dx.doi.org/10.1111/gcb.16439...
).

In freshwater monitoring programs, biological responses are, in general, preferable to physical or chemical parameters because they provide a more comprehensive assessment of aquatic ecosystem condition (Callisto et al., 2019bCallisto, M., Macedo, D. R., Linares, M. S., & Hughes, R. M. (2019b). Multi-status and multi-spatial scale assessment of landscape effects on benthic macroinvertebrates in the Neotropical Savanna. In R. M. Hughes, D. M. Infante, L. Wang, K. Chen, & B. F. Terra (Eds.), Advances in understanding landscape influences on freshwater habitats and biological assemblages (pp. 275-302). Bethesda: American Fisheries Society. American Fisheries Society Symposium 90.; Thompson et al., 2008Thompson, S. A., Thompson, G. G., & Withers, P. C. (2008). Rehabilitation index for evaluating restoration of terrestrial ecosystems using the reptile assemblage as the bio-indicator. Ecological Indicators, 8(5), 530-549. http://dx.doi.org/10.1016/j.ecolind.2007.07.001.
http://dx.doi.org/10.1016/j.ecolind.2007...
). Martins et al. (2020)Martins, I., Rodrigues, D., Hughes, R. M., & Callisto, M. (2020). Are multiple multimetric indices effective for assessing ecological condition in tropical basins?Ecological Indicators, 110, 105953. http://dx.doi.org/10.1016/j.ecolind.2019.105953.
http://dx.doi.org/10.1016/j.ecolind.2019...
recommended the application of multimetric indices as a tool for diagnosing and monitoring river basins under intense human activity. These indices integrate, in a single measure, several assemblage components (such as richness, dominance, taxonomic composition, trophic groups, mobility, tolerance, etc.) in response to natural environmental variations and anthropogenic pressures (Macedo et al., 2016Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R. O., Ligeiro, R., Kaufmann, P. R., & Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecological Indicators, 64, 132-141. http://dx.doi.org/10.1016/j.ecolind.2015.12.019.
http://dx.doi.org/10.1016/j.ecolind.2015...
; Silva et al., 2017Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.
http://dx.doi.org/10.1016/j.ecolind.2017...
; Terra et al., 2013Terra, B. D. F., Hughes, R. M., Francelino, M. R., & Araújo, F. G. (2013). Assessment of biotic condition of atlantic rain forest streams: A fish-based multimetric approach. Ecological Indicators, 34, 136-148. http://dx.doi.org/10.1016/j.ecolind.2013.05.001.
http://dx.doi.org/10.1016/j.ecolind.2013...
). The application of multimetric indices is a reality globally and recommended as a practical tool for biomonitoring ecosystem condition (Feio et al., 2022Feio, M. J., Hughes, R. M., Serra, S. R. Q., Nichols, S. J., Kefford, B. J., Lintermans, M., Robinson, W., Odume, O. N., Callisto, M., Macedo, D. R., Harding, J. S., Yates, A. G., Monk, W., Nakamura, K., Mori, T., Sueyoshi, M., Mercado-Silva, N., Chen, K., Baek, M. J., & Sharma, S. (2022). Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Global Change Biology, 29(2), 355-374. http://dx.doi.org/10.1111/gcb.16439.
http://dx.doi.org/10.1111/gcb.16439...
; Vadas et al., 2022Vadas, R. L., Hughes, R. M., Bae, Y. J., Baek, M. J., Gonzáles, O. C. B., Callisto, M., Carvalho, D. R., Chen, K., Ferreira, M. T., Fierro, P., Harding, J. S., Infante, D. M., Kleynhans, C. J., Macedo, D. R., Martins, I., Silva, N. M., Moya, N., Nichols, S. J., Pompeu, P. S., & Yoder, C. O. (2022). Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 1(3), 100054. http://dx.doi.org/10.1016/j.watbs.2022.100054.
http://dx.doi.org/10.1016/j.watbs.2022.1...
).

Local riparian zone condition is an important factor affecting the structure and function of lotic ecosystems (Kaufmann et al., 2022Kaufmann, P. R., Hughes, R. M., Paulsen, S. G., Peck, D. V., Seeliger, C. W., Kincaid, T., & Mitchell, R. M. (2022). Physical habitat in conterminous US streams and rivers, part 2: a quantitative assessment of habitat condition. Ecological Indicators, 141, 109047. http://dx.doi.org/10.1016/j.ecolind.2022.109047.
http://dx.doi.org/10.1016/j.ecolind.2022...
). The riparian zone acts as a filter of anthropogenic disturbances; therefore, riparian deforestation is reflected in macroinvertebrate assemblages (Castro et al., 2018Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573-582. http://dx.doi.org/10.1016/j.ecolind.2017.09.030.
http://dx.doi.org/10.1016/j.ecolind.2017...
; Martins et al., 2021Martins, R. T., Brito, J., Dias-Silva, K., Leal, C. G., Leitão, R. P., Oliveira, V. C., Oliveira-Júnior, J. M. B., Ferraz, S. F. B., Paula, F. R., Roque, F. O., Hamada, N., Juen, L., Nessimian, J. L., Pompeu, P. S., & Hughes, R. M. (2021). Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators, 127, 107773. http://dx.doi.org/10.1016/j.ecolind.2021.107773.
http://dx.doi.org/10.1016/j.ecolind.2021...
). At regional and catchment extents, anthropogenic activities generally are comprised of land use changes, which affect lotic ecosystem structure and function even long after these uses cease (Linares et al., 2023Linares, M. S., Macedo, D. R., Hughes, R. M., Castro, D. M. P., & Callisto, M. (2023). The past is never dead: legacy effects alter the structure of benthic macroinvertebrate assemblages. Limnetica, 42(1), 55-67. http://dx.doi.org/10.23818/limn.42.05.
http://dx.doi.org/10.23818/limn.42.05...
). Both recent and historical catchment deforestation can degrade aquatic assemblages as a result of complex interactions among direct and indirect pathways and latent effects, but because of their indirect nature, these effects tend to be more subtle than those at local extents (Betts et al., 2022Betts, J. T., Urquhart, G. R., Román-Heracleo, J., & Jossely, J. C. (2022). Effects of deforestation from cattle ranching over time on protected rainforest streams in the Rama-Kriol Territory, Nicaragua. Hydrobiologia, 849(20), 4547-4568. http://dx.doi.org/10.1007/s10750-021-04684-w.
http://dx.doi.org/10.1007/s10750-021-046...
; Leitão et al., 2018Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., Villéger, S., Pompeu, P., Kasper, D., Paula, F. R., Ferraz, S. F. B., & Jardineiro, T. A. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 40, 1-13. http://dx.doi.org/10.1111/ecog.02845.
http://dx.doi.org/10.1111/ecog.02845...
; Alvarenga et al., 2021Alvarenga, L. R. P., Pompeu, P. S., Leal, C. G., Hughes, R. M., Fagundes, D. C., & Leitão, R. P. (2021). Land-use changes affect the functional structure of stream fish assemblages in the Brazilian savanna. Neotropical Ichthyology, 19(3), 1-21. http://dx.doi.org/10.1590/1982-0224-2021-0035.
http://dx.doi.org/10.1590/1982-0224-2021...
). Among the many methodologies developed to characterize anthropogenic disturbances, the Integrated Disturbance approach, that uses Local, Buffer and Integrated Indices, has proven to be a powerful tool in biomonitoring efforts (Ligeiro et al., 2013Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., & Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45-57. http://dx.doi.org/10.1016/j.ecolind.2012.09.004.
http://dx.doi.org/10.1016/j.ecolind.2012...
).

Thus, our aim was to evaluate the responses of benthic macroinvertebrate assemblages to diffuse anthropogenic pressures from land use and cover. For that we tested the hypothesis that benthic macroinvertebrate assemblages would respond more readily to local anthropogenic disturbances. We predicted that the Local Disturbance Index (LDI) would have more biological metrics with significant negative correlations than the Buffer Disturbance Index (BDI) or the Integrated Disturbance Index (IDI).

MATERIAL AND METHODS

Study area

The Graipu River basin is located between the Guanhães and Sabinópolis municipalities, in the Vale do Rio Doce, central-northeastern Minas Gerais state, Brazil. The mean altitude of the region is 852 m and its human population is 34,818 (Instituto Brasileiro de Geografia e Estatística, 2022Instituto Brasileiro de Geografia e Estatística – IBGE. (2022). Estimativa de população_ município de Guanhães_avaliação em 2021. Retrieved in 2022, September 23, from https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
https://cidades.ibge.gov.br/brasil/mg/gu...
). The Graipu River basin covers an area of 266 km2, and is a tributary of the Corrente Grande River, which flows into the Doce River (Instituto Brasileiro de Geografia e Estatística, 2022Instituto Brasileiro de Geografia e Estatística – IBGE. (2022). Estimativa de população_ município de Guanhães_avaliação em 2021. Retrieved in 2022, September 23, from https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
https://cidades.ibge.gov.br/brasil/mg/gu...
) (Figure 1).

Figure 1
Distribution of the seven sampling sites.

The climate is predominantly tropical rainy savannah (Aw), with dry winters and abundant summer rainfall (Tonello et al., 2009Tonello, K., Dias, H., Souza, A., Ribeiro, C., Firme, D., & Leite, F. (2009). Diagnóstico hidroambiental da bacia hidrográfica da Cachoeira das Pombas, município de Guanhães, MG, Brasil. Revista Ambiente & Água – An Interdisciplinary Journal of Applied Science, 4(1), 156-168. http://dx.doi.org/10.4136/ambi-agua.80.
http://dx.doi.org/10.4136/ambi-agua.80...
). The basin is in the Atlantic Forest biome (Instituto Brasileiro de Geografia e Estatística, 2022Instituto Brasileiro de Geografia e Estatística – IBGE. (2022). Estimativa de população_ município de Guanhães_avaliação em 2021. Retrieved in 2022, September 23, from https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
https://cidades.ibge.gov.br/brasil/mg/gu...
), with an annual average precipitation of 1,212 mm and average temperature of 22.2 ºC (Souza et al., 2006Souza, M. J. H., Ribeiro, A., Leite, H. G., Leite, F. P., & Minuzzi, R. B. (2006). Relação entre disponibilidade hídrica e produtividade do eucalipto em diferentes cidades, em Guanhães, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3), 629-638. http://dx.doi.org/10.1590/s1415-43662006000300014.
http://dx.doi.org/10.1590/s1415-43662006...
). This biome is considered an important biodiversity hotspot because of its high richness and abundance of endemic and endangered species of fauna (mammals, arthropods, etc.) and flora (Myers et al., 2000Myers, N., Mittermeler, R. A., Mittermeler, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. http://dx.doi.org/10.1038/35002501.
http://dx.doi.org/10.1038/35002501...
). Previously it was dominated by semideciduous seasonal forest, which in recent years has been mostly converted into pasture (Tonello et al., 2009Tonello, K., Dias, H., Souza, A., Ribeiro, C., Firme, D., & Leite, F. (2009). Diagnóstico hidroambiental da bacia hidrográfica da Cachoeira das Pombas, município de Guanhães, MG, Brasil. Revista Ambiente & Água – An Interdisciplinary Journal of Applied Science, 4(1), 156-168. http://dx.doi.org/10.4136/ambi-agua.80.
http://dx.doi.org/10.4136/ambi-agua.80...
).

We sampled seven sites on headwater streams in the upper basin. Five of these sites (P3, P4, P5, P6 and P7) were selected because of their importance to the water supply of the Ganhães municipality. The other two (P1 and P2) were in conservation areas in the same river basin, to serve as reference sites. To separate natural from anthropogenic factors, the selected streams were all uniformly shallow (~30 cm depth), narrow (<1m wide), and had sandy bottom substrate. Because site locations may result in spatial autocorrelation, we performed a Moran’s I test for spatial autocorrelation (Lecocq et al., 2019Lecocq, T., Harpke, A., Rasmont, P., & Schweiger, O. (2019). Integrating intraspecific differentiation in species distribution models: consequences on projections of current and future climatically suitable areas of species. Diversity & Distributions, 25(7), 1088-1100. http://dx.doi.org/10.1111/ddi.12916.
http://dx.doi.org/10.1111/ddi.12916...
; Smeraldo et al., 2020Smeraldo, S., Bosso, L., Fraissinet, M., Bordignon, L., Brunelli, M., Ancillotto, L., & Russo, D. (2020). Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodiversity and Conservation, 29(6), 1959-1976. http://dx.doi.org/10.1007/s10531-020-01961-3.
http://dx.doi.org/10.1007/s10531-020-019...
) as an a priori test, for richness and BMWP. Because we found no spatial autocorrelation we proceeded with our analyses (Supplementary Material S1).

Site P1 is located inside the Serra da Candonga State Park in the Guanhães River basin (Figure 1). Site P2 is on the Graipu River in the Legal Reserve area of the Forestal Company Cellulose Nipo Brasileira (CENIBRA S.A.) in the middle basin. Site P3 is on the Graipu River, downstream from the dam that collects raw water for the municipality of Guanhães. Site P4 is on the Graipu River in a pasture area downstream of Santa Cruz Stream upstream of the dam. Site P5, on the Graipu River, is located near the entrance of the Minas Mineração Guanhães Company, which is affected by heavy vehicle traffic, and mining and domestic/cattle wastewaters. Site P6 is in a rural area close to the Graipu River. Site P7 is located upstream of the Santa Cruz Stream and the dam (Figure 1). The land use around each stream was dominated by pasture, except for P1, which was dominated by natural forest (Table 1).

Table 1
Land use in the 1-km buffers of the seven sampling sites (%).

Benthic macroinvertebrate sampling

In each of the seven 25-m long sites, benthic macroinvertebrates were collected from three randomly selected stations with a minimum distance of 5 m from each other for a total area of 0.27 m2 sampled per site, following an adapted version of Linares et al. (2019)Linares, M. S., Assis, W., Castro Solar, R. R., Leitão, R. P., Hughes, R. M., & Callisto, M. (2019). Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Research and Applications, 35(6), 725-735. https://doi.org/10.1002/rra.3442.
https://doi.org/10.1002/rra.3442...
. Each station was sampled for 3 minutes (1 minute per sub-sample) by using a D-frame kicknet (250 µm mesh) attached to a 1.5 m metal pole. The three sub-samples were then pooled together for the site analyses.

All the collected material was transferred to plastic bags identified by site and fixed with ethanol 70%. The samples then were taken for processing at the Benthic Ecology Laboratory of the Universidade Federal de Minas Gerais. The samples were washed over a 0.50 mm mesh sieve and then transferred to a clear glass tray superimposed on a light box. Benthic macroinvertebrates were sorted and identified to family level for Insecta, and subclass for Mollusca, Annelida, and Acari through use of taxonomic keys (Mugnai et al., 2010Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro (174 p.). Rio de Janeiro: Technical Books.; Hamada et al., 2014Hamada, N., Nessimian, J. L., & Querino, R. B. (2014). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia (724 p.). Manaus: Editora do INPA.).

Physical and chemical water quality

We measured water temperature (ºC), pH, electrical conductivity (μS/cm), turbidity (NTU), and total dissolved solids (TDS; ppm) in situ at each site via portable Digimed probes. We measured dissolved oxygen (mg/L and % saturation) using the Winkler method (American Public Health Association, 2005American Public Health Association – APHA. (2005). Standard methods for the examination of water and wastewater (21st ed., 2671 p.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation. Retrieved in 2023, October 12, from https://www.standardmethods.org/
https://www.standardmethods.org/...
). We collected water samples in polypropylene bottles for subsequent analysis of total nitrogen (TN) and total phosphorus (TP) in the Geomorphology and Water Resources Laboratory of the Universidade Federal de Minas Gerais. We analyzed biochemical oxygen demand (BOD) samples at the Autonomous Water and Sewage Service (SAAE) laboratory in Guanhães. All protocols carefully followed American Public Health Association (2005)American Public Health Association – APHA. (2005). Standard methods for the examination of water and wastewater (21st ed., 2671 p.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation. Retrieved in 2023, October 12, from https://www.standardmethods.org/
https://www.standardmethods.org/...
. The results obtained for each parameter were compared to the maximum value allowed (MVA) by the governments of Brazil (CONAMA 357/2005; Brasil, 2005Brasil. (2005, March 18). Resolução CONAMA nº 357, de 17 de março de 2005* (retificada). Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.) and the states of Minas Gerais [ND COPAM/CERH-MG Nº 8, 11/2022; Minas Gerais (2022)Minas Gerais. (2022, December 2). Deliberação normativa conjunta COPAMCERH/MG nº 8, de 21 de novembro de 2022. Diário do Executivo “Minas Gerais”, Belo Horizonte.] and São Paulo [CETESB; Companhia Ambiental do Estado de São Paulo (2009)Companhia Ambiental do Estado de São Paulo – CETESB. (2009). Apêndice D: significado ambiental e sanitário das variáveis de qualidade (46 p.). Retrieved in 2023, October 12, from https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Ap%C3%AAndice-D-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-29-04-2014.pdf
https://cetesb.sp.gov.br/aguas-interiore...
].

Local, buffer, and integrated disturbance indices

To evaluate land use and cover, we used local and intermediate extent data (Shapefile) available on the MapBiomas (2020)MapBiomas. (2020). MapBiomas_delimitação territorial em Guanhães. Retrieved in 2023, October 12, from https://plataforma.brasil.mapbiomas.org/?activeBaseMap=8&layersOpacity=70&activeModule=coverage&activeModuleContent=coverage%3Acoverage_main&activeYear=2020&mapPosition=-18.856039%2C-42.808999%2C10&timelineLimitsRange=1985%2C2020&baseParams[territoryType]
https://plataforma.brasil.mapbiomas.org/...
digital platforms, and the Instituto Brasileiro de Geografia e Estatística (Instituto Brasileiro de Geografia e Estatística, 2022Instituto Brasileiro de Geografia e Estatística – IBGE. (2022). Estimativa de população_ município de Guanhães_avaliação em 2021. Retrieved in 2022, September 23, from https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
https://cidades.ibge.gov.br/brasil/mg/gu...
). We obtained data on landscape structure, forest formation, watercourses, pasture areas, agriculture, and urbanization for the basin. The maps and all operations of the geographic information system were performed using the Qgis Software (3.22.10 version).

The local disturbance index (LDI) was calculated using the Callisto et al. (2002)Callisto, M., Ferreira, W., Moreno, P., Goulart, M., & Petrucio, M. (2002). Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnologica Brasiliensia, 14(1), 91-98. Retrieved in 2023, October 12, from http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/Callisto%20et%20al%202002%20(Protocolo)%20-%20Acta%20Limnologica%20Brasiliensia.pdf
http://labs.icb.ufmg.br/benthos/index_ar...
protocol, which evaluates the land-use types on the sample site margins, presence of erosion, anthropogenic alterations, vegetation cover, and physical habitat complexity of the sampled site. The degree of disturbance is scored from 00 to 100. To calculate the buffer disturbance index (BDI) the percentages of pasture, agriculture, and urbanization inside a 1-km radius buffer was calculated as follows:

BDI = 4 x % urban areas + 2 x % agricultural areas + % pasture areas (1)

After calculating the LDI and BDI, we calculated the integrated disturbance index (IDI; Ligeiro et al., 2013Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., & Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45-57. http://dx.doi.org/10.1016/j.ecolind.2012.09.004.
http://dx.doi.org/10.1016/j.ecolind.2012...
). The IDI was calculated as the Euclidian distance between the position of the site in the disturbance plane based on the values obtained by the BDI and LDI through the Pythagorean theorem (Ligeiro et al., 2013Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., & Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45-57. http://dx.doi.org/10.1016/j.ecolind.2012.09.004.
http://dx.doi.org/10.1016/j.ecolind.2012...
). For each index, the greater the score, the greater the anthropogenic disturbances of the site.

Biotic indicators

To evaluate the responses of benthic macroinvertebrate assemblages to anthropogenic disturbance we calculated individual biological metrics and multimetric indices. Metrics included taxonomic richness, abundance of individuals, % EPT, and taxa richness of resistant organisms (Callisto et al., 2022Callisto, M., Massara, R. L., Linares, M. S., & Hughes, R. M. (2022). Benthic macroinvertebrate assemblages detect the consequences of a sewage spill: a case study of a South American environmental challenge. Limnology, 23, 181-194. http://dx.doi.org/10.1007/s10201-021-00680-0.
http://dx.doi.org/10.1007/s10201-021-006...
; Carrera & Fierro, 2018Carrera, C., & Fierro, K. (2018). Manual de monitoreo: los macroinvertebrados acuáticos como indicadores de la calidad del agua (Vol. 2). Retrieved in 2023, October 12, from http://www.flacsoandes.edu.ec/libros/digital/56374.pdf
http://www.flacsoandes.edu.ec/libros/dig...
; Junqueira et al., 2000Junqueira, M. V., Amarante, M. C., Dias, C. F. S., & França, E. S. (2000). Biomonitoramento da qualidade das águas da bacia do Alto Rio das Velhas (MG/Brasil) através de macroinvertebrados. Acta Limnologica Brasiliensia, 12(1), 73-87.; Merritt et al., 2014Merritt, R. W., Cummins, K. W., & Campbell, E. (2014). Uma abordagem funcional para a caracterização de Riachos Brasileiros. In N. Hamada, J. L. Nessimian & R. B. Querino (Eds.), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia (pp. 69-88). Manaus: Editora do INPA.) plus BMWP and BMWP-ASPT (Monteiro et al., 2008Monteiro, T. R., Oliveira, L. G., & Godoy, B. S. (2008). Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice biótico BMWP’ à bacia do rio Meia Ponte - GO. Oecologia Brasiliensis, 12(3), 553-563.; Junqueira et al., 2018Junqueira, M. V., Alves, K. C., Paprocki, H., Campos, M. S., Carvalho, M. D., Mota, H. R., & Rolla, M. E. (2018). Índices bióticos para avaliação de qualidade de água de rios tropicais – síntese do conhecimento e estudo de caso: bacia do Alto Rio Doce. Revista Brasileira de Ciências Ambientais, 49, 15-33. http://dx.doi.org/10.5327/z2176-947820180322.
http://dx.doi.org/10.5327/z2176-94782018...
). We also used three multimetric indices (MMIs): Ferreira et al., 2011, Macedo et al., 2016; Silva et al., 2017). The Biological Monitoring Working Party (BMWP) and the Average Score per Taxon (BMWP-ASPT) evaluate the presence of families of benthic macroinvertebrates considering their degree of tolerance to organic pollution. Values from 1 to 10 are assigned according to the degree of tolerance or sensitivity of each family, with 1 for the most tolerant organisms and 10 for the most sensitive organisms (Monteiro et al., 2008Monteiro, T. R., Oliveira, L. G., & Godoy, B. S. (2008). Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice biótico BMWP’ à bacia do rio Meia Ponte - GO. Oecologia Brasiliensis, 12(3), 553-563.; Junqueira et al., 2018Junqueira, M. V., Alves, K. C., Paprocki, H., Campos, M. S., Carvalho, M. D., Mota, H. R., & Rolla, M. E. (2018). Índices bióticos para avaliação de qualidade de água de rios tropicais – síntese do conhecimento e estudo de caso: bacia do Alto Rio Doce. Revista Brasileira de Ciências Ambientais, 49, 15-33. http://dx.doi.org/10.5327/z2176-947820180322.
http://dx.doi.org/10.5327/z2176-94782018...
). In the BMWP, five scores are assigned to define water quality: > 81 indicates “excellent” water quality; 80-61 indicate “good” water quality; 60-41 “fair”; 40-26 “bad”; and scores < 25 indicate “terrible” water quality. For the BMWP-ASPT index, score classifications are: > 6 “very good” water quality; 5.0-6.0 “good”; 3.9-4.9 “fair”; 2.5-3.8 “bad”; < 2.5 “terrible” (Monteiro et al., 2008Monteiro, T. R., Oliveira, L. G., & Godoy, B. S. (2008). Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice biótico BMWP’ à bacia do rio Meia Ponte - GO. Oecologia Brasiliensis, 12(3), 553-563.; Junqueira et al., 2018Junqueira, M. V., Alves, K. C., Paprocki, H., Campos, M. S., Carvalho, M. D., Mota, H. R., & Rolla, M. E. (2018). Índices bióticos para avaliação de qualidade de água de rios tropicais – síntese do conhecimento e estudo de caso: bacia do Alto Rio Doce. Revista Brasileira de Ciências Ambientais, 49, 15-33. http://dx.doi.org/10.5327/z2176-947820180322.
http://dx.doi.org/10.5327/z2176-94782018...
). The MMIs are calculated from a set of biological metrics (e.g., taxonomic richness, functional structure, species composition) that classify the ecological quality of aquatic ecosystems by comparing the results reflecting anthropogenic disturbances (Silva et al., 2017Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.
http://dx.doi.org/10.1016/j.ecolind.2017...
) with those of locations considered as being in reference condition (Baptista, 2008Baptista, D. F. (2008). Uso de macroinvertebrados em procedimentos de biomonitoramento em ecossistemas aquáticos. Oecologia Australis, 12(3), 425-441. http://dx.doi.org/10.4257/oeco.2008.1203.05.
http://dx.doi.org/10.4257/oeco.2008.1203...
; Vadas et al., 2022Vadas, R. L., Hughes, R. M., Bae, Y. J., Baek, M. J., Gonzáles, O. C. B., Callisto, M., Carvalho, D. R., Chen, K., Ferreira, M. T., Fierro, P., Harding, J. S., Infante, D. M., Kleynhans, C. J., Macedo, D. R., Martins, I., Silva, N. M., Moya, N., Nichols, S. J., Pompeu, P. S., & Yoder, C. O. (2022). Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 1(3), 100054. http://dx.doi.org/10.1016/j.watbs.2022.100054.
http://dx.doi.org/10.1016/j.watbs.2022.1...
).

Data analyses

To test how anthropogenic impacts at local and buffer extents influenced the condition of benthic macroinvertebrate assemblages, we ran Generalized Linear Models (GLMs) with the disturbance indices (IDI, LDI and BDI) as predictor variables and the biological indicators (Richness, Abundance, BMWP, BMWP/ASPT, % EPT, Resistant taxa richness, and MMIs as response “variables”. To fit the models to the response variables, we used quasipoisson for Abundance, Richness, BMWP, Resistant Taxa Richness, and the MMIs, and Gaussian for the remaining biological metrics. The models were then tested with a deviance analysis (F test). All tests were carried out using R 4.2.1 (R Core Team, 2015R Core Team. (2015). R: uma linguagem e ambiente para computação estatística. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, October 12, from www.r-project.org/).

RESULTS AND DISCUSSION

The results of water quality conditions were in compliance with the limits established by the Brazilian National water standards (CONAMA Resolution 357/2005, Class 2; Brasil, 2005Brasil. (2005, March 18). Resolução CONAMA nº 357, de 17 de março de 2005* (retificada). Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.), with few exceptions (Table 2). Turbidity, pH, total dissolved solids, dissolved oxygen, and total nitrogen were within the limits established by the National CONAMA 357/2005 Resolution for class 2 waters (Brasil, 2005Brasil. (2005, March 18). Resolução CONAMA nº 357, de 17 de março de 2005* (retificada). Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.) and Minas Gerais [ND 08 COPAM/CERH 11/2022; Minas Gerais (2022)Minas Gerais. (2022, December 2). Deliberação normativa conjunta COPAMCERH/MG nº 8, de 21 de novembro de 2022. Diário do Executivo “Minas Gerais”, Belo Horizonte.]. The exception was site P5, where 4.59 mg/L of dissolved oxygen was recorded. According to Paula et al. (2018)Paula, F. R., Gerhard, P., Ferraz, S. F. B., & Wenger, S. J. (2018). Multi-scale assessment of forest cover in an agricultural landscape of Southeastern Brazil: implications for management and conservation of stream habitat and water quality. Ecological Indicators, 85, 1181-1191. http://dx.doi.org/10.1016/j.ecolind.2017.11.061.
http://dx.doi.org/10.1016/j.ecolind.2017...
, characteristics such as absence and/or replacement of riparian vegetation, sewage effluents, and low discharge contribute to reduced dissolved oxygen levels in aquatic ecosystems. This site borders the ore disposal road and is exposed to diffuse sources of sediment and dust related to mining activities, as well as domestic wastewaters.

Table 2
Water quality in the seven sites. Bold = legal standard violation.

Total phosphorus (TP) and BOD results were within the standards established by the Brazilian environmental legislation, but site P2 exceeded the TP standard and site P5 exceeded the BOD standard. These exceedances are likely associated with domestic sewage and livestock excrement (Von Sperling, 2005Von Sperling, M. (2005). Introdução à qualidade das águas e ao tratamento de esgotos: princípios do tratamento biológico de águas residuárias (452 p.). Belo Horizonte: DESA/UFMG.). In summary, the water quality standards only indicated meaningful violation at site P5, the only one directly affected by heavy vehicle traffic and mining, livestock, and domestic wastewaters.

The LDI, BDI, and IDI scores showed different patterns (Table 3). The local disturbance index (LDI) values indicated the greatest anthropogenic disturbances for sites P6 and P7, and the least for sites P1 and P2. However, the buffer disturbance index (BDI) showed the greatest anthropogenic disturbances at sites P3 and P5, and the least at site P1. On the other hand, the Integrated Disturbance Index (IDI), which reflects the combination of the LDI and the BDI, indicated that sites P5 and P7 experienced the greatest pressure from human activities, and sites P1 and P2 the least (Table 3). Unlike the water quality results, the landscape indices indicated moderate disturbance at sites P5, P6 and P7—not only P5. Others have also found landscape condition indicators useful and important for predicting and understanding water body condition (Allan, 2004Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.
http://dx.doi.org/10.1146/annurev.ecolsy...
; Herlihy et al., 2020Herlihy, A. T., Sifneos, J. C., Hughes, R. M., Peck, D. V., & Mitchell, R. M. (2020). The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators, 1(112), 1-38. http://dx.doi.org/10.1016/j.ecolind.2019.105958.
http://dx.doi.org/10.1016/j.ecolind.2019...
; Hughes et al., 2006Hughes, R. M., Wang, L., & Seelbach, P. W. (2006). Landscape influences on stream habitat and biological assemblages. Bethesda: American Fisheries Society.). Geodynamic factors, such as land use, influence geomorphological processes, physical habitat structure, and aquatic assemblages at small, medium, and large spatial extents (local, buffer, and integrated disturbance) (Allan, 2004Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.
http://dx.doi.org/10.1146/annurev.ecolsy...
; Macedo et al., 2014Macedo, D. R., Hughes, R. M., Ligeiro, R., Ferreira, W. R., Castro, M. A., Junqueira, N. T., Oliveira, D. R., Firmiano, K. R., Kaufmann, P. R., Pompeu, P. S., & Callisto, M. (2014). The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecology, 29(6), 1001-1016. http://dx.doi.org/10.1007/s10980-014-0036-9.
http://dx.doi.org/10.1007/s10980-014-003...
). Furthermore, these factors govern energy inputs into freshwater ecosystems, further influencing network connectivity, river channel shape, and local habitat structure (Allan, 2004Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.
http://dx.doi.org/10.1146/annurev.ecolsy...
; Callisto et al., 2019aCallisto, M., Macedo, D. R., Castro, D. M. P., & Alves, C. B. M. (2019a). Bases conceituais para conservação e manejo de bacias hidrográficas. Belo Horizonte: CEMIG. https://doi.org/10.17648/bacias-hidrograficas.
https://doi.org/10.17648/bacias-hidrogra...
; Goldstein et al., 2007Goldstein, R. M., Carlisle, D. M., Meador, M. R., & Short, T. M. (2007). Can basin land use effects on physical characteristics of streams be determined at broad geographic scales? Environmental Monitoring and Assessment, 130(1-3), 495-510. http://dx.doi.org/10.1007/s10661-006-9439-7.
http://dx.doi.org/10.1007/s10661-006-943...
).

Table 3
Local disturbance (LDI), buffer disturbance (BDI) and integrated disturbance (IDI) index scores of the seven sites. Bold = moderately disturbed.

In total, we collected 1441 benthic macroinvertebrates, classified into 41 different taxa (Appendix A Appendix A Macroinvertebrate taxonomic composition in the seven sampling sites, Minas Gerais, Brazil. Sampling sites Order Family P1 P2 P3 P4 P5 P6 P7 Ephemeroptera Leptophlebiidae 7 11 10 0 0 0 0 Leptohyphidae 4 0 0 0 0 0 0 Baetidae 1 1 81 0 0 0 0 Caenidae 0 0 0 1 0 3 0 Plecoptera Gripopterygidae 1 0 0 0 0 0 0 Perlidae 2 1 0 0 0 0 0 Trichoptera Helichopsychidae 3 0 0 0 0 0 0 Hydropsychidae 4 13 8 66 0 1 0 Odontoceridae 2 0 2 0 0 0 0 Hydroptilidae 0 0 1 0 0 0 0 Calamoceratidae 0 1 0 0 0 0 0 Leptoceridae 10 1 4 1 0 0 0 Polycentropodidae 0 2 0 0 0 0 0 Odonata Corduliidae 0 0 0 0 2 0 0 Gomphidae 10 0 1 0 0 0 1 Libellulidae 0 1 3 0 0 0 0 Calopterygidae 1 0 0 0 0 0 0 Perilestidae 0 0 0 0 0 1 0 Aeshnidae 0 1 1 0 0 0 1 Heteroptera Veliidae 0 2 0 0 0 0 0 Naucoridae 7 0 0 3 0 0 0 Mesoveliidae 0 0 15 0 0 0 0 Helotrephidae 0 0 0 1 0 0 0 Gerridae 0 0 1 0 0 0 0 Coleoptera Hydrophilidae 0 0 0 0 19 2 0 Elmidae 16 4 1 6 0 0 0 Hydrophiloidea 0 5 0 0 0 0 0 Megaloptera Corydalidae 1 1 0 0 0 0 0 Diptera Chaoboridae 0 0 3 4 0 0 0 Tipulidae 0 12 0 10 0 2 0 Chironomidae 152 10 80 269 135 158 3 Empididae 0 0 0 6 7 0 0 Ceratopogonidae 4 1 4 4 10 2 0 Psychodidae 0 0 0 1 1 0 0 Simuliidae 0 2 2 19 6 2 0 Oligochaeta 0 22 13 1 14 17 13 Gastropoda Planorbidae 1 0 0 0 0 5 0 Bivalvia Hyriidae 0 0 1 0 9 3 0 Hirudinida Glossiphonidae 0 0 9 5 13 38 11 Acari Hydracarina 0 1 0 1 1 0 0 Lepidoptera Pyralidae 0 4 0 0 1 0 0 Total abundance 226 96 240 398 218 234 29 ). Chironomidae (Diptera) were the most abundant in all sites (3 to 269, at P7 and P4, respectively). These organisms are very common in sand-bottom streams, but increase with increased human pressures, reaching about 50% of the total abundance of benthic macroinvertebrates (Callisto et al., 2007Callisto, M., Gonçalves, J. F., & Graça, M. A. S. (2007). Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Revista Brasileira de Zoologia, 24(2), 442-448.; Moretti et al., 2007Moretti, M. S., Gonçalves, J. F., Ligeiro, R., & Callisto, M. (2007). Invertebrates colonization on native tree leaves in a Neotropical stream (Brazil). International Review of Hydrobiology, 92(2), 199-210. https://doi.org/10.1002/iroh.200510957.
https://doi.org/10.1002/iroh.200510957...
). The highest family richness values were observed in sites P2 (20 taxa), and P3 (19 taxa). Based on the BMWP and BMWP/ASPT scores (Table 4), sites P4, P5, P6 and P7 were classified as having fair water quality; and sites P1, P2 and P3 had good water quality. Sites P5, P6, and P7 receive domestic sewage and the BMWP and BMWP/ASPT are sensitive to organic pollution.

Table 4
Biotic and disturbance index scores at the seven stream sites.

Unlike the water quality results, the biotic indicators revealed moderate to high disturbance at sites P4, P5, P6 and P7—not only P5. The % EPT metric and resistant organism richness showed good environmental conditions at sites P1, P2, P3 and P4, whereas the opposite occurred at sites P5, P6, and P7. EPT taxa richness or % EPT were reported to be excellent indicators of river and stream biological condition across the conterminous USA (Stoddard et al., 2008Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27(4), 878-891. http://dx.doi.org/10.1899/08-053.1.
http://dx.doi.org/10.1899/08-053.1...
), and also in Brazil (Callisto et al., 2022Callisto, M., Massara, R. L., Linares, M. S., & Hughes, R. M. (2022). Benthic macroinvertebrate assemblages detect the consequences of a sewage spill: a case study of a South American environmental challenge. Limnology, 23, 181-194. http://dx.doi.org/10.1007/s10201-021-00680-0.
http://dx.doi.org/10.1007/s10201-021-006...
, 2023Callisto, M., Solar, R., Rocha, A. S., Paz, A. A., Dolabela, B. M., Felisberto, B., Costa, E. C. S., Eller, E. E. O., Castro, H. F. L., Gerheim, I., Lombello, J. C., Madureira, K. H., Souza, L. C. G., Senna, N., Marques, R., Caffaro, R. M., Otuki, S. A. P., Santos, G. M., Amaral, P. H. M., Carmo, F. F., Kamino, L. H. Y., Linares, M. S., Ferraz, V. S., & Nunes, T. (2023). Rapid ecological assessment of water quality and benthic bioindicators at the Serra do Gandarela National Park, Minas Gerais state. Revista Espinhaço, 12(1), 1-48. http://dx.doi.org/10.5281/zenodo.7996142.
http://dx.doi.org/10.5281/zenodo.7996142...
). Both Macedo et al. (2016)Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R. O., Ligeiro, R., Kaufmann, P. R., & Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecological Indicators, 64, 132-141. http://dx.doi.org/10.1016/j.ecolind.2015.12.019.
http://dx.doi.org/10.1016/j.ecolind.2015...
and Silva et al. (2017)Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.
http://dx.doi.org/10.1016/j.ecolind.2017...
included Ephemeroptera richness in their MMIs.

The Macedo and Silva MMIs classified sites P4, P5 and P6 as poor (high human activities pressures) and sites P1 and P2 as good. Based on 190 Cerrado stream sites, Silva et al. (2017)Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.
http://dx.doi.org/10.1016/j.ecolind.2017...
classified 38%, 35%, and 27% of the total stream length as being in good, fair, and poor condition, respectively. In summary, we found that family taxa richness, % EPT, and the Macedo or Silva MMIs indicated good conditions in sites P1, P2, and P3; and % EPT, the MMIs, and BMWP indicated poor or fair conditions in sites P4, P5, P6, and P7. Those results indicate that the biota are markedly more sensitive to disturbance than the water quality standards, as has been reported by others (e.g., Ohio Environmental Protection Agency, 1990Ohio Environmental Protection Agency – Ohio EPA. (1990). Ohio water resource inventory: 1990 305(b) report. Columbus: Ohio Environmental Protection Agency.; Vadas et al., 2022Vadas, R. L., Hughes, R. M., Bae, Y. J., Baek, M. J., Gonzáles, O. C. B., Callisto, M., Carvalho, D. R., Chen, K., Ferreira, M. T., Fierro, P., Harding, J. S., Infante, D. M., Kleynhans, C. J., Macedo, D. R., Martins, I., Silva, N. M., Moya, N., Nichols, S. J., Pompeu, P. S., & Yoder, C. O. (2022). Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 1(3), 100054. http://dx.doi.org/10.1016/j.watbs.2022.100054.
http://dx.doi.org/10.1016/j.watbs.2022.1...
).

Our hypothesis was corroborated because we found that benthic macroinvertebrate assemblage structure was negatively affected by anthropogenic disturbances at both local and buffer extents. Several biological metrics and indices were negatively correlated with anthropogenic disturbances at both extents. Significant correlations (Table 5) occurred between taxonomic richness, abundance of individuals, BMWP, BMWP/ASPT, and the Ferreira et al. (2011)Ferreira, W., Paiva, L., & Callisto, M. (2011). Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71(1), 15-25. MMI versus LDI scores. BMWP and BMWP/ASPT, and the Ferreira et al. (2011)Ferreira, W., Paiva, L., & Callisto, M. (2011). Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71(1), 15-25. MMI were significantly correlated with the IDI. On the other hand, no biological variable showed significant correlation with the BDI. These results indicate bioindicator responses to anthropogenic disturbances were more strongly associated with local-extent disturbances, like what was reported in other Cerrado studies (Macedo et al., 2016Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R. O., Ligeiro, R., Kaufmann, P. R., & Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecological Indicators, 64, 132-141. http://dx.doi.org/10.1016/j.ecolind.2015.12.019.
http://dx.doi.org/10.1016/j.ecolind.2015...
; Martins et al., 2020Martins, I., Rodrigues, D., Hughes, R. M., & Callisto, M. (2020). Are multiple multimetric indices effective for assessing ecological condition in tropical basins?Ecological Indicators, 110, 105953. http://dx.doi.org/10.1016/j.ecolind.2019.105953.
http://dx.doi.org/10.1016/j.ecolind.2019...
).

Table 5
Benthic macroinvertebrate indicator responses to disturbances: local disturbance (LDI), buffer disturbance (BDI) and integrated disturbance (IDI), Minas Gerais, Brazil. Bold font indicates p < 0.05.

Responses of aquatic biological indicators on a global scale (Feio et al., 2022Feio, M. J., Hughes, R. M., Serra, S. R. Q., Nichols, S. J., Kefford, B. J., Lintermans, M., Robinson, W., Odume, O. N., Callisto, M., Macedo, D. R., Harding, J. S., Yates, A. G., Monk, W., Nakamura, K., Mori, T., Sueyoshi, M., Mercado-Silva, N., Chen, K., Baek, M. J., & Sharma, S. (2022). Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Global Change Biology, 29(2), 355-374. http://dx.doi.org/10.1111/gcb.16439.
http://dx.doi.org/10.1111/gcb.16439...
), show knowledge gaps in South America and the applicability of biological approaches in watershed assessments (Callisto et al., 2022Callisto, M., Massara, R. L., Linares, M. S., & Hughes, R. M. (2022). Benthic macroinvertebrate assemblages detect the consequences of a sewage spill: a case study of a South American environmental challenge. Limnology, 23, 181-194. http://dx.doi.org/10.1007/s10201-021-00680-0.
http://dx.doi.org/10.1007/s10201-021-006...
). On the other hand, multi-year biomonitoring studies have shown the resilience of urban ecosystems subjected to disturbances from domestic sewage spills (Linares et al., 2021Linares, M. S., Callisto, M., Macedo, D. R., & Hughes, R. M. (2021). Chronic urbanization decreases macroinvertebrate resilience to natural disturbances in neotropical streams. Current Research in Environmental Sustainability, 3, 100095. http://dx.doi.org/10.1016/j.crsust.2021.100095.
http://dx.doi.org/10.1016/j.crsust.2021....
) and the positive effects after stream rehabilitation in large cities (Macedo et al., 2022Macedo, D. R., Callisto, M., Linares, M. S., Hughes, R. M., Romano, B. M. L., Rothe-neves, M., & Silveira, J. S. (2022). Urban stream rehabilitation in a densely populated Brazilian metropolis. Frontiers in Environmental Science, 10, 1-16. http://dx.doi.org/10.3389/fenvs.2022.921934.
http://dx.doi.org/10.3389/fenvs.2022.921...
; Golgher et al., 2023Golgher, A., Callisto, M., & Hughes, R. (2023). Improved ecosystem services and environmental gentrification after rehabilitating Brazilian urban streams. Sustainability, 15(4), 1-17. http://dx.doi.org/10.3390/su15043731.
http://dx.doi.org/10.3390/su15043731...
).

Our results support biomonitoring by providing the basis for future efforts, showing which biological metrics respond to anthropogenic disturbances and at which spatial extents they work better. Therefore, our results can be used as an approach for establishing improved biomonitoring programs in the Rio Doce basin. The DN COPAM ND 08 COPAM/CERH 11/2022 (Minas Gerais, 2022Minas Gerais. (2022, December 2). Deliberação normativa conjunta COPAMCERH/MG nº 8, de 21 de novembro de 2022. Diário do Executivo “Minas Gerais”, Belo Horizonte.) establishes the need for biomonitoring in Minas Gerais. We demonstrated that benthic bioindicators are more efficient and accurate tools for monitoring water resource condition than simple, limited numbers of water quality variables in river basins. Also, recent rapid bioassessments performed in protected areas in the Doce River basin, including Serra do Gandarela National Park (Callisto et al., 2023Callisto, M., Solar, R., Rocha, A. S., Paz, A. A., Dolabela, B. M., Felisberto, B., Costa, E. C. S., Eller, E. E. O., Castro, H. F. L., Gerheim, I., Lombello, J. C., Madureira, K. H., Souza, L. C. G., Senna, N., Marques, R., Caffaro, R. M., Otuki, S. A. P., Santos, G. M., Amaral, P. H. M., Carmo, F. F., Kamino, L. H. Y., Linares, M. S., Ferraz, V. S., & Nunes, T. (2023). Rapid ecological assessment of water quality and benthic bioindicators at the Serra do Gandarela National Park, Minas Gerais state. Revista Espinhaço, 12(1), 1-48. http://dx.doi.org/10.5281/zenodo.7996142.
http://dx.doi.org/10.5281/zenodo.7996142...
) and Santuário do Caraça (Fernandes et al., 2022Fernandes, A., Dolabela, B., Senna, N., Marques, R., Amaral, P. H. M., & Callisto, M. (2022). Avaliação ecológica rápida de qualidade de água do Rio Caraça como um ecossistema em condições de referência. Revista Espinhaço, 11(1), 1-16.) show the importance of conserving freshwater biodiversity in reference sites in the basin. Furthermore, training public school and university students to conduct rapid biomonitoring and bioassessment approaches builds capacity and academic research as investments for the future of sustainable use of freshwaters in the Doce River basin (França et al., 2019França, J. S., Solar, R., Hughes, R. M., & Callisto, M. (2019). Student monitoring of the ecological quality of neotropical urban streams. Ambio, 48(8), 867-878. http://dx.doi.org/10.1007/s13280-018-1122-z.
http://dx.doi.org/10.1007/s13280-018-112...
).

CONCLUSIONS

Human activities in the Graipu River basin are responsible for water quality and biological deterioration, but minimally disturbed reference sites had a greater abundance of groups sensitive to pollution and land use disturbances. The opposite occurred at degraded sites, which supported benthic bioindicators resistant to pollution and reduced water quality. The biological indicators were clearly more sensitive indicators than either water quality or land use. In fact, our results show how woefully inadequate such abiotic variables as used by CONAMA are for reflecting water body condition. Whereas the biotic variables responded to local scale disturbances, the water quality variables responded only in the direst of the cases. These results are of fundamental importance for implementing biomonitoring programs in this basin and elsewhere, as well as for sustainable management of water resources for cities, agriculture, and aquatic biodiversity. Because our results are based on a rapid bioassessment that could be easily and quickly employed by citizen scientists, we suggest that future studies in the area apply more thorough assessments that require additional biological assemblages and more quantitative habitat structure assessments.

Our results also suggest that it is important to mitigate anthropogenic pressures by limiting the amounts of agricultural development, mining, and road building at both the catchment- and riparian-extents. In addition, we recommend that the SAAE’s water abstraction and wastewater treatment (and water use for agricultural and industrial activities) be improved to minimize impairments of aquatic ecosystem condition and to keep river reaches that are currently in reference conditions minimally altered by human disturbances.

Appendix A Macroinvertebrate taxonomic composition in the seven sampling sites, Minas Gerais, Brazil.

Sampling sites
Order Family P1 P2 P3 P4 P5 P6 P7
Ephemeroptera Leptophlebiidae 7 11 10 0 0 0 0
Leptohyphidae 4 0 0 0 0 0 0
Baetidae 1 1 81 0 0 0 0
Caenidae 0 0 0 1 0 3 0
Plecoptera Gripopterygidae 1 0 0 0 0 0 0
Perlidae 2 1 0 0 0 0 0
Trichoptera Helichopsychidae 3 0 0 0 0 0 0
Hydropsychidae 4 13 8 66 0 1 0
Odontoceridae 2 0 2 0 0 0 0
Hydroptilidae 0 0 1 0 0 0 0
Calamoceratidae 0 1 0 0 0 0 0
Leptoceridae 10 1 4 1 0 0 0
Polycentropodidae 0 2 0 0 0 0 0
Odonata Corduliidae 0 0 0 0 2 0 0
Gomphidae 10 0 1 0 0 0 1
Libellulidae 0 1 3 0 0 0 0
Calopterygidae 1 0 0 0 0 0 0
Perilestidae 0 0 0 0 0 1 0
Aeshnidae 0 1 1 0 0 0 1
Heteroptera Veliidae 0 2 0 0 0 0 0
Naucoridae 7 0 0 3 0 0 0
Mesoveliidae 0 0 15 0 0 0 0
Helotrephidae 0 0 0 1 0 0 0
Gerridae 0 0 1 0 0 0 0
Coleoptera Hydrophilidae 0 0 0 0 19 2 0
Elmidae 16 4 1 6 0 0 0
Hydrophiloidea 0 5 0 0 0 0 0
Megaloptera Corydalidae 1 1 0 0 0 0 0
Diptera Chaoboridae 0 0 3 4 0 0 0
Tipulidae 0 12 0 10 0 2 0
Chironomidae 152 10 80 269 135 158 3
Empididae 0 0 0 6 7 0 0
Ceratopogonidae 4 1 4 4 10 2 0
Psychodidae 0 0 0 1 1 0 0
Simuliidae 0 2 2 19 6 2 0
Oligochaeta 0 22 13 1 14 17 13
Gastropoda Planorbidae 1 0 0 0 0 5 0
Bivalvia Hyriidae 0 0 1 0 9 3 0
Hirudinida Glossiphonidae 0 0 9 5 13 38 11
Acari Hydracarina 0 1 0 1 1 0 0
Lepidoptera Pyralidae 0 4 0 0 1 0 0
Total abundance 226 96 240 398 218 234 29

Supplementary Material

Supplementary material accompanies this paper.

Supplementary Material S1.

This material is available as part of the online article from https://doi.org/10.1590/2318-0331.282320230054

ACKNOWLEDGEMENTS

We thank: 1) the P&D ANEEL/CEMIG GT-599 project for granting a scholarship to ECSC; 2) the Guanhães-MG Autonomous Water and Sewage Service (SAAE) for data and financing part of the field samplings; 3) the CENIBRA (Celulose Nipo-Brasileira S.A. Company) and the Instituto Estadual de Florestas at Guanhães (IEF-MG) for their field work support; and 4) our colleagues at the Benthic Ecology Laboratory at the Universidade Federal de Minas Gerais for their support during field sampling collection and laboratory processing. We are grateful for continued funding from the National Council for Scientific and Technological Development (CNPq, research productivity grant 304060/2020-8 to MC) and Coordination for the Improvement of Higher Education Personnel (CAPES) – Financing Code 001. MSL received a post-doc scholarship from CAPES (PDPG-AMAZONIA-LEGAL Project 88887.510266/2020–00). RMH received a Fulbright-Brazil distinguished scholar grant.

REFERENCES

  • Agouridis, C. T., Wesley, E. T., Sanderson, T. M., & Newton, B. L. (2015). Aquatic macroinvertebrates: biological indicators of stream health. Agriculture and Natural Resources Publications, 5, 1-5.
  • Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122
    » http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122
  • Alvarenga, L. R. P., Pompeu, P. S., Leal, C. G., Hughes, R. M., Fagundes, D. C., & Leitão, R. P. (2021). Land-use changes affect the functional structure of stream fish assemblages in the Brazilian savanna. Neotropical Ichthyology, 19(3), 1-21. http://dx.doi.org/10.1590/1982-0224-2021-0035
    » http://dx.doi.org/10.1590/1982-0224-2021-0035
  • American Public Health Association – APHA. (2005). Standard methods for the examination of water and wastewater (21st ed., 2671 p.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation. Retrieved in 2023, October 12, from https://www.standardmethods.org/
    » https://www.standardmethods.org/
  • Baptista, D. F. (2008). Uso de macroinvertebrados em procedimentos de biomonitoramento em ecossistemas aquáticos. Oecologia Australis, 12(3), 425-441. http://dx.doi.org/10.4257/oeco.2008.1203.05
    » http://dx.doi.org/10.4257/oeco.2008.1203.05
  • Barbour, M. T., Faulkner, C., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish (2nd ed., 337 p.). Retrieved in 2023, October 12, from https://www.epa.gov/sites/default/files/2019-02/documents/rapid-bioassessment-streams-rivers-1999.pdf
    » https://www.epa.gov/sites/default/files/2019-02/documents/rapid-bioassessment-streams-rivers-1999.pdf
  • Betts, J. T., Urquhart, G. R., Román-Heracleo, J., & Jossely, J. C. (2022). Effects of deforestation from cattle ranching over time on protected rainforest streams in the Rama-Kriol Territory, Nicaragua. Hydrobiologia, 849(20), 4547-4568. http://dx.doi.org/10.1007/s10750-021-04684-w
    » http://dx.doi.org/10.1007/s10750-021-04684-w
  • Brasil. (2005, March 18). Resolução CONAMA nº 357, de 17 de março de 2005* (retificada). Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1.
  • Callisto, M., Ferreira, W., Moreno, P., Goulart, M., & Petrucio, M. (2002). Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnologica Brasiliensia, 14(1), 91-98. Retrieved in 2023, October 12, from http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/Callisto%20et%20al%202002%20(Protocolo)%20-%20Acta%20Limnologica%20Brasiliensia.pdf
    » http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/Callisto%20et%20al%202002%20(Protocolo)%20-%20Acta%20Limnologica%20Brasiliensia.pdf
  • Callisto, M., Gonçalves, J. F., & Graça, M. A. S. (2007). Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Revista Brasileira de Zoologia, 24(2), 442-448.
  • Callisto, M., Macedo, D. R., Castro, D. M. P., & Alves, C. B. M. (2019a). Bases conceituais para conservação e manejo de bacias hidrográficas Belo Horizonte: CEMIG. https://doi.org/10.17648/bacias-hidrograficas
    » https://doi.org/10.17648/bacias-hidrograficas
  • Callisto, M., Macedo, D. R., Linares, M. S., & Hughes, R. M. (2019b). Multi-status and multi-spatial scale assessment of landscape effects on benthic macroinvertebrates in the Neotropical Savanna. In R. M. Hughes, D. M. Infante, L. Wang, K. Chen, & B. F. Terra (Eds.), Advances in understanding landscape influences on freshwater habitats and biological assemblages (pp. 275-302). Bethesda: American Fisheries Society. American Fisheries Society Symposium 90.
  • Callisto, M., Massara, R. L., Linares, M. S., & Hughes, R. M. (2022). Benthic macroinvertebrate assemblages detect the consequences of a sewage spill: a case study of a South American environmental challenge. Limnology, 23, 181-194. http://dx.doi.org/10.1007/s10201-021-00680-0
    » http://dx.doi.org/10.1007/s10201-021-00680-0
  • Callisto, M., Solar, R., Rocha, A. S., Paz, A. A., Dolabela, B. M., Felisberto, B., Costa, E. C. S., Eller, E. E. O., Castro, H. F. L., Gerheim, I., Lombello, J. C., Madureira, K. H., Souza, L. C. G., Senna, N., Marques, R., Caffaro, R. M., Otuki, S. A. P., Santos, G. M., Amaral, P. H. M., Carmo, F. F., Kamino, L. H. Y., Linares, M. S., Ferraz, V. S., & Nunes, T. (2023). Rapid ecological assessment of water quality and benthic bioindicators at the Serra do Gandarela National Park, Minas Gerais state. Revista Espinhaço, 12(1), 1-48. http://dx.doi.org/10.5281/zenodo.7996142
    » http://dx.doi.org/10.5281/zenodo.7996142
  • Cao, Y., & Wang, L. (2023). How to statistically disentangle the effects of environmental factors and human disturbances: a review. Water, 15(4), 1-14. http://dx.doi.org/10.3390/w15040734
    » http://dx.doi.org/10.3390/w15040734
  • Carrera, C., & Fierro, K. (2018). Manual de monitoreo: los macroinvertebrados acuáticos como indicadores de la calidad del agua (Vol. 2). Retrieved in 2023, October 12, from http://www.flacsoandes.edu.ec/libros/digital/56374.pdf
    » http://www.flacsoandes.edu.ec/libros/digital/56374.pdf
  • Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573-582. http://dx.doi.org/10.1016/j.ecolind.2017.09.030
    » http://dx.doi.org/10.1016/j.ecolind.2017.09.030
  • Companhia Ambiental do Estado de São Paulo – CETESB. (2009). Apêndice D: significado ambiental e sanitário das variáveis de qualidade (46 p.). Retrieved in 2023, October 12, from https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Ap%C3%AAndice-D-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-29-04-2014.pdf
    » https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Ap%C3%AAndice-D-Significado-Ambiental-e-Sanit%C3%A1rio-das-Vari%C3%A1veis-de-Qualidade-29-04-2014.pdf
  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163-182. http://dx.doi.org/10.1017/S1464793105006950
    » http://dx.doi.org/10.1017/S1464793105006950
  • Feio, M. J., Hughes, R. M., Serra, S. R. Q., Nichols, S. J., Kefford, B. J., Lintermans, M., Robinson, W., Odume, O. N., Callisto, M., Macedo, D. R., Harding, J. S., Yates, A. G., Monk, W., Nakamura, K., Mori, T., Sueyoshi, M., Mercado-Silva, N., Chen, K., Baek, M. J., & Sharma, S. (2022). Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Global Change Biology, 29(2), 355-374. http://dx.doi.org/10.1111/gcb.16439
    » http://dx.doi.org/10.1111/gcb.16439
  • Fernandes, A., Dolabela, B., Senna, N., Marques, R., Amaral, P. H. M., & Callisto, M. (2022). Avaliação ecológica rápida de qualidade de água do Rio Caraça como um ecossistema em condições de referência. Revista Espinhaço, 11(1), 1-16.
  • Ferreira, W., Paiva, L., & Callisto, M. (2011). Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71(1), 15-25.
  • França, J. S., & Callisto, M. (2019). Monitoramento participativo de rios urbanos por estudantes-cientistas Belo Horizonte: J. S. França. http://dx.doi.org/10.17648/ufmg-monitoramento
    » http://dx.doi.org/10.17648/ufmg-monitoramento
  • França, J. S., Solar, R., Hughes, R. M., & Callisto, M. (2019). Student monitoring of the ecological quality of neotropical urban streams. Ambio, 48(8), 867-878. http://dx.doi.org/10.1007/s13280-018-1122-z
    » http://dx.doi.org/10.1007/s13280-018-1122-z
  • Goldstein, R. M., Carlisle, D. M., Meador, M. R., & Short, T. M. (2007). Can basin land use effects on physical characteristics of streams be determined at broad geographic scales? Environmental Monitoring and Assessment, 130(1-3), 495-510. http://dx.doi.org/10.1007/s10661-006-9439-7
    » http://dx.doi.org/10.1007/s10661-006-9439-7
  • Golgher, A., Callisto, M., & Hughes, R. (2023). Improved ecosystem services and environmental gentrification after rehabilitating Brazilian urban streams. Sustainability, 15(4), 1-17. http://dx.doi.org/10.3390/su15043731
    » http://dx.doi.org/10.3390/su15043731
  • Hamada, N., Nessimian, J. L., & Querino, R. B. (2014). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia (724 p.). Manaus: Editora do INPA.
  • Herlihy, A. T., Sifneos, J. C., Hughes, R. M., Peck, D. V., & Mitchell, R. M. (2020). The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators, 1(112), 1-38. http://dx.doi.org/10.1016/j.ecolind.2019.105958
    » http://dx.doi.org/10.1016/j.ecolind.2019.105958
  • Holt, E. A., & Miller, S. W. (2010). Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge, 3(10), 8. Retrieved in 2023, October 12, from https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/
    » https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/
  • Hughes, R. M., Wang, L., & Seelbach, P. W. (2006). Landscape influences on stream habitat and biological assemblages Bethesda: American Fisheries Society.
  • Instituto Brasileiro de Geografia e Estatística – IBGE. (2022). Estimativa de população_ município de Guanhães_avaliação em 2021 Retrieved in 2022, September 23, from https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
    » https://cidades.ibge.gov.br/brasil/mg/guanhaes/panorama
  • Junqueira, M. V., Alves, K. C., Paprocki, H., Campos, M. S., Carvalho, M. D., Mota, H. R., & Rolla, M. E. (2018). Índices bióticos para avaliação de qualidade de água de rios tropicais – síntese do conhecimento e estudo de caso: bacia do Alto Rio Doce. Revista Brasileira de Ciências Ambientais, 49, 15-33. http://dx.doi.org/10.5327/z2176-947820180322
    » http://dx.doi.org/10.5327/z2176-947820180322
  • Junqueira, M. V., Amarante, M. C., Dias, C. F. S., & França, E. S. (2000). Biomonitoramento da qualidade das águas da bacia do Alto Rio das Velhas (MG/Brasil) através de macroinvertebrados. Acta Limnologica Brasiliensia, 12(1), 73-87.
  • Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41(2), 221-234. http://dx.doi.org/10.1046/j.1365-2427.1999.00427.x
    » http://dx.doi.org/10.1046/j.1365-2427.1999.00427.x
  • Kaufmann, P. R., Hughes, R. M., Paulsen, S. G., Peck, D. V., Seeliger, C. W., Kincaid, T., & Mitchell, R. M. (2022). Physical habitat in conterminous US streams and rivers, part 2: a quantitative assessment of habitat condition. Ecological Indicators, 141, 109047. http://dx.doi.org/10.1016/j.ecolind.2022.109047
    » http://dx.doi.org/10.1016/j.ecolind.2022.109047
  • Lecocq, T., Harpke, A., Rasmont, P., & Schweiger, O. (2019). Integrating intraspecific differentiation in species distribution models: consequences on projections of current and future climatically suitable areas of species. Diversity & Distributions, 25(7), 1088-1100. http://dx.doi.org/10.1111/ddi.12916
    » http://dx.doi.org/10.1111/ddi.12916
  • Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., Villéger, S., Pompeu, P., Kasper, D., Paula, F. R., Ferraz, S. F. B., & Jardineiro, T. A. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 40, 1-13. http://dx.doi.org/10.1111/ecog.02845
    » http://dx.doi.org/10.1111/ecog.02845
  • Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., & Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45-57. http://dx.doi.org/10.1016/j.ecolind.2012.09.004
    » http://dx.doi.org/10.1016/j.ecolind.2012.09.004
  • Linares, M. S., Assis, W., Castro Solar, R. R., Leitão, R. P., Hughes, R. M., & Callisto, M. (2019). Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Research and Applications, 35(6), 725-735. https://doi.org/10.1002/rra.3442
    » https://doi.org/10.1002/rra.3442
  • Linares, M. S., Callisto, M., Macedo, D. R., & Hughes, R. M. (2021). Chronic urbanization decreases macroinvertebrate resilience to natural disturbances in neotropical streams. Current Research in Environmental Sustainability, 3, 100095. http://dx.doi.org/10.1016/j.crsust.2021.100095
    » http://dx.doi.org/10.1016/j.crsust.2021.100095
  • Linares, M. S., Macedo, D. R., Hughes, R. M., Castro, D. M. P., & Callisto, M. (2023). The past is never dead: legacy effects alter the structure of benthic macroinvertebrate assemblages. Limnetica, 42(1), 55-67. http://dx.doi.org/10.23818/limn.42.05
    » http://dx.doi.org/10.23818/limn.42.05
  • Macedo, D. R., Callisto, M., Linares, M. S., Hughes, R. M., Romano, B. M. L., Rothe-neves, M., & Silveira, J. S. (2022). Urban stream rehabilitation in a densely populated Brazilian metropolis. Frontiers in Environmental Science, 10, 1-16. http://dx.doi.org/10.3389/fenvs.2022.921934
    » http://dx.doi.org/10.3389/fenvs.2022.921934
  • Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R. O., Ligeiro, R., Kaufmann, P. R., & Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecological Indicators, 64, 132-141. http://dx.doi.org/10.1016/j.ecolind.2015.12.019
    » http://dx.doi.org/10.1016/j.ecolind.2015.12.019
  • Macedo, D. R., Hughes, R. M., Ligeiro, R., Ferreira, W. R., Castro, M. A., Junqueira, N. T., Oliveira, D. R., Firmiano, K. R., Kaufmann, P. R., Pompeu, P. S., & Callisto, M. (2014). The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecology, 29(6), 1001-1016. http://dx.doi.org/10.1007/s10980-014-0036-9
    » http://dx.doi.org/10.1007/s10980-014-0036-9
  • MapBiomas. (2020). MapBiomas_delimitação territorial em Guanhães Retrieved in 2023, October 12, from https://plataforma.brasil.mapbiomas.org/?activeBaseMap=8&layersOpacity=70&activeModule=coverage&activeModuleContent=coverage%3Acoverage_main&activeYear=2020&mapPosition=-18.856039%2C-42.808999%2C10&timelineLimitsRange=1985%2C2020&baseParams[territoryType]
    » https://plataforma.brasil.mapbiomas.org/?activeBaseMap=8&layersOpacity=70&activeModule=coverage&activeModuleContent=coverage%3Acoverage_main&activeYear=2020&mapPosition=-18.856039%2C-42.808999%2C10&timelineLimitsRange=1985%2C2020&baseParams[territoryType]
  • Martins, I., Rodrigues, D., Hughes, R. M., & Callisto, M. (2020). Are multiple multimetric indices effective for assessing ecological condition in tropical basins?Ecological Indicators, 110, 105953. http://dx.doi.org/10.1016/j.ecolind.2019.105953
    » http://dx.doi.org/10.1016/j.ecolind.2019.105953
  • Martins, R. T., Brito, J., Dias-Silva, K., Leal, C. G., Leitão, R. P., Oliveira, V. C., Oliveira-Júnior, J. M. B., Ferraz, S. F. B., Paula, F. R., Roque, F. O., Hamada, N., Juen, L., Nessimian, J. L., Pompeu, P. S., & Hughes, R. M. (2021). Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators, 127, 107773. http://dx.doi.org/10.1016/j.ecolind.2021.107773
    » http://dx.doi.org/10.1016/j.ecolind.2021.107773
  • Merritt, R. W., Cummins, K. W., & Campbell, E. (2014). Uma abordagem funcional para a caracterização de Riachos Brasileiros. In N. Hamada, J. L. Nessimian & R. B. Querino (Eds.), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia (pp. 69-88). Manaus: Editora do INPA.
  • Minas Gerais. (2022, December 2). Deliberação normativa conjunta COPAMCERH/MG nº 8, de 21 de novembro de 2022. Diário do Executivo “Minas Gerais”, Belo Horizonte.
  • Monteiro, T. R., Oliveira, L. G., & Godoy, B. S. (2008). Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice biótico BMWP’ à bacia do rio Meia Ponte - GO. Oecologia Brasiliensis, 12(3), 553-563.
  • Moretti, M. S., Gonçalves, J. F., Ligeiro, R., & Callisto, M. (2007). Invertebrates colonization on native tree leaves in a Neotropical stream (Brazil). International Review of Hydrobiology, 92(2), 199-210. https://doi.org/10.1002/iroh.200510957
    » https://doi.org/10.1002/iroh.200510957
  • Moya, N., Hughes, R. M., Domínguez, E., Gibon, F. M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840-847. http://dx.doi.org/10.1016/j.ecolind.2010.10.012
    » http://dx.doi.org/10.1016/j.ecolind.2010.10.012
  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do estado do Rio de Janeiro (174 p.). Rio de Janeiro: Technical Books.
  • Myers, N., Mittermeler, R. A., Mittermeler, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. http://dx.doi.org/10.1038/35002501
    » http://dx.doi.org/10.1038/35002501
  • Ohio Environmental Protection Agency – Ohio EPA. (1990). Ohio water resource inventory: 1990 305(b) report Columbus: Ohio Environmental Protection Agency.
  • Paula, F. R., Gerhard, P., Ferraz, S. F. B., & Wenger, S. J. (2018). Multi-scale assessment of forest cover in an agricultural landscape of Southeastern Brazil: implications for management and conservation of stream habitat and water quality. Ecological Indicators, 85, 1181-1191. http://dx.doi.org/10.1016/j.ecolind.2017.11.061
    » http://dx.doi.org/10.1016/j.ecolind.2017.11.061
  • R Core Team. (2015). R: uma linguagem e ambiente para computação estatística Vienna: R Foundation for Statistical Computing. Retrieved in 2023, October 12, from www.r-project.org/
  • Rosa, D. M., Monteiro, A. B., Faria, L. D. B., & Pompeu, P. S. (2023). The influence of non-native invertebrate species in the food web structure of two Neotropical reservoirs. Aquatic Invasions, 18(2), 277-293. http://dx.doi.org/10.3391/ai.2023.18.2.103850
    » http://dx.doi.org/10.3391/ai.2023.18.2.103850
  • Rosenberg, D., & Resh, V. H. 1993. Freshwater biomonitoring and benthic macroinvertebrates (Vol. 40, 158 p.). New York: Chapman & Hall. Retrieved in 2023, October 12, from https://onlinelibrary.wiley.com/doi/10.1002/aqc.3270040110
    » https://onlinelibrary.wiley.com/doi/10.1002/aqc.3270040110
  • Silva, D. R. O., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017
    » http://dx.doi.org/10.1016/j.ecolind.2017.06.017
  • Simeone, D. (2023). Effect of logged forests on diet of small characids from Neotropical streams. Ecology Freshwater Fish, 32 In press. http://dx.doi.org/10.1111/eff.12743
    » http://dx.doi.org/10.1111/eff.12743
  • Smeraldo, S., Bosso, L., Fraissinet, M., Bordignon, L., Brunelli, M., Ancillotto, L., & Russo, D. (2020). Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodiversity and Conservation, 29(6), 1959-1976. http://dx.doi.org/10.1007/s10531-020-01961-3
    » http://dx.doi.org/10.1007/s10531-020-01961-3
  • Souza, M. J. H., Ribeiro, A., Leite, H. G., Leite, F. P., & Minuzzi, R. B. (2006). Relação entre disponibilidade hídrica e produtividade do eucalipto em diferentes cidades, em Guanhães, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3), 629-638. http://dx.doi.org/10.1590/s1415-43662006000300014
    » http://dx.doi.org/10.1590/s1415-43662006000300014
  • Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27(4), 878-891. http://dx.doi.org/10.1899/08-053.1
    » http://dx.doi.org/10.1899/08-053.1
  • Terra, B. D. F., Hughes, R. M., Francelino, M. R., & Araújo, F. G. (2013). Assessment of biotic condition of atlantic rain forest streams: A fish-based multimetric approach. Ecological Indicators, 34, 136-148. http://dx.doi.org/10.1016/j.ecolind.2013.05.001
    » http://dx.doi.org/10.1016/j.ecolind.2013.05.001
  • Thompson, S. A., Thompson, G. G., & Withers, P. C. (2008). Rehabilitation index for evaluating restoration of terrestrial ecosystems using the reptile assemblage as the bio-indicator. Ecological Indicators, 8(5), 530-549. http://dx.doi.org/10.1016/j.ecolind.2007.07.001
    » http://dx.doi.org/10.1016/j.ecolind.2007.07.001
  • Tonello, K., Dias, H., Souza, A., Ribeiro, C., Firme, D., & Leite, F. (2009). Diagnóstico hidroambiental da bacia hidrográfica da Cachoeira das Pombas, município de Guanhães, MG, Brasil. Revista Ambiente & Água – An Interdisciplinary Journal of Applied Science, 4(1), 156-168. http://dx.doi.org/10.4136/ambi-agua.80
    » http://dx.doi.org/10.4136/ambi-agua.80
  • Vadas, R. L., Hughes, R. M., Bae, Y. J., Baek, M. J., Gonzáles, O. C. B., Callisto, M., Carvalho, D. R., Chen, K., Ferreira, M. T., Fierro, P., Harding, J. S., Infante, D. M., Kleynhans, C. J., Macedo, D. R., Martins, I., Silva, N. M., Moya, N., Nichols, S. J., Pompeu, P. S., & Yoder, C. O. (2022). Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. Water Biology and Security, 1(3), 100054. http://dx.doi.org/10.1016/j.watbs.2022.100054
    » http://dx.doi.org/10.1016/j.watbs.2022.100054
  • Von Sperling, M. (2005). Introdução à qualidade das águas e ao tratamento de esgotos: princípios do tratamento biológico de águas residuárias (452 p.). Belo Horizonte: DESA/UFMG.

Edited by

Editor-in-Chief: Adilson Pinheiro
Associated Editor: Ibraim Fantin da Cruz

Publication Dates

  • Publication in this collection
    01 Dec 2023
  • Date of issue
    2023

History

  • Received
    18 May 2023
  • Reviewed
    10 Oct 2023
  • Accepted
    12 Oct 2023
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br