Acessibilidade / Reportar erro

Development and quality of gladiolus stems with the use of vermicompost and Trichoderma sp. in substrate (1)

Desenvolvimento e qualidade de hastes de gladíolo com o uso de vermicomposto e Trichoderma sp. em substrato

ABSTRACT

The gladiolus is an important cut flower that is cultivated in all parts of the world, and it is very appreciated to be used in floral arrangements. The growing concern with the environmental contamination and the look for production with higher quality have resulted in increasing the number of studies on the use of organic inputs and microorganisms in floriculture, in particular, the vermicompost and the Trichoderma sp. This work was conducted with the objective to evaluate the development and the quality of gladiolus floral stems in function of the use of vermicompost and Trichoderma sp. applied to the substrate. The experiment was conducted in a greenhouse during the period of August to December of 2015. It was done by utilizing four treatments: T1 = control substrate (50% soil and 50% commercial substrate Carolina Soil); T2 = vermicompost (40%) and control substrate (60%); T3 = Trichoderma sp. added to the control substrate; T4 = Trichoderma sp. added to the vermicompost (40%) and control substrate (60%). The gladiolus variety used was the Peter's Pears. The variables analyzed were main plant height, Falker chlorophyll index, length and diameter of the main stem, tassel length, quantity of main stem florets, proportionality between tassel and stem, and time until the start of flowering. It was concluded that the development and the quality of the gladiolus floral stem were favored by the use of vermicompost in the concentration of 40% added to the substrate.

Keywords:
Gladiolus sp.; Peter's Pear variety; floriculture; benefic soil microorganisms

RESUMO

O gladíolo é uma importante flor de corte cultivada em todo o mundo, muito apreciada para uso em arranjos florais. A crescente preocupação com a contaminação ambiental e a busca pela produção com maior qualidade, tem resultado no aumento dos estudos com o uso de insumos orgânicos e microrganismos na floricultura, destacando-se o vermicomposto e o Trichoderma sp. O presente trabalho foi conduzido com o objetivo avaliar o desenvolvimento e a qualidade de hastes florais de gladíolo em função do uso de vermicomposto e de Trichoderma sp. aplicados ao substrato. O experimento foi conduzido em casa de vegetação, de agosto a dezembro de 2015. Foram utilizados quatro tratamentos: T1 = substrato controle (50% solo e 50% substrato comercial Carolina Soil®, T2 = vermicomposto (40%) e substrato controle (60%); T3 = Trichoderma sp. adicionado ao substrato controle; T4 = Trichoderma sp. adicionado ao vermicomposto (40%) e substrato controle (60%). A variedade de gladíolo utilizada foi a Peter's Pears. As variáveis analisadas foram: altura da planta principal, índice de clorofila Falcker, comprimento e diâmetro da haste principal, comprimento do pendão, número de floretes da haste principal, proporcionalidade entre pendão e haste e tempo até o início da floração. Concluiu-se que o desenvolvimento e a qualidade das hastes florais de gladíolo foram favorecidos pelo uso do vermicomposto na concentração de 40%, adicionado ao substrato.

Palavras-chave:
Gladiolus sp.; variedade Peter's Pears; floricultura; microrganismos benéficos do solo

1. INTRODUCTION

Gladiolus (Gladiolus x grandiflorus), which belongs to the Iridaceae family, is cultivated in all world and has a great importance in the international market of flowers (MEMON et al., 2009MEMON, M.; QASIM, M.J.; AHMAD, R. AHMAD, I. Corm and cormel production in gladiolus. New Zealand Journal of Crop and Horticultural Science, v.37, p.319-325, 2009.; MAHASEN et al., 2015MAHASEN, M.; ONAA, A.F.; TAUFIQUEA, T.; MEHRAJB, H.; JAMAL UDDINA, A.F.M. Suitability of cut corm as planting materials on flowering and corm-cormel production of gladiolus cultivars. Journal of Bioscience and Agriculture Research, v.4, p.10-19, 2015.). It is a cut flower propagated by corms (SCHWAB et al., 2015aSCHWAB, N.T.; STRECK, N.A.; BECKER, C.C.; LANGNER, J.A.; ULHMANN, L.O.; RIBEIRO, B.S.M.R. A phenological scale for the development of Gladiolus. Annals of Applied Biology, v.166, p.496-507, 2015a. DOI: < HYPERLINK “https://doi.org/10.1111/aab.12198” 10.1111/aab.12198>
https://doi.org/10.1111/aab.12198...
), which is a propagative material in high demand in the foreign market. This is contributing to the investment in its cultivation (TOMBOLATO et al., 2005TOMBOLATO, A.F.C.; CASTRO, J.L. de; MATTHES, L.A.F.; LEME, J.M. Melhoramento genético do gladíolo no IAC: novos cultivares ‘IAC Carmim’ e ‘IAC Paranapanema’. Científica, v.33, p.142-147, 2005. DOI: < HYPERLINK “http://dx.doi.org/10.15361/1984-5529.2005v33n2p142+-+147” 10.15361/1984-5529.2005v33n2p142+-+147>
http://dx.doi.org/10.15361/1984-5529.200...
; FERREIRA et al., 2009FERREIRA, C.A.; VON PINHO, E.V.R.; SALGADO, K.C.P.; PEREIRA, G.S.; FERREIRA, I.A. Identificação de cultivares de Gladiolus sp. por meio de marcadores genético bioquímicos e de RAPD. Revista Brasileira de Horticultura Ornamental, v.15, n.2, 115-126, 2009. DOI: <10.14295/rbho.v15i2.492>
https://doi.org/10.14295/rbho.v15i2.492...
).

Gladiolus stands out among the main cut crops in the Brazilian (SINGH et al., 2012SINGH, J.P.; KUMAR, K.; KATIYAR, P. Effect of zinc, iron and copper on Yield parameters of gladiolus. HortFlora Research Spectrum, v.1, p.64-68, 2012.; ROSA et al., 2014ROSA, Y.B.C.J.; WOLLEMBERG, S.; SILVA, E.F. da; ROSA JUNIOR, E.J.; NUNES, M.F.; SORGATO, J.C.; ROSA, D.B.C.J.; SOARES, J.S.; ROSA, C.S.L. Desenvolvimento de gladíolos em função da adubação nitrogenada e diâmetro do cormo. Revista Brasileira de Horticultura Ornamental, v.20, n.1, p.87-92, 2014. DOI: < HYPERLINK “https://doi.org/10.14295/rbho.v20i1.521” 10.14295/rbho.v20i1.521>
https://doi.org/10.14295/rbho.v20i1.521...
). The floral stems are composed by florets of varied colors (SCHWAB et al., 2015bSCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
), and they are attractive due to their beautiful colors (ISLAM, 2016ISLAM, S. Anthocyanin compositions in different colored gladiolus species: a source of natural food colorants. American Journal of Food Science and Technology, v.4, p.109-114, 2016. DOI: <10.12691/ajfst-4-4-4>
https://doi.org/10.12691/ajfst-4-4-4...
) and are commonly used as decorative arrangements (BALDOTTO and BALDOTTO, 2013BALDOTTO, M.A.; BALDOTTO, L.E.B. Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres, v.60, p.138-142, 2013. DOI: <10.1590/S0034-737X2013000100020>
https://doi.org/10.1590/S0034-737X201300...
). Additionally, they are used in Brazil for ornamentation of ceremonies and general decorations, where All Souls’ Day is its peak in sales (SCHWAB et al., 2014SCHWAB, N.T.; STRECK, N.A.; REHBEIN, A.; RIBEIRO, B. S.M.R.; ULHMANN, L.O.; LANGNER, J.A.; BECKER, C. C. Dimensões lineares da folha e seu uso na determinação do perfil vertical foliar de gladíolo. Bragantia, v.73, p.97-105, 2014. DOI: <10.1590/brag.2014.014>
https://doi.org/10.1590/brag.2014.014...
). New varieties are produced through hybridization, in which show a high variability in the days of flowering (POON et al., 2009POON, T.B.; RAO, TM.; KUMAR, D.P.; VENUGOPALAN, R.; DHANANJAYA, M.V Study on floral biology of Gladiolus genotypes. Nepal Journal of Science and Technology, n.10, p.37-43, 2009. DOI: <10.3126/njst.v10i0.2821>
https://doi.org/10.3126/njst.v10i0.2821...
), variety of shapes, colors, and size of inflorescence (TOMBOLATO et al., 2005TOMBOLATO, A.F.C.; CASTRO, J.L. de; MATTHES, L.A.F.; LEME, J.M. Melhoramento genético do gladíolo no IAC: novos cultivares ‘IAC Carmim’ e ‘IAC Paranapanema’. Científica, v.33, p.142-147, 2005. DOI: < HYPERLINK “http://dx.doi.org/10.15361/1984-5529.2005v33n2p142+-+147” 10.15361/1984-5529.2005v33n2p142+-+147>
http://dx.doi.org/10.15361/1984-5529.200...
).

It presents a low cost of implantation, and it has a quick economic return due to the short cycle and ease of cultivation. Among the management factors, the fertilizing and nutrition have an important role in the general growth performance (RUPPENTHAL and CASTRO, 2005RUPPENTHAL, V; CASTRO, A.M.C. Efeito do composto de lixo urbano na nutrição e produção de gladíolo. Revista Brasileira de Ciência do Solo, v.29, p.145-150, 2005. DOI: <10.1590/S0100-06832005000100016>
https://doi.org/10.1590/S0100-0683200500...
; VERMA et al., 2015VERMA R.P.; KUMAR, A.; VERMA, S.K.; VERMA, A.; VERMA, P.K. Influence of nitrogen, planting geometry and corm size on vegetative growth and corm and cormel production of gladiolus cv Nova Lux. Environment & Ecology, v. 32, p.199-201, 2015.). Due to the nutritional importance for the gladiolus quality and the concern on environmental protection, research studies have been developed to evaluate the use of organic fertilizers in its production (SÖNMEZ et al., 2013SÖNMEZ, F.; ÇIG, A.; GÜLSER, F.; BASDOGAN, G. The effects of some organic fertilizers on nutrient contents in hybrid Gladiolus. Eurasian Journal of Soil Science, v.2, p.140-144, 2013.).

Vermicompost is an organic fertilizer that is a result of a bio-oxidative process of organic waste, which is done by earthworms and microorganisms, with significant effects in the improvement of the soil fertility, in the crop yield, and in the contribution to the agro-ecological sustainability (BROZ et al., 2016BROZ, A.P.; PRIYA, O.V; APPEL, C. Nitrogen dynamics of vermicompost use in sustainable agriculture. Journal of Soil Science and Environmental Management, v.7, p.173-183, 2016. DOI: <10.5897/JSSEM2016.0587>
https://doi.org/10.5897/JSSEM2016.0587...
; XU and MOU, 2016XU, C.; MOU, B. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. Hortscience, v.51, p.847-855, 2016.). A significant number of works have shown the efficiency of vermicompost as a substrate or associated with other materials for the production of seedlings of lettuce and tomatoes (STEFFEN, 2010aSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Casca de arroz e esterco bovino como substratos para a multiplicação de minhocas e produção de mudas de tomate e alface. Acta Zoologica Mexicana, v.26, p.333-343, 2010a.), snapdragon (STEFFEN, 2010bSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Húmus de esterco bovino e casca de arroz carbonizada como substrato para a produção de mudas de boca-de-leão. Acta Zoologica Mexicana, v.26, p.345-357, 2010b.), and watermelon (PELIZZA, 2013PELIZZA, T.R.; SILVEIRA, F.N.; MUNIZ. J.; ECHER, A.H.B.; MORSELI, T.B.G.A. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Revista Ceres, v.60, p.257-21, 2013. DOI: <10.1590/S0034-737X2013000200015>
https://doi.org/10.1590/S0034-737X201300...
). In petunia, the addition of vermicompost to the substrate reflected in the increase of the number of leaves and flowers, in the fresh phytomass, and in the reduction of the days for flowering. These effects were due to the higher availability of nutrients (CHAMANI et al., 2008CHAMANI, E.; JOYCE, D.C.; REIHANYTABAR, A. Vermicompost effects on the growth and flowering of Petunia hybrida ‘Dream Neon Rose’. American-Eurasian Journal Agricultural and Environmental Science, v.3, p.506-512, 2008.), and they are related to the increase of humic acids present in animal manures by the process of vermicomposting (PATHMA and SAKTHIVEL, 2012PATHMA, J.; SAKTHIVEL, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus, p.1-19, 2012. DOI: < HYPERLINK “https://dx.doi.org/10.1186%2F2193-1801-1-26” \t “pmc_ext” 10.1186/2193-1801-1-26>
https://dx.doi.org/10.1186%2F2193-1801-1...
; BALDOTTO and BALDOTO, 2013BALDOTTO, M.A.; BALDOTTO, L.E.B. Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres, v.60, p.138-142, 2013. DOI: <10.1590/S0034-737X2013000100020>
https://doi.org/10.1590/S0034-737X201300...
; BROZ et al., 2016BROZ, A.P.; PRIYA, O.V; APPEL, C. Nitrogen dynamics of vermicompost use in sustainable agriculture. Journal of Soil Science and Environmental Management, v.7, p.173-183, 2016. DOI: <10.5897/JSSEM2016.0587>
https://doi.org/10.5897/JSSEM2016.0587...
). The humic acids dissolve and make available insoluble minerals that act similarly to phytohormones, stimulating the growth of plants (PATHMA and SAKTHIVEL, 2012PATHMA, J.; SAKTHIVEL, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus, p.1-19, 2012. DOI: < HYPERLINK “https://dx.doi.org/10.1186%2F2193-1801-1-26” \t “pmc_ext” 10.1186/2193-1801-1-26>
https://dx.doi.org/10.1186%2F2193-1801-1...
).

In nature, multiple symbiotic relations occur between plants and microorganisms, such as the fungus Trichoderma, and these relations may be manipulated to increase the plants’ productivity (NIETO-JACOBO et al., 2017NIETO-JACOBO, M.F.; STEYAERT, J.M.; SALAZAR-BADILLO, F.B.; NGUYEN, D.V.; ROSTÁS, M.; BRAITHWAITE, DE SOUZA, J.T.; JIMENEZ-BREMONT, J.F.; OHKURA, M.; STEWART, A.; MENDOZA-MENDOZA, A. Environmental Growth Conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers Plant Science, v.8, p.1-18, 2017. DOI: <10.3389/fpls.2017.00102>
https://doi.org/10.3389/fpls.2017.00102...
). Some varieties of Trichoderma are used in the control of phytopathogens due to its action versatility, such as parasitism, antibiosis, and competition, and by acting as inductors of plants’ resistance against diseases (MACHADO et al., 2012MACHADO, D.F.M.; PARZIANELLO, F.R.; SILVA, A.C.F.; ANTONIOLLI, Z.I. Trichoderma no Brasil: o fungo e o bioagente. Revista de Ciências Agrárias, v.35, p.274-288, 2012.). The filamentous fungus has the ability to reduce the plants diseases, and to promote the growth and the productivity through the action mode that includes the increase of efficiency of nutrients and production of metabolites with antifungal and antibacterial functions, improving the resistance of the plant to pathogenic agents (LEE et al., 2016LEE, S.; YAP, M.; BEHRINGER, G.; HUNG, R.; W. BENNETT, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biological Biotechnology, v.3, p.1-7, 2016. DOI: < HYPERLINK “https://doi.org/10.1186/s40694-016-0025-7” \t “_blank” 10.1186/s40694-016-0025-7>
https://doi.org/10.1186/s40694-016-0025-...
). Many species of Trichoderma can produce auxins, suggesting the promotion of the root growth (NIETO-JACOBO et al., 2017NIETO-JACOBO, M.F.; STEYAERT, J.M.; SALAZAR-BADILLO, F.B.; NGUYEN, D.V.; ROSTÁS, M.; BRAITHWAITE, DE SOUZA, J.T.; JIMENEZ-BREMONT, J.F.; OHKURA, M.; STEWART, A.; MENDOZA-MENDOZA, A. Environmental Growth Conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers Plant Science, v.8, p.1-18, 2017. DOI: <10.3389/fpls.2017.00102>
https://doi.org/10.3389/fpls.2017.00102...
).

Facing the growing demand for the sustainable agricultural production, this work was conducted with the objective to evaluate the development and the quality of gladiolus floral stems with vermicompost and Trichoderma sp. applied to the substrate.

2. MATERIALS AND METHODS

The experiment was conducted in a greenhouse during the period of August to December of 2015. The experimental design was completely randomized, having four treatments and eight repetitions, composing of 32 experimental unities. The treatment used were: T1 = control substrate (50% soil and 50% commercial substrate Carolina Soil®); T2 = vermicompost (40%) and control substrate (60%); T3 = Trichoderma sp. added to the control substrate; T4 = Trichoderma sp. added to the vermicompost (40%) and control substrate (60%). It used the isolated T02 of species Trichoderma asperellum, coming from the antagonist fungus collection of Center of Research in Forests. The preparation of the Trichoderma followed the methodology described by Steffen and Maldaner (2017)STEFFEN, G.P.K.; MALDANER, J. Methodology for Trichoderma sp. multiplication in organic substrates. International Journal of Current Research, v.9, p.44564-44567, 2017.. The vermicompost was produced with the use of earthworms of the species Eisenia andrei Bouché (1972), using tanned bovine manure. After the complete transformation of the organic wastes, it was sifted in a 2 mm mesh. The chemical analysis characterization of vermicompost, soil and commercial substrate are shown in Table 1.

Table 1
Chemical characterization of vermicompost, soil and commercial substrate used in the substrates composition.

Pots with 2.8 liters were filled with the substrates, receiving after, a bulb of gladiolus of the Peter's Pear variety. These pots were arranged on the workbench of the dimensions of 1.10m of width, 0.50 m of length and 0.50 m of height.

The plants were manually irrigated every two days. The staking was done when the plants had a minimum height of 0.30 m, which occurred at 76 days after the planting (DAP). Pine stakes with 1 m of height were utilized, fixed in the substrate aside the plants and tied with a cotton cord.

The main plant height and the Falker chlorophyll index (FCI) were analyzed at 76, 101 and 117 DAP. The dates of evaluation were determined in function of the staking (76 DAP), start of the flowering (101 DAP) and harvest point (117 DAP). The harvest point was adopted when the inferior floral buds showed the color of cultivar (COSTA et al., 2017COSTA, L.C. da; ARAÚJO, F.F.; SANTOS, M.N. de; LIMA, P.C.L.; PEREIRA, A.M.; FINGER, F.L. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature. Ciência Rural, v.47, p.1-6, 2017. DOI: <10.1590/0103-8478cr20160139>
https://doi.org/10.1590/0103-8478cr20160...
). The length and the diameter of the main stem, the floral tassel length, and the quantity of florets of the main stem were determined at 117 DAP. The interval until start of flowering was also determined.

The plant height was measured starting at the base of the substrate to the apex to the taller leaf. The FCI was measured in two leaves per plant, with a digital chlorophyll meter ClorofiLOG CFL1030 model from Falker®. The diameter of the main stem was measured with the use of a digital pachymeter of the brand Messen®, in the node where the penultimate leaf was emitted. The length of the stem was determined by the distance of the base of the plant in the soil to the tip of the spike. The length of the tassel was determined by the distance from the insertion of the first button to the tip of the spike. Moreover, the spike florets of the main plant were counted.

From the measures of the stem length and the floral tassel, the diameter of the stem and quantity of florets, the floral tassels were classified according to the quality, following the patterns utilized by Veilling Holambra (CRITÉRIOS, 2013CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
http://www.ibraflor.com/publicacoes/vw.p...
).

The results were submitted to the analysis of variance. The effects of the vermicompost and of Trichoderma had their averages compared by the Tukey test at 5% of probability, when significantly, using the statistical software Sisvar (FERREIRA, 2011FERREIRA, D.F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. DOI: <10.1590/S1413-70542011000600001>
https://doi.org/10.1590/S1413-7054201100...
).

3. RESULTS AND DISCUSSION

The plant height varied significantly in function of the treatments at 76 and 117 DAP (Table 2). At 76 DAP the plants that were conducted in T1 presented higher height as compared to the other treatments. At 101 DAP, when the majority of the plants were in the phase of emission of spikes and the start of flowering, did not present statistical difference. However, at 117 DAP, T2 presented higher average height (151.45c m), being significantly different of T3 (129.38 cm). The heights that were obtained are higher than the ones from the literature. Pereira et al. (2009)PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
https://doi.org/10.1590/S1413-7054200900...
, working with different water tensions in the soil for the gladiolus production, obtained heights between 73.1 to 116.4cm.

Table 2
Plant height and Falker chlorophyll index (FCI) in gladiolus plants at 76, 101 and 117 days after planting (DAP).

The period with greater height growth happened from 101 to 117 DAP, and the plants that had better results were conducted in the treatments 2 and 4, which were in the period of emission of the floral stem. These two treatments presented vermicompost in their composition, confirming the relation between this organic fertilizer and the growth of the plants, which was already cited by several authors (CHAMANI et al., 2008CHAMANI, E.; JOYCE, D.C.; REIHANYTABAR, A. Vermicompost effects on the growth and flowering of Petunia hybrida ‘Dream Neon Rose’. American-Eurasian Journal Agricultural and Environmental Science, v.3, p.506-512, 2008.; STEFFEN, 2010aSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Casca de arroz e esterco bovino como substratos para a multiplicação de minhocas e produção de mudas de tomate e alface. Acta Zoologica Mexicana, v.26, p.333-343, 2010a.; STEFFEN, 2010bSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Húmus de esterco bovino e casca de arroz carbonizada como substrato para a produção de mudas de boca-de-leão. Acta Zoologica Mexicana, v.26, p.345-357, 2010b.; BROZ et al., 2016BROZ, A.P.; PRIYA, O.V; APPEL, C. Nitrogen dynamics of vermicompost use in sustainable agriculture. Journal of Soil Science and Environmental Management, v.7, p.173-183, 2016. DOI: <10.5897/JSSEM2016.0587>
https://doi.org/10.5897/JSSEM2016.0587...
; PELIZZA, 2013PELIZZA, T.R.; SILVEIRA, F.N.; MUNIZ. J.; ECHER, A.H.B.; MORSELI, T.B.G.A. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Revista Ceres, v.60, p.257-21, 2013. DOI: <10.1590/S0034-737X2013000200015>
https://doi.org/10.1590/S0034-737X201300...
; XU and MOU, 2016XU, C.; MOU, B. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. Hortscience, v.51, p.847-855, 2016.). Probably, these results are related to the presence of phytohormones in the vermicompost, which presents a direct effect in the vegetative growth (ARANCON et al., 2006ARANCON, N.Q.; EDWARDS, C.A.; LEE, S.; BYRNE, R. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, v.42, p.65-69, 2006. DOI: <10.1016/j.ejsobi.2006.06.004>
https://doi.org/10.1016/j.ejsobi.2006.06...
; RAVINDRAN et al., 2016; MAJI et al. 2017MAJI, D.; MISRA, P.; SINGH, S.; KALRA, A. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, v.110, p.97-108, 2017. DOI: <10.1016/j.apsoil.2016.10.008>
https://doi.org/10.1016/j.apsoil.2016.10...
). According to Lee et al. (2016)LEE, S.; YAP, M.; BEHRINGER, G.; HUNG, R.; W. BENNETT, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biological Biotechnology, v.3, p.1-7, 2016. DOI: < HYPERLINK “https://doi.org/10.1186/s40694-016-0025-7” \t “_blank” 10.1186/s40694-016-0025-7>
https://doi.org/10.1186/s40694-016-0025-...
, the Trichoderma fungus has the possibility of promoting plants growth, however, in this study, this effect was not observed.

It is likely that biotic or abiotic factors have interfered with the expected beneficial effects of Trichoderma on the development of the gladiolus because it has already demonstrated beneficial effects on forest species (AMARAL et al., 2017AMARAL, P.P.; STEFFEN, G.P.K.; MALDANER, J.; MISSIO, E.L.; SALDANHA, C.W. Promotores de crescimento na propagação de caroba. Pesquisa Florestal Brasileira, v.37, p.149-157, 2017. DOI: <10.4336/2017.pfb.37.90.1402>
https://doi.org/10.4336/2017.pfb.37.90.1...
). In general, the benefits of Trichoderma inoculation on plant growth have been observed in plants originated from seeds or cuttings, where the gladiolus was the first bulb-emitting specie tested with this Trichoderma isolate. This fact justifies the need for specific evaluations of the integration between beneficial fungi and plants at the level of fungal isolate and vegetable species. Another consideration in relation to the fact that there was no positive effect of Trichoderma on the development of the gladiolus is related to the general conditions of the crop, which in this case was almost ideal. Moreover, the culture presents a bulb, which guarantees an energy supply in the initial establishment of the plant. Therefore, it is probable that the action of Trichoderma as a growth promoter was not necessary, which can be evidenced by the fact that the control treatment has already presented plants with commercial standard (Tables 2 and 3).

The plants Falker chlorophyll index (FCI) varied significantly between the treatments only at 76 DAP (Table 2), when T2 presented higher value, being different from T3 and T4. The FCI can be an alternative to estimate the nitrogen concentration on the plant, due to its relation between the chlorophyll content and nitrogen content in the leaf tissue (BACKES et al., 2010BACKES, C.; VILLAS BÔAS, R.L.; LIMA, C.P.; GODOY, L.J.G.; BÜLL, L.T.; SANTOS, A.J.M. Estado nutricional em nitrogênio da grama esmeralda avaliado por meio do teor foliar, clorofilômetro e imagem digital, em área adubada com lodo de esgoto. Bragantia, v.69, p.661-668, 2010. DOI: <10.1590/S0006-87052010000300018>
https://doi.org/10.1590/S0006-8705201000...
). Kramer and Kozlowski (1979)KRAMER, T.; KOZLOWSKI, T. Physiology of woody plants. New York: Academic Press, 1979. 811p. assert that chlorophylls are directly linked to the conversion of the light radiation into chemical energy, and they are related to the photosynthetic efficiency of the plants, and, consequently with its growth and adaptability to different environments. In the beginning of the cycle, the plants conducted in T2 presented a higher Falker chlorophyll index and lower height, where this last increased considerably over the cycle. It can be supposed that the higher initial nitrogen contribution, provided by the vermicompost, was the responsible for the higher height of the plants in this treatment, when in marketing stage.

Plants conducted in T2 presented a higher stem length, but without significant difference from T1 and T4 (Table 3), where the contribution of the vermicompost can be again highlighted. Considering this variable, all the treatments were classified in class 110, presenting stems with 110 cm in length (CRITERIOS, 2013CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
http://www.ibraflor.com/publicacoes/vw.p...
). Pereira et al. (2009)PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
https://doi.org/10.1590/S1413-7054200900...
and Schwab et al. (2015b)SCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
obtained values between 87.8 to 116.4 cm and 75.8 to 123.8 cm, respectively. A long stem is desirable because it can be realized systemic cuts with the objective to eliminate the tissues that do not present capacity of water absorption, prolonging the durability after harvesting and keeping the stem with a marketable size (SCWHAB et al., 2015bSCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
).

Table 3
Gladiolus floral stems, according to the Veiling Holambra standard, at 117 days after planting (DAP).

There was no significant difference between the plants for the stem diameter, with the values varying between 0.7 to 1.0 cm (Table 3). For achieving the standards of Veiling Holambra (CRITÉRIOS, 2013CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
http://www.ibraflor.com/publicacoes/vw.p...
), the gladiolus stem must present the diameters proportional to the length. In the case of class 110, the minimum diameter should be 1.0 cm, which was only achieved in T2. Moreover, the proportionality between the diameter and the height give the stem a higher resistance to mechanical damage that may happen in the tillage, which may be caused by the wind or in the moment of the transportation of the harvested stems.

The tassel length where the florets are distributed was longer for the plants conducted in T2 (Table 3). However, independently of treatment, they exceeded the minimum required by Veiling Holambra, which was 40% in relation to the total stem length (CRITÉRIOS, 2013CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
http://www.ibraflor.com/publicacoes/vw.p...
). Stem with harmonic proportion between the portions without flowers and the tassel are aesthetically more pleasant (SCHWAB et al., 2015bSCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
). These authors achieved tassel length between 30.9 and 62.9 cm for this variety.

There was no significant difference between the treatments for the number of florets. However, only the inflorescences produced in T1, T2 and T4 were classified in Class I, with 100-120 cm of height stem and 12-16 number of florets, following the quality standard of Veiling Holambra (CRITÉRIOS, 2013CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
http://www.ibraflor.com/publicacoes/vw.p...
). Pereira et al. (2009)PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
https://doi.org/10.1590/S1413-7054200900...
obtained an average of 11 florets for the variety Peter's Pears, which are smaller than the ones obtained in this work.

The treatment that presented the best results was the T2, which is composed of 60% of control substrate and 40% of vermicompost. According Edwards (2004)EDWARDS, C.A. The use of earthworms in the breakdown and management of organic wastes. In: EDWARDS, C.A. (Org.). Earthworm Ecology. Boca Raton: St. Lucie Press, 2004. p.327-354., the vermicompost works as a bio-stimulator of plant growth, acting in a beneficial way in the development of plants. Observing Table 1, it can be verified that the pH, the nutrient levels, and the organic material of vermicompost were superior to those of the soil; besides, they do not present aluminum, which favors the plant development. Acording to Antunes et al. (2016)ANTUNES, R.M.; CASTILHOS, R.M.V.; CASTILHO, D.D.; LEAL, O.A.; ANDREAZZA, R. Crescimento inicial de acácia-negra com vermicompostos de diferentes resíduos agroindustriais initial growth of Acacia mearnsii with vermicompost of different agroindustrial wastes. Ciência Florestal, v.26, p.1-9, 2016. DOI: <10.5902/1980509821060>
https://doi.org/10.5902/1980509821060...
, the addition of vermicompost to soil increase the availability of nutrients to plants, especially the phosphorus, potassium and magnesium. In addition to the changes exerted on the chemical properties, the organic composts have a clear impact on soil biological properties, positively interferes in the edaphic population that lives on the surface and inside the soil (LAZCANOA and DOMÍNGUEZ, 2011LAZCANOA, C.; DOMÍNGUEZ, J. The use of vermicompost in sustainable agriculture: impact on plant growth and fertility. In: MIRANSARI, M. Soil Nutrients. New York: Nova Science Publishers, 2011. p.1-23.).

There are several research studies that show the efficiency of the vermicompost utilization as part of the substrate on several crops. The vermicompost utilization in horticultural substrates, up to 50% of the volume, is a viable practice for the formation of seedlings of lettuce, tomato, snapdragon, helicon and melon (STEFFEN et al., 2010STEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Casca de arroz e esterco bovino como substratos para a multiplicação de minhocas e produção de mudas de tomate e alface. Acta Zoologica Mexicana, v.26, p.333-343, 2010a. aSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Casca de arroz e esterco bovino como substratos para a multiplicação de minhocas e produção de mudas de tomate e alface. Acta Zoologica Mexicana, v.26, p.333-343, 2010a., bSTEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Húmus de esterco bovino e casca de arroz carbonizada como substrato para a produção de mudas de boca-de-leão. Acta Zoologica Mexicana, v.26, p.345-357, 2010b.; SANTOS et al., 2006HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=SANTOS,+MAURICIO+R+A” SANTOS, M.R.A.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=TIMBO,+ANA+L+O” TIMBO,A.L.O.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=CARVALHO,+ANA+C+P+P” CARVALHO, A.C.P.P.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=MORAIS,+JOAO+P+S” MORAIS, J.P.S. Estudo de adubos e substratosorgânicos no desenvolvimento de mudas micropropagadasde helicônia. Horticultura Brasileira, v.24, p.273-278, 2006. DOI: <10.1590/S0102-05362006000300001>
http://www.scielo.br/cgi-bin/wxis.exe/ia...
; PELIZZA et al., 2013PELIZZA, T.R.; SILVEIRA, F.N.; MUNIZ. J.; ECHER, A.H.B.; MORSELI, T.B.G.A. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Revista Ceres, v.60, p.257-21, 2013. DOI: <10.1590/S0034-737X2013000200015>
https://doi.org/10.1590/S0034-737X201300...
).

The treatment T3, control substrate with Trichoderma sp., and the treatment T4, control substrate and vermicompost (40%) and Trichoderma sp., even with statistically inferior results to T2, also produced stem with better standards than the cited by other authors for pot and field crops (PEREIRA et al., 2009PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
https://doi.org/10.1590/S1413-7054200900...
; SCHWAB et al., 2015bSCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
). Research showed that different Trichoderma isolates have led to significant increases in plant growth and in the productivity of crops inoculated with this bioagent. The most impacted crops are tomato, maize, bean, chickpea and cucumber (YEDIDIA et al., 2001YEDIDIA, I.; SRIVASTVA, A.K.; KAPULNIK, Y.E.; CHET, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, v.235, p.235-242, 2001.; HARMAN et al., 2004HARMAN, G.E.; PETZOLDT, R.; COMIS, A.; CHEN, J. Interactions between Trichoderma harzianum Strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Plant Physiology, v.94, p.146-153, 2004. DOI: < HYPERLINK “https://doi.org/10.1094/PHYTO.2004.94.2.147” \t “_blank” 10.1094/PHYTO.2004.94.2.147>
https://doi.org/10.1094/PHYTO.2004.94.2....
; RESENDE et al., 2004RESENDE, M.L.; OLIVEIRA, J.A.; RENATO MENDES GUIMARÃES, R.M.; VON PINHO, R.G.; VIEIRA, A.R. Inoculações de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento. Ciência e Agrotecnologia, v.28, p.793-798, 2004. DOI: <10.1590/ S1413-70542004000400010>
https://doi.org/10.1590/S1413-7054200400...
; GRAVEL et al., 2007GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, v.39, p.1968-1977, 2007. DOI: < HYPERLINK “https://doi.org/10.1016/j.soilbio.2007.02.015” \t “_blank” \o “Persistent link using digital object identifier” 10.1016/j.soilbio.2007.02.015>
https://doi.org/10.1016/j.soilbio.2007.0...
; JYOTSNA et al., 2008JYOTSNA; SRIVASTAVA, A.; SINGH, R.P.; SRIVASTAVA, A.K.; SAXENA, A.K.; ARORA, D.K. Growth promotion and charcoal rot management in chickpea by Trichoderma harzianum. Journal of Plant Protection Research, v.48, p.81-92, 2008. DOI: < HYPERLINK “https://doi.org/10.2478/v10045-008-0009-6” 10.2478/v10045-008-0009-6>
https://doi.org/10.2478/v10045-008-0009-...
; HOYOS-CARVAJAL et al., 2009HOYOS-CARVAJAL, L.; ORDUZ, S.; BISSETT, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, v.51, p.409-416, 2009. DOI: < HYPERLINK “https://doi.org/10.1016/j.biocontrol.2009.07.018” \t “_blank” \o “Persistent link using digital object identifier” 10.1016/j.biocontrol.2009.07.018>
https://doi.org/10.1016/j.biocontrol.200...
).

The control substrate was used as the base in all treatments, with a composition of 50% of soil with 50% of the commercial substrate Carolina Soil®. The use of the commercial substrate for the composition of the control treatment made it suitable for gladiolus growth, due to the characteristics such as macronutrients values (N, P, K, Ca and Mg) (Table 1), electrical conductivity (1.5 mS cm-1), density (114 kg m-3) and water retention capacity (54%). This combination (50% soil + 50% Carolina Soil®) also produced stem with similar height and number of florets to those described by Pereira et al. (2009)PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
https://doi.org/10.1590/S1413-7054200900...
and Schwab et al. (2015b)SCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
https://doi.org/10.1590/S0100-204X201500...
.

CONCLUSIONS

The development and quality of gladiolus flower stems were favored by the use of vermicompost in the proportion of 40%, providing stems with greater length and increasing the stems/stalk ratio. Under the conditions of this experiment, no growth promoting effect was observed by the Trichoderma isolate evaluated.

REFERENCES

  • AMARAL, P.P.; STEFFEN, G.P.K.; MALDANER, J.; MISSIO, E.L.; SALDANHA, C.W. Promotores de crescimento na propagação de caroba. Pesquisa Florestal Brasileira, v.37, p.149-157, 2017. DOI: <10.4336/2017.pfb.37.90.1402>
    » https://doi.org/10.4336/2017.pfb.37.90.1402
  • ANTUNES, R.M.; CASTILHOS, R.M.V.; CASTILHO, D.D.; LEAL, O.A.; ANDREAZZA, R. Crescimento inicial de acácia-negra com vermicompostos de diferentes resíduos agroindustriais initial growth of Acacia mearnsii with vermicompost of different agroindustrial wastes. Ciência Florestal, v.26, p.1-9, 2016. DOI: <10.5902/1980509821060>
    » https://doi.org/10.5902/1980509821060
  • ARANCON, N.Q.; EDWARDS, C.A.; LEE, S.; BYRNE, R. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, v.42, p.65-69, 2006. DOI: <10.1016/j.ejsobi.2006.06.004>
    » https://doi.org/10.1016/j.ejsobi.2006.06.004
  • BACKES, C.; VILLAS BÔAS, R.L.; LIMA, C.P.; GODOY, L.J.G.; BÜLL, L.T.; SANTOS, A.J.M. Estado nutricional em nitrogênio da grama esmeralda avaliado por meio do teor foliar, clorofilômetro e imagem digital, em área adubada com lodo de esgoto. Bragantia, v.69, p.661-668, 2010. DOI: <10.1590/S0006-87052010000300018>
    » https://doi.org/10.1590/S0006-87052010000300018
  • BALDOTTO, M.A.; BALDOTTO, L.E.B. Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres, v.60, p.138-142, 2013. DOI: <10.1590/S0034-737X2013000100020>
    » https://doi.org/10.1590/S0034-737X2013000100020
  • BROZ, A.P.; PRIYA, O.V; APPEL, C. Nitrogen dynamics of vermicompost use in sustainable agriculture. Journal of Soil Science and Environmental Management, v.7, p.173-183, 2016. DOI: <10.5897/JSSEM2016.0587>
    » https://doi.org/10.5897/JSSEM2016.0587
  • CHAMANI, E.; JOYCE, D.C.; REIHANYTABAR, A. Vermicompost effects on the growth and flowering of Petunia hybrida ‘Dream Neon Rose’. American-Eurasian Journal Agricultural and Environmental Science, v.3, p.506-512, 2008.
  • COSTA, L.C. da; ARAÚJO, F.F.; SANTOS, M.N. de; LIMA, P.C.L.; PEREIRA, A.M.; FINGER, F.L. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature. Ciência Rural, v.47, p.1-6, 2017. DOI: <10.1590/0103-8478cr20160139>
    » https://doi.org/10.1590/0103-8478cr20160139
  • CRITÉRIOS de classificação: gladíolo corte. Santo Antônio, de Posse: Veiling Holambra, Departamento de Qualidade e Pós-Colheita, [2013?]. 5p. Available at: <http://www.ibraflor.com/publicacoes/vw.php?cod=78>. Accessed in: Oct. 2015.
    » http://www.ibraflor.com/publicacoes/vw.php?cod=78
  • EDWARDS, C.A. The use of earthworms in the breakdown and management of organic wastes. In: EDWARDS, C.A. (Org.). Earthworm Ecology Boca Raton: St. Lucie Press, 2004. p.327-354.
  • FERREIRA, C.A.; VON PINHO, E.V.R.; SALGADO, K.C.P.; PEREIRA, G.S.; FERREIRA, I.A. Identificação de cultivares de Gladiolus sp. por meio de marcadores genético bioquímicos e de RAPD. Revista Brasileira de Horticultura Ornamental, v.15, n.2, 115-126, 2009. DOI: <10.14295/rbho.v15i2.492>
    » https://doi.org/10.14295/rbho.v15i2.492
  • FERREIRA, D.F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, v.35, p.1039-1042, 2011. DOI: <10.1590/S1413-70542011000600001>
    » https://doi.org/10.1590/S1413-70542011000600001
  • GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, v.39, p.1968-1977, 2007. DOI: < HYPERLINK “https://doi.org/10.1016/j.soilbio.2007.02.015” \t “_blank” \o “Persistent link using digital object identifier” 10.1016/j.soilbio.2007.02.015>
    » https://doi.org/10.1016/j.soilbio.2007.02.015
  • HARMAN, G.E.; PETZOLDT, R.; COMIS, A.; CHEN, J. Interactions between Trichoderma harzianum Strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Plant Physiology, v.94, p.146-153, 2004. DOI: < HYPERLINK “https://doi.org/10.1094/PHYTO.2004.94.2.147” \t “_blank” 10.1094/PHYTO.2004.94.2.147>
    » https://doi.org/10.1094/PHYTO.2004.94.2.147
  • HOYOS-CARVAJAL, L.; ORDUZ, S.; BISSETT, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, v.51, p.409-416, 2009. DOI: < HYPERLINK “https://doi.org/10.1016/j.biocontrol.2009.07.018” \t “_blank” \o “Persistent link using digital object identifier” 10.1016/j.biocontrol.2009.07.018>
    » https://doi.org/10.1016/j.biocontrol.2009.07.018
  • ISLAM, S. Anthocyanin compositions in different colored gladiolus species: a source of natural food colorants. American Journal of Food Science and Technology, v.4, p.109-114, 2016. DOI: <10.12691/ajfst-4-4-4>
    » https://doi.org/10.12691/ajfst-4-4-4
  • JYOTSNA; SRIVASTAVA, A.; SINGH, R.P.; SRIVASTAVA, A.K.; SAXENA, A.K.; ARORA, D.K. Growth promotion and charcoal rot management in chickpea by Trichoderma harzianum. Journal of Plant Protection Research, v.48, p.81-92, 2008. DOI: < HYPERLINK “https://doi.org/10.2478/v10045-008-0009-6” 10.2478/v10045-008-0009-6>
    » https://doi.org/10.2478/v10045-008-0009-6
  • KRAMER, T.; KOZLOWSKI, T. Physiology of woody plants. New York: Academic Press, 1979. 811p.
  • LAZCANOA, C.; DOMÍNGUEZ, J. The use of vermicompost in sustainable agriculture: impact on plant growth and fertility. In: MIRANSARI, M. Soil Nutrients New York: Nova Science Publishers, 2011. p.1-23.
  • LEE, S.; YAP, M.; BEHRINGER, G.; HUNG, R.; W. BENNETT, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biological Biotechnology, v.3, p.1-7, 2016. DOI: < HYPERLINK “https://doi.org/10.1186/s40694-016-0025-7” \t “_blank” 10.1186/s40694-016-0025-7>
    » https://doi.org/10.1186/s40694-016-0025-7
  • MACHADO, D.F.M.; PARZIANELLO, F.R.; SILVA, A.C.F.; ANTONIOLLI, Z.I. Trichoderma no Brasil: o fungo e o bioagente. Revista de Ciências Agrárias, v.35, p.274-288, 2012.
  • MAHASEN, M.; ONAA, A.F.; TAUFIQUEA, T.; MEHRAJB, H.; JAMAL UDDINA, A.F.M. Suitability of cut corm as planting materials on flowering and corm-cormel production of gladiolus cultivars. Journal of Bioscience and Agriculture Research, v.4, p.10-19, 2015.
  • MAJI, D.; MISRA, P.; SINGH, S.; KALRA, A. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, v.110, p.97-108, 2017. DOI: <10.1016/j.apsoil.2016.10.008>
    » https://doi.org/10.1016/j.apsoil.2016.10.008
  • MEMON, M.; QASIM, M.J.; AHMAD, R. AHMAD, I. Corm and cormel production in gladiolus. New Zealand Journal of Crop and Horticultural Science, v.37, p.319-325, 2009.
  • NIETO-JACOBO, M.F.; STEYAERT, J.M.; SALAZAR-BADILLO, F.B.; NGUYEN, D.V.; ROSTÁS, M.; BRAITHWAITE, DE SOUZA, J.T.; JIMENEZ-BREMONT, J.F.; OHKURA, M.; STEWART, A.; MENDOZA-MENDOZA, A. Environmental Growth Conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers Plant Science, v.8, p.1-18, 2017. DOI: <10.3389/fpls.2017.00102>
    » https://doi.org/10.3389/fpls.2017.00102
  • PATHMA, J.; SAKTHIVEL, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus, p.1-19, 2012. DOI: < HYPERLINK “https://dx.doi.org/10.1186%2F2193-1801-1-26” \t “pmc_ext” 10.1186/2193-1801-1-26>
    » https://dx.doi.org/10.1186%2F2193-1801-1-26
  • PELIZZA, T.R.; SILVEIRA, F.N.; MUNIZ. J.; ECHER, A.H.B.; MORSELI, T.B.G.A. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Revista Ceres, v.60, p.257-21, 2013. DOI: <10.1590/S0034-737X2013000200015>
    » https://doi.org/10.1590/S0034-737X2013000200015
  • PEREIRA, J.R.D.; CARVALHO, J.A.; PAIVA, P.D.O.; SILVA, D.J.; SOUZA, A.M.G. de; SOUZA, K.J. Crescimento e produção de hastes florais de gladíolo cultivado sob diferentes tensões de água no solo. Ciência e Agrotecnologia, v.33, p.965-970, 2009. DOI: <10.1590/S1413-70542009000400004>
    » https://doi.org/10.1590/S1413-70542009000400004
  • POON, T.B.; RAO, TM.; KUMAR, D.P.; VENUGOPALAN, R.; DHANANJAYA, M.V Study on floral biology of Gladiolus genotypes. Nepal Journal of Science and Technology, n.10, p.37-43, 2009. DOI: <10.3126/njst.v10i0.2821>
    » https://doi.org/10.3126/njst.v10i0.2821
  • RAVINDRAN, B.; DINESH, S.L.; KENNEDY, L.J.; SEKARAN, G. Vermicomposting of solid waste generated from leather industries using epigeic earthworm Eisenia foetida. Applied Biochemistry and Biotechnology, v.151, p.480-488, 2008. DOI: <10.1007/s12010-008-8222-3>
    » https://doi.org/10.1007/s12010-008-8222-3
  • RESENDE, M.L.; OLIVEIRA, J.A.; RENATO MENDES GUIMARÃES, R.M.; VON PINHO, R.G.; VIEIRA, A.R. Inoculações de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento. Ciência e Agrotecnologia, v.28, p.793-798, 2004. DOI: <10.1590/ S1413-70542004000400010>
    » https://doi.org/10.1590/S1413-70542004000400010
  • ROSA, Y.B.C.J.; WOLLEMBERG, S.; SILVA, E.F. da; ROSA JUNIOR, E.J.; NUNES, M.F.; SORGATO, J.C.; ROSA, D.B.C.J.; SOARES, J.S.; ROSA, C.S.L. Desenvolvimento de gladíolos em função da adubação nitrogenada e diâmetro do cormo. Revista Brasileira de Horticultura Ornamental, v.20, n.1, p.87-92, 2014. DOI: < HYPERLINK “https://doi.org/10.14295/rbho.v20i1.521” 10.14295/rbho.v20i1.521>
    » https://doi.org/10.14295/rbho.v20i1.521
  • RUPPENTHAL, V; CASTRO, A.M.C. Efeito do composto de lixo urbano na nutrição e produção de gladíolo. Revista Brasileira de Ciência do Solo, v.29, p.145-150, 2005. DOI: <10.1590/S0100-06832005000100016>
    » https://doi.org/10.1590/S0100-06832005000100016
  • HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=SANTOS,+MAURICIO+R+A” SANTOS, M.R.A.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=TIMBO,+ANA+L+O” TIMBO,A.L.O.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=CARVALHO,+ANA+C+P+P” CARVALHO, A.C.P.P.; HYPERLINK “http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=MORAIS,+JOAO+P+S” MORAIS, J.P.S. Estudo de adubos e substratosorgânicos no desenvolvimento de mudas micropropagadasde helicônia. Horticultura Brasileira, v.24, p.273-278, 2006. DOI: <10.1590/S0102-05362006000300001>
    » http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=SANTOS,+MAURICIO+R+A» http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=TIMBO,+ANA+L+O» http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&ind exSearch=AU&exprSearch=CARVALHO,+ANA+C+P+P» http://www.scielo.br/cgi-bin/wxis.exe/iah/?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft&lang=i&nextAction=lnk&indexSearch=AU&exprSearch=MORAIS,+JOAO+P+S» 10.1590/S0102-05362006000300001
  • SCHWAB, N.T.; STRECK, N.A.; BECKER, C.C.; LANGNER, J.A.; ULHMANN, L.O.; RIBEIRO, B.S.M.R. A phenological scale for the development of Gladiolus. Annals of Applied Biology, v.166, p.496-507, 2015a. DOI: < HYPERLINK “https://doi.org/10.1111/aab.12198” 10.1111/aab.12198>
    » https://doi.org/10.1111/aab.12198
  • SCHWAB, N.T.; STRECK, N.A.; REHBEIN, A.; RIBEIRO, B. S.M.R.; ULHMANN, L.O.; LANGNER, J.A.; BECKER, C. C. Dimensões lineares da folha e seu uso na determinação do perfil vertical foliar de gladíolo. Bragantia, v.73, p.97-105, 2014. DOI: <10.1590/brag.2014.014>
    » https://doi.org/10.1590/brag.2014.014
  • SCHWAB, N.T.; STRECK, N.A.; RIBEIRO, B.S.M.R.; BECKER, C.C.; LANGNER, J.A.; UHLMANN, L.O.; RIBAS, G.G. Parâmetros quantitativos de hastes florais de gladíolo conforme a data de plantio em ambiente subtropical. Pesquisa Agropecuária Brasileira, v.50, p.902-911, 2015b. DOI: <10.1590/S0100-204X2015001000006>
    » https://doi.org/10.1590/S0100-204X2015001000006
  • SINGH, J.P.; KUMAR, K.; KATIYAR, P. Effect of zinc, iron and copper on Yield parameters of gladiolus. HortFlora Research Spectrum, v.1, p.64-68, 2012.
  • SÖNMEZ, F.; ÇIG, A.; GÜLSER, F.; BASDOGAN, G. The effects of some organic fertilizers on nutrient contents in hybrid Gladiolus. Eurasian Journal of Soil Science, v.2, p.140-144, 2013.
  • STEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Casca de arroz e esterco bovino como substratos para a multiplicação de minhocas e produção de mudas de tomate e alface. Acta Zoologica Mexicana, v.26, p.333-343, 2010a.
  • STEFFEN, G.P.K.; ANTONIOLLI, Z.I.; STEFFEN, R.B.; MACHADO, R.G. Húmus de esterco bovino e casca de arroz carbonizada como substrato para a produção de mudas de boca-de-leão. Acta Zoologica Mexicana, v.26, p.345-357, 2010b.
  • STEFFEN, G.P.K.; MALDANER, J. Methodology for Trichoderma sp. multiplication in organic substrates. International Journal of Current Research, v.9, p.44564-44567, 2017.
  • TOMBOLATO, A.F.C.; CASTRO, J.L. de; MATTHES, L.A.F.; LEME, J.M. Melhoramento genético do gladíolo no IAC: novos cultivares ‘IAC Carmim’ e ‘IAC Paranapanema’. Científica, v.33, p.142-147, 2005. DOI: < HYPERLINK “http://dx.doi.org/10.15361/1984-5529.2005v33n2p142+-+147” 10.15361/1984-5529.2005v33n2p142+-+147>
    » http://dx.doi.org/10.15361/1984-5529.2005v33n2p142+-+147
  • VERMA R.P.; KUMAR, A.; VERMA, S.K.; VERMA, A.; VERMA, P.K. Influence of nitrogen, planting geometry and corm size on vegetative growth and corm and cormel production of gladiolus cv Nova Lux. Environment & Ecology, v. 32, p.199-201, 2015.
  • XU, C.; MOU, B. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. Hortscience, v.51, p.847-855, 2016.
  • YEDIDIA, I.; SRIVASTVA, A.K.; KAPULNIK, Y.E.; CHET, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, v.235, p.235-242, 2001.

Publication Dates

  • Publication in this collection
    Jan-Apr 2018

History

  • Received
    08 Nov 2017
  • Accepted
    23 Apr 2018
Sociedade Brasileira de Floricultura e Plantas Ornamentais Av. Av. Peter Henry Rolfs, s/n, 36570-000 - Viçosa, Minas Gerais - Brasil, (32) 3379-4983, Tel: (32) 3379-4983 - Viçosa - MG - Brazil
E-mail: editor.ornamentalhorticulture@gmail.com