Acessibilidade / Reportar erro

Assessment of potential surface degradation resulting from erosion processes in environmentally protected area

Abstract

Erosion processes occur in several locations, causing impacts on the environment. This article analyzes the soil erodibility potential of the conservation unit of Timbaúbas municipal natural reserve, located in Juazeiro do Norte, in the southern mesoregion of Ceará, northeastern Brazil. It also addresses geotechnical characterization tests and field tests on erosion. In the field tests on erosion, huge volumes of soil loss were found caused by the action of rainfall and simulated surface flows. The results of the geotechical investigaton revealed silty sand soil, low values resistance parameters, has high erosion potential. The reduced rate of soil vegetation cover associated with the mechanical characteristics of the aggregate increases susceptibility to erosion processes, also intensified by anthropic intervention and construction of buildings on the site, without proper action to discipline the runoff. This work enables us to conclude that natural factors together with unsuifigure anthropic factors have been the causes of erosion of the conservation unit in question.

Keywords
Erodibility; Soil loss; Field tests on erosion; Geotechical investigaton; Inderbitzen test

1. Introduction

Although erosion processes are considered natural phenomena, they are now a problem for environmental resources when soil loss rates exceed the natural levels of soil generation (Jorge & Guerra, 2013Jorge, M.C.O., & Guerra, A.J.T. (2013). Erosão dos solos e movimentos de massa - recuperação de áreas degradadas com técnicas de bioengenharia e prevenção de acidentes. In A.J.T. Guerra & M.C.O. Jorge, (Org.). Processos erosivos e recuperação de áreas degradadas (Vol. 1, pp. 7-30). 1ª ed. São Paulo: Oficina de Textos.). In urban areas, one of the main problems related to the increased erosion processes is the possible destruction of community assets, resulting from geohazard events leading to necessary land use planning to prevent such problems (Camapum de Carvalho et al., 2006Camapum de Carvalho, J., Sales, M.M., Mortari, D., Fácio, J.A., Motta, N.O., & Francisco, R.A. (2006). Processos Erosivos. In J. Camapum de Carvalho, M.M. Sales, N.M. Souza & M.T.S. Melo, (Org.). Processos erosivos no centro oeste brasileiro (1ed., v. 1, p. 39-91, Cap. 2, 464 p.). Brasília: FINATEC. ). The problem is even more severe since erosion processes are not restricted only to where erosion scars exist, but also to where materials are deposited, in some cases, for example, water bodies, possibly causing local siltation and pollution concentration.

Guerra & Hoffmann (2006)Guerra, A.J.T., & Hoffmann, H. (2006). Urban gully erosion in Brazil. Geography Review, Oxford, 19(3), 26-29. discuss studies in several Brazilian locations degraded by several surface erosion types (gullies), mainly caused by deforestation, lack of urban planning, absence of storm water drains and no drainage elements, or by poor design. According to Camapum de Carvalho et al. (2006)Camapum de Carvalho, J., Sales, M.M., Mortari, D., Fácio, J.A., Motta, N.O., & Francisco, R.A. (2006). Processos Erosivos. In J. Camapum de Carvalho, M.M. Sales, N.M. Souza & M.T.S. Melo, (Org.). Processos erosivos no centro oeste brasileiro (1ed., v. 1, p. 39-91, Cap. 2, 464 p.). Brasília: FINATEC. , some places in Maranhão state evidence severe erosion phenomena, especially ravines in the Bacanga river basin (Coeduc, Batatã, Gapara, Itaqui, Maracanã, Posto, Sacavém, Torre and Vila Maranhão), aggravated by high urbanization rate and the physical, chemical and environmental characteristics of the basin. In the satellite towns of Ceilândia (DF) and Jardim Ingá (GO), by the end of the 1980s, erosion had destroyed towns and damaged roads.

Soil erosion depends on the active forces of rainfall and slope characteristics, and or by intrinsic factors linked to the soil and vegetation density (Bertoni & Lombardi Neto, 1999Bertoni, J., & Lombardi Neto, F. (1999). Conservação do solo (8. ed., 360 p.). São Paulo.). Disordered growth and inappropriate land use are the prime aggravating factors of erosion, major capitals and several other locations in Northeast Brazil, as has been observed in Ceará’s hinterland, where erosion processes occur in urban areas, roadsides and legally protected areas (Lafayette, 2006Lafayette, K.P.V. (2006). Estudo geológico – geotécnico do processo erosivo em encostas no Parque Metropolitano Armando de Holanda Cavalcanti - Cabo de Santo Agostinho/PE [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.; Meira, 2008Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.; Macedo, 2019Macedo, C.C.A. (2019). Diagnóstico da erodibilidade e da qualidade hídrica em uma unidade de conservação municipal [Unpublished master’s dissertation]. Universidade Federal do Cariri.). The purpose of this paper is to present a study of the potential soil erodibility of the Timbaúbas Municipal Nature Reserve in Juazeiro do Norte (CE), in support of the area’s rehabilitation project.

2. Erodibility potential indicator parameters

Field and laboratory testing can be done in order to achieve erodibility potential indicator parameters. Geotechnical characterization testing (soil size analysis, liquid limit, plasticity limit, shear strength, permeability) and other more specific tests (e.g., slaking, crumb, Inderbitzen) could provide information on the hydraulic and mechanical behavior of the soil and, in turn, be directly related to the erodibility potential, making it easier to understand the erosion processes.

The finer particles (clay) are easily displaced and transported when the cohesive force is overcome. Larger particles (coarse sand, gravel) are more resistant to erosion and tend to accumulate on the surface, due to the relationship with the frictional force. Soils with high silt content generally have high erodibility (Llopis Trilho, 1999Llopis Trilho, G. (1999). Control de la erosión y obras de desague. In C. L. Jimeno (Ed.), Manual de estabilización y revegetación de taludes (704 p.). Entorno Grafico S. L. Madrid.). Ramidan (2003)Ramidan, M.A.S. (2003). Estudo de um processo de voçorocamento próximo a UHE de Itumbiara-GO [Unpublished master’s dissertation]. Pontifícia Universidade Católica do Rio de Janeiro. finds that the soils more resistant to erosion have 30%-35% clay in their composition, due to the cohesive nature of the clay and contributing to dispersion resistance.

In the opinion of Bender (1985)Bender, H. (1985). Erosion: un probleme de résistance au cisaillement en fonction du chemin des contraintes pendant ínfiltration. In International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils (pp. 15-25). ABMS. the erosion resistance and shear strength depend on the cohesive behavior of the soil. Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
states that when the variation in cohesion (∆c) is more than 85%, obtained from a soil sample in natural moisture in relation to the value of the cohesion obtained in that same sample in the saturated condition, the soil may be considered erodible.

The slaking test allows us to observe the stability of an undisturbed soil sample, when immersed in distilled water, estimating the capacity of the water to disperse the soil. Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
believes that soils that crumble completely in water are considered highly erodible. However, there is no direct relationship of intermediary and low levels of erodibility with this test.

The crumb test helps classify the reaction of a soil plot in relation to dispersion when immersed in water. The soil may be classified as dispersive (susceptible to erosion) or non-dispersive (possibly erodible or not). The standard ABNT (1996)ABNT NBR 13601. (1996). Soil – Standard test methods for determining dispersive characteristics of clayey soil by the Crumb test. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese). determines four (4) degrees of dispersibility, as follows: Degree 1 - non-dispersive, where the clod may fracture or crumble, but there is no turbidity; Degree 2 - slightly dispersive, where signs of turbidity are seen in the water; Degree 3 - moderately dispersive, observing turbidity with colloidal particles; and Degree 4 - highly dispersive, with thick turbidity of colloidal particles.

Inderbitzen tests were performed on undisturbed test specimens in order to assess soil mass loss due to surface runoff. The test is performed on an articulated hydraulic ramp, which may have an adjustable slope, fitted with a central orifice in which a soil sample is enclosed (Nagel et al., 2009Nagel, F., Storgatto, G., Basso, L., Nummer, A.V., & Pinheiro, R.J.B. (2009). Ensaio Interbitzen: estudo da erodibilidade de solos e rochas sedimentares. In 5º Seminário de Engenharia Geotécnica do Rio Grande do Sul (9 p.). Retrieved in August 19, 2018, from https://www.abms.com.br/links/bibliotecavirtual/geors2009/2009-nagel-storgatto.pdf
https://www.abms.com.br/links/biblioteca...
).

Through testing, quantified hydraulic shear stresses, using hydraulic parameters, can be related to soil loss (per unit area and time). A graph of this relationship can obtain an erodibility rate (K) representing a soil loss rate in g/cm2/min/Pa. It is also possible to obtain a critical hydraulic shear stress (τhcrit), understood as the lowest hydraulic shear stress capable of producing decomposition (Bastos et al., 2017Bastos, C.A.B., Gitirana Junior, G.F.N., & Kühn, V.O. (2017). Solos não saturados e os processos erosivos. In M.M. Sales, J. Camapum de Carvalho, M.M.A. Mascarenha, M.P. Luz, N.M. Souza & R.R. Angelim (Org.), Erosão em Borda de Reservatório (1 ed., v. 1, p. 91-126, Cap. 5, 584 p.). Goiânia: Universidade Federal de Goiás.). Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
proposes classification of soil erodibility, based on the erodibility rate (K) in g/cm2/min/Pa, as follows - low erodibility for soils that have K<1x10-3; medium erodibility for 1x10-3<K<1x10-1, and high erodibility for K>1x10-1.

Soil permeability is closely related to its erodibility potential. Water seepage is a problem in soils with low permeability, since the surface or subsurface runoff is greater, as is its erosion potential, due to the direction of particles dragged by the force of the water. On the other hand, highly permeable soils easily suffer leaching processes, losing nutrients to support the vegetation, important for protecting against erosion processes.

An erodibility study in pilot tests is designed to measure the surface runoff and amount of transported soil. It is possible to quantify the soil losses and onsite crumbling rate (Lafayette, 2006Lafayette, K.P.V. (2006). Estudo geológico – geotécnico do processo erosivo em encostas no Parque Metropolitano Armando de Holanda Cavalcanti - Cabo de Santo Agostinho/PE [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.; Meira, 2008Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.; Inácio et al., 2007Inácio, E.S.B., Cantalice, P.G.S.N., Araujo, Q.R., & Barreto, A.C. (2007). Quantificação da erosão em pastagem com diferentes declives na microbacia do Ribeirão Salomea. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(4), 355-360.). The relationship between rainfall intensity and soil loss is useful information for decision makers.

3. Characteristics of the investigated area

The subject of this paper is the area of Timbaúbas Municipal Nature Reserve, located in the municipality of Juazeiro do Norte (Figure 1). The municipality of Juazeiro do Norte, in turn, is located in the southern mesoregion of Ceará, northeastern Brazil, between the coordinates latitude (S) 7º12'47” and longitude (WGr) 39º18'55” covering an area of 248.8 km2 with a population of 249,939 inhabitants (Ceará Research Institute on Economic Strategy-IPECE, 2017Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE (2017). Juazeiro do Norte: perfil básico do município. Retrieved in December 20, 2018, from www.ipece.ce.gov.br/.../ perfil_basico/PBM.../Juazeiro%20do%20Norte.pdf).

Figure 1
Location of the Timbaúbas municipal nature reserve. Sources: Macedo (2019)Macedo, C.C.A. (2019). Diagnóstico da erodibilidade e da qualidade hídrica em uma unidade de conservação municipal [Unpublished master’s dissertation]. Universidade Federal do Cariri., IBGE (2010)Instituto Brasileiro de Geografia e Estatística – IBGE. (2010). Cidades, 2010. Retrieved in December 23, 2018, from http://www.ibge.gov.br/cidadesat/topwindow.htm?1
http://www.ibge.gov.br/cidadesat/topwind...
, IPECE (2017)Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE (2017). Juazeiro do Norte: perfil básico do município. Retrieved in December 20, 2018, from www.ipece.ce.gov.br/.../ perfil_basico/PBM.../Juazeiro%20do%20Norte.pdf.

According Köppen & Geiger (1928)Köppen, W. & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes [Wall-map 150 cm x 200 cm]., the region has a semiarid hot tropical climate, with 925 mm average annual precipitation. The annual average temperature varies between 24°C and 26°C. The wet season is January to May (FUNCEME, 2006Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. (2006). Zoneamento Geoambiental do Estado do Ceará - Parte II: Mesorregião do Sul Cearense. FUNCEME.).

Timbaúbas municipal natural reserve was created in 1997 in order to “ensure preservation and restoration of the margins of the Rivers Salgadinho and Timbaúbas” (Juazeiro do Norte, 1997Juazeiro do Norte. (1997). Decreto Municipal n°. 1183, de 16 de Junho de 1997. Delimita o Parque Ecológico das Timbaúbas, área de proteção de mananciais e do meio ambiente. Diário Oficial do Município.). In 2017, the area was classified as a conservation unit and defined as an Integral Protection Area, in order to protect the water table comprising the Salgado river basin (Juazeiro do Norte, 2017Juazeiro do Norte. (2017). Decreto Municipal no. 352, de 23 Outubro de 2017. Cria o Parque Natural Municipal das Timbaúbas, no Município de Juazeiro do Norte, no Estado do Ceará, e dá outras providências. Diário Oficial do Município.). The reserve currently has a total area of 23.40 ha.

The area’s predominant soils are alluvial neosols, consisting of coarse and fine sand, mostly quartz, thick well drained and with low natural fertility (FUNCEME, 2012Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. (2012). Levantamento de reconhecimento de média intensidade dos solos (280 p.). FUNCEME.). Costa et al. (2013)Costa, K.V.M., Barreto, A.C., Fontenele, S.B., & Mendonça, L.A.R. (2013). Estimativa de perda de solo distribuída em uma bacia hidrográfica de pequeno porte através de técnicas de geoprocessamento. In XVI Simpósio Brasileiro de Sensoriamento Remoto. Foz do Iguaçu, PR. studied the hydrosedimentological parameters of the São José catchment area (location of study area) and prepared a GIS-based erosion-prone soil map using the Universal Soil Loss Equation (USLE). They found that the Timbaúbas Municipal Nature Reserve soils with medium to high erodibility potential predominate. This area has laminar erosion shown by exposed tree roots on the surface, and linear erosion in the form of furrows, ravines and gullies.

4. Materials and methods

4.1 Morphometric characterization and land occupation and use

The morphometric characterization of the microbasin in the study area was done using software QGIS v. 2.14, based on domain images of Google Earth and the Brazilian Institute of Geography and Statistics (IBGE), and an aerial survey using unmanned aerial vehicles (UAV). This work was designed to obtain the following parameters: area, perimeter, length of watercourses, compactness coefficient, shape coefficient, circularity and sinuosity index and drainage density; whose formulations were based in the studies by Villela & Mattos (1975)Villela, S.M., & Mattos, A. (1975). Hidrologia aplicada (239 p.). São Paulo: McGraw-Hill do Brasil., Cardoso et al. (2006)Cardoso, C.A., Dias, H.C.T., Soares, C.P.B., & Martins, S.V. (2006). Caracterização Morfométrica da Bacia Hidrográfica do Rio Debossan, Nova Friburgo, RJ. Revista Árvore, 30(2), 241-248. and Silva Neto et al. (2013). The aerial survey (May 2018) helped toward estimating the areas of vegetation, exposed soil and built up areas.

4.2 Methods for geotechnical characterization

4.2.1 Laboratory tests

For geotechnical characterization of the study area, soil mechanics laboratory tests were performed on three samples (Figure 1) collected from different points in the municipal reserve close to an area of severe erosion processes.

The tests were as follows:

  1. a

    Basic physical characterization tests: Soil grading analysis, by sieving and sedimentation (ABNT, 2016aABNT NBR 7181. (2016a). Soil - Grain size analysis. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).); specific particle weight based on ABNT (2017)ABNT NBR 6458. (2017). Gravel grains passing through the 4.8 mm mesh sieve - Determination of bulk specific gravity. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese). (soil particles passing through the 4.8 mm sieve – Determining the specific density); liquid limit (ABNT, 2016bABNT NBR 6459. (2016b). Determining the liquid limit. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).); plasticity limit (ABNT, 2016cABNT NBR 7180. (2016c). Determination of plastic limit. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).);

  2. b

    Erosion susceptibility test: Slaking test, Crumb test (ABNT, 1996ABNT NBR 13601. (1996). Soil – Standard test methods for determining dispersive characteristics of clayey soil by the Crumb test. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).);

  3. c

    Inderbitzen tests. The tests were performed in three different surface runoff flows (3.5 L/min, 6 L/min and 7 L/min), when adopting a ramp gradient of 30o, based on the procedures applied by Lafayette (2006)Lafayette, K.P.V. (2006). Estudo geológico – geotécnico do processo erosivo em encostas no Parque Metropolitano Armando de Holanda Cavalcanti - Cabo de Santo Agostinho/PE [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.. The samples were tested under two initial conditions, starting with natural moisture and then a 24-hour saturated condition. The water flow was measured using Arduino hardware.

  4. d

    Shear strength tests using a direct shearing press on previously saturated test specimens in natural moisture and previously saturated.

4.2.2 In situ tests

4.2.2.1 Permeability testing

In situ permeability was tested close to the three sampling sites, using the Guelph constant head permeameter. Heads referring to the 5 cm and 10 cm water columns were adopted by monitoring water columns (cm/s) in the R1 and R2 tanks, respectively. Hydraulic conductivity saturated on site (Kfs) was calculated by using Equation 1.

K f s = 0.0041 . x . R 2 - 0.0054 . x . R 1 (1)

where: 𝐾𝑓𝑠 is the hydraulic conductivity (cm/s); 𝑥 is the tank constant, namely 35.22 cm2 in the case of interconnected tanks; R1 is the waterfall rate obtained from the first load applied (cm/s); R2 is the waterfall rate obtained from the second load applied (cm/s).

4.2.2.2 Erodibility study in pilot tests

Pilot tests were carried out to understand the erosion processes in the form of furrows. In the study area, three pilot tests were performed (pilot tests I, II and III), all close to the Sample 2 site (area with the highest concentration of erosion in furrows). The methodological procedures were based on the studies from Inácio et al. (2007)Inácio, E.S.B., Cantalice, P.G.S.N., Araujo, Q.R., & Barreto, A.C. (2007). Quantificação da erosão em pastagem com diferentes declives na microbacia do Ribeirão Salomea. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(4), 355-360., Meira (2008)Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco. and Lafayette (2006)Lafayette, K.P.V. (2006). Estudo geológico – geotécnico do processo erosivo em encostas no Parque Metropolitano Armando de Holanda Cavalcanti - Cabo de Santo Agostinho/PE [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.. Pilot test I was used in the soil loss study due to the rainfall in April 2018; and Pilot tests II and III (Figure 2) were used for simulated runoffs situated between two erosion furrows, one in soil protected by natural vegetation and plant litter; and the other in unprotected soil. For the pilot tests, the plots were defined by 0.4 m high zinc metal plates, 0.2 m of this being driven into the ground, and rectangular in shape (0.5 m wide x 1.5 m long - Figure 2). Rainfall volumes were obtained from the readings of a rain gauge. Further details can be obtained from studies in Macedo (2019)Macedo, C.C.A. (2019). Diagnóstico da erodibilidade e da qualidade hídrica em uma unidade de conservação municipal [Unpublished master’s dissertation]. Universidade Federal do Cariri..

Figure 2
Pilot tests: II (vegetation), III (without vegetation).

The Rational Method (Equation 2) was applied in order to estimate the test flow, and the rainfall intensity was obtained from Equation 3. The values 28.337; 0.104; 10.845; 0.813 and -2.750 were assigned to the maximum rainfall intensity for empirical parameters a, b, c, n and s, respectively, as proposed by Sobrinho et al. (2014)Sobrinho, V.F., Rodrigues, J.O., Mendonça, L.A.R., Andrade, E.M.A., & Tavares, P.R.L. (2014). Desenvolvimento de equações Intensidade-Duração-Frequência sem dados pluviográficos em regiões semiáridas. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(7), 727-734.. A 50-year return period (Tr) was adopted, in these conditions, the calculated flow used in the tests was 1.0 L/min. In order to estimate the soil loss (SL, in kg/m) and soil dispersion rate (D, in kg / m2 x s), Equations 4 and 5 were used, respectively, quoted by Meira (2008)Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco. and Inácio et al. (2007)Inácio, E.S.B., Cantalice, P.G.S.N., Araujo, Q.R., & Barreto, A.C. (2007). Quantificação da erosão em pastagem com diferentes declives na microbacia do Ribeirão Salomea. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(4), 355-360..

Q = C I A 360 (2)

where: Q is the flow (L/s); C is the runoff coefficient; I is the rainfall intensity (mm/h); A is the area (ha).

I = a T r s b c n (3)

where: I is the rainfall intensity (mm/min); Tr is the return period (years); a, b, c, n and s are the empirical parameters for each location.

S L = Q . C s . t A p (4)

where: SL is the soil loss (kg/m); Q is the flow (L/s); Cs is the concentration of soil (kg/L); t is the time between collections (min); Ap is the plot area (m2);

D = M s s A p . D c (5)

where: D is the inter-furrow dispersion rate (kg / m2.s); Mss is the dispersed dry soil mass (kg);

Ap is the plot area (m2); Dc is the collection duration in (s).

5. Results and discussion

5.1 Morphometric characterization and land occupation and use

The results of the morphometric characterization show that the micro basin is prone to flooding, according to the figures presented in the compactness coefficient (kc) of 1.17, shape coefficient (kf) 0.62 and circularity index (Ic) 0.48, referring to a more circular shape of basin. On the other hand, the shape index suggests a basin prone to average flooding, since the distance of the index figure is one (1) (Magalhães Filho et al., 2013Magalhães Filho, L.L., Marinho Filho, G.M., Maciel, G.F., Dias, R.R., Rezende, C.D.S.A., Figueroa, F.E.V., & Moura Oliveira, L. (2013). Avaliação de características morfométricas da bacia hidrográfica do Rio Formoso–TO. Revista de Ciências Ambientais, Canoas, 7(1), 37-48., p. 42). Likely flooding is somehow related to water concentration and, consequently, to the concentration of transported sediments.

The drainage density was 0.92 km/km2, classified as average drainage capacity with few ramifications, according to Strahler (1953)Strahler, A.N. (1953). Hypsometric (area-altitude) analysis and erosional topography. Geological Society of America Bulletin, 63, 1117-1142.. Villela & Mattos (1975)Villela, S.M., & Mattos, A. (1975). Hidrologia aplicada (239 p.). São Paulo: McGraw-Hill do Brasil. affirm that basins with poor drainage systems vary from 0.1 to 0.5 km/km2 and well-drained basins vary from at least 3.5 km/km2. In light of this, the emphasis is on how important it is to mitigate the severe erosion processes in the area, since they could cause aggradation and contamination of nearby water bodies. The sinuosity of the drainage system was low (0.33), signifying straight channels, that is, channels that encourage greater sediment transport (Antoneli & Thomaz, 2007Antoneli, V., & Thomaz, E.L. (2007). Caracterização do meio físico da bacia do Arroio Boa Vista, Guamiranga-PR. Caminhos de Geografia, 8(21), 46-58.).

With regard to land occupation and use, it was found that 8.89 ha (38%) are covered wtih native vegetation, 5.42 ha (23%) with scrubland, and the total value of exposed soil and water-resistant areas is 6.2 ha (26.5%) in addition to the existence of two shallow lagoons.

5.2 Results of geotechnical characterization

5.2.1 Laboratory tests

The soil samples from Timbaúbas Nature Reserve revealed predominantly sandy soils with medium particles (53%-65.2%). Figure 3 shows that the materials passing through the sieve 0.075 mm varied from 10% to 26%. The clay percentages were 16.7%, 8% and 6.8% for Samples 1, 2, and 3, respectively.

Figure 3
Grading curves of samples.

The relative particle densities of the soil samples were 2.61 to 2.67. According to Camapum de Carvalho et al. (2015)Camapum de Carvalho, J., Barbosa, M.C., Mendonça, R.M.G., Farias, W.M., & Cardoso, F.B.F. (2015). Propriedades químicas, mineralógicas e estruturais de solos naturais e compactados. In J. Camapum de Carvalho, G.F.N. Gitirana Junior, S.L. Machado, M.M.A. Mascarenha & F.C. Silva Filho (Org.), Solos não saturados no contexto geotécnico (1 ed, v.1, p. 39-78, 759 p.). São Paulo: ABMS., the values allow to conclude that the sand is predominantly quartz, confirming what was mentioned earlier.

With regard to soil consistency limits, the samples were classified as non liquid and non plastic, allowing classification of the samples in the SM (silty sand) group, showing high soil erosion potential (Llopis Trilho, 1999Llopis Trilho, G. (1999). Control de la erosión y obras de desague. In C. L. Jimeno (Ed.), Manual de estabilización y revegetación de taludes (704 p.). Entorno Grafico S. L. Madrid.).

In the slaking tests Samples 2 and 3 were found to have disintegrated completely after total immersion (Table 1), indicating the frailty of the material when immersed in water, typical of highly erodible soils (Bastos, 1999Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
). Sample 1, however, remained practically undisturbed throughout the test, associated with the higher concentration of clay content (16.7%) compared to the other samples (8% and 6.8%).

Table 1
Soil behavior in slaking test stages

In crumb tests, the lumps of soil were immersed in a vessel with 150 ml of distilled water. One hour later, the sample reactions were observed to attribute the degree of dispersibility. According to the classification in ABNT NBR 13601/1996, Sample 1 falls into Degree 1 class (non-dispersive), showing to be fractured but with no turbidity in the water; Samples 2 and 3, however, are in the Degree 2 class (slightly dispersive), since the samples are fractured and the water slightly cloudy.

The Inderbitzen tests of the three soil samples, in natural moisture and pre-saturation conditions, showed that the soil mass is mostly lost in the test specimen condition with initial natural moisture. In this condition, the mass losses of the samples varied from 8.2x10-3 to 1.3x10-2 g/mm2. In the saturated soil the mass losses of the samples varied from 7.8x10-3 to 1.1x10-2 g/mm2. Only the saturated Sample 1, tested in the smallest flow (3.5 L/min), showed less mass loss of 4.3x10-3 g/mm2, after 20 minutes testing - around 50% of the natural soil mass loss (8.2 x10-3 g/mm2). The mass losses were higher with the increase in runoff flow (Table 2). The results obtained in the study herein are in the same order of magnitude as Fácio’s studies (Fácio, 1991Fácio, J.A. (1991). Proposição de uma metodologia de estudo da erodibilidade dos solos do Distrito Federal. [Unpublished master’s dissertation]. Universidade de Brasília.) for the locations of Ceilândia I, Sobradinho I and Samambaia, in the Federal District, which present intense erosion processes. From this study, it is found that erosion control interventions must be made before the first rains, when the erosion process would be more severe.

Table 2
Loss of soil mass in the Inderbitzen test

For Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
, the mass loss is greater in the soil in natural moisture due to the intra-aggregate suction parameter (negative neutral pressure) of non-saturated soils, hampering the water seepage process and, consequently, increasing surface runoff.

The erodibility rate (K) of all three samples in natural moisture, obtained in the Inderbitzen tests, were from 0.105 to 0.108 g/cm2/min/Pa, suggesting that they are highly erodible soils. Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
believes that the most erodible soils, in the natural moisture condition, have a higher K value than 0.1 g/cm2/min/Pa.

With respect to the shear strength of the soils (Figure 4a), the tests on immersed test specimens provided cohesion intercept low values. Concerning friction angles, the values in the saturated samples are close, with a slight variation (24.5o - 25.4o). In order to evaluate the cohesive behavior for samples in natural and saturated moisture, and their relationship in the erodibility potential, resistance tests were performed in the natural moisture condition of, only in Sample 2, as it has a higher clay content (Figure 4b). For the natural moisture condition, the cohesion was 50.55 kN/m2, while in the saturation moisture the cohesion was zero. According to the proposal by Bastos (1999)Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
https://www.lume.ufrgs.br/handle/10183/2...
, Sample 2 has high erosion potential (Δc> 85%). This fact was confirmed in the study area, where there is a deep erosion scar near the sample extraction site. The friction angle decreased 18% compared to the result obtained in natural moisture (30.8o) with the saturated sample (25.2o). The same behavior is expected in Samples 1 and 3, which have smaller clay contents.

Figure 4
Shear stress x Normal stress. Source: Adapted from Clarindo (2018, apudSobrinha, 2019Sobrinha, M.A.S.M. (2019). Avaliação da erodibilidade de um solo da região do Cariri [Monograph]. Universidade Federal do Cariri.)

5.2.2 In situ tests

5.2.2.1 Permeability testing

The Guelph permeameter tests provided permeability coefficient values of 10-5 m/s, in places near the collection sites of Samples 1 and 3, typical of sandy soils. However, in the vicinity of the Sample 2 site, the permeability coefficient was negative, and may be related to the hydraulic discontinuity in the soil profile or permeability beyond the top limit of the equipment capacity, because roots and ant holes are found around the hole where the test was performed.

5.2.2.2 Erodibility Study in Pilot tests

During the experiment, daily rainfall of 7.0 mm (04/14/2018) was able to erode 73.5 g of soil (Pilot test I, Figure 5). On the other hand, 29 mm daily rainfall was logged (04/09/2018) causing 221.37g of soil to be dragged, while heavier rainfall of 50 mm (04/05/2018) eroded 407.9 g of soil. The quantity of soil loss due to natural rainfall provided values that reinforce the alert for the area degraded by erosion will require rehabilitation.

Figure 5
Soil loss x rainfall (Pilot test I).

Pilot tests II and III were installed between two erosion furrows in order to estimate the soil mass loss due to surface runoff, over a stretch of land with a gradient of 17%. In Pilot test II (with vegetation), the transported material was first collected an hour and a half after the start of the test, at a measured surface runoff velocity of 0.070 m/s. In Pilot test III (exposed soil), the first collection of the transported material was faster (51 minutes after the start of the test), and the runoff velocity was 0.133 m/s. From the results, a 52.63% drop was observed in the runoff velocity, when the soil is protected by vegetation, implying less pulling power of the runoff and consequently less erosion.

With regard to the dispersion rates given in kg/m2.s, and soil losses in kg/m2, higher values in the pilot test without vegetation were logged (Figures 66b). In this pilot test, the dispersion rate was 10 times more than the value obtained in the pilot test with vegetation (Table 3). Inácio et al. (2007)Inácio, E.S.B., Cantalice, P.G.S.N., Araujo, Q.R., & Barreto, A.C. (2007). Quantificação da erosão em pastagem com diferentes declives na microbacia do Ribeirão Salomea. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(4), 355-360. and Meira (2008)Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco. also observed this fact. Mannering & Meyer (1963)Mannering, J.V., & Meyer, L.D. (1963). The effects of various rates of surface mulch on infiltration and erosion. Soil Science Society of American Proceeding, 27(1), 84-86. explain that the vegetation on the ground surface prevents the direct impact of raindrops and dissipates their energy, reducing the dispersion of particles, corroborating the results obtained in this study. The surface soil of the pilot test with vegetation had moisture content of 21.5% in the end, higher than that of the soil in the pilot test without vegetation (14.6%). These results show that the soil with vegetation cover facilitates the water seepage process, increasing the degree of saturation, reducing the runoff and surface dispersion rate.

Figure 6
Accumulated dispersion rate and accumulated soil loss in the Pilot test.
Table 3
Parameters obtained in simulated runoff in Pilot tests

The higher dispersion rates in the soil without vegetation may be associated with the higher values of matrix suction of the undiscovered soil, in the as yet unsaturated state, which hinders seepage. When the soil is covered with vegetation, roots can help in seepage. Almeida (2014)Almeida, J.G.R. (2014). Erodibilidade de solos tropicais não saturados nos municípios de Senador Canedo e Bonfinópolis (Goias) [Unpublished master’s dissertation]. Universidade Federal de Goiás., in his studies on the influence of suction in the loss of eroded total mass, commented on a direct relationship between the initial soil suction and the eroded mass. This result shows the need to implement rehabilitation projects in the area, considering planting medium-size and small native species, as well as scrubland vegetation.

6. Conclusions

Timbaúbas municipal nature reserve presents several factors that contribute to the occurrence of erosion processes. This study addressed the morphometric characteristics that favor the rapid water flow and potential drag on solids. The reduced rate of soil vegetation cover associated with the mechanical characteristics of the aggregate increases susceptibility to erosion processes, also intensified by anthropic intervention, removal of vegetation and construction of buildings on the site, without proper action to discipline the runoff. The exposed soil area and water-resistant areas (6.2 ha) are 26.5% of the Reserve’s total area (23.4 ha). The area covered by native vegetation (8.89 ha) represents only 38%. These facts alert to the need to consider the area’s geomorphological, geotechnical and hydrological characteristics, to implement projects to rehabilitate the area degraded by erosion, involving implementation of proper drainage systems; planting native species and outher structural and non structural measures. It is the adoption of non-structural measures, such as, for example, educational actions for Reserve users, could contribute to prevent the emergence of new erosion processes in the area.

List of Symbols

A Area

a, b, c, n, s Empirical parameters for each location.

Ap plot area

API Integral Protection Area

c Cohesion intercept

C Runoff coefficient

Cs Concentration of soil

D Inter-furrow dispersion rate

Dc Collection duration

GIS Geographic information systems

I Rainfall intensity

Ic Circularity index

IBGE Brazilian Institute of Geography and Statistics

IPECE Ceará Research Institute on Economic Strategy

K Erodibility rate

kc Compactness coefficient

kf Shape coefficient

Kfs Hydraulic conductivity saturated on site

Mss Dispersed dry soil mass (kg)

Q Flow

R1 Waterfall rate obtained from the first load applied in the in situ permeability

R2 Waterfall rate obtained from the second load applied in the in situ permeability

SL Soil loss

SM Silty sand

t Time between collections

Tr Return period

UAV Unmanned aerial vehicles

USLE Universal Soil Loss Equation

𝑥 Tank constant

∆c Variation in cohesion

ϕ Friction angles

τhcrit Critical hydraulic shear stress

References

  • ABNT NBR 13601. (1996). Soil – Standard test methods for determining dispersive characteristics of clayey soil by the Crumb test ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).
  • ABNT NBR 6458. (2017). Gravel grains passing through the 4.8 mm mesh sieve - Determination of bulk specific gravity ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).
  • ABNT NBR 7181. (2016a). Soil - Grain size analysis ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).
  • ABNT NBR 6459. (2016b). Determining the liquid limit ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).
  • ABNT NBR 7180. (2016c). Determination of plastic limit ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ (in Portuguese).
  • Almeida, J.G.R. (2014). Erodibilidade de solos tropicais não saturados nos municípios de Senador Canedo e Bonfinópolis (Goias) [Unpublished master’s dissertation]. Universidade Federal de Goiás.
  • Antoneli, V., & Thomaz, E.L. (2007). Caracterização do meio físico da bacia do Arroio Boa Vista, Guamiranga-PR. Caminhos de Geografia, 8(21), 46-58.
  • Bastos, C.A.B. (1999). Estudo geotécnico sobre a erodibilidade de solos residuais não saturados [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. Lume Repositório Digital UFRGS. https://www.lume.ufrgs.br/handle/10183/2978
    » https://www.lume.ufrgs.br/handle/10183/2978
  • Bastos, C.A.B., Gitirana Junior, G.F.N., & Kühn, V.O. (2017). Solos não saturados e os processos erosivos. In M.M. Sales, J. Camapum de Carvalho, M.M.A. Mascarenha, M.P. Luz, N.M. Souza & R.R. Angelim (Org.), Erosão em Borda de Reservatório (1 ed., v. 1, p. 91-126, Cap. 5, 584 p.). Goiânia: Universidade Federal de Goiás.
  • Bender, H. (1985). Erosion: un probleme de résistance au cisaillement en fonction du chemin des contraintes pendant ínfiltration. In International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils (pp. 15-25). ABMS.
  • Bertoni, J., & Lombardi Neto, F. (1999). Conservação do solo (8. ed., 360 p.). São Paulo.
  • Camapum de Carvalho, J., Barbosa, M.C., Mendonça, R.M.G., Farias, W.M., & Cardoso, F.B.F. (2015). Propriedades químicas, mineralógicas e estruturais de solos naturais e compactados. In J. Camapum de Carvalho, G.F.N. Gitirana Junior, S.L. Machado, M.M.A. Mascarenha & F.C. Silva Filho (Org.), Solos não saturados no contexto geotécnico (1 ed, v.1, p. 39-78, 759 p.). São Paulo: ABMS.
  • Camapum de Carvalho, J., Sales, M.M., Mortari, D., Fácio, J.A., Motta, N.O., & Francisco, R.A. (2006). Processos Erosivos. In J. Camapum de Carvalho, M.M. Sales, N.M. Souza & M.T.S. Melo, (Org.). Processos erosivos no centro oeste brasileiro (1ed., v. 1, p. 39-91, Cap. 2, 464 p.). Brasília: FINATEC.
  • Cardoso, C.A., Dias, H.C.T., Soares, C.P.B., & Martins, S.V. (2006). Caracterização Morfométrica da Bacia Hidrográfica do Rio Debossan, Nova Friburgo, RJ. Revista Árvore, 30(2), 241-248.
  • Clarindo, G.S. (2018). Avaliação da Erodibilidade do solo do Parque Natural Municipal das Timbaúbas [Monograph]. Universidade Federal do Cariri.
  • Costa, K.V.M., Barreto, A.C., Fontenele, S.B., & Mendonça, L.A.R. (2013). Estimativa de perda de solo distribuída em uma bacia hidrográfica de pequeno porte através de técnicas de geoprocessamento. In XVI Simpósio Brasileiro de Sensoriamento Remoto. Foz do Iguaçu, PR.
  • Fácio, J.A. (1991). Proposição de uma metodologia de estudo da erodibilidade dos solos do Distrito Federal [Unpublished master’s dissertation]. Universidade de Brasília.
  • Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. (2006). Zoneamento Geoambiental do Estado do Ceará - Parte II: Mesorregião do Sul Cearense FUNCEME.
  • Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. (2012). Levantamento de reconhecimento de média intensidade dos solos (280 p.). FUNCEME.
  • Guerra, A.J.T., & Hoffmann, H. (2006). Urban gully erosion in Brazil. Geography Review, Oxford, 19(3), 26-29.
  • Inácio, E.S.B., Cantalice, P.G.S.N., Araujo, Q.R., & Barreto, A.C. (2007). Quantificação da erosão em pastagem com diferentes declives na microbacia do Ribeirão Salomea. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(4), 355-360.
  • Instituto Brasileiro de Geografia e Estatística – IBGE. (2010). Cidades, 2010 Retrieved in December 23, 2018, from http://www.ibge.gov.br/cidadesat/topwindow.htm?1
    » http://www.ibge.gov.br/cidadesat/topwindow.htm?1
  • Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE (2017). Juazeiro do Norte: perfil básico do município Retrieved in December 20, 2018, from www.ipece.ce.gov.br/.../ perfil_basico/PBM.../Juazeiro%20do%20Norte.pdf
  • Jorge, M.C.O., & Guerra, A.J.T. (2013). Erosão dos solos e movimentos de massa - recuperação de áreas degradadas com técnicas de bioengenharia e prevenção de acidentes. In A.J.T. Guerra & M.C.O. Jorge, (Org.). Processos erosivos e recuperação de áreas degradadas (Vol. 1, pp. 7-30). 1ª ed. São Paulo: Oficina de Textos.
  • Juazeiro do Norte. (1997). Decreto Municipal n°. 1183, de 16 de Junho de 1997. Delimita o Parque Ecológico das Timbaúbas, área de proteção de mananciais e do meio ambiente. Diário Oficial do Município
  • Juazeiro do Norte. (2017). Decreto Municipal no 352, de 23 Outubro de 2017. Cria o Parque Natural Municipal das Timbaúbas, no Município de Juazeiro do Norte, no Estado do Ceará, e dá outras providências. Diário Oficial do Município
  • Köppen, W. & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes [Wall-map 150 cm x 200 cm].
  • Lafayette, K.P.V. (2006). Estudo geológico – geotécnico do processo erosivo em encostas no Parque Metropolitano Armando de Holanda Cavalcanti - Cabo de Santo Agostinho/PE [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.
  • Llopis Trilho, G. (1999). Control de la erosión y obras de desague. In C. L. Jimeno (Ed.), Manual de estabilización y revegetación de taludes (704 p.). Entorno Grafico S. L. Madrid.
  • Macedo, C.C.A. (2019). Diagnóstico da erodibilidade e da qualidade hídrica em uma unidade de conservação municipal [Unpublished master’s dissertation]. Universidade Federal do Cariri.
  • Magalhães Filho, L.L., Marinho Filho, G.M., Maciel, G.F., Dias, R.R., Rezende, C.D.S.A., Figueroa, F.E.V., & Moura Oliveira, L. (2013). Avaliação de características morfométricas da bacia hidrográfica do Rio Formoso–TO. Revista de Ciências Ambientais, Canoas, 7(1), 37-48.
  • Mannering, J.V., & Meyer, L.D. (1963). The effects of various rates of surface mulch on infiltration and erosion. Soil Science Society of American Proceeding, 27(1), 84-86.
  • Meira, F.F.A. (2008). Estudo do processo erosivo em encostas ocupadas [Unpublished doctorate thesis]. Universidade Federal de Pernambuco.
  • Nagel, F., Storgatto, G., Basso, L., Nummer, A.V., & Pinheiro, R.J.B. (2009). Ensaio Interbitzen: estudo da erodibilidade de solos e rochas sedimentares. In 5º Seminário de Engenharia Geotécnica do Rio Grande do Sul (9 p.). Retrieved in August 19, 2018, from https://www.abms.com.br/links/bibliotecavirtual/geors2009/2009-nagel-storgatto.pdf
    » https://www.abms.com.br/links/bibliotecavirtual/geors2009/2009-nagel-storgatto.pdf
  • Silva Neto, A.F., Guimarães, C.L., de Araújo, J.S., & Araújo, J.S. (2013). Geotechnologies for morphometric characterization of a river basin. In Proceedings of the XVI Brazilian Remote Sensing Symposium (pp. 5483- 5490). Foz do Iguaçu, Paraná, Brazil.
  • Ramidan, M.A.S. (2003). Estudo de um processo de voçorocamento próximo a UHE de Itumbiara-GO [Unpublished master’s dissertation]. Pontifícia Universidade Católica do Rio de Janeiro.
  • Sobrinha, M.A.S.M. (2019). Avaliação da erodibilidade de um solo da região do Cariri [Monograph]. Universidade Federal do Cariri.
  • Sobrinho, V.F., Rodrigues, J.O., Mendonça, L.A.R., Andrade, E.M.A., & Tavares, P.R.L. (2014). Desenvolvimento de equações Intensidade-Duração-Frequência sem dados pluviográficos em regiões semiáridas. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(7), 727-734.
  • Strahler, A.N. (1953). Hypsometric (area-altitude) analysis and erosional topography. Geological Society of America Bulletin, 63, 1117-1142.
  • Villela, S.M., & Mattos, A. (1975). Hidrologia aplicada (239 p.). São Paulo: McGraw-Hill do Brasil.

Publication Dates

  • Publication in this collection
    24 May 2021
  • Date of issue
    2021

History

  • Received
    16 June 2020
  • Accepted
    22 Dec 2020
Associação Brasileira de Mecânica dos Solos Av. Queiroz Filho, 1700 - Torre A, Sala 106, Cep: 05319-000, São Paulo - SP - Brasil, Tel: (11) 3833-0023 - São Paulo - SP - Brazil
E-mail: secretariat@soilsandrocks.com