Acessibilidade / Reportar erro

An A Posteriori Error Estimator for a Non Homogeneous Dirichlet Problem Considering a Dual Mixed Formulation

ABSTRACT

In this paper, we describe an a posteriori error analysis for a conforming dual mixed scheme of the Poisson problem with non homogeneous Dirichlet boundary condition. As a result, we obtain an a posteriori error estimator, which is proven to be reliable and locally efficient with respect to the usual norm on Hdiv;Ω×L2Ω. We remark that the analysis relies on the standard Ritz projection of the error, and take into account a kind of a quasi-Helmholtz decomposition of functions in Hdiv;Ω, which we have established in this work. Finally, we present one numerical example that validates the well behavior of our estimator, being able to identify the numerical singularities when they exist.

Keywords:
mixed finite element methods; a posteriori error estimator; reliability; efficiency

1 INTRODUCTION

It is well known that when the solution of a variational formulation obtained by applying a finite element method, is not smooth enough, the quality of approximation could be not good enough. This motivates us to derive an a posteriori error estimator, which is reliable and efficiency. This would allow us to establish that the estimator behaves as the error of the method, which in general is not known. Then, considering an appropriate adaptive refinement algorithm, we can obtain approximations of the formulation, of better quality, by detecting the region where this estimator is more dominant. In the context of mixed finite element methods, there are a lot of references dedicated to the a posteriori error analysis. For instance, in 11 A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4) (1996), 385-395. doi:10.1007/s002110050222. URL https://doi.org/10.1007/s002110050222.
https://doi.org/10.1007/s002110050222...
an a posteriori error estimator only for the flux unknown is derived, using Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) as its space of approximation. The analysis that yields this estimator, relies on a classical Helmholtz decomposition. On the other hand, in 1010 D. Braess & R. Verfürth. A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal., 33(6) (1996), 2431-2444. doi:10.1137/S0036142994264079. URL https://doi.org/10.1137/S0036142994264079.
https://doi.org/10.1137/S003614299426407...
, the authors present two a posteriori error estimators for a dual mixed formulation for the Poisson problem, approximating the flux in the Raviart-Thomas space. In this case, the derivation of the estimator is obtained under a saturation assumption. This requirement is circumvented in 1212 C. Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66(218) (1997), 465-476. doi:10.1090/S0025-5718-97-00837-5. URL https://doi.org/10.1090/S0025-5718-97-00837-5.
https://doi.org/10.1090/S0025-5718-97-00...
, where a reliable and efficient a posteriori error estimator for the natural norm, is derived. We remark that four different kind of a posteriori error estimators for Raviart-Thomas mixed finite elements, are provided in 2323 B.I. Wohlmuth & R.H.W. Hoppe. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Math. Comp. , 68(228) (1999), 1347-1378. doi:10.1090/S0025-5718-99-01125-4. URL https://doi.org/10.1090/S0025-5718-99-01125-4.
https://doi.org/10.1090/S0025-5718-99-01...
. Concerning second order elliptic equation with mixed boundary condition, in 1717 G.N. Gatica & M. Maischak. A posteriori error estimates for the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations, 21(3) (2005), 421-450. doi:10.1002/num.20050. URL https://doi.org/10.1002/num.20050.
https://doi.org/10.1002/num.20050...
the authors developed an a posterior error analysis for the mixed finite element method with a Lagrange multiplier.

In 99 T.P. Barrios & G.N. Gatica. An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses. J. Comput. Appl. Math. , 200(2) (2007), 653-676. doi:10.1016/j.cam.2006.01.017. URL https://doi.org/10.1016/j.cam.2006.01.017.
https://doi.org/10.1016/j.cam.2006.01.01...
, an a posteriori error analysis for an augmented mixed formulation of the Poisson problem with mixed boundary conditions, is developed. This is performed with the help of the Ritz projection of the error, and covers the reliability and efficiency of the estimator. It is important to remark that this technique has been successfully applied to other problems, such as the the Brinkman model in 22 T. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error estimator for a new stabilized formulation of the Brinkman problem. In “Numerical mathematics and advanced applications- ENUMATH 2013”, volume 103 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2015), p. 253-261., the Darcy flow in 66 T.P. Barrios, J.M. Cascón & M. González. A posteriori error analysis of an augmented mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg., 283 (2015), 909-922. doi:10.1016/j.cma.2014.10.035. URL https://doi.org/10.1016/j.cma.2014.10.035.
https://doi.org/10.1016/j.cma.2014.10.03...
and 77 T.P. Barrios, J.M. Cascón & M. González. A posteriori error estimation of a stabilized mixed finite element method for Darcy flow. In “Boundary and interior layers, computational and asymptotic methods-BAIL 2014”, volume 108 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2015), p. 13-23., the Stokes system in 33 T.P. Barrios, E.M. Behrens & R. Bustinza. A stabilized mixed method applied to Stokes system with nonhomogeneous source terms: the stationary case. Dedicated to Prof. R. Rodríguez, on the occasion of his 65th birthday. Internat. J. Numer. Methods Fluids, 92(6) (2020), 509-527. doi:10.1002/fld.4793. URL https://doi.org/10.1002/fld.4793.
https://doi.org/10.1002/fld.4793...
and 55 T.P. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error analysis of a velocity- pseudostress formulation of the generalized Stokes problem. J. Comput. Appl. Math., 357 (2019), 349-365. doi:10.1016/j.cam.2019.02.019. URL https://doi.org/10.1016/j.cam.2019.02.019.
https://doi.org/10.1016/j.cam.2019.02.01...
, and the Oseen equations in 88 T.P. Barrios, J.M. Cascón & M. González. Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analysis. Comput. Methods Appl. Mech. Engrg. , 313 (2017), 216-238., for example.

In this paper, we deduce a reliable and efficient residual a posteriori error estimator for the Poisson problem with non homogeneous Dirichlet boundary condition, considering a dual mixed finite element method. To achieve this, we take into account the Ritz projection of the error, measured in the standard Hdiv;Ω×L2Ω norm. We also establish another kind of quasi Helmholtz decomposition of Hdiv;Ω in the plane. We remark that in this process, no saturation assumption is required, and its extension to 3D case is not difficult. We remark that in 11 A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4) (1996), 385-395. doi:10.1007/s002110050222. URL https://doi.org/10.1007/s002110050222.
https://doi.org/10.1007/s002110050222...
the a posteriori error analysis is performed to a homogeneous Dirichlet problem, focusing in obtain an estimator for the Hdiv;Ω norm of the flux error. Then, the results of the current work can be seen as a natural extension of what is described in 11 A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4) (1996), 385-395. doi:10.1007/s002110050222. URL https://doi.org/10.1007/s002110050222.
https://doi.org/10.1007/s002110050222...
, since we deduce an a posteriori error estimator for the norm of the error of the flux and potential unknowns, that is reliable and efficient.

The rest of the article is organized as follows: In Section 2 we present the model problem, as well as the corresponding dual mixed formulations, at continuous and discrete levels. Next, the a posteriori error analysis with non homogeneous Dirichlet is described in Sections 3. This includes the introduction of the Ritz projection of the error, as well as the key tool for deducing a reliable a posteriori error estimator: a quasi-Helmholtz decomposition of functions in Hdiv;Ω. Finally, one numerical example confirming our theoretical results are reported in Section 4. We end this introduction with some notation to be used throughout the paper. Given any Hilbert space H, we denote by H 2 the space of vectors of order 2 with entries in H. Finally, we use C or c, with or without subscripts, to denote generic constants, independent of the discretization parameter, that may take different values at different occurrences.

2 MODEL PROBLEM AND VARIATIONAL FORMULATIONS

Let Ω be a bounded and simply connected domain in ℝ2 with polygonal boundary Γ. Then, given fL2Ω and gH1/2Γ, we consider the model problem: Find uH1Ω such that u = f in Ω and u = g on Γ. Since we are interested in dual mixed methods, we rewrite the Dirichlet problem as the first order system: Find (σ, u ) such that σ = u in Ω, div(σ ) = f in Ω, and u = g on Γ. Hence, proceeding in the usual way, we arrive to the following dual mixed variational formulation: Find σ,uHdiv;Ω×L2Ω such that

a σ , τ - b u , τ = - τ · n , g τ H d i v ; Ω , - b w , σ = - Ω f w w L 2 Ω , (2.1)

where ·,· denotes the duality pairing between H -1/2(Γ) and H 1/2(Γ) with respect to L 2(Γ)- inner product, and the bilinear forms a:Hdiv;Ω×Hdiv;Ω and b:L2Ω×Hdiv;Ω, are given by aζ,τ:=Ωζ·τ and bw,τ:=Ωwdivτ, respectively. Thanks to the classical Babuška-Brezzi theory (cf. Section 5 in 1616 R.G. Durán. Mixed Finite Element Methods. In “Mixed finite elements, compatibility conditions, and applications”, Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008), p. 1-44.), it can be shown that there exists a unique pair σ,uHdiv;Ω×L2Ω solution of (2.1). For the discretization, we assume that Ω is a polygonal region and let Thh>0 be a regular family of triangulations of Ω such that Ω=T:TTh. For any triangle TTh, we denote by h T its diameter and define the mesh size h:=maxhT:TTh. In addition, given an integer ℓ 0 and a subset S of ℝ2, we denote by 𝒫(S) the space of polynomials in two variables defined in S of total degree at most ℓ, and for each TTh, we define the local Raviart-Thomas space of order κ ≥ 0 (cf. 2020 J.E. Roberts & J.M. Thomas. Mixed and hybrid methods. In “Handbook of numerical analysis, Vol. II”, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991), p. 523-639.), RTκT:=PκT2PκTxPκ+1T2 xT. Then, given an integer r ≥ 0, we define the finite element subspaces Hh,rσ:=τhHdiv;Ω:τh|TRTrT, TTh and Hh,ru:=vhL2Ω:vh|TPrT, TTh. Under these assumptions, and applying a discrete version of the Babuška-Brezzi theory (see Section 5 in 1616 R.G. Durán. Mixed Finite Element Methods. In “Mixed finite elements, compatibility conditions, and applications”, Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008), p. 1-44.), we can ensure that there exists only one σh,uhHh,rσ×Hh,ru such that

a σ h , τ h - b u h , τ h = - τ h · n , g τ h H h , r σ , - b w h , σ h = - Ω f w h w h H h , r u . (2.2)

Moreover, the following result is established.

Theorem 2.1.Let (σ, u ) and (σ h , u h ) be the solutions of (2.1) and (2.2), respectively. Ifσ,uHrΩ2×HrΩ, anddivσHrΩ,0<rk+1, then there exists C > 0, independent of the mesh size, such that

σ - σ h H d i v ; Ω + u - u h L 2 Ω C h r σ H r Ω 2 + u H r Ω + d i v σ H r Ω .

Proof. We refer to the proofs of Theorems 3.2 and 3.3 in 1616 R.G. Durán. Mixed Finite Element Methods. In “Mixed finite elements, compatibility conditions, and applications”, Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008), p. 1-44., as well as the classical error estimates for the L 2-orthogonal projection onto 𝒫r . We omit further details. □

3 A POSTERIORI ERROR ANALYSIS

In this section, we follow 44 T.P. Barrios, E.M. Behrens & M. González. Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity. Appl. Numer. Math. , 84 (2014), 46-65. doi:10.1016/j.apnum.2014.05.008. URL https://doi.org/10.1016/j.apnum.2014.05.008.
https://doi.org/10.1016/j.apnum.2014.05....
(see also 55 T.P. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error analysis of a velocity- pseudostress formulation of the generalized Stokes problem. J. Comput. Appl. Math., 357 (2019), 349-365. doi:10.1016/j.cam.2019.02.019. URL https://doi.org/10.1016/j.cam.2019.02.019.
https://doi.org/10.1016/j.cam.2019.02.01...
), and develop an a posteriori error analysis for the discrete scheme (2.2), taking into account an appropriate Ritz projection of the error and a quasi- Helmholtz decomposition. We first introduce some notations and results, concerning the Clément and Raviart-Thomas interpolation operators.

3.1 Notation and some well known results

Given TTh, we let E(T) be the set of its edges. By E h we denote the set of all edges (counted once) induced by the triangulation 𝒯h . Then, we write Eh=EIEΓ, where EI:=eEh:eΩ and EΓ:=eEh:eΓ. Similarly, N h will denote the list of all vertices (counted once) induced by the triangulation 𝒯h . Then we define NI:=NhΩ and NΓ:=xNh:xΓ. As a result, we have that Nh=NINΓ. In addition, for each TTh,NT:=xNh:x is a vertex of T, and for each eEh,Ne:=xNh:x is a vertex of e. Now, given xNhTTh and eEh, we set

ω x : = T T h x N T T , ω e : = x N e ω x , ω T : = x N T ω x .

Also, for each TTh, we fix a unit normal exterior vector nT:=n1,n2t, and let tT:=-n2,n1t be the corresponding fixed unit tangential vector along ∂T. From now on, when no confusion arises, we simply write n and t instead of n T and t T , respectively. In addition, let q and τ be scalar - and vector -valued functions, respectively, that are smooth inside each element TTh. We denote by (q T,e , τ T,e ) the restriction of (q T , τ T ) to e. Then, given eEI, we define the jump of q and of the tangential component of τ at xe, by

q : = q T , e - q T ' , e , τ · t : = τ T , e · t T + τ T ' , e · t T ' ,

where T and T’ are the two elements in 𝒯h sharing the edge eEI. On boundary edges eEΓ, we set τ·t:=τT,e·tT, where TTh is such that Te0. Finally, given a smooth scalar field v and a vector field τ=τ1,τ2t, we define

curl v : = v x 2 - v x 1 and rot τ : = τ 2 x 1 - τ 1 x 2 .

Next, we introduce the Clément interpolation operator Ih:H1ΩXh (cf. 1515 P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9(R-2) (1975), 77-84.), where Xh:=vhH1Ω:vh|TP1T,TTh. The following lemma establishes the main local approximation properties of I h .

Lemma 3.1.There exist constants c1, c2 > 0, independent of h, such that for allvH1Ω, there holds

v - I h v H m T c 1 h T 1 - m v H 1 ω T , m 0 , 1 , T T h ,

and

v - I h v L 2 e c 2 h e 1 / 2 v H 1 ω e , e E h ,

where hedenotes the length of the sideeEh.

Proof. We refer to 1515 P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9(R-2) (1975), 77-84.. □

On the other hand, we also need to introduce the Raviart-Thomas interpolation operator (see 1111 F. Brezzi & M. Fortin. “Mixed and hybrid finite element methods”, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991), x+350 p. doi:10.1007/978-1-4612-3172-1. URL https://doi.org/10.1007/978-1-4612-3172-1.
https://doi.org/10.1007/978-1-4612-3172-...
, 2020 J.E. Roberts & J.M. Thomas. Mixed and hybrid methods. In “Handbook of numerical analysis, Vol. II”, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991), p. 523-639.), πhr:H1Ω2Hhσ, which given τH1Ω2,πhrτHhσ is characterized by the following conditions:

e E h : q P r e : e π h r τ · n q = e τ · n q , when r 0 , (3.1)

and

T T h : ρ P r - 1 T 2 : T π h r τ · ρ = T τ · ρ , when r 1 , (3.2)

The operator πhr satisfies the following approximation properties.

Lemma 3.2.There exist constants c3, c4, c5> 0, independent of h, such that for allTTh

τ H m Ω 2 : τ - π h r τ L 2 T 2 c 3 h T m τ H m T 2 1 m r + 1 , (3.3)

for all τ H m Ω 2 with d i v τ H m Ω ,

d i v τ - π h r τ L 2 T c 4 h T m d i v τ H m T , 0 m r + 1 , (3.4)

and for any τ H 1 Ω 2

e E h : τ · n - π h r τ · n L 2 e c 5 h e 1 / 2 τ H 1 T e 2 , (3.5)

whereTeTh, such that it contains e on its boundary.Proof. See e.g. 1111 F. Brezzi & M. Fortin. “Mixed and hybrid finite element methods”, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991), x+350 p. doi:10.1007/978-1-4612-3172-1. URL https://doi.org/10.1007/978-1-4612-3172-1.
https://doi.org/10.1007/978-1-4612-3172-...
or 2020 J.E. Roberts & J.M. Thomas. Mixed and hybrid methods. In “Handbook of numerical analysis, Vol. II”, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991), p. 523-639.. □

In addition, the interpolation operator πhr can also be defined as a bounded linear operator from the larger space HsΩ2Hdiv;Ω into Hhσ, for all s(1/2,1] (see, e.g. Theorem 3.16 in 1919 R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11 (2002), 237-339. doi:10.1017/S0962492902000041. URL https://doi.org/10.1017/S0962492902000041.
https://doi.org/10.1017/S096249290200004...
). In this case, there holds the following interpolation error estimate

T T h : τ - π h r τ L 2 T 2 C h T s τ H s T 2 + d i v τ L 2 T .

Taking into account (3.1) and (3.2), it is not difficult to show that

d i v π h r τ = P h r d i v τ , (3.6)

where Phr:L2ΩHhu is the L2 orthogonal projector. On the other hand, it is well known (see, e.g. 1414 P.G. Ciarlet. “The finite element method for elliptic problems”, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002), xxviii+530 p. doi:10.1137/1.9780898719208. URL https://doi.org/10.1137/1.9780898719208. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
https://doi.org/10.1137/1.9780898719208...
) that for each vHmΩ, with 0mr+1, there exists C > 0, independent of h, such that

T T h : v - P h r v L 2 T C h T m v H m T . (3.7)

3.2 Reliability of the estimator

Let σ,uΣ:=Hdiv;Ω×L2Ω and σh,uhHh,rσ×Hh,ruΣ be the unique solution to problems (2.1) and (2.2), respectively. We provide Σ with its usual inner product

ρ , z , τ , v Σ : = ρ , τ H d i v ; Ω + z , v L 2 Ω ρ , z , τ , z Σ ,

which induces the norm

τ , v Σ : = τ H d i v ; Ω 2 + v L 2 Ω 2 1 / 2 τ , v Σ .

Next, we consider the Ritz projection of the error with respect to ·,·Σ as the unique element σ,uΣ, such that

τ , v Σ : σ , u , τ , v Σ = A σ - σ h , u - u h , τ , v , (3.8)

where the global bilinear form A:Σ×Σ arises from the variational formulation (2.1), after adding its equations, that is

A ρ , w , τ , v : = a ρ , τ - b w , τ - b v , ρ ρ , w , τ , v Σ .

We remark that the existence and uniqueness of σ,uΣ is guaranteed by the Lax-Milgram Lemma. Moreover, we point out that the properties of the bilinear forms a,·) and b,·) implies that A,·) satisfies a global inf-sup condition, i.e., there exist α > 0 such that

α ζ , w Σ s u p θ τ , v Σ A ζ , w , τ , v τ , v Σ , ζ , w Σ .

This particularity allows us to bound the error in terms of the solution of its Ritz projection, as follows:

α σ - σ h , u - u h Σ s u p θ τ , v Σ A σ - σ h , u - u h , τ , v τ , v Σ = σ , u Σ . (3.9)

Then, according to (3.9), and with the purpose of obtaining a reliable a posteriori error estimate for the discrete scheme (2.2), it is enough to bound from above the Ritz projection of the error. To this aim, the next result will be useful, and can be seen as a kind of a quasi-Helmholtz decomposition of functions in H(div; Ω).

Lemma 3.3.For eachτHdiv;Ω, there existχH1ΩandΦH01Ω2, such that

τ = curl χ + Φ + d 2 x 1 - a x 2 - b , (3.10)

where (a, b)t is any fixed point belonging to Ω, andd:=1ΩΩdivτ. In addition, there exists C > 0, such that

χ H 1 Ω + Φ H 1 Ω 2 C τ H d i v ; Ω . (3.11)

Proof. We first introduce the space M:=ζHdiv;Ω:Ωdivζ=0. Next, for each τHdiv;Ω, we decompose divτ=divτ~+d, where τ~:=τ-d2x1-ax2-bM.

We remark that divτ0,Ω2=divτ~0,Ω2+d2Ω. Then, since divτ~L02Ω, and invoking Corollary I.2.4 in 1818 V. Girault & P.A. Raviart. “Finite element methods for Navier-Stokes equations”, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986), x+374 p. doi:10.1007/978-3-642-61623-5. URL https://doi.org/10.1007/978-3-642-61623-5. Theory and algorithms.
https://doi.org/10.1007/978-3-642-61623-...
, there exists ΦH01Ω2 such that divΦ=divτ~ in Ω and Φ1,Ωcdivτ0,Ω. This implies that

d i v τ - Φ - d 2 x 1 - a , x 2 - b t = 0 in Ω and τ - Φ - d 2 x 1 - a , x 2 - b t · n , 1 Γ = 0 ,

where (a, b)t is a fixed point belonging to Ω. Hence, by Theorem I.3.1 in 1818 V. Girault & P.A. Raviart. “Finite element methods for Navier-Stokes equations”, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986), x+374 p. doi:10.1007/978-3-642-61623-5. URL https://doi.org/10.1007/978-3-642-61623-5. Theory and algorithms.
https://doi.org/10.1007/978-3-642-61623-...
, there exists a stream function χH1Ω such that τ-Φ-d2x1-a,x2-bt=curlχ in Ω. In addition, we have

χ H 1 Ω 2 = curl χ L 2 Ω 2 = τ - Φ - d 2 x 1 - a , x 2 - b t L 2 Ω 2 2 τ L 2 Ω 2 2 + Φ L 2 Ω 2 2 + d 2 4 x 1 - a , x 2 - b L 2 Ω 2 2 2 τ L 2 Ω 2 2 + Φ L 2 Ω 2 2 + d 2 4 d i a m Ω 2 Ω 2 m a x 1 , c 2 + 1 4 d i a m Ω 2 τ H d i v ; Ω 2 .

As a result, we establish (3.11), and we end the proof. □

Now, considering χ and Φ as the ones provided by Lemma 3.3 for a given τHdiv;Ω, we introduce χh:=Ihχ, and define

τ h : = curl χ h + π h r Φ + d 2 x 1 - a x 2 - b H h σ , (3.12)

which is referred as a discrete quasi-Helmholtz decomposition of τ h . Therefore, we can write

τ - τ h = curl χ - χ h + Φ - π h r Φ , (3.13)

that verifies

d i v τ - τ h = d i v Φ - π h r Φ (3.14)

On the other hand, it is not difficult to check the following orthogonality relation

A σ - σ h , u - u h , ζ h , v h = 0 , ζ h , v h Σ h : = H h σ × H h u . (3.15)

From now on, given τ,vΣ, we associate it with the discrete pair τh,0Σh, where τ h is defined as in (3.12). Hence, considering (3.15) with ζh,vh:=τh,0, and knowing that (σ, u ) is the unique solution of problem (2.1), we obtain

σ , u , τ , v Σ = A σ - σ h , u - u h , τ - τ h , v = τ - τ h · n , g - Ω f v - A σ h , u h , τ - τ h , v .

Equivalently,

σ , τ H d i v ; Ω = F 1 τ - τ h τ H d i v ; Ω , u , v L 2 Ω = F 2 v v L 2 Ω ,

where F1:Hdiv;Ω and F2:L2Ω are the bounded linear functionals defined by

F 1 ρ : = - ρ · n , g - Ω σ h · ρ + Ω u h d i v ρ , ρ H d i v ; Ω , F 2 w : = - Ω f - d i v σ h w , w L 2 Ω .

Hence, taking into account (3.13) and (3.14), and the fact that πhkΦ·n=0 on Γ, we can rewrite F 1(τ − τ h ) as follows

F 1 τ - τ h = R 1 Φ + R 2 χ ,

where

R 1 Φ : = - Ω σ h + h u u · Φ - π h k Φ + T T h T E I u h Φ - π h k Φ · n , R 2 χ : = - curl χ - χ h · n , g - Ω σ h · curl χ - χ h .

Our aim now is to obtain upper bounds for each one of the terms F 2(v), R 1(Φ) and R 2(χ).

Lemma 3.4. For any v L 2 Ω there holds

F 2 v T T h f - d i v σ h L 2 T 2 1 / 2 v L 2 Ω .

Proof. The proof follows from a straightforward application of Cauchy-Schwarz inequality. □

Lemma 3.5.There exists C > 0, independent of h, such that

R 1 Φ C e E I h e u h L 2 e 2 2 + T T h h T 2 u h + σ h L 2 T 2 2 1 / 2 τ H d i v ; Ω .

Proof. It is a slight modification of Lemma 3.5 in 55 T.P. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error analysis of a velocity- pseudostress formulation of the generalized Stokes problem. J. Comput. Appl. Math., 357 (2019), 349-365. doi:10.1016/j.cam.2019.02.019. URL https://doi.org/10.1016/j.cam.2019.02.019.
https://doi.org/10.1016/j.cam.2019.02.01...
. We omit further details. □

Lemma 3.6.Under the assumption thatgH1Γ, there exists C > 0, independent of h, such that

R 2 χ C ( T T h h T 2 r o t σ h L 2 T 2 + e E T h e σ h · t L 2 e E I 2 + σ h · t + d g d t L 2 e E Γ 2 ) 1 / 2 τ H d i v ; Ω .

Proof. Knowing that curlχ-χh·n=ddtχ-χh on Γ, and after integrating by parts, we deduce

R 2 χ = curl χ - χ h · n , g + Ω σ h · curl χ - χ h = d d t χ - χ h , g + T T h T σ h · curl χ - χ h = χ - χ h , d g d t + T T h T r o t σ h χ - χ h - χ - χ h , σ h · t T = T T h T r o t σ h χ - χ h + E I χ - χ h σ h · t - E Γ χ - χ h σ h · t + d g d t . R 2 χ T T h r o t σ h L 2 T χ - χ h L 2 T + e E I χ - χ h L 2 e σ h · t L 2 e + e E Γ χ - χ h L 2 e σ h · t + d g d t L 2 e .

Therefore, the proof is completed invoking Lemma 3.1, the Cauchy-Schwarz inequality, the regularity of the mesh and (3.11). □

The previous results suggest the definition of the following residual estimator

η : = T T h η T 2 1 / 2 , (3.16)

where

η T 2 : = f - d i v σ h L 2 T 2 + h T 2 σ h + u h L 2 T 2 2 + h T 2 r o t σ h L 2 T 2 + e E T h e u h L 2 e E I 2 + σ h · t L 2 e E I 2 + σ h · t + d g d t L 2 e E Γ 2 .

An upper bound for σ,uΣ is established in the next lemma, in terms of (3.16).

Lemma 3.7.Assuming thatgH1Γ, there exists a constant C > 0, independent of h, such that

σ , u Σ C η . (3.17)

Proof. Invoking Lemmas 3.5 and 3.6, we deduce that there exists C > 0, independent of h, such that

F 1 τ - τ h C ( T T h h T 2 σ h + u h L 2 T 2 2 + e E h h e ( σ h · t L 2 e E I 2 + σ h · t + d g d t L 2 e E Γ 2 + u h L 2 e E I 2 ) ) 1 / 2 τ H d i v ; Ω .

Hence, (3.17) follows from the above bound, Lemma 3.4 and a discrete Cauchy-Schwarz inequality. □

The following theorem establishes the main result of this section, which is the reliability and efficiency of the estimator η.

Theorem 3.2.There exists a positive constant Crel, independent of h, such that

σ - σ h , u - u h Σ C r e l η . (3.18)

Additionally, there exists Ceff > 0, independent of h, such that

η T 2 C e f f σ - σ h , u - u h Σ T , (3.19)

where TTh:τ,vΣT2:=τHdiv;T2+vL2T2. Proof. The reliability of η, (3.18), follows from (3.9) and Lemma 3.7. The efficiency of η, (3.19), is treated in the next subsection. We omit further details. □

3.3 Efficiency of the estimator

In this subsection we prove the local efficiency of the estimator η (cf. (3.19)). We begin by introducing some notations and preliminary results. Given TTh and eET, we let ψ T and ψ e be the standard triangle-bubble and edge-bubble functions, respectively. In particular, ψ T satisfies ψTP3T,suppψTT,ψT=0 on ∂T, and 0ψT1 in T. Similarly, ψe|TP2T,suppψeωe:=T'Th: eET',ψe=0 on ∂ω e , and 0ψe1 in ω e . We also recall from 2121 R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. , 50(1-3) (1994), 67-83. doi:10.1016/0377-0427(94)90290-9. URL https://doi.org/10.1016/0377-0427(94)90290-9.
https://doi.org/10.1016/0377-0427(94)902...
that, given k0, there exists an extension operator L:CeCT that satisfies LpPkT and Lp|e=ppPke. Additional properties of ψ T , ψ e , and L are collected in the following lemma.

Lemma 3.8. For any triangle T there exist positive constants c 1 , c 2 , c 3 and c 4 , depending only on k and the shape of T, such that for all q P k T and p P k e , there hold

ψ T q L 2 T 2 q L 2 T 2 c 1 ψ T 1 / 2 q L 2 T 2 , (3.20)

ψ e p L 2 e 2 p L 2 e 2 c 2 ψ e 1 / 2 p L 2 e 2 , (3.21)

c 4 h e p L 2 e 2 ψ e 1 / 2 L p L 2 T 2 c 3 h e p L 2 e 2 , (3.22)

Proof. See Lemma 4.1 in 2121 R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. , 50(1-3) (1994), 67-83. doi:10.1016/0377-0427(94)90290-9. URL https://doi.org/10.1016/0377-0427(94)90290-9.
https://doi.org/10.1016/0377-0427(94)902...
. □

The following inverse estimate will also be useful.

Lemma 3.9.Letl,m0such that ℓ ≤ m. Then, for any triangle T , there exists c > 0, depending only on k, ℓ, m and the shape of T, such that

q H m T c h T l - m q H l T q P k T . (3.23)

Proof. See Theorem 3.2.6 in 1414 P.G. Ciarlet. “The finite element method for elliptic problems”, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002), xxviii+530 p. doi:10.1137/1.9780898719208. URL https://doi.org/10.1137/1.9780898719208. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
https://doi.org/10.1137/1.9780898719208...
. □

Since f = div(σ ) in Ω, we have that

f - d i v σ h L 2 T = d i v σ - σ h L 2 T .

Lemma 3.10.There exists C1> 0, independent of the meshsize, such that for anyTTh

h T σ h + u h L 2 T 2 C 1 u - u h L 2 T + h T σ - σ h L 2 T 2 .

Proof. We introduce ρh:=σh+uh in T. Then, taking into account the property (3.20) and integrating by parts, we have

c 1 - 1 ρ h L 2 T 2 2 ψ T 1 / 2 ρ h L 2 T 2 2 = T σ h + u h · ψ T ρ h = T σ h · ψ T ρ h + T u h · ψ T ρ h = T σ h · ψ T ρ h - T u h d i v ψ T ρ h = T σ h - σ · ψ T ρ h + T u - u h d i v ψ T ρ h .

Now, applying Cauchy-Schwarz inequality as well as inverse inequality (3.23) and property 0 ≤ ψ T 1, we derive

c 1 - 1 ρ h L 2 T 2 2 { σ - σ h L 2 T 2 ψ T 1 / 2 ρ h L 2 T 2 2 + u - u h L 2 T d i v ψ T ρ h L 2 T 2 } σ - σ h L 2 T 2 ρ h L 2 T 2 + 2 u - u h L 2 T ψ T ρ h L 2 T 2 × 2 C σ - σ h L 2 T 2 + 2 h T - 1 u - u h L 2 T ρ h L 2 T 2 .

Hence, simplifying ρhL2T2 and multiplying by the factor h T , we complete the proof of the lemma. □

In the following lemma, we bound the jump of u h ,

Lemma 3.11.There exists C2> 0, independent of the mesh size, such that for anyeEI

h e u h L 2 e 2 C 2 u - u h L 2 ω e 2 + σ - σ h L 2 ω e 2 2 . (3.24)

Proof. First, given eEI we set ωe:=TT', with T,T'Th such that e=TT'. Next, we introduce wh:=uh on e and ρe:=ψeLwhnT,e in ω e , which belongs to H(div, ω e ). Taking into account (3.21), knowing that [[u]]= 0 on E I , and integrating by parts, we derive

c 2 - 1 w h L 2 e 2 ψ e 1 / 2 w h L 2 e 2 = e ψ e L w h u h - u = e u h - u ρ e · n T = ω e u h - u d i v ρ e + ω e h u h - u · ρ e = ω e u h - u d i v ρ e + ω e σ h + h u h · ρ e + ω e σ - σ h · ρ e .

Using the fact that ωe=T+T', and applying Cauchy-Schwarz inequality, we deduce

c 2 - 1 w h L 2 e 2 u - u h L 2 T d i v ρ e L 2 T + u - u h L 2 T ' d i v ρ e L 2 T ' + σ h + u h L 2 T 2 ρ e L 2 T 2 + σ h u h L 2 T ' 2 ρ e L 2 T ' 2 + σ - σ h L 2 T 2 ρ e L 2 T 2 + σ - σ h L 2 T ' 2 ρ e L 2 T ' 2 . (3.25)

Now, invoking the inverse inequality (3.23) and knowing that 0 ≤ ψ e 1 in ω e together with (3.22), we arrive for each Tωe

d i v ρ e L 2 T 2 ρ e L 2 T 2 × 2 c 2 h T - 1 ρ e L 2 T 2 = c 2 h T - 1 ψ e 1 / 2 L w h L 2 T c c 3 2 h T - 1 / 2 w h L 2 e .

This inequality, together with (3.22), allow us to rewrite (3.25) as follows: There exists c > 0 independent of mesh size, such that

c w h L 2 e 2 { h T - 1 / 2 u - u h L 2 T + h T ' - 1 / 2 u - u h L 2 T ' + h T σ T + u h L 2 T 2 + h T ' σ T + u h L 2 T ' 2 + h T σ - σ h L 2 T 2 + h T ' σ - σ h L 2 T ' 2 } w h L 2 e .

Then the proof follows after multiplying by h e , and applying Lemma 3.10. □

Lemma 3.12.There exists C3 > 0, independent of the meshsize, such that for anyTTh

h T r o t σ h L 2 T C 3 σ - σ h L 2 T 2 .

Proof. We introduce ρh:=rotσh in T. Then, invoking the property (3.20), rot(σ) = 0 in T, and integrating by parts, we have

c 1 - 1 ρ h L 2 T 2 ψ T 1 / 2 ρ h L 2 T 2 2 = T r o t σ h ψ T ρ h = T r o t σ h - σ ψ T ρ h = T σ h - σ · curl ψ T ρ h .

Now, applying Cauchy-Schwarz inequality, as well as inverse inequality (3.23) and the fact that 0 ≤ ψT ≤ 1 in T, we derive

c 1 - 1 ρ h L 2 T 2 2 σ - σ h L 2 T 2 curl ψ T ρ h L 2 T 2 = σ - σ h L 2 T 2 ψ T ρ h L 2 T 2 C σ - σ h L 2 T 2 h T - 1 ψ T ρ h L 2 T C h T - 1 σ - σ h L 2 T 2 ρ h L 2 T .

Hence, simplifying ρhL2T2 and multiplying by the factor h T , we complete the proof of the lemma. □

The tangential component jump of σ h is treated in the next lemma.

Lemma 3.13.There exists C4 > 0, independent of the mesh size, such that for anyeEI

h e σ h · t L 2 e 2 C 4 σ - σ h L ω e 2 2 . (3.26)

Proof. Given eEI, let T,T'Th such that ωe=TT' and they share e, i.e. TT'=e. Denoting by wh:=σh·t on e, and using 3.21, it follows that

c 2 - 1 w h L 2 e 2 ψ e 1 / 2 w h L 2 e 2 = e ψ e L w h σ h · t = e ψ e L w h σ h · t T + e ψ e L w h σ h · t T ' = - ω e curl ψ e L w h · σ h + ω e ψ e L w h r o t σ h = ω e curl ψ e L w h · σ - σ h + ω e ψ e L w h r o t σ h , (3.27)

where in the last equality we take into account

ω e curl ψ e L w h · σ = - ω e curl ψ e L w h · u = ω e ψ e L w h u · t = 0 .

In addition, realizing that ωe=T+T' and applying Cauchy-Schwarz inequality, we deduce

c 2 - 1 w h L 2 e 2 curl ψ e L w h L 2 T 2 σ - σ h L 2 T 2 + ψ e L w h L 2 T r o t σ h L 2 T + curl ψ e L w h L 2 T ' 2 σ - σ h L 2 T ' 2 + ψ e L w h L 2 T ' r o t σ h L 2 T ' . (3.28)

Now, knowing that 0ψe1/21, and taking into account (3.22), for each TTh, we deduce

ψ e L w h L 2 T c 3 h T 1 / 2 w h L 2 e . (3.29)

Now, the inverse inequality (3.23)), the fact that 0ψe1/21 in ωe , together with (3.22)), implies for each Tωe

curl ψ e L w h L 2 T 2 = ψ e L w h L 2 T 2 c h T - 1 ψ e L w h L 2 T c h T - 1 ψ e 1 / 2 L w h L 2 T c c 3 h T - 1 / 2 w h L 2 e . (3.30)

Inequalities (3.29) and (3.30) allow us to rewrite (3.28) as follows: There exists c > 0 independent of meshsize, such that

c w h L 2 e 2 { h T - 1 / 2 σ - σ h L 2 T 2 + h T ' - 1 / 2 σ - σ h L 2 T ' 2 + h T 1 / 2 r o t σ h L 2 T + h T ' 1 / 2 r o t σ h L 2 T ' } w h L 2 e .

Then, (3.26) follows after simplifying whL2e, multiplying by he1/2 and invoking Lemma 3.12. □

Remark 3.14.The current a posteriori error analysis can be extended to three dimensions. To this aim, we consider Ω a bounded and simply connected polyhedral domain in3 . Now, given a partition 𝒯h ofΩmade of tetrahedral, we take into account similar notations as the ones introduced in Section 3, with face instead of edge. In addition, for any smooth enough vector field ρ, respectively, we setcurlρ:=×ρ, while the jump of tangential trace of ρ acrosseEh, by

n × ρ : = n T , e × ρ T , e + n T ' , e × ρ T ' , e e E I , n T , e × ρ T , e e E Γ ,

whereT,T'Thare the pair of tetrahedral sharing the faceeEI. On the other hand, wheneEΓ, byTThwe refer to the unique element having e as a boundary face. Now, following the ideas given in the proof of Lemma 3.3, and applying Theorem I.3.5 in1818 V. Girault & P.A. Raviart. “Finite element methods for Navier-Stokes equations”, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986), x+374 p. doi:10.1007/978-3-642-61623-5. URL https://doi.org/10.1007/978-3-642-61623-5. Theory and algorithms.
https://doi.org/10.1007/978-3-642-61623-...
, we can establish the 3D-version of the quasi-Helmholtz decomposition of functions belonging to H(div; Ω) presented in Lemma 3.3, which in addition is also stable (invoking Theorem 2.1 in1313 C. Carstensen, S. Bartels & S. Jansche. A posteriori error estimates for nonconforming finite element methods. Numer. Math. , 92(2) (2002), 233-256. doi:10.1007/s002110100378. URL https://doi.org/10.1007/s002110100378.
https://doi.org/10.1007/s002110100378...
). This means that for anyτHdiv;Ω, there existχH1Ω3andΦH01Ω3, such that

τ = curl χ + Φ + d 3 x 1 - a x 2 - b x 3 - c ,

where (a, b, c)t is any fixed point belonging to Ω, andd:=1ΩΩdivτ. In addition, there exists C > 0, such that

χ H 1 Ω 3 2 + Φ H 1 Ω 3 2 C τ H d i v ; Ω 2 .

Then, proceeding in analogous way as in Section 3, we prove a similar result to Theorem 3.2, where the local a posteriori error estimator now reads as

η T 2 : = f + d i v σ h L 2 T 3 2 + h T 2 σ h + u h L 2 T 3 2 + h T 2 curl σ h L 2 T 3 2 + e E T E I h e u h L 2 e 3 2 + h e n × σ h L 2 e 3 2 + e E T E Γ h e n × σ h + g L 2 e 3 2 . (3.31)

4 NUMERICAL EXAMPLE

In this section, we present one numerical example illustrating the performance of the dual mixed method when applied to the Poisson problem, with Dirichlet condition, as well as of the corresponding adaptive procedure. We consider the lowest finite element RT0T-P0T for our approximation. We remark that the computational implementation has been done using a MATLAB code.

Hereafter, the number of degrees of freedom (unknowns) is given by N: = number of edges + number of elements, induced by the triangulation. Moreover, the involved individual and total errors are defined as e0u:=u-uhL2Ω,eσ:=σ-σhL2Ω22+divσ-σhL2Ω21/2 and e:=e0u2+eσ21/2, where σ,uHdiv;Ω×L2Ω and σh,uhHh,rσ×Hh,ru are the corresponding unique solutions of the continuous (2.1) and discrete (2.2) formulations. Additionally, if e and e’ stand for the errors at two consecutive triangulations with N and N’ number of degrees of freedom, respectively, we set the experimental rate of convergence of the global error as r:=-2loge/e'logN/N'. We define r0(u) and r(σ ) in analogous way.

The data f and g for our example, are chosen so that the exact solution is ux,y=xyx+1.052+y2 and Ω:=-1,12\0,12. We notice that in this case u has a singularity at (1.05, 0), which does not belong to Ω, but it is very close to Ω. Then, u has a numerical singularity in a neighborhood of -1,0Γ.

Then, the purpose of this example, is to show the performance of the following adaptive algorithm (cf. 2222 R. Verfürth. “A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques”. Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1996), xx+150 p.). Given an a posteriori error estimatorη:=TThηT2:

  • 1. Start with a coarse mesh 𝒯h .

  • 2. Solve the Galerkin scheme for the current mesh 𝒯h .

  • 3. Compute ηT for each triangle T ∈ 𝒯h .

  • 4. Consider stopping criterion and decide to finish or go to the next step.

  • 5. Apply Blue-green procedure to refine each element T’ ∈ 𝒯h such that

η T ' 1 2 m a x η T : T T h .

  • 6. Define the resulting mesh as the new 𝒯h and go to step 2.

Table 1 reports the histories of convergence of the individual and total errors for a sequence of uniform and adaptive refinements, respectively. We notice that the adaptive refinement algorithm is able to recognize the numerical singularity, and then the induced sequence of adapted meshes let us to improve the quality of approximation, better than the corresponding when uniform refinement is performed. In addition, we observe that index of efficiency e/η remains bounded, indicating that η is reliable and efficient, despite the fact that g in this case is not piecewise polynomial. Figure 1 displays some adapted meshes, generated by the proposed adaptive algorithm, from which we observe that the numerical singularity is detected.

Table 1:
History of convergence of Example provided, considering uniform (up) and adaptive (bottom) refinements.

Figure 1:
Adapted meshes corresponding (top-bottom, left-right) to 192, 386, 3633 and 29052 dofs, for Example considered, with Dirichlet boundary condition (based on η).

CONCLUDING REMARKS

In this paper, we have developed an a posteriori error analysis for a dual mixed formulation of Poisson problem in the plane, with non homogeneous Dirichlet boundary condition. By establishing a new kind of quasi-Helmholtz decomposition of functions in H(div; Ω) (cf. Lemma 3.3), we are able to obtain an a posteriori error estimator, which consists of six residual terms, and results to be reliable and locally efficient with respect to the error measured in its natural norm on Hdiv;Ω×L2Ω. In this sense, we have generalized the results obtained in previous works ( 11 A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4) (1996), 385-395. doi:10.1007/s002110050222. URL https://doi.org/10.1007/s002110050222.
https://doi.org/10.1007/s002110050222...
, 1010 D. Braess & R. Verfürth. A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal., 33(6) (1996), 2431-2444. doi:10.1137/S0036142994264079. URL https://doi.org/10.1137/S0036142994264079.
https://doi.org/10.1137/S003614299426407...
, for example), and without invoking the so called saturation assumption.

The results of numerical experiment, included in this work, are in agreement with our theoretical analysis. Here, we notice that the estimator is able to help us to identify which part of the domain is localized the numerical singularity of the exact solution. As a consequence, the adaptive algorithm, based on this estimator, let us to improve the quality of the approximation.

Finally, since Lemma 3.3 can be proved for 3d case too, the current work can be extended to 3d, obtaining a reliable and locally efficient residual a posteriori error estimator, consisting also of six residual terms (cf. (3.31)).

Acknowledgments

This research was partially supported by ANID-Chile through the the project Centro de Modelamiento Matemático (AFB170001) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal CONICYT-Chile and FONDECYT grant No. 1200051; by Direcciones de Investigación y de Postgrado de la Universidad Católica de la Santísima Concepción (Chile), through Incentivo Mensual and Becas de Mantención programs, and by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (Chile).

REFERENCES

  • 1
    A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4) (1996), 385-395. doi:10.1007/s002110050222. URL https://doi.org/10.1007/s002110050222
    » https://doi.org/10.1007/s002110050222» https://doi.org/10.1007/s002110050222
  • 2
    T. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error estimator for a new stabilized formulation of the Brinkman problem. In “Numerical mathematics and advanced applications- ENUMATH 2013”, volume 103 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2015), p. 253-261.
  • 3
    T.P. Barrios, E.M. Behrens & R. Bustinza. A stabilized mixed method applied to Stokes system with nonhomogeneous source terms: the stationary case. Dedicated to Prof. R. Rodríguez, on the occasion of his 65th birthday. Internat. J. Numer. Methods Fluids, 92(6) (2020), 509-527. doi:10.1002/fld.4793. URL https://doi.org/10.1002/fld.4793
    » https://doi.org/10.1002/fld.4793» https://doi.org/10.1002/fld.4793
  • 4
    T.P. Barrios, E.M. Behrens & M. González. Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity. Appl. Numer. Math. , 84 (2014), 46-65. doi:10.1016/j.apnum.2014.05.008. URL https://doi.org/10.1016/j.apnum.2014.05.008
    » https://doi.org/10.1016/j.apnum.2014.05.008» https://doi.org/10.1016/j.apnum.2014.05.008
  • 5
    T.P. Barrios, R. Bustinza, G.C. García & M. González. An a posteriori error analysis of a velocity- pseudostress formulation of the generalized Stokes problem. J. Comput. Appl. Math., 357 (2019), 349-365. doi:10.1016/j.cam.2019.02.019. URL https://doi.org/10.1016/j.cam.2019.02.019
    » https://doi.org/10.1016/j.cam.2019.02.019» https://doi.org/10.1016/j.cam.2019.02.019
  • 6
    T.P. Barrios, J.M. Cascón & M. González. A posteriori error analysis of an augmented mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg., 283 (2015), 909-922. doi:10.1016/j.cma.2014.10.035. URL https://doi.org/10.1016/j.cma.2014.10.035
    » https://doi.org/10.1016/j.cma.2014.10.035» https://doi.org/10.1016/j.cma.2014.10.035
  • 7
    T.P. Barrios, J.M. Cascón & M. González. A posteriori error estimation of a stabilized mixed finite element method for Darcy flow. In “Boundary and interior layers, computational and asymptotic methods-BAIL 2014”, volume 108 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2015), p. 13-23.
  • 8
    T.P. Barrios, J.M. Cascón & M. González. Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analysis. Comput. Methods Appl. Mech. Engrg. , 313 (2017), 216-238.
  • 9
    T.P. Barrios & G.N. Gatica. An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses. J. Comput. Appl. Math. , 200(2) (2007), 653-676. doi:10.1016/j.cam.2006.01.017. URL https://doi.org/10.1016/j.cam.2006.01.017
    » https://doi.org/10.1016/j.cam.2006.01.017» https://doi.org/10.1016/j.cam.2006.01.017
  • 10
    D. Braess & R. Verfürth. A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal., 33(6) (1996), 2431-2444. doi:10.1137/S0036142994264079. URL https://doi.org/10.1137/S0036142994264079
    » https://doi.org/10.1137/S0036142994264079» https://doi.org/10.1137/S0036142994264079
  • 11
    F. Brezzi & M. Fortin. “Mixed and hybrid finite element methods”, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991), x+350 p. doi:10.1007/978-1-4612-3172-1. URL https://doi.org/10.1007/978-1-4612-3172-1
    » https://doi.org/10.1007/978-1-4612-3172-1» https://doi.org/10.1007/978-1-4612-3172-1
  • 12
    C. Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66(218) (1997), 465-476. doi:10.1090/S0025-5718-97-00837-5. URL https://doi.org/10.1090/S0025-5718-97-00837-5
    » https://doi.org/10.1090/S0025-5718-97-00837-5» https://doi.org/10.1090/S0025-5718-97-00837-5
  • 13
    C. Carstensen, S. Bartels & S. Jansche. A posteriori error estimates for nonconforming finite element methods. Numer. Math. , 92(2) (2002), 233-256. doi:10.1007/s002110100378. URL https://doi.org/10.1007/s002110100378
    » https://doi.org/10.1007/s002110100378» https://doi.org/10.1007/s002110100378
  • 14
    P.G. Ciarlet. “The finite element method for elliptic problems”, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002), xxviii+530 p. doi:10.1137/1.9780898719208. URL https://doi.org/10.1137/1.9780898719208 Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
    » https://doi.org/10.1137/1.9780898719208» https://doi.org/10.1137/1.9780898719208
  • 15
    P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9(R-2) (1975), 77-84.
  • 16
    R.G. Durán. Mixed Finite Element Methods. In “Mixed finite elements, compatibility conditions, and applications”, Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008), p. 1-44.
  • 17
    G.N. Gatica & M. Maischak. A posteriori error estimates for the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations, 21(3) (2005), 421-450. doi:10.1002/num.20050. URL https://doi.org/10.1002/num.20050
    » https://doi.org/10.1002/num.20050» https://doi.org/10.1002/num.20050
  • 18
    V. Girault & P.A. Raviart. “Finite element methods for Navier-Stokes equations”, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986), x+374 p. doi:10.1007/978-3-642-61623-5. URL https://doi.org/10.1007/978-3-642-61623-5 Theory and algorithms.
    » https://doi.org/10.1007/978-3-642-61623-5» https://doi.org/10.1007/978-3-642-61623-5
  • 19
    R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11 (2002), 237-339. doi:10.1017/S0962492902000041. URL https://doi.org/10.1017/S0962492902000041
    » https://doi.org/10.1017/S0962492902000041» https://doi.org/10.1017/S0962492902000041
  • 20
    J.E. Roberts & J.M. Thomas. Mixed and hybrid methods. In “Handbook of numerical analysis, Vol. II”, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991), p. 523-639.
  • 21
    R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. , 50(1-3) (1994), 67-83. doi:10.1016/0377-0427(94)90290-9. URL https://doi.org/10.1016/0377-0427(94)90290-9
    » https://doi.org/10.1016/0377-0427(94)90290-9» https://doi.org/10.1016/0377-0427(94)90290-9
  • 22
    R. Verfürth. “A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques”. Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1996), xx+150 p.
  • 23
    B.I. Wohlmuth & R.H.W. Hoppe. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Math. Comp. , 68(228) (1999), 1347-1378. doi:10.1090/S0025-5718-99-01125-4. URL https://doi.org/10.1090/S0025-5718-99-01125-4
    » https://doi.org/10.1090/S0025-5718-99-01125-4» https://doi.org/10.1090/S0025-5718-99-01125-4

Publication Dates

  • Publication in this collection
    05 Sept 2022
  • Date of issue
    Jul-Sep 2022

History

  • Received
    27 Sept 2021
  • Accepted
    24 Mar 2022
Sociedade Brasileira de Matemática Aplicada e Computacional - SBMAC Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163, Cep: 13561-120 - SP / São Carlos - Brasil, +55 (16) 3412-9752 - São Carlos - SP - Brazil
E-mail: sbmac@sbmac.org.br