Acessibilidade / Reportar erro
Brazilian Journal of Chemical Engineering, Volume: 21, Número: 3, Publicado: 2004
  • Preface: in memoriam

    Rocha, Sandra Cristina dos Santos
  • Continuous ethanol production using yeast immobilized on sugar-cane stalks Biotechnology

    Vasconcelos, J. N. de; Lopes, C. E.; França, F. P. de

    Resumo em Inglês:

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 ± 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars (TRS) conversion was 74.61% at a dilution rate of 0.83 h-1. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h-1 to 3.00 h-1. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h-1).
  • Measurement processing for state estimation and fault identification in batch fermentations Biotechnology

    Dondo, R.

    Resumo em Inglês:

    This work describes an application of maximum likelihood identification and statistical detection techniques for determining the presence and nature of abnormal behaviors in batch fermentations. By appropriately organizing these established techniques, a novel algorithm that is able to detect and isolate faults in nonlinear and uncertain processes was developed. The technique processes residuals from a nonlinear filter based on the assumed model of fermentation. This information is combined with mass balances to conduct statistical tests that are used as the core of the detection procedure. The approach uses a sliding window to capture the present statistical properties of filtering and mass-balance residuals. In order to avoid divergence of the nonlinear monitor filter, the maximum likelihood states and parameters are periodically estimated. The maximum likelihood parameters are used to update the kinetic parameter values of the monitor filter. If the occurrence of a fault is detected, alternative faulty model structures are evaluated statistically through the use of log-likelihood function values and chi2 detection tests. Simulation obtained for xanthan gum batch fermentations are encouraging.
  • Niobium carbide synthesis by solid-gas reaction using a rotating cylinder reactor Chemical Reaction Engineering

    Fontes, F. A. O.; Gomes, K. K. P.; Oliveira, S. A.; Souza, C. P.; Sousa, J. F.

    Resumo em Inglês:

    A rotating cylinder reactor was designed for the synthesis of niobium carbide powders at 1173 K. Niobium carbide, NbC, was prepared by carbothermal reduction starting from commercial niobium pentoxide powders. The reactor was heated using a custom-made, two-part, hinged, electric furnace with programmable temperature control. The design and operational details of the reactor are presented. The longitudinal temperature gradient inside the reactor was determined. Total reaction time was monitored by a gas chromatograph equipped with an FID detector for determination of methane concentrations. The results show that time of reaction depended on rotation speed. NbC was also prepared in a static-bed alumina reactor using the same conditions as in the previous case. The niobium carbide powders were characterized by X-ray diffraction and compared with commercially available products. Morphological, particle size distribution and surface area analyses were obtained using SEM, LDPS and BET, respectively. Therefore, the present study offers a significant technological contribution to the synthesis of NbC powders in a rotating cylinder reactor.
  • Incorporation of environmental impact criteria in the design and operation of chemical processes Environmental Engineering

    Bauer, P.E.; Maciel Filho, R.

    Resumo em Inglês:

    Environmental impact assessment is becoming indispensable for the design and operation of chemical plants. Structured and consistent methods for this purpose have experienced a rapid development. The more rigorous and sophisticated these methods become, the greater is the demand for convenient tools. On the other hand, despite the incredible advances in process simulators, some aspects have still not been sufficiently covered. To date, applications of these programs to quantify environmental impacts have been restricted to straightforward examples of steady-state processes. In this work, a life-cycle assessment implementation with the aim of process design will be described, with a brief discussion of a dynamic simulation for analysis of transient state operations, such as process start-up. A case study shows the importance of this analysis in making possible operation at a high performance level with reduced risks to the environment.
  • Chemical absorption of H2S for biogas purification Environmental Engineering

    Horikawa, M.S.; Rossi, F.; Gimenes, M.L.; Costa, C.M.M.; Silva, M.G.C. da

    Resumo em Inglês:

    This work presents an experimental study of purification of a biogas by removal of its hydrogen sulphide (H2S) content. The H2S was removed by means of chemical absorption in an iron-chelated solution catalyzed by Fe/EDTA, which converts H2S into elemental sulphur (S). Preparation of the catalyst solution and the results of biogas component absorption in the catalyst solution (0.2 mol/L) are presented. These results are compared with those for physical absorption into pure water under similar conditions. Experimental results demonstrate that, under the same experimental conditions, a higher percentage of H2S can be removed in the catalytic solution than in water. In a continuous counter current using adequate flow-rate phases contact at room temperature and low gas pressure, the results demonstrate that is possible to totally remove the H2S from the biogas with the prepared catalytic solution.
  • Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program Environmental Engineering

    Rodrigues, J. A. D.; Pinto, A. G.; Ratusznei, S. M.; Zaiat, M.; Gedraite, R.

    Resumo em Inglês:

    This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30ºC and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD) of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance.
  • A mathematical model for isothermal heap and column leaching Extractive Metallurgy And Leaching Process

    de Andrade Lima, L.R.P.

    Resumo em Inglês:

    Leaching occurs in metals recovery, in contaminated soil washing, and in many natural processes, such as fertilizer dissolution and rock weathering. This paper presents a model developed to simulate the transient evolution of the dissolved chemical species in the heap and column isothermal leaching processes. In this model, the solid bed is numerically divided into plane layers; the recovery of the chemical species, the enrichment of the pregnant leach solution, and the residual concentration of the leaching agent are calculated by interactions among the layers. The solution flow in the solid bed is assumed as unidirectional without dispersion, and the solid-fluid reaction is described by a diffusive control model that is integrated analytically for each time step. The data set used in the model include physical-chemical, geometrical, and operational variables, such as: leachable chemical species content, leaching agent flow rate and concentration, particles size distribution, solution residence time in the solid bed, and solid bed length, weight and irrigated area. The results for two case studies, namely, an industrial gold heap leaching and a pilot column copper acid leaching, showed that the model successful predict the general features of the process time evolution.
  • The effect of temperature and flow rate on the clarification of the aqueous stevia-extract in a fixed-bed column with zeolites Food Science And Engineering

    Mantovaneli, I. C. C.; Ferretti, E. C.; Simões, M. R.; Silva, C. Ferreira da

    Resumo em Inglês:

    Stevia is being used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour so needs to be clarified for better acceptance by consumers. Adsorption is one of the most important processes in this clarification. In this work the clarification of extract stevia extract in fixed-bed columns with calcium zeolites was studied. Two temperatures (10ºC and 30ºC) and six different flow rates (2, 5, 9, 12, 16 and 19 mL/min) were studied. The results showed that the mass-transfer coeffcient increases with an increase in flow rate and the length of unused bed reaches a maximum at 9 mL/min for both temperatures. The fit of the Thomas model with the breakthrough data was not very good.
  • Simulation of emulsion copolymerization reactions in a continuous pulsed sieve-plate column reactor Polymers Science And Engineering

    Sayer, C.; Giudici, R.

    Resumo em Inglês:

    This work addressed the viability of using a pulsed sieve-plate column reactor to carry out continuous vinyl acetate/butyl acrylate emulsion copolymerization reactions. A rigorous mathematical model of emulsion copolymerization reactions in a tubular reactor with axial dispersion was used for this purpose. Operational conditions were defined to attain high monomer conversions at the reactor outlet in a relatively short residence time and, at the same time, produce a copolymer with a more homogeneous composition.
  • Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model Thermodynamics

    Pessôa Filho, P. A.; Mohamed, R. S.

    Resumo em Inglês:

    Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol) and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.
  • A novel mechanism for bubble formation in fluidized systems: the effects of granular temperature on the stability in fluidization Transport Phenomena And Unit Operation

    Costa, A. M. S.; Souza-Santos, M. L. de

    Resumo em Inglês:

    This work contains a novel approach for the study of stability in fluidized systems. It includes the influence of solid particle kinetic energy variations, which are known as granular temperature. The stability is verified by the temporal evolution of bed fluid-dynamics properties (solid volumetric fraction, fluid velocity, solid particles velocity) after small perturbations. The bed is stable when the amplitudes of perturbations decrease with time. The work departs from the mass and momentum continuity equations for the solid and fluid phase, as proposed by Anderson and Jackson (1968). Those are complemented by an equation describing the energy balance from the point of view of granular temperature. Then, a linear approximation for the equations after the introduction of small magnitude perturbations is obtained. The application of harmonic solutions allows arriving to the temporal description of the perturbations. Results show the occurrence of instabilities on the direction transverse to gravity. This cannot be observed by previous approaches (Anderson and Jackson, 1968, 1969; Homsy et al., 1980; Liu, 1982). The present work also suggests a new mechanism for the formation of bubbles in fluidized systems. The parametric influence of the model on the stability of fluidized systems is also verified.
  • Performance of mechanically shaken indirect contact atmospheric dryer in drying pastelike materials Transport Phenomena And Unit Operation

    Melo, K. P.; Cremasco, M. A.

    Resumo em Inglês:

    Pastelike materials are encountered in many technological processes in chemical, pharmaceutical, foodstuff and natural product industries. The most important factor in the drying of this type of materials is the nature of the moisture bonding that occurs. Because of the different characteristics of pastes, it is impossible to recommend a universal type of dryer for all of these materials. Some of the dryers available provide only indirect contact with the drying agent (heat) and also maintain constant moisture with a system of rotating paddles. We evaluated the performance of this type by studying the dryer kinetics curves for ground coffee under a variety of operational conditions of moisture load of material, temperature of the heating plate, intensity of the mechanical mixing of the moisture material, and initial moisture. The effects of these parameters (except for moisture) were studied using a 2³ factorial design. According the analyses of the kinetics drying curves, was observed that the increase in the temperature of the plate and rotation as well as the decrease in the load facilitates more effective removal of moisture. In statistical analysis was determined that the load of the material and the heating plate temperature influence the final moisture content of the material and plate temperature modifies the final temperature of the solid. Also, was suggested linear models from the factorial design to describe the process of drying coffee grounds satisfactorily.
  • Time series analysis of pressure fluctuation in gas-solid fluidized beds Transport Phenomena And Unit Operation

    Felipe, C. Alberto S.; Rocha, S. C. S.

    Resumo em Inglês:

    The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging) in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute) pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT) was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.
Brazilian Society of Chemical Engineering Rua Líbero Badaró, 152 , 11. and., 01008-903 São Paulo SP Brazil, Tel.: +55 11 3107-8747, Fax.: +55 11 3104-4649, Fax: +55 11 3104-4649 - São Paulo - SP - Brazil
E-mail: rgiudici@usp.br